
26th International Conference on
Database Theory

ICDT 2023, March 28–31, 2023, Ioannina, Greece

Edited by

Floris Geerts
Brecht Vandevoort

LIPIcs – Vo l . 255 – ICDT 2023 www.dagstuh l .de/ l ip i c s

Editors

Floris Geerts
University of Antwerp, Belgium
floris.geerts@uantwerp.be

Brecht Vandevoort
UHasselt, Data Science Institute, ACSL, Diepenbeek, Belgium
brecht.vandevoort@uhasselt.be

ACM Classification 2012
Information systems → Data management systems; Information systems → Data streams; Information
systems → Data structures; Information systems → Database views; Information systems → Graph-based
database models; Information systems → Join algorithms; Information systems → Query languages for non-
relational engines; Information systems → Query languages; Information systems → Query optimization;
Information systems → Query planning; Information systems → Relational database query languages;
Information systems → Structured Query Language; Theory of computation → Approximation algorithms
analysis; Theory of computation → Data modeling; Theory of computation → Data provenance; Theory
of computation → Data structures and algorithms for data management; Theory of computation →
Data structures design and analysis; Theory of computation → Database query languages (principles);
Theory of computation → Database query processing and optimization (theory); Theory of computation
→ Database theory; Theory of computation → Description logics; Theory of computation → Graph
algorithms analysis; Theory of computation → Incomplete, inconsistent, and uncertain databases; Theory
of computation → Logic and databases; Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Shared memory algorithms; Theory of computation → Sorting and
searching; Theory of computation → Streaming, sublinear and near linear time algorithms; Mathematics of
computing → Graph algorithms; Mathematics of computing → Graph theory; Computing methodologies
→ Network science; Networks → Network structure

ISBN 978-3-95977-270-9

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-270-9.

Publication date
March, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ICDT.2023.0
ISBN 978-3-95977-270-9 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:floris.geerts@uantwerp.be
mailto:brecht.vandevoort@uhasselt.be
https://www.dagstuhl.de/dagpub/978-3-95977-270-9
https://www.dagstuhl.de/dagpub/978-3-95977-270-9
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ICDT.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-270-9
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB and Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ICDT 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Floris Geerts and Brecht Vandevoort . 0:vii

Organization
. 0:ix

External Reviewers
. 0:xi

Contributing Authors
. 0:xiii

The ICDT 2023 Test-of-Time Award
. 0:xv

Invited Talks

A Researcher’s Digest of GQL
Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin,
Victor Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova,
and Domagoj Vrgoč . 1:1–1:22

Compact Data Structures Meet Databases
Gonzalo Navarro . 2:1–2:16

Some Vignettes on Subgraph Counting Using Graph Orientations
C. Seshadhri . 3:1–3:10

Regular Papers

Enumerating Subgraphs of Constant Sizes in External Memory
Shiyuan Deng, Francesco Silvestri, and Yufei Tao . 4:1–4:20

An Optimal Algorithm for Sliding Window Order Statistics
Pavel Raykov . 5:1–5:13

Space-Query Tradeoffs in Range Subgraph Counting and Listing
Shiyuan Deng, Shangqi Lu, and Yufei Tao . 6:1–6:25

Constant-Delay Enumeration for SLP-Compressed Documents
Martín Muñoz and Cristian Riveros . 7:1–7:17

Degree Sequence Bound for Join Cardinality Estimation
Kyle Deeds, Dan Suciu, Magda Balazinska, and Walter Cai . 8:1–8:18

Absolute Expressiveness of Subgraph-Based Centrality Measures
Andreas Pieris and Jorge Salas . 9:1–9:18

Diversity of Answers to Conjunctive Queries
Timo Camillo Merkl, Reinhard Pichler, and Sebastian Skritek . 10:1–10:19

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

The Complexity of the Shapley Value for Regular Path Queries
Majd Khalil and Benny Kimelfeld . 11:1–11:19

How Do Centrality Measures Choose the Root of Trees?
Cristian Riveros, Jorge Salas, and Oskar Skibski . 12:1–12:17

Size Bounds and Algorithms for Conjunctive Regular Path Queries
Tamara Cucumides, Juan Reutter, and Domagoj Vrgoč . 13:1–13:17

Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries
Antoine Amarilli . 14:1–14:17

Approximation and Semantic Tree-Width of Conjunctive Regular Path Queries
Diego Figueira and Rémi Morvan . 15:1–15:19

Work-Efficient Query Evaluation with PRAMs
Jens Keppeler, Thomas Schwentick, and Christopher Spinrath . 16:1–16:20

Conjunctive Queries with Free Access Patterns Under Updates
Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang . 17:1–17:20

Finite-Cliquewidth Sets of Existential Rules: Toward a General Criterion for
Decidable yet Highly Expressive Querying

Thomas Feller, Tim S. Lyon, Piotr Ostropolski-Nalewaja,
and Sebastian Rudolph . 18:1–18:18

Generalizing Greenwald-Khanna Streaming Quantile Summaries for Weighted
Inputs

Sepehr Assadi, Nirmit Joshi, Milind Prabhu, and Vihan Shah . 19:1–19:19

Probabilistic Query Evaluation with Bag Semantics
Martin Grohe, Peter Lindner, and Christoph Standke . 20:1–20:19

On Efficient Range-Summability of IID Random Variables in Two or Higher
Dimensions

Jingfan Meng, Huayi Wang, Jun Xu, and Mitsunori Ogihara . 21:1–21:18

The Consistency of Probabilistic Databases with Independent Cells
Amir Gilad, Aviram Imber, and Benny Kimelfeld . 22:1–22:19

Consistent Query Answering for Primary Keys and Conjunctive Queries with
Counting

Aziz Amezian El Khalfioui and Jef Wijsen . 23:1–23:19

A Simple Algorithm for Consistent Query Answering Under Primary Keys
Diego Figueira, Anantha Padmanabha, Luc Segoufin, and Cristina Sirangelo 24:1–24:18

Preface

The 26th International Conference on Database Theory (ICDT 2023) was held in Ioannina,
Greece, from March 28 to March 31, 2021.

The Program Committee has selected 21 research papers out of 49 submissions for
publication at the conference. It has further decided to give the Best Paper Award to The
I/O Complexity of Enumerating Subgraphs of Constant Sizes by Shiyuan Deng, Francesco
Silvestri and Yufei Tao, and the Best Newcomer Paper Award to An Optimal Algorithm for
Sliding Window Order Statistics by Pavel Raykov. We congratulate the winners!

Apart from the 21 regular papers, these proceedings include invited papers associated
with the (shared) EDBT/ICDT keynotes by Leonid Libkin (University of Edinburgh & ENS
Paris) and Gonzalo Navarro (University of Chile), as well as the invited paper associated
with the ICDT invited tutorial by Seshadhri Comandur (University of California).

A committee formed by Wang-Chiew Tan, Diego Figueira, and George Fletcher has
decided to give the Test-of-Time Award for ICDT 2023 to the two ICDT 2013 papers
A Theory of Pricing Private Data by Chao Li, Daniel Y. Li, Gerome Miklau and Dan Suciu,
and Querying Graph Databases with XPath by Leonid Libkin, Wim Martens and Domagoj
Vrgoč.

We would like to thank all people who contributed to the success of ICDT 2023, including
the authors of all submitted papers, keynote and invited tutorial speakers, and, of course,
all members of the Program Committee as well as the external reviewers, for the very
substantial work that they have invested over the two submission cycles of ICDT 2023. Their
commitment and sagacity were crucial to ensure that the final program of the conference
satisfies the highest standards. We would also like to thank the ICDT Council members for
their support on a wide variety of matters, and the local organizers of the EDBT/ICDT 2023
conference, led by General Chairs Nikos Mamoulis and Evaggelia Pitoura, for the great job
they did in organizing the conference and co-located events. Finally, we wish to acknowledge
Dagstuhl Publishing for their support with the publication of the proceedings in the LIPIcs
(Leibniz International Proceedings in Informatics) series.

Floris Geerts and Brecht Vandevoort
March 2023

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organization

General Chairs

Nikos Mamoulis (University of Ioannina)

Evaggelia Pitoura (University of Ioannina)

Program Chair

Floris Geerts (University of Antwerp)

Program Committee

Sepehr Assadi (Rutgers University)

Vaishak Belle (The University of Edinburgh)

Leopoldo Bertossi (SKEMA Business School, Montreal, Canada)

Graham Cormode (The University of Warwick)

Ahmet Kara (University of Zurich)

Batya Kenig (Technion, Israel Institute of Technology)

Bas Ketsman (Vrije Universiteit Brussel)

Ester Livshits (The University of Edinburgh)

Wim Martens (University of Bayreuth)

Liat Peterfreund (CNRS, Université Gustave Eiffel)

Reinhard Pichler (Vienna University of Technology)

Andreas Pieris (University of Cyprus, The University of Edinburgh)

Marcin Przybyłko (University of Leipzig)

Juan L. Reutter (Pontificia Universidad Católica)

Sudeepa Roy (Duke University)

Jef Wijsen (University of Mons)

Ke Yi (Hong Kong University of Science and Technology)

Thomas Zeume (Ruhr-Universität Bochum)

Proceedings Chair

Brecht Vandevoort (Hasselt University)

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Marco Calautti

Xiao Hu

Stefan Mengel

Matthias Niewerth

Anantha Padmanabha

Marko Schmellenkamp

Nils Vortmeier

Katja Zeume

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Contributing Authors

Antoine Amarilli
Aziz Amezian El Khalfioui
Sepehr Assadi
Magdalena Balazinska
Walter Cai
Seshadhri Comandur
Tamara Cucumides
Kyle Deeds
Shiyuan Deng
Thomas Feller
Diego Figueira
Nadime Francis
Amélie Gheerbrant
Amir Gilad
Paolo Guagliardo
Martin Grohe
Aviram Imber
Nirmit Joshi
Ahmet Kara
Jens Keppeler
Majd Khalil
Benny Kimelfeld
Leonid Libkin
Peter Lindner
Shangqi Lu
Timothy Lyon
Victor Marsault
Wim Martens
Jingfan Meng
Timo Merkl
Rémi Morvan
Martín Muñoz
Filip Murlak

Gonzalo Navarro
Milos Nikolic
Mitsunori Ogihara
Dan Olteanu
Piotr Ostropolski-Nalewaja
Anantha Padmanabha
Liat Peterfreund
Reinhard Pichler
Andreas Pieris
Milind Prabhu
Pavel Raykov
Juan L. Reutter
Cristian Riveros
Alexandra Rogova
Sebastian Rudolph
Jorge Salas
Thomas Schwentick
Luc Segoufin
Vihan Shah
Francesco Silvestri
Cristina Sirangelo
Oskar Skibski
Sebastian Skritek
Christopher Spinrath
Christoph Standke
Dan Suciu
Yufei Tao
Domagoj Vrgoč
Huayi Wang
Jef Wijsen
Jun Xu
Haozhe Zhang

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

The ICDT 2023 Test-of-Time Award

In 2013, the International Conference on Database Theory (ICDT) began awarding the ICDT
Test-of-Time (ToT) award, with the goal of recognizing one paper, or a small number of
papers, presented at earlier ICDT conferences that have best met the “test of time”. In
2023, the award recognizes two papers selected from the proceedings of the ICDT 2013
conference that have had the highest impact in terms of research, methodology, conceptual
contribution, or transfer to practice over the past decade. The award was presented during
the EDBT/ICDT 2023 Joint Conference, March 28 – 31, 2023.

The 2023 ToT Committee consists of Wang-Chiew Tan, Diego Figueira, and George
Fletcher. After careful consideration and soliciting external assessments, the committee has
chosen the following contributions for the 2023 ICDT Test-of-Time Award:

A Theory of Pricing Private Data
Chao Li, Daniel Y. Li, Gerome Miklau and Dan Suciu

This paper presents a theoretical framework for monetizing private data which empowers
individuals to control their data through financial means. In this framework, data owners
are financially compensated for their loss of privacy where lower prices are assigned to noisier
query answers. This framework adopts and extends prior techniques on data pricing and
differential privacy. It is the first time an end-to-end perspective on data pricing, combining
the problems of pricing and revenue allocation, was provided. This paper has widespread
influence on research on data pricing both within and beyond the database community.

Querying Graph Databases with XPath
Leonid Libkin, Wim Martens and Domagoj Vrgoč

This paper presents a graph language called GXPath (short for Graph XPath) that
strikes an interesting balance between expressiveness and complexity and is influential in the
Graph Query Language (GQL) standard. GXPath permits expressive queries that can be
efficiently evaluated and has a strong influence on GQL as well as SQL/PGQ (for querying
graph databases in SQL) which are currently being finalized in the same ISO committee that
maintains the SQL Standard. This paper showcases how theoretical work can be directly
influential in industry and academic community consensus building around the upcoming
Graph Query Language (GQL) standard.

Wang-Chiew Tan
Facebook AI

Diego Figueira
Université de Bordeaux

George Fletcher
Eindhoven University of

Technology (TU/e)

The ICDT Test-of-Time Award Committee for 2023

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

A Researcher’s Digest of GQL
Nadime Francis #

Laboratoire d’Informatique Gaspard Monge,
Université Gustave Eiffel, CNRS, France

Amélie Gheerbrant #

IRIF, Université Paris Cité, CNRS,
Paris, France

Paolo Guagliardo #

School of Informatics,
University of Edinburgh, UK

Leonid Libkin #

University of Edinburgh, UK
RelationalAI, France
ENS, PSL University, France

Victor Marsault # Ñ

Laboratoire d’Informatique Gaspard Monge,
Université Gustave Eiffel, CNRS, France

Wim Martens #

Universität Bayreuth, Germany

Filip Murlak #

University of Warsaw, Poland
Liat Peterfreund #

Laboratoire d’Informatique Gaspard Monge,
Université Gustave Eiffel, CNRS, France

Alexandra Rogova #

IRIF, Université Paris Cité, CNRS, Paris, France
Data Intelligence Institute of Paris, Inria

Domagoj Vrgoč #

University of Zagreb, Coratia
Pontificia Universidad Católica de Chile,
Santiago, Chile

Abstract
GQL (Graph Query Language) is being developed as a new ISO standard for graph query languages
to play the same role for graph databases as SQL plays for relational. In parallel, an extension of SQL
for querying property graphs, SQL/PGQ, is added to the SQL standard; it shares the graph pattern
matching functionality with GQL. Both standards (not yet published) are hard-to-understand
specifications of hundreds of pages. The goal of this paper is to present a digest of the language
that is easy for the research community to understand, and thus to initiate research on these future
standards for querying graphs. The paper concentrates on pattern matching features shared by GQL
and SQL/PGQ, as well as querying facilities of GQL.

2012 ACM Subject Classification Theory of computation → Database theory; Theory of computation
→ Database query languages (principles); Information systems → Graph-based database models;
Information systems → Structured Query Language

Keywords and phrases GQL, Property Graph, Query Language, Graph Database, Pattern matching,
Multi-Graph

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.1

Category Invited Talk

Funding This work is supported by: a Leverhulme Trust Research Fellowship; EPSRC grant S003800;
French ANR projects grants ANR-18-CE40-0031 (QUID), ANR-19-CE48-0019 (EQUUS), and ANR-
21-CE48-0015 (Verigraph); German Research Foundation (DFG) projects 431183758 and 369116833;
ANID Millennium Science Initiative Program, Code ICN17_002; ANID Fondecyt Regular project
1221799; NCN grant 2018/30/E/ST6/00042.

Acknowledgements The authors are grateful to members of the ISO/IEC JTC1 SC32 WG3 committee
and especially Fred Zemke for many comments on our formalization of the language.

© Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor Marsault,
Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and Domagoj Vrgoč;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 1; pp. 1:1–1:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nadime.francis@univ-eiffel.fr
mailto:amelie@irif.fr
https://orcid.org/0000-0002-8936-9829
mailto:paolo.guagliardo@ed.ac.uk
https://orcid.org/0000-0003-0756-5787
mailto:l@libk.in
https://orcid.org/0000-0002-6698-2735
mailto:victor.marsault@univ-eiffel.fr
https://victor.marsault.xyz
https://orcid.org/0000-0002-2325-6004
mailto:wim.martens@uni-bayreuth.de
https://orcid.org/0000-0001-9480-3522
mailto:f.murlak@uw.edu.pl
https://orcid.org/0000-0003-0989-3717
mailto:liat.peterfreund@u-pem.fr
https://orcid.org/0000-0002-4788-0944
mailto:rogova@irif.fr
mailto:dvrgoc@math.hr
https://orcid.org/0000-0001-5854-2652
https://doi.org/10.4230/LIPIcs.ICDT.2023.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 A Researcher’s Digest of GQL

1 Introduction

Graph databases have grown steadily in popularity this century. They handle data as
it is viewed conceptually, making them easily applicable in many tasks where traditional
relational databases are not easy or natural to use. While many early applications cited
social networks and the Semantic Web as the key motivation (since in both cases data is
naturally viewed as a graph), industry scale applications are much more diverse and include
fraud detection, network management, medical data management, knowledge management,
and even investigative journalism. There are several dozen graph database products on
the market, including the current leader Neo4j, as well as both established and upcoming
companies offering graph products (e.g., Oracle, Amazon, IBM, SAP, Redis, DataStax,
TigerGraph, Memgraph, etc.).

Graph databases’ widespread use happened without them having their lingua franca,
which is the role that SQL is playing for relational databases. The landscape of graph
languages – at least at first sight – is very varied. Neo4j has its own language called
Cypher [18], which is also implemented in other products, including SAP HANA and Amazon
Neptune. Oracle introduced its language PGQL [34]; TigerGraph has GSQL [13], and several
products use the non-declarative graph traversal language Gremlin [33]. However, upon a
closer examination, one discovers that declarative languages are more like different dialects
of the same language rather than different languages altogether. This led to a proposal to
define a new unifying standard for a Graph Query Language (GQL) [36]. The proposal was
given a go-ahead in 2019, and since then was taken up by the same committee that produces
and maintains the SQL Standard. It is known as ISO/IEC JTC1 SC32 WG3 within the
International Organization for Standardization, or ISO.

In fact, this committee develops two projects in parallel:
SQL/PGQ, a new Part 16 of the SQL Standard, that defines querying graphs specified
as views over a relational schema; it is expected to be published roughly at the time of
the EDBT/ICDT 2023 conference.
GQL, a standalone language for querying property graphs, that is expected to be published
in late 2023 or early 2024.

The language of the Standard, even when published (behind paywall) is hardly of the kind
that the research community is accustomed to. It consists of a grammar for the constructs,
supplemented with syntax and semantic rules, the latter written in natural language describing
an algorithm for computing the result of a particular operation (essentially a mix of prose and
pseudocode). Such descriptions are long, far from formal definitions suitable for initiating
research in the area, and often prone to misinterpretation. To researchers, such a text is
therefore much like a 500+ page legal document, instead of a workable definition that helps
them understand the essence of the language.

This motivates the goal of the present paper: to distill, in a form accessible to the database
research community, the principal elements of the forthcoming GQL Standard, and provide
their formal semantics.

The idea of finding calculi underlying programming languages and providing their formal
semantics is mainstream in the programming languages field. Recently we saw it extended to
database query languages, specifically to core fragments of SQL [10, 22, 7] and Cypher [18].
The present paper follows this trend. It provides a significant simplification of the GQL
Standard, which at the same time covers its key features, and yet is sufficiently simple to
provide its formal semantics, thereby enabling its further study and opening up new avenues
of research on graph query languages.

N. Francis et al. 1:3

owner: Jay
isBlocked: false

name: Jayp1

owner: Mike
isBlocked: true

name: Mike

p2owner: Scott
isBlocked: false

a2

owner: Aretha
isBlocked: false

a1
name: Ankh-Morpork

Yacht Club
address: Cable Street

c1

name: Emerald City
Yacht Club

address: Yellow Brick Rd

c2

Account, Person

Account, Person
Account

Account
YachtClub

YachtClub

amount: 2500000

amount: 3000000

amount: 3500000

amount: 2000000

Transfer

Transfer

Transfer

Transfer

t1

t2

t3

t4

Member
m1

Member
m2

Member
m3

Fraud
Social

Figure 1 A database with graphs Fraud and Social.

We do not follow GQL letter to letter, for two reasons. Firstly, the Standard itself is not
yet finalized, and what is written today may still change before it is published. Second, we
choose to simplify some of the idiosyncrasies of a real-life language to better highlight its
essential features. Queries presented here are close to the eventual features of the language –
even if they change somewhat in the meantime. They come with a formal grammar that is a
fragment of GQL’s grammar, and a formal semantics, that is suitable as a starting point of
new research in graph query languages. The paper focuses on read-only GQL queries, to
which we will simply refer as GQL queries. That is, we do not yet consider data updates.

Previous Academic Work on GQL

The two graph languages currently standardized – GQL and SQL/PGQ – share their pattern
matching facilities, which constitute the key part of any graph language. These were described
in [12], by a group that included members of ISO’s Standard group, as well as members of
LDBC’s Formal Semantics Working Group (FSWG), whose goal was to analyze and formalize
the design of the language. FSWG then produced a theoretical reconstruction of the GQL
and PGQ pattern language [16]. This paper is the next installment in the effort to distill
PGQ and GQL standards for the research community.

Apart from this recent work on GQL, we note that academic foundations already influenced
its design process. As seen in GQL’s influence graph [19], the language draws inspiration
from regular path queries [11, 30], STRUQL [14], GXPath [27], and regular queries [32].

2 GQL by Example

In this section we give a high-level description of GQL queries and their evaluation. The
graph database model used by GQL is simply a collection of one or more property graphs.
As an illustration, Figure 1 is a graph database consisting of two property graphs: the Fraud
graph has information about bank transactions that are to be investigated for fraud, and the
Social graph has information about people’s social activities such as membership in a yacht
club. Notice that these two graphs have a non-empty intersection: the nodes for Jay and
Mike belong to both graphs, but they are seen in a different way and therefore have different

ICDT 2023

1:4 A Researcher’s Digest of GQL

labels and properties. In Fraud, the nodes have label Account and properties owner and
isBlocked, indicating the status of the account. In Social, these nodes have label Person
and property name.

We start with a simple query that looks for large (over $1M) transfers into a blocked
account, and reports owners of accounts involved in such transfers:

1. USE Fraud
2. MATCH (x) -[z:Transfer WHERE z.amount>1000000]-> (y WHERE y.isBlocked=true)
3. RETURN x.owner AS sender, y.owner AS recipient

The reader familiar with Cypher will parse this query easily; it roughly follows Cypher’s
ascii-art syntax for expressing patterns, and also permits checking conditions on properties
inside patterns. Basically, the pattern in line 2, namely:

(x) -[z:Transfer WHERE z.amount>1000000]-> (y WHERE y.isBlocked=true)

asks for nodes x and y that are connected with an edge z that is labeled with Transfer.
Furthermore, the amount property of z should exceed one million and the isBlocked property
of y should be true. Such patterns, called path patterns in GQL, are the main building block
of GQL queries, and they roughly correspond to regular path queries (RPQs), which have
been well studied in the research literature [30].

Note also that the query is preceded by a USE clause stating explicitly in which graph
matches are sought. When evaluating a query, GQL keeps track of

the working graph, which is the current graph in the database on which we do pattern
matching and

the working table, which contains intermediate results of the query, up to the current
evaluation point.

Intuitively, the working table is a collection of records that gets passed from one part of the
query to another in order to compute the final result. Thus, while GQL is a graph query
language, it uses tables to represent intermediate and end-results of queries. In Section 4, we
also discuss a third ingredient that GQL keeps track of, namely the working record.

Coming back to our sample query, in the first line we write USE Fraud, which turns the
Fraud graph into our working graph. In line 2, we have our path pattern, preceded by the
keyword MATCH. This clause is the main workhorse of GQL, and it tells us to do the matching
of the pattern onto the working graph. When evaluating our query over the database from
Figure 1, after executing line 2 of the query, we will be left with the following working table:

x y z
p1 p2 t1

Continuing in line 3, the working table is modified by keeping only the owner attribute of the
nodes x and y, while renaming them, and the following is returned to the user:

sender recipient
Jay Mike

(1)

We next extend this query by checking for such transfers where both account owners are
members of the same yacht club, reporting this time the address for the yacht club to send
investigators to.

N. Francis et al. 1:5

1. USE Fraud {
2. MATCH (x) -[z:Transfer WHERE z.amount>1000000]-> (y WHERE y.isBlocked=true)
3. RETURN x.owner AS sender, y.owner AS recipient
4. THEN
5. USE Social
6. MATCH (x1) -[:Member]-> (z1:YachtClub) ,
7. (y1) -[:Member]-> (z1:YachtClub)
8. FILTER sender=x1.name AND recipient=y1.name
9. RETURN z1.address AS clubAddress

10. }

Here lines 1–3 repeat the previous query. The keyword THEN is used to pipe the result of
this query to the following subquery. While the curly braces extend the scope of USE Fraud
beyond THEN, in line 5 we switch the working graph to Social in order to match the pattern:

(x1) -[:Member]-> (z1:YachtClub) , (y1) -[:Member]-> (z1:YachtClub)

This pattern consists of two path patterns, separated by a comma. In GQL, the comma
performs a join on the results of the two path patterns. From a theoretical point of view, it
brings us in the realm of conjunctive (two-way) regular path queries. In GQL, such patterns
are called graph patterns. When this pattern is evaluated over the Social graph, we obtain
the following (fresh) working table:

x1 y1 z1
p1 p2 c1
p1 p1 c1
p2 p2 c1

(2)

this time with variables x1, y1, and z1. After evaluating the pattern, the MATCH statement
makes the natural join of table (2) with table (1), leading to

sender recipient x1 y1 z1
Jay Mike p1 p2 c1
Jay Mike p1 p1 c1
Jay Mike p2 p2 c1

In this case, this will be the Cartesian product since the two working tables have no variables
in common. The FILTER condition in line 8 selects only the first row of the latter table.
The RETURN statement in line 9 tells us to keep only the address attribute of z1, renamed as
clubAddress, resulting in:

clubAddress
Cable Street

This is also where our query ends, and the working table contains all the results to our query.
The examples we have seen thus far illustrate only a limited part of GQL since their

variables only bind to single nodes or edges. Next, we show what happens to variables that
can bind to lists and paths. Concerning lists, a query1 such as

USE Fraud
MATCH TRAIL (x) ((y)-[:Transfer]->()){1,} (x)
RETURN x AS source, y AS moneyTrail

would return the following table.

1 Notice that the query uses Cypher’s ascii-art () for nodes in the subexpressions (x), (y), and (), but
also uses () for indicating the subexpression over which {1,} is applied.

ICDT 2023

1:6 A Researcher’s Digest of GQL

source moneyTrail
p1 list(p1, p2, a2, a1)
p2 list(p2, a2, a1, p1)
a2 list(a2, a1, p1, p2)
a1 list(a1, p1, p2, a2)

Here, the variable y is bound to a list of nodes. The four outputs all describe the same trail,
which is the only Transfer-cycle in the graph, but the bindings use different start nodes for x
and therefore also order the nodes in the lists for y differently. Concerning paths, the query

USE Fraud
MATCH TRAIL p = (x) (-[:Transfer]->()){1,} (x)
RETURN x AS source, p AS path

would return the following table.

source path
p1 path(p1, t1, p2, t2, a2, t3, a1, t4, p1)
p2 path(p2, t2, a2, t3, a1, t4, p1, t1, p2)
a2 path(a2, t3, a1, t4, p1, t1, p2, t2, a2)
a1 path(a1, t4, p1, t1, p2, t2, a2, t3, a1)

The output is similar to the output of the previous example, but this time we have the entire
path instead of the list of nodes in each answer. We note that property graphs can have
multiple edges with the same end-nodes, so the list of nodes in a path is not sufficient to
determine the path.

3 Syntax of GQL

The full syntax of GQL queries is given in Figure 2 with G a set of property graphs, and the
following pairwise disjoint countable sets: L of labels, K of keys, Const of value constants
with a designated value null, and Vars of variables.

While somewhat intimidating at a first glance, the grammar can be roughly divided into
four parts:

path patterns, which mimic regular path queries [29, 30], but have additional features
such as two-way navigation and conditioning;
graph patterns, which generalize conjunctive two-way regular path queries [8] with the
ability to return different types of paths;
queries, which allow us to manipulate the results of graph patterns and combine their
evaluation over different graphs in the database; and
expressions and conditions, which allow filtering results obtained in previous three parts
of GQL.

Of course, each of these parts has many specific features. For instance, path patterns
allow using descriptors, which bind a node/edge to a variable, test its label or more complex
conditions (e.g. amount is greater than 1000000). Simple node/edge patterns can be combined
into regular expressions, by using concatenation, union or repetitions. Graph patterns, on the
other hand, allow specifying the subset of matched paths that is to be returned, or joining
path patterns into more complex queries. Finally, clauses/queries themselves allow us to
manipulate results obtained from graph patterns, much like what is possible in the relational.
Complex features such as iteration over the returned elements, passing the results to another
subquery, and changing the evaluation graph, are also supported.

N. Francis et al. 1:7

PATH PATTERN For x ∈ Vars, ℓ ∈ L, 0 ≤ n ≤ m ∈ N:

(descriptor) δ := x :ℓ WHERE θ x, :ℓ, and WHERE θ are optional

(path pattern) π := (δ) (node pattern)
| -[δ]-> | <-[δ]- | ~[δ]~ (edge pattern)
| π π (concatenation)
| π|π (union)
| π WHERE θ (conditioning)
| π{n,m} (bounded repetition)
| π{n,} (unbounded repetition)

EXPRESSION and CONDITION For x ∈ Vars, ℓ ∈ L, a ∈ K, c ∈ Const:

(expression) χ := x | x.a | c

(condition) θ := χ = χ | χ < χ | χ IS NULL

| x : ℓ | EXISTS { Q }

| θ OR θ | θ AND θ | NOT θ

GRAPH PATTERN For x ∈ Vars:

(path mode) µ := (ALL | ANY) [SHORTEST] [TRAIL | ACYCLIC]

(graph pattern) Π := µ [x =] π | Π, Π

CLAUSE and QUERY For k ≥ 0, ℓ ≥ 1, and x, y, x1, . . . , xk ∈ Vars, and G ∈ G:

(clause) C := MATCH Π
| LET x = χ

| FOR x IN y

| FILTER θ

(linear query) L := USE G L
| C L
| RETURN χ1 AS x1, . . . , χk AS xk

(query) Q := L
| USE G {Q1 THEN Q2 · · · THEN Qℓ}

| Q INTERSECT Q | Q UNION Q | Q EXCEPT Q

Figure 2 Syntax of GQL.

ICDT 2023

1:8 A Researcher’s Digest of GQL

Well-Formed Queries
The syntax of path patterns defined in Figure 2 is permissive as it allows expressions that do
not type-check. For example, (x)-[x]->() is syntactically permitted even though it equates
a node variable with an edge variable. Other patterns would provide great expressive power,
such as the graph pattern ()-[y]->{0,}(), ()-[y]->{0,}*(), which implicitly joins on lists.

We introduced in [16] a type system operating on a subset of the patterns described in
Figure 2. Its goal is to ensure that GQL path patterns and graph patterns do not exhibit the
pathological behavior illustrated above. Here, we will only describe the resulting syntactic
restrictions informally.

Each variable is given a type τ from the set T defined by the following grammar.

τ ::= Node | Edge | Path | Maybe(τ) | Group(τ)

The three atomic types are used for variables returning nodes, edges, and paths, respectively.
The type constructor Maybe is used for variables occurring on one side of a disjunction only,
while Group is used for variables occurring under repetition, whose bindings are grouped
together. As variables in pattern matching are never bound to data values, we do not need
the usual types like integers or strings here.

Types are computed in a bottom-up fashion as follows. Variables appearing in node pat-
terns (resp. in edge patterns, resp. as names of path patterns) are of type Node (resp. Edge,
resp. Path). Variables appearing on one side of a disjunction with type τ but not the
other are of type Maybe(τ). Variables appearing under a repetition with type τ are
of type Group(τ) higher-up in the syntax tree of the expression. Consider the pattern
(-[x]-> | -[y]->){0,}. The type of x is Edge in -[x]->, while it is Maybe(Edge) in
-[x]-> | -[y]->, and Group(Maybe(Edge)) in (-[x]-> | -[y]->){0,} .

A variable x appearing in a path/graph pattern ξ is called:
a singleton variable if its type is Node or Edge with respect to ξ

a conditional variable if its type is Maybe(τ) for some type τ ;
a group variable if its type is Group(τ) for some type τ ;
a path variable if its type is Path.

Here is a non-exhaustive list of the syntactic conditions a pattern must meet in order for its
semantics to be defined. A pattern ξ is well-formed if
1. Every variable appearing in a pattern ξ has one and only one type w.r.t. ξ.
2. In concatenation and join, variables appearing in both operands are singleton variables

with respect to each operand.
3. In a conditioned path pattern π WHERE θ, every variable appearing in θ must have a type

w.r.t. π.
4. In a graph pattern of the form µ π or µ x = π such that µ is ALL (which is possible

since all of SHORTEST, TRAIL, and ACYCLIC are optional), π must contain no unbounded
repetition, to avoid potentially infinite outputs.

5. For every repeated pattern π{n,m} or π{n,}, the minimum path length ∥π∥min of π,
defined below, is positive. This avoids applying repetitions to paths that do not match
an edge.

∥ν∥min = 0 ∥π WHERE θ∥min = ∥π∥min

∥η∥min = 1 ∥π1 | π2∥min = min(∥π1∥min, ∥π2∥min)
∥π{n, }∥min = ∥π{n, m}∥min = n · ∥π∥min ∥π1 π2∥min = ∥π1∥min + ∥π2∥min

Note that the local nature of types is important in item 2: implicit joins are allowed under
repetitions, as in ((a)-[]->(b)-[]->(a)-[]->){1,}. Moreover, item 1 implies the existence
of a schema, which is defined as follows:

N. Francis et al. 1:9

▶ Definition 1 (Schema). A schema of a well-formed pattern ξ is a function sch(ξ) : var(ξ) →
T, where var(ξ) is the set of variables appearing in ξ.

We will assume these syntactic restrictions to be in place when defining the semantics of
GQL queries in Section 4. Moreover, we define the semantics only when the computation
goes as expected, that is, when it satisfies preconditions we state explicitly. For instance,
we will assume that a variable is bound before being used, that we never run into clashes
in variable names, and that if a specific type is expected for an operation, then the value
will have that type at runtime. Some of the preconditions could be checked syntactically,
at the cost of a tedious type system. Some of the preconditions cannot be checked before
run-time because they depend on the data stored in the database. Deciding how to treat
those cases (static analysis, runtime exceptions, implicit casts) is outside the scope of this
paper. In some cases, the GQL standard describes how they should be treated, in others,
they are implementation-dependent.

4 Semantics

In this section we present the formal semantics of GQL. At a high level, when evaluating
a query, GQL keeps track of three things: (i) the working graph, which is the property
graph we are using to match our patterns currently; (ii) the working table, that stores the
information computed thus far; and (iii) the working record, which contains the tuple of
the result we are currently using. In this section we provide mathematical abstractions for
each of these concepts in order to define the semantics of GQL. We start by setting the
preliminary definitions, and then move to defining the semantics for each portion of the
language, as specified in Figure 2.

4.1 Preliminaries

Data model. We follow the formal definition adapted by the GQL Standard [20] to handle
databases that contain multiple graphs. To define property graphs we need, in addition to
the pairwise disjoint countable sets (L of labels, K of keys, and Const of constants) mentioned
in Section 3, the following fresh pairwise disjoint countable sets: N of node ids, Ed of directed
edge ids, and Eu of undirected edge ids.

▶ Definition 2 (Property Graph). A property graph is a tuple

G = ⟨NG, EG
d , EG

u , labG, endpointsG, srcG, tgtG, propG⟩

where

NG ⊂ N is a finite set of node ids used in G;

EG
d ⊂ Ed is a finite set of directed edge ids used in G;

EG
u ⊂ Eu is a finite set of undirected edge ids used in G;

labG : NG ∪ EG
d ∪ EG

u → 2L is a labeling function that associates with every id a (possibly
empty) finite set of labels from L;

ICDT 2023

1:10 A Researcher’s Digest of GQL

srcG, tgtG : EG
d → NG define source and target of a directed edge;

endpointsG : EG
u → 2N so that |endpointsG(e)| is 1 or 2 define endpoints of an undirected

edge;
propG : (NG ∪ EG

d ∪ EG
u) × K → Const is a partial function that associates a constant

with an id and a key from K.
If G is clear from the context, it will be omitted in the superscript. Recall that G denotes the
set of all property graphs.

We use node and edge to refer to node ids and edge ids, respectively, and call a node u

an ℓ-node iff ℓ ∈ lab(u); similarly for edges.

▶ Definition 3 (Graph Database). A (property) graph database is a tuple D = ⟨G1, . . . , Gk⟩
where each Gi is a property graph. We call the graph G1 the default graph.2

This is the most general definition of a database containing multiple graphs and it imposes
no restrictions whatsoever on how labeling, properties, and topology agree across different
graphs that share some node and edge ids. For example we may have the same id1 for a
person who has label employee and properties salary, department in a company graph and
label student and properties year, major in a university graph. In fact it is even possible that
the same edge id has different source and target in different graphs. We allow this complete
flexibility because it is orthogonal to the choice of operations in the language, and thus we
shall not impose restrictions that are not necessary for our purposes.

Paths and lists. GQL allows returning paths and lists as query answers. Here we define
them formally. We start with paths.

▶ Definition 4 (Path). A path is an alternating sequence of nodes and edges that starts and
ends with a node. We write paths as p = path(u0, e1, u1, e2, · · · en, un), where u0, . . . , un are
nodes, e1, . . . , en are (directed or undirected) edges, and n ≥ 0. We write src(p) for u0 and
tgt(p) for un, and len(p) for its length n. We denote the set of all paths by Paths.

For a property graph G, we say that p ∈ Paths is a path in G if each edge in p connects
the nodes before and after it in the sequence, that is, for each i ∈ {1, . . . , n}, at least one of
the following is true:
(a) src(ei) = ui−1 and tgt(ei) = ui in which case we speak of ei as a forward edge in the

path;
(b) src(ei) = ui and tgt(ei) = ui−1 in which case we speak of ei as a backward edge in the

path;
(c) endpoints(ei) = {ui−1, ui} in which case we speak of ei as an undirected edge in the path.
We denote the set of paths in G by Paths(G).

Note that we allow n = 0, in which case the path consists of a single vertex and no edges.
Note also that in the case of a directed self-loop, both (a) and (b) in the definition above are
true, hence the cases are not mutually exclusive.

▶ Definition 5 (Concatenation of Paths). Two paths p = path(u0, e0, . . . , uk) and p′ =
path(u′

0, e′
0, . . . , u′

j) concatenate if uk = u′
0, in which case their concatenation p · p′ is defined

as path(u0, e0, . . . , uk, e′
0, . . . , u′

j).

2 The default graph is used for evaluation when a specific graph is not declared by the query.

N. Francis et al. 1:11

Note that a path of length 0 is a neutral element of concatenation; that is, p · path(u) is
defined iff u = tgt(p), in which case p = p · path(u); likewise for path(u) · p and u = src(p).

▶ Definition 6 (List). We use the notation list(v1, . . . , vn) to denote the list containing the
objects v1, . . . , vn in this order. Lists can be empty, in which case we write list(). We use
Lists to denote the set of all lists with elements in N ∪ Ed ∪ Eu.

Bindings. To define the formal semantics we use bindings which specify how variables are
matched to values V of the input graph database. Intuitively, a binding is a mathematical
formalization of the concept of a working record in GQL. Formally, we set V as the union
Const ∪ N ∪ Ed ∪ Eu ∪ Paths ∪ Lists.

▶ Definition 7 (Binding). A binding µ is a partial function µ : Vars → V whose domain
Dom(µ) is finite. We denote bindings µ explicitly by (x1 7→ v1, . . . , xn 7→ vn) where x1, . . . , xn

are variables in Dom(µ), v1, . . . , vn are values in V, and for every i it holds that µ(xi) = vi.

Note that the domains of bindings are not ordered, hence for instance (a1 7→ v1, a2 7→ v2) =
(a2 7→ v2, a1 7→ v1). The empty binding, that is, the binding with an empty domain, is
denoted by ().

▶ Definition 8 (Compatibility of Bindings). Two bindings µ1, µ2 are said to be compatible,
denoted by µ1 ∼ µ2, if they agree on their shared variables, that is, for every x ∈ Dom(µ1) ∩
Dom(µ2) it holds that µ1(x) = µ2(x).

If µ1 ∼ µ2, we define their join µ1 ⋊⋉ µ2 as expected, that is Dom(µ1 ⋊⋉ µ2) = Dom(µ1) ∪
Dom(µ2) and (µ1 ⋊⋉ µ2) (x) = µ1(x) whenever x ∈ Dom(µ1) \ Dom(µ2), and (µ1 ⋊⋉ µ2) (x) =
µ2(x) whenever x ∈ Dom (µ2).

We remark here that our definition allows joins on variables that are bound to paths
or lists. However, as we will see, the syntactic restrictions on queries limit this feature
significantly.

4.2 Semantics of Path Patterns
We start by defining the semantics of path patterns. For the remainder of this subsection,
we consider a fixed property graph

G = ⟨NG, EG
d , EG

u , labG, endpointsG, srcG, tgtG, propG⟩.

Moreover, we assume that all queries are well-formed and all patterns considered are restricted
syntactically as described in Section 3. The semantics JπKG of a pattern π is a set of pairs
(p, µ) where µ a binding, and p is a path in G. In JπKG, G denotes the working graph in
GQL parlance (specified by the keyword USE), and the pairs (p, µ) model what is computed
over this working graph.

Semantics of Node and Edge Patterns

J()KG =
{

(n, ())
∣∣ n ∈ NG

}
J(x)KG =

{
(n, (x 7→ n))

∣∣ n ∈ NG
}

J(:ℓ)KG =
{

(n, ())
∣∣∣ n ∈ NG, ℓ ∈ labG(n)

}
Other cases are treated by moving the label and conditions outside of the node pattern. For
instance, (x:ℓ WHERE θ) is rewritten as (x) WHERE (x:ℓ AND θ).

ICDT 2023

1:12 A Researcher’s Digest of GQL

J-[]->KG =
{

(path(src(e), e, tgt(e)), ())
∣∣ e ∈ EG

d

}
J-[x]->KG =

{
(path(src(e), e, tgt(e)), (x 7→ e))

∣∣ e ∈ EG
d

}
J-[:ℓ]->KG =

{
(path(src(e), e, tgt(e)), ())

∣∣∣ e ∈ EG
d , ℓ ∈ labG(e)

}
Other cases of the forward edge patterns are treated by moving the label and conditions
outside of the edge pattern, just as for node patterns. Backward edge patterns and undirected
edge patterns are treated similarly, with the base cases given below.

J<-[]-KG =
{

(path(tgt(e), e, src(e)), ())
∣∣ e ∈ EG

d

}
J~[]~KG =

{
(path(u1, e, u2), ()), (path(u2, e, u1), ())

∣∣∣∣ e ∈ EG
u

{u1, u2} = endpointsG(e)

}
Semantics of Concatenation, Union, and Conditioning

Jπ1 π2KG

 (p1 · p2, µ1 ⋊⋉ µ2)

∣∣∣∣∣∣
(pi, µi) ∈ JπiKG for i = 1, 2
p1 and p2 concatenate
µ1 ∼ µ2

Note that since π1 π2 is assumed to be well-formed, all variables shared by π1 and π2 are
singleton variables (Condition 2 in Section 3). In other words, implicit joins over group and
optional variables are disallowed; the same remark will also apply for the semantics of joins.
▶ Remark 9. Consider the pattern

(x) (-[:Transfer]->()-[:Transfer]->(x)]){1,}

This pattern is disallowed in GQL because the leftmost x is a singleton variable, whereas the
rightmost x is a group variable. In GQL philosophy, the leftmost x will be bound to a node
and the rightmost x will be bound to a list of nodes, which is a type mismatch.

Jπ1 | π2KG = { (p, µ ∪ µ′) | (p, µ) ∈ Jπ1KG ∪ Jπ2KG }
where µ′ maps every variable in var(π1 |π2)\Dom(µ) to null. (Recall that var maps a pattern
to the set of variables appearing in it.)

Jπ WHERE θKG = { (p, µ) ∈ JπKG | JθKµ
G = true }

Semantics of Repetition

Jπ{n, m}KG =
m⋃

i=n

JπKi
G

Jπ{n, }KG =
∞⋃

i=n

JπKi
G

Above, for a pattern π and a natural number i ≥ 0, we use JπKi
G to denote the i-th power of

JπKG, which we define as

JπK0
G = { (path(u), µ) | u is a node in G }

where µ binds each variable in Dom(sch(π)) to list(), that is, the empty-list value; and

∀i > 0 JπKi
G =

{
(p1 · . . . · pi, µ′)

∣∣∣∣ (p1, µ1), . . . , (pn, µi) ∈ JπKG

p1, . . . , pi concatenate

}
where µ′ binds each variable in Dom(sch(π)) to list

(
µ1(x), . . . , µi(x)

)
. Recall that sch is

defined in Section 3.

N. Francis et al. 1:13

▶ Remark 10. Since π{n, } is assumed to be well-formed, it holds ∥π∥min ≥ 1. A simple
induction then yields that each pi in the definition above has positive length. A second
induction then yields that, given a path p, there are finitely many assignments µ such
that (p, µ) ∈ Jπ{n, m}KG. This fact is crucial to have a finite output in the end.

For instance, consider a graph with a single node u and no edges, and the pattern (a){0,}
which is not well-formed (the minimal path length of () is 0). For every i, the set J(a)Ki

G

contains (path(u), µi) where µi = (a 7→ list(u, . . . , u︸ ︷︷ ︸
i times

)); hence the union in the definition of

Jπ{n, }KG above would not only yield an infinite number of elements, but all of them would
be associated to the same path. As a result a graph pattern such as ALL SHORTEST (a){0,}
would have infinitely many results.

4.3 Semantics of Graph Patterns
We now define the semantics of graph patterns. We first fully define atomic graph patterns
and then define their joins.

Jx = πKG =
{

(p, µ ∪ {x 7→ p}) | (p, µ) ∈ JπKG

}
In the following we denote by π̃ a graph pattern that never uses the “,” operator, hence it is
of the form µ x= π, where µ is a path mode, x is a variable, π is a path pattern, and “x=“ is
optional.

JTRAIL πKG = { (p, µ) ∈ JπKG | no edge occurs more than once in p }
JACYCLIC πKG = { (p, µ) ∈ JπKG | no node occurs more than once in p }

JSHORTEST π̃KG =

 (p, µ) ∈ Jπ̃KG

∣∣∣∣∣∣ len(p) = min

 len(p′)

∣∣∣∣∣∣
(p′, µ′) ∈ Jπ̃KG

src(p′) = src(p)
tgt(p′) = tgt(p)

JALL π̃KG = Jπ̃KG

JANY π̃KG =
⋃

(s,t)∈X

{any({ (p, µ) | (p, µ) ∈ Jπ̃KG , endpoints(p) = (s, t) }}

where X = {
(
src(p), tgt(p)

)
| (p, µ) ∈ Jπ̃KG } and any is a procedure that arbitrarily returns

one element from a set; any need not be deterministic.

JΠ1, Π2KG = { (p̄1 × p̄2, µ1 ⋊⋉ µ2) | (p̄i, µi) ∈ JΠiKG for i = 1, 2 and µ1 ∼ µ2 }

Here, p̄1 = (p1
1, p2

1, . . . , pk
1) and p̄2 = (p1

2, p2
2, . . . , pl

2) are tuples of paths, and p̄1 × p̄2 stands
for (p1

1, p2
1, . . . , pk

1 , p1
2, p2

2, . . . , pl
2). Just as it is the case of concatenation, since Π1, Π2 is

well-formed, implicit joins can occur over singleton variables only.

4.4 Semantics of Conditions and Expressions
The semantics JχKµ

G of an expression χ is an element in V that is computed with respect to
a binding µ and a graph G. Intuitively, variables in χ are evaluated with µ and we use G to
access the properties of an element. It is formally defined as follows.

JcKµ
G = c for c ∈ Const

JxKµ
G = µ(x) for x ∈ Dom(µ)

Jx.aKµ
G =

{
propG(µ(x), a) if (µ(x), a) ∈ Dom(propG)
null else if µ(x) ∈ (N ∪ Ed ∪ Eu)

for x ∈ Dom(µ), a ∈ K

ICDT 2023

1:14 A Researcher’s Digest of GQL

▶ Remark 11. Recall that different graphs may share nodes and edges. Hence the condition
(µ(x), a) ∈ Dom(propG), above, does imply that µ(x) is a node or an edge in G, but does
not imply that it was matched in G.
The semantics JθKµ

G of a condition θ is an element in {true, false, null} that is evaluated with
respect to a binding µ and a graph G, and is defined as follows:

Jχ1 = χ2K
µ
G =

null if Jχ1K

µ
G = null or Jχ2K

µ
G = null

true if Jχ1K
µ
G = Jχ2K

µ
G ̸= null

false otherwise

Jχ1 < χ2K
µ
G =

null if Jχ1K

µ
G = null or Jχ2K

µ
G = null

true else if Jχ1K
µ
G < Jχ2K

µ
G

false otherwise

Jχ IS NULLKµ
G =

{
true if JχKµ

G = null
false otherwise

Jχ:ℓKµ
G =

{
true if JχKµ

G ∈ NG ∪ EG
u ∪ EG

d and ℓ ∈ labG(JχKµ
G)

false else if JχKµ
G ∈ N ∪ Ed ∪ Eu

Jθ1 AND θ2K
µ
G = Jθ1K

µ
G ∧ Jθ2K

µ
G

(∗)

Jθ1 OR θ2K
µ
G = Jθ1K

µ
G ∨ Jθ2K

µ
G

(∗)

JNOT θKµ
G = ¬ JθKµ

G
(∗)

(∗) Operators ∧, ∨, and ¬ are defined as in SQL three-valued logic, e.g. null ∨ true = true
while null ∧ true = null.

JEXISTS { Q }Kµ
G =

{
true if JQKG ({µ}) is not empty
false otherwise

4.5 Semantics of Queries
Clauses and queries are interpreted as functions that operate on tables. These tables are our
abstraction of GQL’s working tables.

▶ Definition 12. A table T is a set of bindings that have the same domains, referred to
as Dom(T).

Note that tables do not have schemas: two different bindings in a table might associate a
variable to values of incompatible types.

Semantics of Clauses

The semantics JCKG of a clause C is a function that maps tables into tables, and is parametrized
by a graph G. Patterns, conditions and expression in a clause are evaluated with respect to
that G.

JMATCH ΠKG (T) =
⋃

µ∈T

{
µ ⋊⋉ µ′ | (p, µ′) ∈ JΠKG , µ ∼ µ′}

Note that if Π uses a variable that already occurs in Dom(T), a join is performed. Unlike in
the case of path patterns and graph patterns, this join can involve variables bound to lists
or paths. While this is not problematic mathematically, it might be disallowed in future
iterations of GQL.

N. Francis et al. 1:15

If x /∈ Dom(T), then

JLET x = χKG (T) =
⋃

µ∈T

{µ ⋊⋉ (x 7→ JχKµ
G)}

JFILTER θKG (T) =
⋃

µ∈T

{
µ | JθKµ

G = true
}

.

If x /∈ Dom(T) and, for every µ ∈ T , µ(y) is a list or null,3 then

JFOR x IN yKG (T) =
⋃

µ∈T

{
µ ⋊⋉ (x 7→ v) | v ∈ µ(y)

}
.

Semantics of Linear Queries

JUSE G′ LKG (T) = JLKG′ (T)
JC LKG (T) = JLKG

(
JCKG (T)

)
JRETURN χ1 AS x1, . . . , χℓ AS xℓKG (T) =

⋃
µ∈T

{(x1 7→ Jχ1K
µ
G , . . . , xℓ 7→ JχℓK

µ
G)}

Semantics of Queries

The output of a query Q is defined as

Output(Q) = JQKG ({()}) ,

where {()} is the unit table that consists of the empty binding, and G is the default graph
in D. We define the semantics of queries recursively as follows.

JUSE G′ {Q1 THEN Q2 · · · THEN Qk}KG (T) = JQkKG′ ◦ · · · ◦ JQ1KG′ (T)

If Dom (JQ1KG (T)) = Dom (JQ2KG (T)), then we let

JQ1 INTERSECT Q2KG (T) = JQ1KG (T) ∩ JQ2KG (T)
JQ1 UNION Q2KG (T) = JQ1KG (T) ∪ JQ2KG (T)

JQ1 EXCEPT Q2KG (T) = JQ1KG (T) \ JQ2KG (T)

5 A Few Known Discrepancies with the GQL Standard

In pursuing the goal of introducing the key features of GQL to the research community, we
inevitably had to make decisions that resulted in discrepancies between our presentation and
the 500+ pages of the forthcoming Standard. In this section, we discuss a non-exhaustive
list of differences between the actual GQL Standard and our digest. To start with, in all our
formal development we assumed that queries are given by their syntax trees, which result
from parsing them. Hence we completely omitted such parsing-related aspects as parentheses,
operator precedence etc. Also we note that many GQL features, even those described here,
are optional, and not every implementation is obliged to have them all.

3 Note that null is treated just as list()

ICDT 2023

1:16 A Researcher’s Digest of GQL

The remaining discrepancies are divided into three main categories: syntactic restrictions
(Section 5.1), query evaluation (Section 5.2), and missing features (Section 5.3). The reader
must bear in mind that, as the GQL Standard is roughly one year from publication in its
final form, many aspects of the language may still change in a way that depends on the work
of the Committee, and thus is impossible to predict.

5.1 User-Friendly Syntactic Restrictions
The GQL Standard imposes restrictions on the syntax that aim at preventing unexpected
behavior, and that we generally did not describe. Two such examples are given below.

First, consider the queries Q1 = MATCH µ x=-[]->* and Q2 = MATCH µ x=-[]->*() for some
path mode µ (it does not matter which one). According to our semantics, both return one
binding, namely (x 7→ path(u)), for each node u in the graph; however, Q1 is syntactically
forbidden in the GQL Standard because no node pattern occurs. Another interesting syntactic
restriction concerns strict interior variables under selectors, such as c in the following:

MATCH ANY (:Person) -[]->* (c:Account) -[]->* (:Person),
ANY (:Person) -[]->* (c:Account) -[]->* (:Person)

The ANY selectors are evaluated independently, and before the implicit join on variable c.
Then, the node bound to the variable c by either path pattern is arbitrary, and joining on
them is very likely to fail. This situation was not deemed user-friendly by the Committee,
and therefore precluded.

5.2 Query Evaluation
Bag semantics. For simplicity, we described GQL as if it was following set semantics but,
in reality, GQL uses bags just like Cypher and SQL. In order to define clauses and queries
under bag semantics, small changes are needed:

tables should be defined as bags, rather than sets, of bindings;
unions (∪) over the elements of a table should be additive bag unions (⊎); and
set comprehensions should be replaced with bag comprehensions.

As an example, if we denote bags with double curly braces, then the semantics of RETURN is

JRETURN χ1 AS x1, . . . , χℓ AS xℓKG (T) =
⊎

µ∈T

{{(x1 7→ Jχ1K
µ
G , . . . , xℓ 7→ JχℓK

µ
G)}}

Note that GQL partially eliminates duplicates during pattern matching, which is reflected
here by the semantics of graph patterns: JΠKG is a set of path/binding pairs, while JMATCH ΠKG

returns a bag of bindings by projecting out the paths (see the definition of JMATCH ΠKG in
Section 4.5). Hence, different ways to compute the same path/binding pair will only contribute
to one copy of the binding in the output of JMATCH ΠKG. It is still possible to get multiple
copies of some binding in the output, but these come from pairs with different paths.

Partial deduplication is an effort to unify the multiplicies of queries that express the same
pattern in different ways. To see this, consider the queries

Q1: MATCH (a:Person)-[]->(b WHERE b:Person OR b:Account)
Q2: MATCH (a:Person)-[]->(b:Person) | (a)-[]->(b:Account)

and the path (v1, e1, v2) matched by either of them with the binding µ1 = (a → v1, b 7→ v2),
where v2 bears both labels Person and Account. As the disjunction in Q1 is expressed using
a Boolean condition, this query always returns a single copy of µ1. In Q2, however, the
disjunction is expressed with a union (|) of patterns; thus, if the semantics of | were defined
as a bag-union, the query would return two copies of µ1.

Finally, as in SQL, the operations INTERSECT, UNION, and EXCEPT remove duplicates in
GQL, while the variants INTERSECT ALL, UNION ALL, and EXCEPT ALL do not.

N. Francis et al. 1:17

Path bindings. In a nutshell, a path binding is a path where each element may be annotated
with variables, and it is inconsistent as soon as two different elements have the same an-
notation (see [12] for details). Thus, a path binding defines a single path/binding pair,
whereas a path/binding pair can define several path bindings. In GQL Standard, pattern
matching computes a set of consistent path bindings, while our semantics computes a set of
path/binding pairs, and the results are bags formed by projecting away paths. Consequently,
our semantics might sometimes return fewer results than GQL’s, but the difference only
affects multiplicity. For example, consider MATCH ()-[]->(a) | (a)-[]->() on a graph with
a single node u and a single (looping) edge. According to our semantics, only one copy of
(a 7→ u) is returned, while two occurrences of it are returned according to GQL Standard.

Postponed evaluation of conditions. In our treatment of the language, the semantics of
the following query is undefined:

MATCH ALL SHORTEST -[x]-> (()-[y]->() WHERE x.amount < y.amount){10,10}

Indeed, when the condition WHERE x.amount < y.amount is evaluated, the variable x is not yet
bound, as -[x]-> occurs in a different branch of the query’s syntax tree. In GQL Standard,
however, the above query is legal, because the evaluation of WHERE conditions is postponed
for as long as possible.4 While the meaning of the query is clear, its evaluation is non-trivial.
The context of each condition (here, y is bound to ten successive edge ids) must be recorded,
because it will be different when the evaluation occurs. Note that the evaluation of conditions
must occur before the evaluation of SHORTEST, hence queries like

MATCH -[x]->, ALL SHORTEST (-[y]-> WHERE x.amount < y.amount){10,10}

are not allowed in GQL.

Referencing the input table in conditions during pattern patching. In our semantics, the
input table is not passed on to pattern matching, so one cannot refer to variables from it in
WHERE conditions. As an example, the semantics of LET x=42 MATCH (a WHERE a.amount=x) is
undefined. It is not yet clear whether such a query is allowed in the GQL Standard or not.

5.3 Missing Features
Syntactic sugar. The GQL Standard includes a lot of syntactic sugar that we disregarded.
For instance, several other types of edge patterns exist, such as -[δ]-, which matches edges
regardless of their direction. Another example is the possibility of using * and + as shorthands
for {0,} and {1,}, respectively.

Complex label expressions. We only allow a single label in descriptors, but the GQL
Standard allows complex label expressions, as in MATCH (a:YachtClub|(Person&!Account)).
Using WHERE, this could be rewritten as

MATCH (a WHERE a:YachtClub OR (a:Person AND NOT a:Account))

Label expressions can also use the special atom “%” to check the nonemptyness of the label set.
For example, MATCH (a:%) matches nodes with at least one label and MATCH (a:!%) matches
node with no labels. Note that “%” cannot be used to define a regular expression of labels,
unlike its usage in the LIKE expressions of SQL.

4 This is orthogonal to left-to-right evaluation: -[x]-> could be placed on the right instead.

ICDT 2023

1:18 A Researcher’s Digest of GQL

Complex path modes. GQL allows more complex path modes than described here. Recall
that SHORTEST partitions matched paths by endpoints and returns the shortest paths for
each pair of endpoints. SHORTEST k GROUPS generalizes this: for each pair of endpoints, it
returns all paths of length at most ik, where i1 < i2 < · · · < ik are the k smallest lengths
of paths between these endpoints. SHORTEST k PATHS returns k shortest paths for each pair
of endpoints. Another mode present in GQL is SIMPLE: it is similar to ACYCLIC but allows
the first and the last node on a path to be the same, i.e., a simple cycle. There is also the
keyword WALK to explicitly indicate the absence of a path mode.

GQL’s TRAIL differs from Cypher’s trail semantics [18, 17]. The latter corresponds to
GQL’s match mode DIFFERENT EDGES, which is omitted in this digest. Indeed, Cypher’s
requirement that all matched edges must be different operates at the level of graph patterns,
whereas GQL’s TRAIL operates at the level of path patterns. Hence, while the GQL query
MATCH TRAIL ()-[e1]->(), TRAIL ()-[e2]->() will return bindings in which e1 and e2 are
equal, the Cypher query MATCH ()-[e1]>(), ()-[e2]->() would not; the latter behaviour is
captured by the GQL query MATCH DIFFERENT EDGES ()-[e1]>(), ()-[e2]->().

Finally, we only use path modes at the beginning of path patterns. GQL’s rules are more
involved, in that they allow TRAIL and ACYCLIC to be used inside patterns.

Projection clauses. The GQL Standard includes several clauses similar to RETURN, such as
YIELD, PROJECT, and SELECT. We ignored these because, although they are not allowed at the
same positions in queries, they can be simulated by simple rewritings in terms of RETURN.

Combination of queries. In addition to set operations (UNION, etc.) and bag operations
(UNION ALL, etc.), queries could be of the form Q1 OTHERWISE Q2. Its semantics is as follows:
JQ1 OTHERWISE Q2K (T) equals JQ1K (T) if table JQ1K (T) is non-empty, otherwise it equals
JQ2K (T).

Aggregation. The GQL Standard will feature two kinds of aggregation. The first one, much
like GROUP BY in SQL, groups together bindings under which the evaluation of an expression
produces the same value, then an aggregate value is computed for each group. The exact
details are still under development, but it appears likely that such aggregation will be limited
to RETURN statements, thus having a very relational character.

The second kind will aggregate along matched paths to compute a value, both during
and after pattern matching. Computing the length of a path is a typical example; one can
have more complex aggregates, such as the sum of the values n.amount for each node n in
the path. This is similar to reduce in Cypher. The use of this feature in pattern matching
requires strong syntactic restrictions for query evaluation to be decidable [16].

Subqueries. GQL has a facility to run subqueries through the CALL Q clause, the semantics
of which is roughly as follows: for each binding µ in the input table, JQKG ({µ}) is evaluated
in a sub-process, and the resulting table is left-joined with the current working table. An
important detail is that CALL can only expand bindings. It cannot remove columns from the
input table nor change the values in them. The existence of read-only columns matters in
clauses like RETURN, which cannot therefore be treated with our semantics as is. In GQL, this
is handled with a notion of working record.

Note also that CALL Q will make nondeterminism much harder to detect if updates happen
in Q. Tables are unordered sets (or bags) but in an update clause each binding causes changes
in the graph (see next item) and so it can modify the evaluation of the clause for the next
binding. In such cases, inconsistent changes may be detected [21].

N. Francis et al. 1:19

Updates. Graph database updates in GQL are outside the scope of this paper. They will
work similarly to Cypher updates [21], by using clauses that can add and remove elements
(INSERT and DELETE), or modify elements’ attributes (SET and REMOVE). Therefore, pattern
matching and updates can be mixed together and result in bulk updates to the graph based
on its contents, as in the example below:

MATCH (a:Account) -- match every Account a
INSERT (p:Person) -- create a new Person node for each a
SET p.name = a.owner -- set the name of the new node
INSERT (p)-[:Owns]->(a) -- create a new "Owns" edge from p to a
REMOVE a.owner -- remove the owner property from a

6 What the Future Holds

In this paper we have summarized the key elements of GQL, which is currently being developed
as a new standard graph query language (the timeline of ISO calls for the publication of
the Standard in either late 2023 or early 2024). At the time when the first version of the
SQL Standard was produced, many key elements of relational theory were already in place.
For GQL, the standardization work is well ahead of the academic developments it should
ideally be based upon. In what follows, we bring to the attention of the community several
directions of academic work that will facilitate the development of graph query languages
and their standardization.

Expressiveness and complexity. For relational query languages, the database research
community has uncovered a rich landscape of fragments (conjunctive queries, positive queries,
and queries with inequalities are some very well studied examples) and extensions (for
example, adding counting and aggregation, or adding recursion as in many instantiations
of datalog), see [1, 4]. For these, we understand the trade-off between their expressiveness
and the complexity of query evaluation. Here we have described a basic language for graphs,
essentially the core of GQL, akin to relational algebra and calculus. Now we need to develop
its theory, starting with understanding expressiveness and complexity and their trade-offs,
in a way similar to what we know about relational databases. For the pattern matching
facilities of GQL, shared with SQL/PGQ, some early results are available [16].

Query processing and optimization. Query processing and optimization is a central area
in relational database research that needs yet to be developed for GQL. In a more theoretical
level, the basis for understanding optimization is query equivalence and containment. We
know a thing or two about containment for (conjunctive) regular path queries [9, 15] and
extensions with data [26] but not for queries that resemble the real-life language. Moving to
more practical aspects, one needs efficient and practical algorithms and data structures for
processing graph queries in GQL, whether in a native system, or a relational implementation.
Of course there is significant work in this direction [37, 23, 5, 28, 35, 31, 25] but it needs to
be adjusted to languages that will dominate the practical landscape for decades.

Design decisions and alternatives. We explained in Remark 9 how GQL currently forbids
concatenating patterns that contain different kinds of variables. Notice, however, that this
current state reflects a design decision and it may be interesting to explore other avenues
for graph query languages. For instance, one could consider a semantics in which both
occurrences of x in Remark 9 should be bound to single nodes. Under such a semantics, the

ICDT 2023

1:20 A Researcher’s Digest of GQL

pattern would essentially perform a join on the even nodes of the path and would match
“flower” shaped paths centered around node x, consisting of Transfer-loops of length two.
Alternatively, one could consider a semantics in which, as soon as x occurs as a group
variable, all occurrences of x are considered to be group variable occurrences. In this case,
the query would match Transfer-paths of even length and bind x to the list of “even” nodes
on such paths. In line with this work would be the study of an automaton model with group
variables that would allow classical evaluation and automata-theoretic constructions such as
the product, determinization, etc. Since GQL is a complex language, there are many such
places in which fundamental research can either help to validate the current design decisions
or propose alternatives.

Updates. We have concentrated on the read-only part of the languages and have not
touched updates. Designing a proper update language is not a simple task: in Cypher, for
example, the initial design exhibited a multitude of problems [21]. GQL largely follows
Cypher, which means its updates and transaction processing facilities need to be designed
with care and subjected to the same research scrutiny as their relational counterpart.

Graph-to-graph queries. GQL, as its precursors including Cypher, is a very good tool for
turning graphs into relations. The ever reappearing issue in the field of graph languages is
how to design a graph-to-graph language whose queries output graphs. Queries are then
composable: a query can be applied to the output of a previous one. We also regain such
basic concepts as views and subqueries, taken for granted in relational databases, but very
limited in the current graph database landscape.

Metadata. Looking into the future, we need to have a good schema language for graphs, and
see how it interacts with graph query languages. Some efforts in this direction have already
been made: for example, the PG-Keys proposal introduces keys for property graphs [3] and
more recently proposed PG-Schema [2] specifies a schema language for property graphs
that should lead to future schema standards. As these are formulated, much theory needs to
be developed, for example semantic query optimization, as well as incremental validation of
schemas and constraints following work for relational and semistructured data [24, 6].

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995.
2 Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair Green, Jan

Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, Filip Murlak, Stefan Plantikow,
Ognjen Savkovic, Michael Schmidt, Juan Sequeda, Slawek Staworko, Dominik Tomaszuk,
Hannes Voigt, Domagoj Vrgoc, Mingxi Wu, and Dusan Zivkovic. PG-Schema: Schemas for
property graphs, 2022. arXiv:2211.10962.

3 Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W. Hare, Jan
Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip Murlak, Josh Perryman,
Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda, Slawek Staworko, and Dominik To-
maszuk. PG-Keys: Keys for property graphs. In SIGMOD ’21: International Conference on
Management of Data, pages 2423–2436. ACM, 2021. doi:10.1145/3448016.3457561.

4 Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens, and Andreas Pieris. Database
Theory. Open source at https://github.com/pdm-book/community, 2022.

5 Jorge A. Baier, Dietrich Daroch, Juan L. Reutter, and Domagoj Vrgoč. Evaluating navigational
RDF queries over the web. In HT, pages 165–174. ACM, 2017. doi:10.1145/3078714.3078731.

http://arxiv.org/abs/2211.10962
https://doi.org/10.1145/3448016.3457561
https://github.com/pdm-book/community
https://doi.org/10.1145/3078714.3078731

N. Francis et al. 1:21

6 Denilson Barbosa, Alberto O. Mendelzon, Leonid Libkin, Laurent Mignet, and Marcelo Arenas.
Efficient incremental validation of XML documents. In ICDE, pages 671–682. IEEE Computer
Society, 2004. doi:10.1109/ICDE.2004.1320036.

7 Véronique Benzaken and Evelyne Contejean. A coq mechanised formal semantics for realistic
SQL queries: formally reconciling SQL and bag relational algebra. In CPP, pages 249–261.
ACM, 2019. doi:10.1145/3293880.3294107.

8 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Containment
of conjunctive regular path queries with inverse. In KR, pages 176–185. Morgan Kaufmann,
2000.

9 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Reasoning
on regular path queries. SIGMOD Rec., 32(4):83–92, 2003. doi:10.1145/959060.959076.

10 Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. HoTTSQL: proving query
rewrites with univalent SQL semantics. In PLDI, pages 510–524. ACM, 2017. doi:10.1145/
3062341.3062348.

11 Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query language
supporting recursion. In SIGMOD Conference, pages 323–330. ACM Press, 1987. doi:
10.1145/38713.38749.

12 Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin, Tobias
Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak, Stefan Plantikow, Petra
Selmer, Oskar van Rest, Hannes Voigt, Domagoj Vrgoc, Mingxi Wu, and Fred Zemke. Graph
pattern matching in GQL and SQL/PGQ. In SIGMOD Conference, pages 2246–2258. ACM,
2022. doi:10.1145/3514221.3526057.

13 Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. Aggregation support for modern
graph analytics in TigerGraph. In SIGMOD Conference, pages 377–392. ACM, 2020. doi:
10.1145/3318464.3386144.

14 Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, and Dan Suciu. A query language for a
web-site management system. SIGMOD Rec., 26(3):4–11, 1997. doi:10.1145/262762.262763.

15 Diego Figueira, Adwait Godbole, Shankara Narayanan Krishna, Wim Martens, Matthias
Niewerth, and Tina Trautner. Containment of simple conjunctive regular path queries. In KR,
pages 371–380, 2020. doi:10.24963/kr.2020/38.

16 Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor Marsault, Wim
Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and Domagoj Vrgoč. GPC: A
pattern calculus for property graphs. In PODS’23, 2023. To appear.

17 Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Mats Rydberg, Martin Schuster, Petra Selmer, and Andrés Taylor.
Formal semantics of the language Cypher, 2018. arXiv:1802.09984.

18 Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher: An
evolving query language for property graphs. In SIGMOD Conference, pages 1433–1445. ACM,
2018. doi:10.1145/3183713.3190657.

19 GQL influence graph. https://www.gqlstandards.org/existing-languages, 2023. Accessed:
2023-01-17.

20 Alastair Green, Paolo Guagliardo, and Leonid Libkin. Property graphs and paths in GQL:
Mathematical definitions. Technical Reports TR-2021-01, Linked Data Benchmark Council
(LDBC), October 2021. doi:10.54285/ldbc.TZJP7279.

21 Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan
Plantikow, Martin Schuster, Petra Selmer, and Hannes Voigt. Updating graph databases with
Cypher. Proc. VLDB Endow., 12(12):2242–2253, 2019. doi:10.14778/3352063.3352139.

22 Paolo Guagliardo and Leonid Libkin. A formal semantics of SQL queries, its validation, and
applications. Proc. VLDB Endow., 11(1):27–39, 2017. doi:10.14778/3151113.3151116.

23 Andrey Gubichev, Srikanta J. Bedathur, and Stephan Seufert. Sparqling Kleene: Fast property
paths in RDF-3X. In GRADES. CWI/ACM, 2013. doi:10.1145/2484425.2484443.

ICDT 2023

https://doi.org/10.1109/ICDE.2004.1320036
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.1145/959060.959076
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.1145/38713.38749
https://doi.org/10.1145/38713.38749
https://doi.org/10.1145/3514221.3526057
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/262762.262763
https://doi.org/10.24963/kr.2020/38
http://arxiv.org/abs/1802.09984
https://doi.org/10.1145/3183713.3190657
https://www.gqlstandards.org/existing-languages
https://doi.org/10.54285/ldbc.TZJP7279
https://doi.org/10.14778/3352063.3352139
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.1145/2484425.2484443

1:22 A Researcher’s Digest of GQL

24 A. Gupta and I.S. Mumick. Materialized Views: Techniques, Implementations, and Applications.
MIT Press, 1999.

25 Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrián Soto. A worst-case optimal join
algorithm for SPARQL. In ISWC (1), volume 11778 of Lecture Notes in Computer Science,
pages 258–275. Springer, 2019. doi:10.1007/978-3-030-30793-6_15.

26 Egor V. Kostylev, Juan L. Reutter, and Domagoj Vrgoc. Containment of queries for graphs
with data. J. Comput. Syst. Sci., 92:65–91, 2018. doi:10.1016/j.jcss.2017.09.005.

27 Leonid Libkin, Wim Martens, and Domagoj Vrgoč. Querying graphs with data. Journal of
the ACM, 63(2):14:1–14:53, 2016. doi:10.1145/2850413.

28 Wim Martens, Matthias Niewerth, Tina Popp, Stijn Vansummeren, and Domagoj Vrgoč.
Representing paths in graph database pattern matching, 2022. arXiv:2207.13541.

29 Alberto O. Mendelzon, George A. Mihaila, and Tova Milo. Querying the world wide web. In
Proceedings of the Fourth International Conference on Parallel and Distributed Information
Systems, December 18-20, 1996, Miami Beach, Florida, USA, pages 80–91. IEEE Computer
Society, 1996. doi:10.1109/PDIS.1996.568671.

30 Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in graph databases.
SIAM J. Comput., 24(6):1235–1258, 1995. doi:10.1137/S009753979122370X.

31 Dung T. Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q. Ngo, Christopher
Ré, and Atri Rudra. Join processing for graph patterns: An old dog with new tricks. In
GRADES, pages 2:1–2:8. ACM, 2015. doi:10.1145/2764947.2764948.

32 Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular queries on graph databases.
Theory Comput. Syst., 61(1):31–83, 2017. doi:10.1007/s00224-016-9676-2.

33 Marko A. Rodriguez. The Gremlin graph traversal machine and language. In DBPL, pages
1–10. ACM, 2015. doi:10.1145/2815072.2815073.

34 Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. PGQL: a
property graph query language. In GRADES, page 7. ACM, 2016. doi:10.1145/2960414.
2960421.

35 Domagoj Vrgoč. Evaluating regular path queries under the all-shortest paths semantics, 2022.
arXiv:2204.11137.

36 Wikipedia contributors. GQL graph query language, 2020. URL: https://en.wikipedia.
org/wiki/GQL_Graph_Query_Language.

37 Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. Query planning for evaluating SPARQL
property paths. In SIGMOD Conference, pages 1875–1889. ACM, 2016. doi:10.1145/2882903.
2882944.

https://doi.org/10.1007/978-3-030-30793-6_15
https://doi.org/10.1016/j.jcss.2017.09.005
https://doi.org/10.1145/2850413
http://arxiv.org/abs/2207.13541
https://doi.org/10.1109/PDIS.1996.568671
https://doi.org/10.1137/S009753979122370X
https://doi.org/10.1145/2764947.2764948
https://doi.org/10.1007/s00224-016-9676-2
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.1145/2960414.2960421
http://arxiv.org/abs/2204.11137
https://en.wikipedia.org/wiki/GQL_Graph_Query_Language
https://en.wikipedia.org/wiki/GQL_Graph_Query_Language
https://doi.org/10.1145/2882903.2882944
https://doi.org/10.1145/2882903.2882944

Compact Data Structures Meet Databases
Gonzalo Navarro #

Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile
Department of Computer Science, University of Chile, Santiago, Chile

Abstract
We describe two success stories on the application of compact data structures (cds) to solve
the problem of the excessively redundant space requirements posed by worst-case-optimal (wco)
algorithms for multijoins in databases, and particularly basic graph patterns on graph databases.
The aim of cds is to represent the data and additional data structures on it, using total space close to
that of the plain (and, sometimes, compressed) data, while efficiently simulating the data structure
operations. Cds turn out to be a perfect approach for the described problem: We designed and
implemented cds that effectively use space close to that of the plain or compressed data, which is
orders of magnitude less than existing systems, while retaining worst-case optimality and performing
competitively with those systems in query time, sometimes being even considerably faster.

2012 ACM Subject Classification Information systems → Data structures; Theory of computation
→ Data structures design and analysis

Keywords and phrases succinct data structures, tries, multidimensional grids, text searching

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.2

Category Invited Talk

Funding Supported by ANID – Millennium Science Initiative Program – Code ICN17_002, Chile.

1 Motivation

1.1 Graph databases
Graph databases [48, 26] have gained momentum with the rise of large unstructured repositories
of information that emphasize relations between entities. They have become an attractive
alternative to the relational model in cases where the information has no fixed structure.
Dozens of graph database management systems [41, 51, 12, 36], prototypes [1, 35, 29, 2],
models and languages [25, 17, 27, 3], and large repositories like Wikidata [54], illustrate how
active is the interest on this relatively new technology.

A graph database represents information in the form of a labeled graph or network. There
are many possible models to represent information in this way, such as knowledge graphs [27],
property graphs [17], and RDF [34], to name a few. In general, the graph nodes represent
objects and the edges between them represent relations. The models differ on what kind of
information can be associated with the nodes or the edges, whether the edge labels can also
be objects, and so on. For concreteness, we will focus on the RDF model, where the graph
is seen as a set of triples (s, p, o), where s is the subject (or source node), p is the predicate
(or label of the edge), and o is the object (or target node). Consider the graph of Figure 1
(cf. [4]) as our running example. The nodes are scientists and the Nobel prize. The arrows
indicate that a scientist advised another and that a scientist won the Nobel prize.

The language to query a graph database also varies. In the widely used SPARQL
standard [25], queries are built on relatively small graph patterns, which have to be matched
in the database graph. In its simplest form, this can be just a triple pattern, which searches
for the existence of a certain edge (or triple). The triple pattern specifies constants or
variables for the subject, predicate, and object of the desired triples; every matching triple in

© Gonzalo Navarro;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 2; pp. 2:1–2:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gnavarro@dcc.uchile.cl
https://doi.org/10.4230/LIPIcs.ICDT.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Compact Data Structures Meet Databases

Strutt

Thomson

Nobel

Bohr

Thorne

Wheeler
adv adv

a
d

v

a
d

v

won won

w
o

n won

Figure 1 An example labeled graph.

the graph corresponds to binding the variables of the triple pattern. In our example, the
triple (Nobel, won, ?x) returns all the bindings of x to Nobel prize winners (i.e., x = Thorne,
x = Bohr, etc.).

Basic graph patterns (BGPs) are sets of triple patterns sharing variables. They correspond
to matching a subgraph in the database, returning all the variable bindings that make the
subgraph occur. BGPs are akin to multijoins in relational databases, or full conjunctive
queries in logic databases. In our example, the BGP

(?y, adv, ?x), (Nobel, won, ?x), (Nobel, won, ?y) (1)

returns pairs (y, x) where y advised x and both won the Nobel prize (those are (y, x) =
(Bohr, Thompson) and (y, x) = (Thompson, Strutt)).

The third type of graph pattern are the regular path queries (RPQs). An RPQ is basically
a regular expression that matches variable-length paths in the database graph, so that the
sequence of traversed labels belong to the language denoted by the regular expression. RPQs
are distinctive of graph databases and cannot be emulated in the relational algebra. In
our example, the RPQ “Wheeler adv+ ?x” retrieves the academic descent of Wheeler (i.e.,
x = Bohr, x = Thomson, and x = Strutt).

1.2 Worst-case optimality and the space problem
While triple patterns are easily solved with plain data retrieval structures, BGPs and RPQs
are much more challenging and pose serious performance issues on graph database engines
(e.g., it is typical to set timeouts in the minutes). Join evaluation is the most costly part in
relational queries, and this carries over graph databases, where in addition it is not strange
to see BGPs joining tens of triple patterns (e.g., up to 22 were found in a Wikidata query
log [33]). Languages like SPARQL also enable projections, unions, and other operations,
though the efficiency focus of database engines is generally on BGPs and RPQs.

An important breakthrough in the resolution of multijoin queries was the development of
worst-case optimal (wco) join algorithms. A join algorithm is wco if its time complexity is
of the order of the so-called AGM bound [7], that is, the maximum possible output of the
query over some database with the same table attributes and sizes of the one at hand. It was
shown that the techniques used by relational engines since the sixties, where multijoins were
performed pairwise, were doomed to be non-wco. At the same time, several wco algorithms
were developed [43, 44, 53, 31, 45, 42]. This technique was translated to graph databases [29],
where it is particularly relevant because multijoins tend to be large and complex [45, 1, 30, 29].
It was shown that wco algorithms considerably outperformed traditional join algorithms on
complex queries, especially when the BGPs contained cycles [1].

This improvement came at the cost of space, however. For example, the most popular
wco algorithm, Leapfrog Triejoin (LTJ) [53], requires to index the rows of every database
table as sequences of values in trie data structures, in every possible ordering of the attributes.

G. Navarro 2:3

That is, a table of d columns needs to be stored in d! tries. In particular, supporting wco
joins on triples (s, p, o) poses a space overhead factor of 3! = 6. Other wco algorithms pose
similar or worse space problems. This is particularly unfortunate with the emergence of
enormous repositories of unstructured data in graph form, and hinders the adoption of the
faster wco strategies in the resolution of complex multijoin queries. To illustrate, Wikidata is
approaching 14 billion triples,1 so 6 copies of it, using just 32 bits per element and without
the additional trie structures, surpasses the terabyte.

1.3 Compact data structures to the rescue
Our recent research has shown that the use of compact data structures (cds) can play a
significant role in the reduction of the space required by wco multijoin algorithms. Compact
data structures [38] aim to represent the data and its needed data structures within space
close to the entropy, or amount of information, present in the data. There exist to date a
number of compact representations for bit vectors, sequences, trees, graphs, matrices, point
grids, texts, and many others. Cds have been very successful in reducing the size of relevant
data structures by orders of magnitude, as well as greatly increasing the functionality of data
representations within space close to the actual information of the data.

It is then more than natural to apply cds to the problem of supporting wco algorithms on
graph databases, with the aim of retaining time optimality while removing the redundancy.
We have recently proved the viability of this concept in two forms.

Qdags [40, 6]: We represented relations of d attributes as d-dimensional point grids called
qdags, where every tuple becomes a point (qdags are a kind of compressed quadtrees
[49, 50]). To solve a multijoin between several tables, qdags traverse and intersect all
their grids in synchronization. The resulting algorithm not only was proved to be wco
and to require only one copy of the data independently of d, but it was also shown
to be competitive in time with the state of the art (at least for low d; the query time
is exponential on d). Qdags use orders of magnitude less space than other indices on
graph databases, actually compressing the graph to less than its plain size. As they are
compositional (i.e., the result of a query is also a qdag) we also showed how to extend
their functionality to the full relational algebra.

Ring [4, 5]: We represented the database triples as texts, and built on text indexing cds
[14, 16] to support the LTJ algorithm. The resulting structure, the ring, is once again
wco and uses just one copy of the data. In many cases (but not when d is very small), the
ring is faster than qdags, but it requires O(2d) (not d! as classical approaches) copies on
d-dimensional tables, though one suffices no graph databases, where d = 3. Both qdags
and the ring could index the Wikidata in under 70 GB. In a further development [5], we
solved RPQs on the ring in time competitive with the state of the art, while using an
order of magnitude less space than other indices. This solution uses techniques from text
searching, like converting the RPQ to its Glushkov automaton [23, 39] and exploiting the
flexibility of the wavelet trees [24, 37] used by the ring to represents its text.

Our results demonstrate that cds can be used to compactly represent graph databases
while efficiently solving BGPs and RPQs. In this survey we describe those results in some
detail and discuss the features and challenges of this new and promising technology. We
strive for simplicity and informality in this introductory survey, further details and precisions
can be found in the references.

1 https://grafana.wikimedia.org/d/000000489/wikidata-query-service

ICDT 2023

https://grafana.wikimedia.org/d/000000489/wikidata-query-service

2:4 Compact Data Structures Meet Databases

a

b

c

R

S

T

a

b c

R

S

T

d

e

R

S

T

Figure 2 On the left, a join query seen as a hypergraph where nodes are attributes. In the middle,
as a graph where nodes are relations. On the right, the triangle query on the graph where nodes are
attributes.

2 State of the Art in (Graph) Databases

2.1 Multijoin queries
We focus on so-called multijoin queries, which compute the natural join between a set of tables
(we discuss the case of graph databases soon). It is customary to regard multijoin queries
as hypergraphs, where the nodes are attributes and the involved relations are hyperedges
covering their attribute nodes. For example, the left hypergraph in Figure 2 corresponds to
the join R(a, b, c) ▷◁ S(b, d, e) ▷◁ T (c, d).

An alternative view, shown in the middle of the figure, is to regard the relations as nodes
and put edges between relations that share attributes. We speak of cyclic and acyclic queries
referring to this second kind of graph.

2.2 The AGM bound
Asterias, Grohe, and Marx [7] showed how to compute the maximum possible size of the
output of a multijoin query. The maximization is done over every possible content of the
tables participating in the join, while retaining their attributes and sizes. This bound, also
shown to be tight, is since then known as the AGM bound. The bound immediately yields
the concept of worst-case optimality: a join algorithm is worst-case optimal (wco) if the time
it takes to compute a join is of the order of the AGM bound (possibly multiplied by a factor
that depends at most polylogarithmically on the data size), because that is the possible
output size for this query on some tables, and we need at least time to write the output.
This differs from the stricter instance optimal algoritms, which take time proportional to the
output of the query on the given tables.

The precise form of the bound is not important for our discussion; what is relevant for
now is that the bound implies that no pair-wise join strategy can be wco. The paradigmatic
example is the so-called “triangle query” R(a, b) ▷◁ S(b, c) ▷◁ T (c, a) (see the right of Figure 2).
If the tables have n rows, the triangle query can produce only O(n3/2) results; however there
exist tables R, S and T where every pairwise join strategy takes time Ω(n2). It is worth
noting that all the classical work on query plan optimization since the birth of the relational
model built on pair-wise joins.

A number of wco algorithms appeared since then [43, 44, 53, 31, 45, 42]; we describe the
most popular one in some detail next. For the particular case of acyclic queries, it is indeed
possible to obtain the famous instance-optimal Yannakakis’ algorithm [57]. It is also possible
to obtain intermediate measures, like the fractional hypertreewidth (fhw), which is related to

G. Navarro 2:5

the strategy of separating a cyclic query into a tree of cyclic components, solving each of those
with a wco algorithm, and then solving the resulting acyclic query instance-optimally [1] (we
omit some details for simplicity). The fhw bound is then the sum of the AGM bounds for
the nodes in the best possible decomposition of the query into a tree of cycles.

2.3 Leapfrog Triejoin
Leapfrog Triejoin (LTJ) [53] is the most popular wco multijoin algorithm. Instead of
performing the joins pair-wise (or, we could say, table-wise), LTJ proceeds attribute-wise
over all the tables at the same time. We say that LTJ binds one attribute at a time, meaning
that it finds all the possible values it may get in the output. Say that we decide to start
by binding attribute A. We then find the values of A that appear in all the joined tables.
For each such value A = a, we run a branch where the tables keep only their rows where A

has value a, and continue binding the next variables. This branching continues until either
there are no binding values for an attribute (and thus the current branch is abandoned), or
we have bound all the attributes (and then we output all the possible combinations of the
non-joined attributes, as a Cartesian product). We show an example soon.

For LTJ to run efficiently, it is convenient to arrange the tables as tries [19], or digital
trees. Each row of the table becomes a root-to-leaf path in its trie. The order in which the
attributes are read root to leaf must correspond to the order in which they are bound along
the query process, and the attributes not participating in the join must come at the end.
Each branch of LTJ then starts with a pointer to a node of the trie of each joined relation
(all start at the root). When it comes to bind A, all the relations having attribute A intersect
the children of their current node. For each value a that appears in the children of all the
relevant trie nodes, LTJ descends to that child in all those tries and continues by that branch,
where now we have bound A = a.

Because one cannot predict which attributes will be joined in queries, and furthermore it
is convenient to choose different binding orders to improve performance, LTJ requires that
each relation with d attributes is indexed in d! tries, one per possible attribute ordering. This
is the main problem for using LTJ in practice. An interesting alternative is to build query
plans that combine wco algorithms with (non-wco) pairwise joins [35, 20].

2.4 The case of graph databases
A graph database can be seen as a single relation over three attributes; every edge s

p→ o is
interpreted as a tuple (s, p, o) in the relation (for subject, predicate, and object, following the
RDF terminology [34]). Alternatively, it can be seen as a set of relations over two attributes,
one per predicate p containing the pairs (s, o) such that the edge s

p→ o is in the graph.
Standard query languages like SPARQL and many others feature two core query types,

Basic Graph Patterns (BGPs) and Regular Path Queries (RPQs).

Basic graph patterns. BGPs can be seen as a composition of a selection and a join in
the corresponding relational database. A BGP is a set of triple patterns, each describing a
graph edge where each of the components s, p, and o can be a fixed constant (hence the
selection) or a variable. Shared variables among the triple patterns of the BGP correspond
to equijoins by the corresponding attributes. When the predicates are constant, we can see
the hypergraph of the query as a classic labeled digraph; we can support variable predicates
by allowing labels be variables too. With this modelling, solving the BGP query corresponds

ICDT 2023

2:6 Compact Data Structures Meet Databases

adv

Bohr

Thomson

Thorne

Wheeler

Wheeler

Bohr

Thomson

Strutt

won

Nobel

ThomsonBohr Strutt Thorne

Nobel

y

xw
o
n

w
on

adv

Figure 3 On the left, the subgraph of Eq. (1). On the right, the tries to traverse when solving
this query using LTJ.

exactly to finding all the bindings of the variables that make that graph be a subgraph of
the database. On the left of Figure 3 we see the graph of the BGP of Eq. (1); note it is
analogous to the triangle query.

By regarding every triple pattern as a relation, where some attributes may by bound
from the beginning (if they are constants) or be named after a variable otherwise, we can
adapt LTJ to solve BGPs, resulting in a wco algorithm as well [29]. The relevant parts of
the tries for our example query, in the correct order to bind first y and then x, are shown
on the right of Figure 3 (we use the first trie for (?y, adv, ?x), starting at the node “adv”,
and two copies of the second trie for (Nobel, won, ?x) and (Nobel, won, ?y), starting at the
node “won”). When we bind y, we intersect the lists of children of both nodes, obtaining
bindings y = Bohr, y = Thomson, and y = Thorne. Branching with each such value of y we
intersect the only child of each node in the first trie with the children of “won” in the second,
obtaining x = Thomson when y = Bohr, and x = Strutt when y = Thomson.

The space issues of LTJ carry over the graph database formulation, so we require to store
3! = 6 tries, each representing the whole database graph in a different order, (s, p, o), (s, o, p),
(o, s, p), (o, p, s), (p, o, s), and (p, s, o). Alternatives are giving up with wco algorithms, as
mentioned, or building some orders at query time, which is generally too expensive.

Regular path queries. RPQs are akin to regular expressions that must be matched to paths
in the database graph. They may fix the starting node x and/or the ending node y, and
otherwise they specify the language of the sequences of labels that can connect x with y.
Apart from the regular expression operations, one can use ˆp to denote an edge labeled p

in reverse direction. This can be handled by duplicating the graph database edges so as to
include those reversed labels.

There are no wco algorithms for RPQs. The standard solution is to build the product
graph between the graph database and the nondeterministic finite automaton (NFA) of the
RPQ. The product graph has nodes (u, v) for each node u of the graph and v of the NFA.
There is an edge (u, v) p→ (u′, v′) iff there is an edge u

p→ u′ in the graph and we can go
from v to v′ by symbol p in the NFA. We then traverse the product automaton from every
possible initial node (x, i) (where x may be fixed or not in the RPQ and i is the initial NFA
state) towards every possible final node (y, f) (where y may be fixed or not in the RPQ and
f is a final NFA state) and report all the pairs (x, y).

Several heuristics have been proposed over this basic solution [32, 56, 46], aiming at
filtering the traversal of the product graph. For example, if the RPQ forces the existence
of a certain label in the path that is infrequent in the graph, then it is more convenient to
focus on those edges and trying to match the RPQ path in both directions from the arrow.

G. Navarro 2:7

An elegant way to mix BGPs and RPQs is to permit triple patterns of the form (x, R, y),
where x and y are the endpoints of the RPQ R. This can then be treated as just another
relation to join. For example, one can run the RPQ and materialize the output, and then
run the query as a normal BGP. Or one can run the rest of the BGP so that these triples,
which are likely to be more expensive, are processed at the end, only for the bound variables
that have survived all the intersections.

3 Compact Data Structures

We describe in this section the compact data structures we used in our developments. Again,
we aim at an intuitive description; more details and references can be found elsewhere [38].

3.1 Bitvectors
A bitvector B[1..n] is a sequence of n bits that provides the following two operations:
rankb(B, i) is the number of bits equal to b ∈ {0, 1} in B[1..i].
selectb(B, j) is the position of the jth occurrence of b ∈ {0, 1} in B.

It is possible to represent B within n + o(n) bits so that both operations are supported in
constant time [11]. It is also possible to represent B in compressed space when it has many
more or fewer 0s than 1s, while retaining constant-time operations. Let m be the number of
0s, then the compressed representation uses log2

(
n
m

)
+ o(n) bits [47].

3.2 Cardinal trees
A cardinal tree is a rooted tree where each node has children with labels in [1..σ]; each
node has at most one child with a given label. The basic operations supported by this data
structure are:
root(T) is the root node of T .
child(v, a) is the child of node v labeled a, or null if there is no such child.
parent(v) is the parent of node v, or null if v is the root.

It is possible to represent a cardinal tree with n nodes within (log2 σ + 2 + o(1))n bits,
while supporting the given operations in constant time [9]. We are going to use tries of
alphabet size σ = 4, in which case a more practical representation using the same space
is the k2-tree [10] (with k = 2). It represents each node with 4 bits, which marks which
children exist. The 4-bit signatures of all the nodes are concatenated in levelwise form, into
a large bitvector T [1..]. The node identifiers correspond to the index of their signatures in
this array. The root identifier is 0, corresponding to the first signature, and the identifier of
the ith child of a node with identifier v is child(v, i) = rank1(T, 4v + i). The identifier of the
parent of v, instead, is parent(v) = ⌈select(T, v)/4⌉ − 1.

3.3 Quadtrees
A quadtree is a geometric data structure that represents points in a discrete two-dimensional
grid. The quadtree is a tree of arity four. The root represents the whole grid, which is
divided as evenly as possible into four quadrants. Each quadrant is recursively represented
by a child of the root: top-left, top-right, bottom-left, and bottom-right. If the grid has
no points, the corresponding quadtree node is a leaf and the grid is not further subdivided.
When the nodes represent single cells, they also become leaves that store a point or not.

ICDT 2023

2:8 Compact Data Structures Meet Databases

0110 0010 1000

1110

01001000 0010 1000

1110 0110 0010 1000 1000 0100 0010 1000

w
o
n

Nobel

Wheeler

Thorne

Thomson

Strutt

Bohr

B
o
h
r

S
tr

u
tt

T
h
o
m

s
o
n

T
h
o
rn

e

W
h
e
e
le

r

N
o
b
e
l

a
d
v

Nobel

Wheeler

Thorne

Thomson

Strutt

Bohr

B
o
h
r

S
tr

u
tt

T
h
o
m

s
o
n

T
h
o
rn

e

W
h
e
e
le

r

N
o
b
e
l

0010

1100

0011 0011

0010 1100 0011 0011

Figure 4 On the left, the relations adv and won of Figure 1 seen as two-dimensional grids. On
the right, their representations as quadtrees, which are just cardinal trees of arity four (we show the
signatures of the tree nodes), and their final representation as k2-tree bitvectors at their bottom.

A compact representation of a quadtree can be obtained by seeing it as a cardinal
tree of arity σ = 4. Each grid point then corresponds to a root-to-leaf path of length
ℓ = ⌈log4(u2)⌉ = ⌈log2 u⌉, on a u × u grid. Since all the paths in this trie are of the same
length, we do not need to store information on the children of the nodes of depth ℓ.

Figure 4 shows how our two predicates adv and won can be regarded as two-dimensional
grids (as done with qdags). We also show how those grids are represented as quadtrees,
which in turn are seen as cardinal trees of σ = 4 children. Their final concrete representation,
as k2-trees, is just a sequence of bits.

The space of this representation is, in the worst case, 4 log2 u bits per point, which is
twice the 2 log2 u bits needed by a representation as pairs of coordinates. When the points
have some regularity, like clustering, the space decreases, as shown in the figure for relation
won. Within this space, the quadtree can efficiently search for points.

3.4 Wavelet trees
A wavelet tree [24, 37] represents a sequence S[1..n] over an alphabet [1..σ] using n log2 σ +
o(n log σ) bits, so that several interesting queries can be answered, including the following
ones in O(log σ) time:
access(S, i) returns S[i].
ranka(S, i) is the number of symbols equal to a ∈ [1..σ] in S[1..i].
selecta(S, j) is the position of the jth occurrence of a ∈ [1..σ] in S.

G. Navarro 2:9

3 2 5 1 1 2 3 4

3 2 1 1 2 3 5 4

0 0 1 0 0 0 0 1

1 0 0 0 0 1 1 0

2 1 1 2 3 3

1 0 0 1

1 1 2 2

4 5

Figure 5 The wavelet tree of S = 32511234. Each node v shows in gray the string Sv it represents
(but does not store) and below it the bitvector Bv it stores.

The wavelet tree is a balanced binary tree with σ leaves, where each node handles a
range of the alphabet; the root represents [1..σ] and each leaf represents one symbol. If an
internal node v represents range [a..b], then its left child represents [a..m] and its right child
represents [m + 1..b], with m = ⌊(a + b)/2⌋. The node v represents, virtually, the subsequence
Sv of S with symbols in [a..b], but it only stores a bitvector Bv of length |Sv|, where Bv[i] = 0
if Sv[i] belongs to the left child of v, and Bv[i] = 1 otherwise. Figure 5 shows an example.

The wavelet tree has height ⌈log2 σ⌉. At each level, it stores exactly n bits because each
position of S is in exactly one node at that level. By representing those bitvectors so that
they answer rank and select in constant time (Section 3.1), the space is n + o(n) bits per
level and n log2 σ + o(n log σ) overall. Note that a plain representation of S requires n log2 σ

bits, and it can be less if we use compressed bitvectors or give the tree a Huffman shape.
It is not hard to see how to support the basic operations in O(log σ) time, with a top-down

or bottom-up traversal on the wavelet tree. For example, to compute S[i], we start with v

being the root. If Bv[i] = 0, we move to its left child with i := rank0(Bv, i), otherwise we
move to its right child with i := rank1(Bv, i). When we arrive at a leaf, its symbol is S[i].
Wavelet trees can perform more complex operations on S; we will mention them as needed.

3.5 The FM-Index

Rather than describing the general FM-Index [14, 16], which belongs to the realm of
text compression and searching, we show the ideas that adapt to our particular case of
interest. Consider a set of n distinct strings of length ℓ, Si[1..ℓ] for 1 ≤ i ≤ n. Sort them
lexicographically and write them one per row. The last column of symbols, read downwards,
is called Lℓ.

Now take the last symbol of each Si and put it in front of the first symbol, that is, Si

becomes Si[ℓ] · Si[1..ℓ − 1]. Stably re-sort the strings and call Lℓ−1 the last column. Continue
with this process until obtaining all the strings Lj , for 1 ≤ j ≤ ℓ.

If we consider the strings Si as the rows of a relational table, then the strings Lj are akin
to a column store, where the table is represented column-wise and the columns have some
suitable order. We do not require pointers to connect the same row across different columns,
because the row i′ in Lj−1 corresponding to row i in Lj turns out to be

i′ = Cj [c] + rankc(Lj , i),

ICDT 2023

2:10 Compact Data Structures Meet Databases

(6,8,1)

(6,8,2)

(6,8,3)

(6,8,4)

(8,1,6)

(8,2,6)

(8,3,6)

(8,4,6)

(4,6,8)

(5,4,7)

1 Bohr

Strutt

Mapping Triples

to front +to front + to front +

stable sortstable sortstable sort

(1,7,3)

(3,7,2)

(5,7,1)

(4,7,5)

(1,7,3)

(3,7,2)

(4,7,5)

(5,7,1)

(1,5,7) (7,1,5)

(7,2,3)

(7,3,1)

(7,5,4)

2

3

move O

by O

move P

by P

move S

by S

OSP orderSPO order POS order

Thorne

Wheeler

Nobel6

4

5

adv

8

7

(3,6,8)

(6,8,1)

(6,8,3)

(6,8,2)

(6,8,4)

(2,6,8)

(3,1,7)

(1,6,8)

(2,3,7)

won

Thomson

LO LP L S

Figure 6 On the left, a mapping the nodes and labels of Figure 1 to integers. Right to it, the
resulting table of triples. On the right, the three reorderings from which the columns Lo, Lp, and Ls

are obtained.

where c = Lj [i] and Cj [c] is the number of symbols smaller than c in Lj . The same
formula navigates from L1 to Lℓ. We can therefore extract any row Si in time O(ℓ log σ) by
representing the strings Lj with wavelet trees (Section 3.4), from its position in any column.
We can also navigate forwards, from Lj−1[i′] to Lj [i], with the inverse formula

i = selectc(Lj , i′ − Cj−1[c]),

where c is such that Cj−1[c] < i′ ≤ Cj−1[c].
This representation, which uses basically the same nℓ log2 σ bits of a plain representation

of the rows Si, allows for other interesting queries. In particular, given some substring X[1..t]
and a column a, we can obtain the set of all rows Si such that Si[a + 1..a + t] = X, by
starting from st+1 = 1, et+1 = n, and then, for j = t down to 1, computing c = X[j] and

sj = Ca+j [c] + rankc(La+j , sj+1 − 1) + 1,

ej = Ca+j [c] + rankc(La+j , ej+1).

At the end, the desired strings are those represented in the range La+1[s1..e1]. This process
is called backward search.

Figure 6 illustrates this structure on the three-column table that results from representing
the labeled graph of Figure 1. The table is represented by the resulting columns Lo, Lp, and
Ls. These three strings, represented as wavelet trees, plus the corresponding arrays C∗, form
the ring data structure for graph databases. Note that Figure 5 shows the wavelet tree of Lo.

4 Qdags

Qdags [40, 6] represent each d-attribute table as a d-dimensional version of the quadtrees
described in Section 3.3. A multijoin query between several tables represented by such
quadtrees is solved by:
1. Converting each quadtree into one that includes the missing attributes that appear in

any other joined table, all in the same order.
2. Traversing the quadtrees in synchronization to collect the points in common.
3. Writing the output of the query as a new quadtree on the increased dimension.

Qdags solve the problem of lifting the dimension of the quadtrees (step 1) at almost
no extra cost. A qdag is a quadtree plus a mapping function that can be used to permute
attributes and, most importantly, lift its dimension: for each d-dimensional point (x1, . . . , xd),

G. Navarro 2:11

?z

?y

?x

Figure 7 Extending the quadtree adv of Figure 4 to a third dimension to account for variable ?z.

if we raise the dimension to d′, we assume that the points (x1, . . . , xd, yd+1, . . . , yd′) exist
for all the possible values of yd+1, . . . , yd′ . The qdag then simulates the operations on the
virtual d′-dimensional quadtree without materializing it.

To illustrate, consider the following variant of the BGP of Eq. (1)

(?y, adv, ?x), (?z, won, ?x), (?z, won, ?y)

which has the same output in our database with the binding ?z = Nobel. Since the output
will be a table with attributes (?z, ?y, ?x), we need to raise the dimension of the intervening
quadtrees (shown in Figure 4) to three. For the first triple pattern, (?y, adv, ?x), we must
create the third dimension, ?z. The corresponding qdag must represent an octree (i.e.,
a 3-dimensional version of a quadtree) where every point (?y, ?x) in the quadtree adv is
extended to every possible value of ?z; see Figure 7. Instead of materializing that octree, the
qdag combines the quadtree adv with the mapping function (1, 2, 3, 4, 1, 2, 3, 4). This indicates
how to traverse the 8 children of every node in the octree, reading the 4 front cubes and then
the 4 back cubes; note the 4 back cubes are identical to the 4 front cubes. The quadtree is
then used to support the octree navigation with just this O(2d′) additive space and time
penalty. Analogously, the qdag for the triple pattern (?z, won, ?x) is built from the quadtree
won and the mapping function (1, 2, 1, 2, 3, 4, 3, 4), and the triple pattern (?z, won, ?y) is built
from the same quadtree won and the mapping function (1, 1, 2, 2, 3, 3, 4, 4).

Optimality. Note that the intersection process may work on subgrids where no output
points are found, so the intersection process is not necessarily instance-optimal. It was shown,
however, that there is always a database which, essentially, has points wherever the algorithm
traverses in the grids, which makes this multijoin algorithm wco.

Full algebra. The algorithm is compositional, since the output is also a quadtree (and hence
a qdag, with the identity mapping function). This compositionality leads to including the
other operations of the relational algebra. For this sake, qdags are extended to the so-called
lazy qdags (lqdags), which are akin to the syntax tree of the algebraic expression, through
which the results flow on demand. The scheme stays wco for Boolean operations (under some
constraints), but not for other operations like general selections and projections.

ICDT 2023

2:12 Compact Data Structures Meet Databases

In practice. The practical implementation uses kd-trees to represent the quadtrees, as
described in Section 3.3. The resulting quads are evaluated on a subset of Wikidata, where
one two-dimensional qdag is built for each distinct predicate. The qdags use less than 5 bytes
per triple, about half of the plain representation and 10–300 times less than state-of-the-art
engines. Their times to solve BGPs from a query log are competitive, from much faster
to much slower depending on the query types. Qdags perform better in general on lower
dimensions of the output and are unbeaten on small cyclic queries.

5 The Ring

The ring [4] is a text-based compressed representation for the database triples, which can
simulate the 6 tries needed by the LTJ algorithm with just a single copy of the data. The
high-level idea is that each (s, p, o) triple is regarded as a circular string that can be navigated
forwards or backwards. Any of the 6 orders can be then obtained by starting somewhere on
the circle and moving in some direction.

As described in Section 3.5, the ring represents the table of triples (s, p, o) by means of the
sequences Lo, Lp, and Ls. The key idea to simulate the LTJ algorithm of Section 2.3 is that
every node of each of the 6 tries corresponds to a range in some of the L∗ sequences: both
represent sets of triples with some attributes already bound. We then start by associating
each triple pattern in the BGP to a range in some L∗ corresponding to its bound values.
To find that range, we use backward search (Section 3.5). For example, for the BGP of
Eq. (1) the triple (?y, adv, ?x) corresponds to the range Ls[1..4], whereas (Nobel, won, ?x)
and (Nobel, won, ?y) correspond to Lo[5..8] (see Figure 6).

The LTJ algorithm is then started, binding the variables one by one. The main primitive
needed to implement the intersections carried out by LTJ is: given a value k, find the leftmost
child of the current trie node with value k′ ≥ k. In the ring, this corresponds to finding the
smallest value k′ ≥ k appearing in a given range L∗[i..j]. This can be done in logarithmic
time on the wavelet tree of L∗ [8, 37]. Wavelet trees also implement the needed primitives to
simulate trie navigation on the sequences L∗, forwards or backwards as needed [21, 37].

For example, if we first bind ?y, we must find the common values between Ls[1..4] and
Lo[5..8], yielding 1 (Bohr), 3 (Thomson), and 4 (Thorne). Those are the instances of ?y that
advised someone and won a Nobel prize (recall Section 2.4). Consider the branch y = 1.
We use the backward search formula to move from Ls[1..4] to Lo[1..1] (which represents
the further bounded triple pattern (Bohr, adv, ?x)), and from Lo[5..8] to Lp[2..2] (which
represents (Nobel, won, Bohr); this triple pattern is now totally bound). Now we bind ?x,
looking for the common values in Lo[1..1] and Lo[5..8]. We here find the common value 3
(Thomson), and take that binding by moving from Lo[1..1] to Lp[5..5] (representing the triple
(Bohr, adv, Thomson)) and from Lo[5..8] to Lp[6..6] (representing (Nobel, won, Thomson)).
Now we have bound all the variables and the three triples represent one solution of the BGP:
Bohr advised Thomson and both won the Nobel prize.

Optimality and practical performance. The ring handles BGPs in wco time, since it directly
simulates the LTJ algorithm. Depending on how much it compresses its wavelet trees, the
ring can use about the same space of qdags, and it is also competitive in time with the state
of the art (it is faster than qdags in most cases, but not on small cyclic queries). Without
wavelet tree compression, it uses about 13 bytes per triple (close to the space needed by the
raw graph data, and still 5–140 times smaller than the other indices) and it is on average
twice as fast as the next-best competitor.

G. Navarro 2:13

Higher dimensions. The ring can be extended to higher dimensions, needing much fewer
than the d! copies required by classical schemes (e.g., one needs 7 rings, instead of 720 tries,
for d = 6). This makes it usable to implement LTJ on relational tables where the classical
wco indices are completely impractical. Still, the number of required rings grows as O(2d),
so it soon ceases to be practical as well.

Regular path queries. The ring was also used to solve RPQs [5] by just performing the
classical traversal of the product automaton, with a couple of twists. First, the NFA is
produced by Glushkov’s algorithm [23, 39], which obtains the worst-case minimum number
of states and has some regularities that are exploited (e.g., all the transition leading to a
given state have the same label). Second, the wavelet trees of the sequences L∗ are enhanced
so as to avoid spending any time on edges of the product automaton that lead to no active
NFA states, or that cycle on the automaton. The resulting algorithm, even if not using any
filtration technique, is competitive with the state of the art (3 times faster than the next-best,
on average), while using 3–5 times less space than all of them. More recent developments
using filtration techniques become about 5 times faster than the others.

6 Now What?

Our research has demonstrated that cds can successfully implement the core of graph database
engines, providing wco multijoin algorithms that are also efficient in practice, and removing
all of the redundancy associated with those algorithms. As such, they can make a reality the
efficient querying of the huge graph databases that are emerging.

But we have just scratched the surface of the problem. There are many issues to consider
in the way, on many of which we are working. We list only some of the most prominent ones.

How to handle higher dimensions? While three dimensions (or four, in some models) suffice
to describe graph databases, relational ones may have many more columns. Both qdags
and the ring have time or space troubles with higher dimensions, and even if they can
handle them better than current schemes, they soon become impractical. In order to
provide competitive solutions for relational data, we must probably combine wco and
non-wco schemes [35, 20]. Cds have demonstrated that they can provide more than the
basic functionality on the data, so an interesting question is what can they support in
the direction of combining both kinds of query plans.

Can we provide more functionality? A formidable challenge is to combine BGPs and RPQs
in an efficient manner, as this is supported in SPARQL and other query languages.
Interactive querying requires retrieving (possibly only some) results in decreasing order of
relevance [52]. Providing more semantics to the nodes leads to problems like supporting
similarity joins [13], spatio-temporal predicates, and so on. The concept of wco with
those extended semantics is yet to be studied. Again, cds can provide novel and more
efficient solutions to those problems.

How to scale to a real system? Real graph database systems are very complex, and thus it
is not direct to put our performance improvements, which focus on specific subproblems,
into use. Consider for example going from our BGPs and RPQs to the full SPARQL
support. The fastest path is to integrate our research prototypes into an existing system.
A good candidate for this is MillenniumDB [55], a full-fledged graph database system
with strong algorithmic foundations and designed to plug-and-play different solutions to
subproblems.

ICDT 2023

2:14 Compact Data Structures Meet Databases

Can we support graph analytics? BGPs serve not only for querying graph databases, but
also as building blocks to support graph analytics [28]. In our example graph, we could
ask how likely is that the advisee of a Nobel winner also wins the prize, by counting
the number of answers to BGP queries (rather than listing them all). Graph analytics
require various sorts of summarization operations on the query results, where in addition
it is acceptable to return approximate answers. It is interesting to see if cds can support
counting (perhaps approximately) the number of results of queries without listing them
all; some of their extended functionality can be of use. More in general, we can explore
the use of cds to represent other objects that are key in analytics, like matrices. There is
some preliminary work in this direction [15, 18, 22].

References
1 C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. Emptyheaded: A relational

engine for graph processing. ACM Transactions on Database Systems, 42, 2017.
2 W. Ali, M. Saleem, B. Yao, A. Hogan, and A.-C. Ngonga Ngomo. A survey of RDF stores &

SPARQL engines for querying knowledge graphs. The VLDB Journal, 31(3):1–26, 2022.
3 R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and D. Vrgoc. Foundations of

modern query languages for graph databases. ACM Computing Surveys, 50(5):68:1–68:40,
2017.

4 D. Arroyuelo, A. Hogan, G. Navarro, J. Reutter, J. Rojas-Ledesma, and A. Soto. Worst-case
optimal graph joins in almost no space. In Proc. 47th ACM International Conference on
Management of Data (SIGMOD), pages 102–114, 2021.

5 D. Arroyuelo, A. Hogan, G. Navarro, and J. Rojas-Ledesma. Time- and space-efficient regular
path queries. In Proc. 38th IEEE International Conference on Data Engineering (ICDE),
pages 3091–3105, 2022.

6 D. Arroyuelo, G. Navarro, J. L. Reutter, and J. Rojas-Ledesma. Optimal joins using compressed
quadtrees. ACM Transactions on Database Systems, 47(2):article 8, 2022.

7 A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational joins. SIAM
Journal on Computing, 42(4):1737–1767, 2013.

8 J. Barbay, F. Claude, and G. Navarro. Compact binary relation representations with rich
functionality. Information and Computation, 232:19–37, 2013.

9 D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing
trees of higher degree. Algorithmica, 43(4):275–292, 2005.

10 N. Brisaboa, S. Ladra, and G. Navarro. Compact representation of web graphs with extended
functionality. Information Systems, 39(1):152–174, 2014.

11 D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.
12 O. Erling. Virtuoso, a hybrid RDBMS/graph column store. Data Engineering Bulletin,

35(1):3–8, 2012.
13 S. Ferrada, B. Bustos, and A. Hogan. Extending SPARQL with similarity joins. In Proc. 19th

International Semantic Web Conference (ISWC), pages 201–217, 2020.
14 P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM, 52(4):552–581,

2005.
15 P. Ferragina, G. Manzini, T. Gagie, D. Köppl, G. Navarro, M. Striani, and F. Tosoni. Improving

matrix-vector multiplication via lossless grammar-compressed matrices. Proceedings of the
VLDB Endowment, 2022. To appear. See https://www.dcc.uchile.cl/gnavarro/ps/pvldb22.
pdf.

16 P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of
sequences and full-text indexes. ACM Transactions on Algorithms, 3(2):article 20, 2007.

17 N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow,
M. Rydberg, P. Selmer, and A. Taylor. Cypher: An evolving query language for property
graphs. In Proc. SIGMOD International Conference on Management of Data, pages 1433–1445,
2018.

https://www.dcc.uchile.cl/gnavarro/ps/pvldb22.pdf
https://www.dcc.uchile.cl/gnavarro/ps/pvldb22.pdf

G. Navarro 2:15

18 A. P. Francisco, T. Gagie, D. Köppl, S. Ladra, and G. Navarro. Graph compression for
adjacency-matrix multiplication. SN Computer Science, 3:article 193, 2022.

19 E. Fredkin. Trie memory. Communications of the ACM, 3:490–500, 1960.
20 M. J. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neumann. Adopting worst-

case optimal joins in relational database systems. Proceedings of the VLDB Endowment,
13(11):1891–1904, 2020.

21 T. Gagie, G. Navarro, and S. J. Puglisi. New algorithms on wavelet trees and applications to
information retrieval. Theoretical Computer Science, 426-427:25–41, 2012.

22 F. Geerts, T. Muñoz, C. Riveros, J. van den Bussche, and D. Vrgoc. Matrix query languages.
SIGMOD Record, 50(3):6–19, 2021.

23 V-M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys, 16:1–53,
1961.

24 R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In Proc.
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841–850, 2003.

25 S. Harris, A. Seaborne, and E. Prud’hommeaux. SPARQL 1.1 Query Language. W3C
Recommendation. URL: https://www.w3.org/TR/sparql11-query/.

26 A. Hogan. The Web of Data. Springer, 2020.
27 A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutiérrez, S. Kirrane,

J.E. Labra Gayo, R. Navigli, S. Neumaier, A.-C. Ngonga Ngomo, A. Polleres, S. M. Rashid,
A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab, and A. Zimmermann. Knowledge Graphs.
Synthesis Lectures on Data, Semantics, and Knowledge. Morgan & Claypool Publishers, 2021.

28 A. Hogan, J. L. Reutter, and A. Soto. In-database graph analytics with recursive SPARQL.
In Proc. 19th International Semantic Web Conference (ISWC), pages 511–528, 2020.

29 A. Hogan, C. Riveros, C. Rojas, and A. Soto. A worst-case optimal join algorithm for SPARQL.
In Proc. 18th International Semantic Web Conference (ISWC), pages 258–275, 2019.

30 O. Kalinsky, Y. Etsion, and B. Kimelfeld. Flexible caching in trie joins. In Proc. 20th
International Conference on Extending Database Technology (EDBT), pages 282–293, 2017.

31 M. A. Khamis, H. Q. Ngo, C. Ré, and A. Rudra. Joins via geometric resolutions: Worst case
and beyond. ACM Transactions on Database Systems, 41(4), 2016.

32 A. Koschmieder and U. Leser. Regular path queries on large graphs. In Proc. International
Conference on Scientific and Statistical Database Management (SSDBM), volume 7338 of
LNCS, pages 177–194. Springer, 2012.

33 S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Bielefeldt. Getting the most
out of Wikidata: Semantic technology usage in Wikipedia’s knowledge graph. In Proc. 17th
International Semantic Web Conference (ISWC), pages 376–394, 2018.

34 F. Manola and E. Miller. RDF primer. W3C Recommendation, 2004. URL: http://www.w3.
org/TR/rdf-primer/.

35 A. Mhedhbi and S. Salihoglu. Optimizing subgraph queries by combining binary and worst-case
optimal joins. Proc. VLDB Endowment, 12(11):1692–1704, 2019.

36 J. J. Miller. Graph database applications and concepts with Neo4j. In Proc. Southern
Association for Information Systems Conference, pages 141–147, 2013.

37 G. Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20, 2014.
38 G. Navarro. Compact Data Structures – A practical approach. Cambridge Univ. Press, 2016.
39 G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practical on-line search

algorithms for texts and biological sequences. Cambridge Univ. Press, 2002.
40 G. Navarro, J. Reutter, and J. Rojas-Ledesma. Optimal joins using compact data structures.

In Proc. 23rd International Conference on Database Theory (ICDT), pages 21:1–21:21, 2020.
41 T. Neumann and G. Weikum. The RDF-3X engine for scalable management of RDF data.

VLDB Journal, 19:91–113, 2010.
42 H. Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and open problems. In

Proc. 37th Symposium on Principles of Database Systems (PODS), pages 111–124, 2018.

ICDT 2023

https://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/

2:16 Compact Data Structures Meet Databases

43 H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms. In Proc. 31st
Symposium on Principles of Database Systems (PODS), pages 37–48, 2012.

44 H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: new developments in the theory of join
algorithms. SIGMOD Record, 42(4):5–16, 2013.

45 D. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré, and A. Rudra. Join
processing for graph patterns: An old dog with new tricks. In Proc. 3rd International Workshop
on Graph Data Management Experiences and Systems (GRADES), pages 2:1–2:8, 2015.

46 V.-Q. Nguyen and K. Kim. Efficient regular path query evaluation by splitting with unit-
subquery cost matrix. IEICE Transactions on Information and Systems, 100-D(10):2648–2652,
2017.

47 R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to
encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms, 3(4):article
43, 2007.

48 I. Robinson, J. Webber, and E. Eifrem. Graph Databases. O’Reilly, 2nd edition, 2015.
49 H. Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys,

16(2):187–260, 1984.
50 H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann,

2006.
51 B. B. Thompson, M. Personick, and M. Cutcher. The Bigdata®RDF Graph Database. In

Linked Data Management, pages 193–237. Chapman and Hall/CRC, 2014.
52 N. Tziavelis, D. Ajwani, W. Gatterbauer, M. Riedewald, and X. Yang. Optimal algorithms

for ranked enumeration of answers to full conjunctive queries. Proceedings of the VLDB
Endowment, 13(9):1582–1597, 2020.

53 T. L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Proc. 17th
International Conference on Database Theory (ICDT), pages 96–106, 2014.

54 D. Vrandecic and M. Krötzsch. Wikidata: A free collaborative knowledgebase. Communications
of the ACM, 57(10):78–85, 2014.

55 D. Vrgoc, C. Rojas, R. Angles, M. Arenas, D. Arroyuelo, C. Buil Aranda, A. Hogan, G. Navarro,
C. Riveros, and J. Romero. MillenniumDB: A persistent, open-source, graph database. CoRR,
abs/2111.01540, 2021. arXiv:2111.01540.

56 X. Wang, J. Wang, and X. Zhang. Efficient distributed regular path queries on RDF graphs
using partial evaluation. In Proc. International Conference on Information and Knowledge
Management (CIKM), pages 1933–1936, 2016.

57 M. Yannakakis. Algorithms for acyclic database schemes. In Proc. 7th International Conference
on Very Large Databases (VLDB), pages 82–94, 1981.

http://arxiv.org/abs/2111.01540

Some Vignettes on Subgraph Counting Using
Graph Orientations
C. Seshadhri # Ñ

Department of Computer Science & Engineering, University of California, Santa Cruz, CA, USA

Abstract
Subgraph counting is a fundamental problem that spans many areas in computer science: database
theory, logic, network science, data mining, and complexity theory. Given a large input graph G and
a small pattern graph H, we wish to count the number of occurrences of H in G. In recent times,
there has been a resurgence on using an old (maybe overlooked?) technique of orienting the edges of
G and H, and then using a combination of brute-force enumeration and indexing. These orientation
techniques appear to give the best of both worlds. There is a rigorous theoretical explanation behind
these techniques, and they also have excellent empirical behavior (on large real-world graphs). Time
and again, graph orientations help solve subgraph counting problems in various computational
models, be it sampling, streaming, distributed, etc. In this paper, we give some short vignettes on
how the orientation technique solves a variety of algorithmic problems.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases subgraph counting, graph degeneracy, homomorphism counting, graph
algorithms

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.3

Category Invited Talk

Funding NSF DMS-2023495, CCF-1740850, 1908384, 1909790

1 Introduction

A central problem in computer science is to count or enumerate the occurrences of a small
pattern graph H in a large input graph G. The applications of graph pattern counts occur
across numerous scientific areas, including logic, biology, statistical physics, database theory,
social sciences, machine learning, and network science [36, 13, 17, 12, 24, 9, 30, 55, 48, 21, 47].
The tutorial [51] has more details on applications. A rich and deep theory has emerged from
the study of graph pattern counting [41, 14, 32, 19, 42, 2, 18, 48, 49].

Let us formalize this problem through the language of graph homomorphisms (or graph
mappings). The pattern simple graph is denoted H = (V (H), E(H)), and is thought of
constant-sized. The input simple graph is denoted G = (V (G), E(G)). An H-homomorphism
is a map f : V (H) → V (G) that preserves edges. Formally, ∀(u, v) ∈ E(H), (f(u), f(v)) ∈
E(G). If the map is 1-1, then it is called a subgraph. If the map also preserves non-edges, then
it is an induced subgraph/homomorphism. For this high-level survey, we will not commit to
any specific problem variant. We use “subgraph counting” an umbrella terms that refers to
all of these problems.

The study of efficient algorithms for subgraph counting is almost a subfield in of itself [37,
3, 12, 24, 22, 19, 9, 18, 10, 49]. It would take us too far out to survey the state of this area.
Even the simplest version, when H is a triangle, receives much attention. Let n = |V (G)|
and k = |V (H)|. The trivial algorithm that simply tries all k-tuples of vertices runs in O(nk)
time. By #W [1]-hardness even for H being a k-clique, we do not expect no(k) algorithms
for general H [19]. The algorithmic study of subgraph counting focuses on understanding
conditions on H and G when the trivial nk running time bound can be beaten.

© C. Seshadhri;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 3; pp. 3:1–3:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sesh@ucsc.edu
https://users.soe.ucsc.edu/~sesh/
https://doi.org/10.4230/LIPIcs.ICDT.2023.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Some Vignettes on Subgraph Counting Using Graph Orientations

The algorithmic technique of graph orientations has repeatedly helped in solving such
counting problems. It is also practically viable and is a key tool in subgraph counting
applications for real-world graphs. The study of this technique has led to a rich hoard of
mathematical results, which further inspire empirical work. In this paper, we will describe a
few short vignettes, describing the application of the technique and specific results.

2 Triangle counting through graph orientations

Let us begin with the basic problem of triangle counting, where H is a 3-clique. A fairly
direct algorithm is the wedge enumeration procedure. For each vertex u, list all pairs of
neighbors v, w. If (v, w) is an edge, then (u, v, w) form a triangle. Observe that we enumerate
two-paths (or wedges) v, u, w; hence the name wedge enumeration.

Let the graph G have n vertices and m edges. For a vertex v, let dv denote its degree.
The running time of the above procedure is O(

∑
v d2

v). Not surprisingly, high-degree vertices
greatly affect the running time.

Graph orientations can be thought of as a technique to cut down the running time of
wedge enumeration. This method has been rediscovered many times, but the earliest reference
is by Chiba-Nishizeki [14]. Chrobak-Eppstein use this idea to deal with planar graphs [15].
It has been rediscovered by Schank-Wagner [50] and Cohen [16].

▶ Definition 1. Given any undirected, simple graph G, an acyclic orientation of G is a DAG
D such that (u, v) is an edge in D iff (u, v) is an edge in G.

Let the partial order on vertices induced by D be denoted ≺D.

We can also construct a DAG by defining a total order π on the vertices, and then
orienting the edges from lower to higher vertex.

We consider an acycle orientiation D, and instead enumerate all (directed) triangles in D.
Observe that a triangle has a unique acyclic orientation. Moreover, from every u, we will
only find triangles (u, v, w) such that u ≺D v, w. This is what allows for the major savings
in computation.

Formally, the meta-algorithm is:

1. Compute an acyclic orientation D of the input graph G.
2. For every vertex u:

a. For every pair of outneighbors v, w, check if edge (v, w) is present.

The key difference in the enumeration method is to only look at the outneighbors of u,
which is at most the degree of u. Suppose the outdegree of a vertex v is denoted d+

v . Then
the running time of the meta-algorithm is O(

∑
v(d+

v)2).
So how do we choose the orientation to make this sum small? We will consider two

schemes: degree orientations and degeneracy orientations.

Degree orientations. We order vertices by degree, breaking ties by vertex id. Formally,
u ≺D v iff d(u) < d(v) or d(u) = d(v) and u has smaller id. This was the ordering proposed
in Chiba-Nishizeki’s original paper [14]. It is implicitly used in the forward algorithm of
Schank-Wagner [50].

C. Seshadhri 3:3

Degeneracy orientations. This is a more sophisticated approach. Think of the “peeling
process”, where we repeatedly remove a vertex of minimum degree. (Note that the degree
keeps decreasing as more vertices are removed.) The order of removal is the degeneracy
ordering, and one simply creates a DAG from this ordering.

The degeneracy orientation is a byproduct of the classic core decomposition of Matula and
Beck [43]. It was first used for subgraph counting by Chrobak-Eppstein [15]. Schank-Wagner
independently give the equivalent node-iterator-core algorithm [50].

2.1 Graph orientations and degeneracy
There is a remarkable connection between the graph orientations given above, the concept of
graph degeneracy, and measures of graph density. Let us begin with a classic definition from
graph theory that directly ties into our problem. For a directed graph D, we use d+

v (D) to
denote the outdegree of v in D.

▶ Definition 2. The graph degeneracy, denoted κ(G), is defined as follows.

κ(G) = min
D orientation of G

max
v

d+
v (D)

In plain English, the graph degeneracy is the smallest possible maximum outdegree of an
acyclic orientation of G. This quantity is also called the coloring number, due to connections
with graph coloring (Sec. 5.2 of [23]). For convenience, we will simply denote the degeneracy
of G as κ.

Matula-Beck gave a simple linear time algorithm to compute the graph degeneracy,
which is exactly the peeling process [43]. Quite surprisingly, the peeling process (or core
decomposition) discovers the orientation that minimizes the maximum outdegree. Observe
that the running time of the triangle enumeration process can be bounded as O(

∑
v(d+

v)2) =
O(maxv d+

v

∑
v d+

v) = O(m maxv d+
v). If we choose the degeneracy orientation, then the

running time is O(mκ). This algorithm is somewhat folklore, and explicitly stated by
Schank-Wagner [50].

The O(mκ) bound was first achieved by Chiba-Nishizeki, using degree orientations [14].
They (implicitly) proved the following theorem, which is stronger than what is required.

▶ Theorem 3 ([14]). For the degree orientation,
∑

v dvd+
v = O(mκ).

Asymptotically, both degree and degeneracy orientations provide the same running time
benefit for triangle counting. This result of Chiba-Nishizeki was expressed in terms of the
graph arboricity, a closely related parameter. But this result sparked off an entire subarea of
algorithms, where the running time is parameterized by the graph degeneracy.

To get more context, let us dig deeper into the meaning of degeneracy and its connection
to other graph parameters.

2.2 Degeneracy and graph density
The (half) average degree of a graph, m(G)/n(G), is a natural graph parameter. Yet it
appears to be a weak measure of the density of a graph. One may have a graph with a linear
number of edges, but containing a clique of size

√
n. A stronger notion of sparsity would be

the minimum average degree over all subgraphs of G.
The following theorem builds on classic results of Nash-Williams [44]. It relates the

degeneracy to strong notions of graph sparsity.

ICDT 2023

3:4 Some Vignettes on Subgraph Counting Using Graph Orientations

as-skitter cit-Patents web-Google

Figure 1 We plot the outdegree distributions of the degree and degeneracy orientation for different
real-world graphs. For context, the plots also give the original (vanilla) degree distribution, to see
how the orientations cut down the heavy tail. Observe that both orientations do quite well, though
the degeneracy orientation leads to a smaller maximum degree.

▶ Theorem 4. Let α(G) = maxG′subgraph of G
m(G)

n(G)−1 . Then α(G) ≤ κ(G) ≤ 2α(G).

Ignoring constant factors, a low degeneracy graph is one where all subgraphs have low
average degree. One can show that κ(G) ≤

√
2m, which shows that triangle counting for any

graph can be done in O(m3/2) time.
This concept motivates bounded degeneracy graph classes. These are graph classes with

constant degeneracy, or alternately, graphs where all subgraphs are sparse. Bounded degen-
eracy graph classes are immensely rich; they contain all minor-closed families. Preferential
attachment graphs have constant degeneracy. Real-world graphs typically have a small
degeneracy, comparable to their average degree ([33, 39, 53, 4, 8], also Table 2 in [4]). The
repeated occurrence of bounded degeneracy graphs across many scenarios underscores the
importance of graph orientations as an algorithmic technique.

2.3 Taming real-world heavy tails
The heavy-tailed degree distribution is one of the hallmarks of real-world graphs. While
these graphs are sparse, their degrees show high variance. These heavy tails pose particular
challenges for subgraph counting and other algorithmic tasks. Orientations give a simple
and effective method to cut down these tails.

In Figure 1, we plot the (out)degree distributions for three different real-world networks
with millions of edges [56]. The degree distribution is the number of vertices of a given
degree, plotted in log-log scale. The “vanilla” points, marked in black, give the original
degree distribution. One can see the characteristic heavy tail in all cases.

We then plot the outdegree distributions of the degree and degeneracy orientations, in
red and green respectively. Observe how both these orientations dramatically reduce the tail.
The degeneracy orientation is only slight lower than the degree orientation. As expected the
maximum degree of the degeneracy orientation is smaller than that of the degree orientation.
In general, the quantity

∑
v(d+

v)2 is similar for both orientations.
These observations explain why the orientation technique has so much practical utility.

The original algorithm for triangle counting is immensely effective in practice. A well-
engineered implementation can count triangles in real-world graphs with hundreds of millions
of edges within minutes on a commodity machine [48, 1]. As the plots in Figure 1 show, for
triangle counting, the degree orientation is as effective as the degeneracy orientation. Degree
orientations have the additional benefit of being locally computable and easily parallelizable.
Cohen [16] and Suri-Vassilvitskii [54] independently proposes this orientation for Map-Reduce
listing of triangles.

C. Seshadhri 3:5

2.4 Practical clique counting

The power of degeneracy orientations is central to most practical clique counting algorithms.
Following the template for triangle counting, k-clique counting can be done by searching all
(k − 1)-tuples of outneighbors. So, for each vertex v, we consider

(
d+

v
k−1

)
tuples. This leads

to a total running time of O(
∑

v(d+
v)k−1). For the degeneracy orientation, maxv d+

v = κ.
Hence,

∑
v(d+

v)k−1 ≤ κk−2 ∑
v d+

v = mκk−2. Thus, we can get a O(mκk−2) time algorithm
for counting all k-cliques.

In practice, this is a remarkably powerful tool for clique counting. Instead of enumerating
within outneighborhoods, observe that k-clique counting on the input graph G is reduced to
(k −1)-clique counting on the n outneighborhoods. Each outneighborhood is potentially small
(at most size κ). Each “outneighborhood problems” can be parallelized or distributed; being
small problems, one can fit each of them into the memory of a small machine. This idea is
central to almost all state-of-the-art practical clique counting algorithms [29, 31, 38, 20, 52].

3 Beyond clique counting

It is natural to ask whether the power of orientations goes beyond counting cliques. A nice
twist on the triangle counting algorithm can be used to count 4-cycles. As before, we will
orient our input graph G using the degree or degeneracy orientation. Each 4-cycle of G will
become an oriented version, and there are three possible non-isomorphic orientations of the
cycle. These are shown in Figure 2.

j

i

(a)

j

i

(b)

j

i

(c)

Figure 2 All acyclic orientations of the 4-cycle.

Notice that for all the three cases, the directed wedge between i and j (marked in red) is
either an out-wedge or an inout-wedge. These wedges are given in Figure 3. Hence, one can
enumerate only these wedges, index them appropriately, and get the total 4-cycle count.

j i

Out-wedge

j i

Inout-wedge

Figure 3 Directed wedges.

For two vertices i, j, let W ++
ij and W +−

ij be the number of out-wedges and inout wedges
respectively between i and j. The algorithm is:

ICDT 2023

3:6 Some Vignettes on Subgraph Counting Using Graph Orientations

1. Compute an acyclic (degree or degeneracy) orientation D of the input graph G.
2. Enumerate all out-wedges and inout-wedges (shown in Figure 3). Through this

enumeration, compute, for each pair (i, j) of vertices, compute the numbers W ++
ij

and W +−
ij .

3. Output the sum
∑

i,j

((W ++
ij

2

)
+

(W +−
ij

2

)
+ W +−

ij · W ++
ij

)
.

A few comments. By appropriate indexing and use of data structures, the entire running
time can be made linear in the total number of out-wedges and inout wedges. The sum
given above separately computes the various directed 4-cycles. There are three terms, each
corresponding to one pattern in Figure 2. Observe that the algorithm gets an exact count
without enumeration of 4-cycles. This leads to a large savings in running time.

The total number of wedges enumerated is at most
∑

v dvd+
v . This is somewhat larger than

triangle counting, where only out-wedges are enumerated. Nonetheless, for the degeneracy
ordering, maxv d+

v = κ. So the running time is O(mκ). For the degree orientation, by
Theorem 3, we also get the O(mκ) running time.

This bound was first achieved by Chiba-Nishizeki, but through a more complicated
algorithm and analysis. The presentation given here is from Pinar et al. [48]. An equivalent
formulation was given earlier by Cohen [16].

The grand generalization. How far can this technique go? The overall template for counting
H-subgraphs is to first construct all acyclic orientations of H , and count each of them in the
degeneracy (or degree) oriented G. For each acyclic orientation of H, we break it up into a
collection of directed rooted trees. By the outdegree bounds of the degeneracy orientation,
we can enumerate all these directed rooted trees in G. These directed trees needed to indexed
appropriately so the overall H-subgraph count can be efficiently computed (as in the case of
4-cycles, by the three terms).

A series of papers performed these generalizations [48, 6, 7, 5], and most significant is
probably Bressan’s notion of DAG treewidth [11]. By combining various results, one arrives
at the following dichotomy theorem (technically for homomorphisms).

▶ Theorem 5 ([7, 5]). Suppose the longest induced cycle of H has length at most 5. Then, there
is an algorithm exactly computing the H-homomorphism count that runs in O(m poly(κ) log n)
time.

Suppose the longest induced cycle of H has length strictly greater than 5. Assume the
strong Triangle Detection Conjecture from fine-grained complexity. Then, for all (computable)
functions g : N → N and all δ > 0, there does not exist an algorithm computing H-
homomorphism counts is O(m4/3−δg(κ)) time.

This is surprisingly precise dichotomy theorem for when bounded degeneracy helps in
subgraph/homomorphism counting. The limits of the orientation technique remarkably
match up with the hardness result. The strong form of the Triangle Detection Conjecture
states that there is no algorithm that can find a triangle in a graph in O(m4/3−δ) time.
(The best upper bound is much larger, and would become m4/3 if the matrix multiplication
exponent is 2.)

Many practical algorithms for large-scale graph pattern counting use versions of these
algorithms for bounded degeneracy graphs [2, 40, 48, 46, 39, 47]. While they may not be
explicitly stated in the language above, the algorithmic techniques combine orientations and
indexing. The concept of DAG treewidth captures the essence of the algorithms, and the
upper bound of Theorem 5 subsumes all the applications.

C. Seshadhri 3:7

4 A sublinear application

Let us consider a seemingly unrelated problem. We are given access to the adjacency list of
a massive graph G. We can sample a uniform at random (uar) vertex, query the degree of a
vertex, and can sample uar neighbors of a given vertex.

Our aim is to estimate the average degree
∑

v dv/n = 2m/n, with the fewest queries
to the graph. An obvious approach is to sample a set of uar vertices and compute the
average degree of the sample. While this is an unbiased estimator, the variance can be
extremely high. As an extreme example, suppose the graph is a star. So all vertices except
the center have degree one, while the center vertex has degree n − 1. The average degree is
2(n − 1)/n = 2 − o(1). But the sampled average will be 1, with extremely high probability.

We have observed that orientations provide a way of “cutting down the tails”. So consider
the following algorithm.

1. Pick a uar vertex u.
2. Pick a uar neighbor v of u.
3. If du < dv, output 2du. If du = dv and the ID of u is less than the ID of v, output

2du. Otherwise, output 0.

To analyze this algorithm, it is convenient to think of the degree orientation. When the
procedure picks a directed edge leaving u, then it outputs 2du. The expected output of this
procedure is

1
n

∑
u

d+
u

du
· 2du =

2
∑

u d+
u

n
= 2m/n

Thus, this procedure is also an unbiased estimator for the average degree. Observe what this
procedure does for the star. The central vertex has no neighbors of high degree and thus,
does not contribute to the estimator. Hence, the variance of the estimator is much smaller.

Remarkably, the variance can be bounded by the degeneracy.

▶ Theorem 6 ([26]). With high probability, the average of O(ϵ3κ) samples is a (1 + ϵ)-
approximation to the average degree.

Since κ is at most
√

2m, this shows that the average degree of a graph can be approximated
with (the optimal) O(

√
m) samples. The algorithm given above is substantially simpler than

existing procedures that achieved this bound [35]. (Refer to Chapter 10.3 of [34] for more
details.)

This idea of exploiting orientations by a sampling process has succeeded in solving a
number of sublinear graph estimation problems [25, 26, 27, 28]. For such algorithms, we can
only afford to use the degree orientation since it is locally computable. One of the challenges
in these results is related properties of the degree orientation to desired properties of the
degeneracy orientation.

5 Conclusion

These vignettes show the varied algorithmic uses of orientations for subgraph counting
problems. Given the relative simplicity of the orientation technique, it is surprisingly effective
in designing efficient algorithms. And as Theorem 5 shows, these algorithms are often optimal.
Each of the above sections merely scratches the surface of what orientations can achieve.
We discussed four related applications: triangles, cliques, four-cycles, and degree estimation.

ICDT 2023

3:8 Some Vignettes on Subgraph Counting Using Graph Orientations

The orientation technique has led to optimal and practical algorithms in each application.
Moreover, there is a rich theory emerging on the basis of orientations. The connections
to density in Section 2.2 form a starting point to much deeper inquiry into graph sparsity,
developed by Nešetřil and Ossana de Mendez [45]. The sublinear subgraph counting results
referenced in Section 4 have all emerged from understanding the power of degree orientations
in reducing the variance of specific random variables.

References
1 Escape. https://bitbucket.org/seshadhri/escape.
2 Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield. Efficient graphlet

counting for large networks. In International Conference on Data Mining, 2015.
3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.

Algorithmica, 17(3):209–223, 1997.
4 Suman K Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring via degeneracy in

streaming and other space-conscious models. In International Colloquium on Automata,
Languages, and Programming (ICALP), 2020.

5 Suman K. Bera, Lior Gishboliner, Yevgeny Levanzov, C. Seshadhri, and Asaf Shapira. Counting
subgraphs in degenerate graphs. Journal of the ACM, 69(3), 2022.

6 Suman K Bera, Noujan Pashanasangi, and C Seshadhri. Linear time subgraph counting, graph
degeneracy, and the chasm at size six. In Innovations in Theoretical Computer Science, 2020.

7 Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. Near-linear time homomorphism
counting in bounded degeneracy graphs: The barrier of long induced cycles. In Proceedings of
the Symposium on Discrete Algorithms (SODA), pages 2315–2332, USA, 2021.

8 Suman K Bera and C Seshadhri. How the degeneracy helps for triangle counting in graph
streams. In Principles of Database Systems, pages 457–467, 2020.

9 Christian Borgs, Jennifer Chayes, László Lovász, Vera T Sós, and Katalin Vesztergombi.
Counting graph homomorphisms. In Topics in discrete mathematics, pages 315–371. Springer,
2006.

10 Marco Bressan. Faster subgraph counting in sparse graphs. In International Symposium on
Parameterized and Exact Computation (IPEC), 2019.

11 Marco Bressan. Faster algorithms for counting subgraphs in sparse graphs. Algorithmica,
83:2578–2605, 2021.

12 Graham R Brightwell and Peter Winkler. Graph homomorphisms and phase transitions.
Journal of combinatorial theory, series B, 77(2):221–262, 1999.

13 Ashok K Chandra and Philip M Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Symposium on Theory of Computing (STOC), pages 77–90, 1977.

14 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM
Journal on Computing, 14:210–223, 1985.

15 Marek Chrobak and David Eppstein. Planar orientations with low out-degree and compaction
of adjacency matrices. Theor. Comput. Sci., 86(2):243–266, 1991.

16 Jonathan Cohen. Graph twiddling in a MapReduce world. Computing in Science & Engineering,
11:29–41, 2009.

17 J. Coleman. Social capital in the creation of human capital. American Journal of Sociology,
94:S95–S120, 1988.

18 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 210–223, 2017.

19 Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the
other side. Theoretical Computer Science, 329(1-3):315–323, 2004.

20 Maximilien Danisch, Oana Denisa Balalau, and Mauro Sozio. Listing k-cliques in sparse
real-world graphs. In Conference on the World Wide Web (WWW), pages 589–598, 2018.

https://bitbucket.org/seshadhri/escape

C. Seshadhri 3:9

21 Holger Dell, Marc Roth, and Philip Wellnitz. Counting answers to existential questions. In
International Colloquium on Automata, Languages, and Programming (ICALP), 2019.

22 Josep Díaz, Maria Serna, and Dimitrios M Thilikos. Counting h-colorings of partial k-trees.
Theoretical Computer Science, 281(1-2):291–309, 2002.

23 Reinhard Diestel. Graph Theory, Fourth Edition. Springer, 2010.
24 Martin Dyer and Catherine Greenhill. The complexity of counting graph homomorphisms.

Random Structures & Algorithms, 17(3-4):260–289, 2000.
25 T. Eden, A. Levi, D. Ron, and C Seshadhri. Approximately counting triangles in sublinear

time. In Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages
614–633, 2015.

26 T. Eden, D. Ron, and C. Seshadhri. Sublinear time estimation of degree distribution moments:
The degeneracy connection. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 7:1–7:13, 2017. doi:10.4230/LIPIcs.ICALP.2017.7.

27 T. Eden, D. Ron, and C. Seshadhri. On approximating the number of k-cliques in sublinear
time. In Symposium on Theory of Computing (STOC), pages 722–734, 2018.

28 T. Eden and W. Rosenbaum. On sampling edges almost uniformly. In Symposium on Simplicity
in Algorithms (SOSA), pages 1–9, 2018. doi:10.4230/OASIcs.SOSA.2018.7.

29 David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in large
sparse real-world graphs. ACM Journal of Experimental Algorithmics, 18, 2013.

30 G. Fagiolo. Clustering in complex directed networks. Phys. Rev. E, 76:026107, August 2007.
31 Irene Finocchi, Marco Finocchi, and Emanuele G. Fusco. Clique counting in mapreduce:

Algorithms and experiments. ACM Journal of Experimental Algorithmics, 20, 2015.
32 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM

Journal on Computing, 33(4):892–922, 2004.
33 G. Goel and J. Gustedt. Bounded arboricity to determine the local structure of sparse graphs.

In International Workshop on Graph-Theoretic Concepts in Computer Science, pages 159–167.
Springer, 2006.

34 O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
35 O. Goldreich and D. Ron. Approximating average parameters of graphs. Random Structures

and Algorithms, 32(4):473–493, 2008.
36 P. Holland and S. Leinhardt. A method for detecting structure in sociometric data. American

Journal of Sociology, 76:492–513, 1970.
37 Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM Journal on

Computing, 7(4):413–423, 1978.
38 Shweta Jain and C. Seshadhri. A Fast and Provable Method for Estimating Clique Counts

Using Turán’s Theorem. In Conference on the World Wide Web (WWW), pages 441–449,
2017.

39 Shweta Jain and C Seshadhri. A fast and provable method for estimating clique counts using
turán’s theorem. In Conference on the World Wide Web (WWW), pages 441–449, 2017.

40 Madhav Jha, C Seshadhri, and Ali Pinar. Path sampling: A fast and provable method for
estimating 4-vertex subgraph counts. In Conference on the World Wide Web (WWW), pages
495–505, 2015.

41 László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum
Hungarica, 18(3-4):321–328, 1967.

42 László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,
2012.

43 David W Matula and Leland L Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM (JACM), 30(3):417–427, 1983.

44 C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests. Journal of the London
Mathematical Society, 39(1):12, 1964.

45 J. Nešetřil and P. Ossana de Mendez. Sparsity: Graphs, Structures, and Algorithms. Springer,
2012.

ICDT 2023

https://doi.org/10.4230/LIPIcs.ICALP.2017.7
https://doi.org/10.4230/OASIcs.SOSA.2018.7

3:10 Some Vignettes on Subgraph Counting Using Graph Orientations

46 Mark Ortmann and Ulrik Brandes. Efficient orbit-aware triad and quad census in directed
and undirected graphs. Applied network science, 2(1), 2017.

47 Noujan Pashanasangi and C Seshadhri. Efficiently counting vertex orbits of all 5-vertex
subgraphs, by evoke. In International Conference on Web Search and Data Mining (WSDM),
pages 447–455, 2020.

48 Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: Efficiently counting all 5-vertex
subgraphs. In Conference on the World Wide Web (WWW), pages 1431–1440, 2017.

49 Marc Roth and Philip Wellnitz. Counting and finding homomorphisms is universal for
parameterized complexity theory. In Proceedings of the Symposium on Discrete Algorithms
(SODA), pages 2161–2180, 2020.

50 Thomas Schank and Dorothea Wagner. Finding, counting and listing all triangles in large
graphs, an experimental study. In Experimental and Efficient Algorithms, pages 606–609.
Springer Berlin / Heidelberg, 2005.

51 C. Seshadhri and Srikanta Tirthapura. Scalable subgraph counting: The methods behind the
madness: WWW 2019 tutorial. In Conference on the World Wide Web (WWW), 2019.

52 Jessica Shi, Laxman Dhulipala, and Julian Shun. Parallel clique counting and peeling algorithms.
In Proceedings of the Conference on Applied and Computational Discrete Algorithms (ACDA),
pages 135–146, 2021.

53 K. Shin, T. Eliassi-Rad, and C. Faloutsos. Patterns and anomalies in k-cores of real-world
graphs with applications. Knowledge and Information Systems, 54(3):677–710, 2018.

54 Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last reducer.
In Conference on the World Wide Web (WWW), pages 607–614, 2011.

55 Johan Ugander, Lars Backstrom, and Jon M. Kleinberg. Subgraph frequencies: mapping the
empirical and extremal geography of large graph collections. In Conference on the World Wide
Web (WWW), pages 1307–1318, 2013.

56 Stanford Network Analysis Project (SNAP). Available at http://snap.stanford.edu/.

http://snap.stanford.edu/

Enumerating Subgraphs of Constant Sizes in
External Memory
Shiyuan Deng #

The Chinese University of Hong Kong, China

Francesco Silvestri #

University of Padova, Italy

Yufei Tao #

The Chinese University of Hong Kong, China

Abstract
We present an indivisible I/O-efficient algorithm for subgraph enumeration, where the objective is
to list all the subgraphs of a massive graph G := (V, E) that are isomorphic to a pattern graph Q

having k = O(1) vertices. Our algorithm performs O(|E|k/2

Mk/2−1B
logM/B

|E|
B

+ |E|ρ

Mρ−1B
) I/Os with high

probability, where ρ is the fractional edge covering number of Q (it always holds ρ ≥ k/2, regardless
of Q), M is the number of words in (internal) memory, and B is the number of words in a disk block.
Our solution is optimal in the class of indivisible algorithms for all pattern graphs with ρ > k/2.
When ρ = k/2, our algorithm is still optimal as long as M/B ≥ (|E|/B)ϵ for any constant ϵ > 0.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Information
systems → Join algorithms

Keywords and phrases Subgraph Enumeration, Conjunctive Queries, External Memory, Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.4

Funding Shiyuan Deng and Yufei Tao were supported in part by GRF Projects 14207820, 14203421,
and 14222822 from HKRGC. Francesco Silvestri was supported in part by PRIN 20174LF3T8
AHeAD and Uni-Impresa Big-Mobility projects, and by the Italian National Center for HPC, Big
Data, and Quantum Computing.

1 Introduction

Subgraph enumeration is the problem of listing all the subgraphs of a data graph G := (V, E)
that are isomorphic to a pattern graph Q. It is fundamental to a wide range of applications
and has been extensively studied in computer science; see [2,3,5–8,10–12,14–18,24,26,29,38]
for entry points into the literature. The problem is NP-hard [9] when Q is allowed to have
arbitrarily many vertices. In practice, however, a pattern Q of interest is often considerably
smaller than the data graph G and usually remains the same even as G increases in size over
time. For these reasons, research in recent years has focused on pattern graphs Q having O(1)
vertices. In the random access machine (RAM) model, numerous (subgraph enumeration)
algorithms [4,25,28,30–33,37] have been discovered to achieve worst-case optimal running
time (sometimes up to an O(polylog |E|) factor) on such pattern graphs.

RAM algorithms, designed to minimize CPU time, are ill-fitted for massive graphs G

that cannot be stored in a machine’s (main) memory and thus must reside at least partially
in the disk. In those environments, the efficiency bottleneck is no longer CPU time, but
instead, the number of I/O accesses transferring data between the disk and memory. As
data graphs’ volume continues to outgrow commodity machines’ memory capacity, designing
I/O-efficient solutions to subgraph enumeration has been a critical challenge. This work
will present new progress in tackling the challenge that brings us close to unraveling the
problem’s I/O complexity.

© Shiyuan Deng, Francesco Silvestri, and Yufei Tao;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 4; pp. 4:1–4:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sydeng@cse.cuhk.edu.hk
mailto:silvestri@dei.unipd.it
mailto:taoyf@cse.cuhk.edu.hk
https://doi.org/10.4230/LIPIcs.ICDT.2023.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Enumerating Subgraphs of Constant Sizes in External Memory

1.1 Problem Definitions and Complexity Parameters

This subsection will formally define the subgraph enumeration problem, the computation
model assumed, and the parameters used to characterize algorithm efficiency.

Subgraph Enumeration. We are given a simple undirected graph G := (V, E) called the data
graph and a simple undirected graph Q := (VQ, EQ) called the pattern graph. We require that
Q should have a constant number k := |VQ| of vertices (and hence, |EQ| = O(k2) = O(1)).
A subgraph of G is defined as a simple undirected graph Gsub := (Vsub, Esub) where Vsub ⊆ V

and Esub ⊆ E. We call Gsub an occurrence of Q if the former is isomorphic to the latter.
The goal of the subgraph enumeration problem is to enumerate all the occurrences of Q.

We assume that Q is connected (i.e., it has only one connected component), and G has
no isolated vertices (i.e., vertices with no incident edges). Isolated vertices cannot participate
in any occurrence and, thus, can be safely deleted. As such, |V | ≤ 2|E| always holds.

Computation Model. We will investigate the problem in the external memory (EM)
model [1], the de-facto model for studying I/O-efficient algorithms. Under this model, a
machine is equipped with M words of memory and a disk of an unbounded size that has
been formatted into blocks of B words. The values of M and B satisfy M ≥ 2B. A disk
I/O – henceforth, simply I/O – either reads a block of data from the disk into memory or
conversely writes B words from memory into a disk block. The cost of an algorithm is defined
as the number of I/Os performed (CPU computation is for free).

For subgraph enumeration, the data graph is provided under the adjacency format in
O(|E|/B) disk blocks, and the pattern graph is stored in memory using O(1) words. In
early research (see [21,34] and the references therein), an algorithm was required to write all
the occurrences of Q to the disk. However, as the number of occurrences can be gigantic,
the cost of result outputting alone may dominate an algorithm’s total cost, thus hampering
an effective investigation into the problem’s intrinsic I/O complexity. Moreover, in some
applications, disk materialization may not even be the intended approach for result reporting,
e.g., an algorithm could be instructed to send out all the occurrences by network. For these
reasons, the mainstream research nowadays strips off the outputting cost by introducing an
emit(.) function. Once an occurrence of Q – say, Gsub – has been found, the algorithm can
invoke emit(Gsub) to report Gsub for free; the algorithm is said to have emitted Gsub in that
case. The algorithm must ensure that every occurrence should be emitted exactly once. It is
worth mentioning that an algorithm designed to work with an emit(.) function can be easily
adapted to produce the result in the disk with O(OUT/B) extra I/Os, where OUT is the
total number of occurrences.

We will concentrate on the class of indivisible algorithms (sometimes referred to as
tuple-based algorithms). Such an algorithm adheres to the constraint that each I/O can
bring O(B) edges into memory (this rule prevents, for example, encoding tricks that can
compress ω(B) edges into memory). Furthermore, to emit an occurrence Gsub, an indivisible
algorithm is required to have loaded all the edges of Gsub in memory simultaneously. Although
the indivisible class does not capture all possible algorithms, it encapsulates all existing
subgraph enumeration algorithms we are aware of, with a single exception (to be discussed
in Section 1.2). Hence, understanding the optimal I/O complexity achievable by this class
offers meaningful insight into the problem’s characteristics.

S. Deng, F. Silvestri, and Y. Tao 4:3

Fractional Edge Covering Numbers. Next, we will introduce the fractional edge covering
number, a notion from graph theory that plays an imperative role in characterizing the I/O
complexity of subgraph enumeration. As before, let Q := (VQ, EQ) be the input pattern
graph. Define W as a function that maps each edge e ∈ EQ to a real-valued weight W (e) ≥ 0.
We call W a fractional edge covering of Q if it holds for every vertex v ∈ VQ that:∑

e∈EQ:e incident to v

W (e) ≥ 1.

We refer to
∑

e∈EQ
W (e) as the total weight of W . The fractional edge covering number of

Q, denoted as ρ, is the smallest total weight of all the fractional edge coverings of Q.

Complexity Parameters and Math Conventions. We will measure the I/O cost of a
subgraph enumeration algorithm using five parameters: |E|, ρ, k, M , and B. Whenever a
random event is said to hold “with high probability” – w.h.p. for short – we require the
event to hold with probability at least 1 − 1/|E|ξ, where ξ can be set to an arbitrarily large
constant. For an integer x ≥ 1, [x] represents the set {1, 2, ..., x}. We define sort(n) to be
the I/O complexity of sorting n elements; it is known [1] that sort(n) = O(⌈ n

B ⌉ logM/B⌈ n
B ⌉).

1.2 Previous Work
In the EM model, research on subgraph enumeration started with triangle enumeration, where
the pattern graph is Q := 3-clique, a.k.a., triangle. Pagh and Silvestri [35] gave a randomized
algorithm that can emit the triangles of a data graph G := (V, E) in O(|E|1.5/(

√
MB)) I/Os

in expectation. They also de-randomized their algorithm to obtain a deterministic I/O bound
of O(|E|1.5

√
MB

logM/B
|E|
B) [35]. Their result was later improved by Hu, Qiao, and Tao [20], who

managed to emit all triangles deterministically in O(|E|1.5/(
√

MB)) I/Os. The result of [20]
matches an I/O lower bound of Ω(|E|1.5/(

√
MB)) [21, 35] on indivisible algorithms.

The lower bound argument of [21, 35] can be extended [19, 20] to show that, for any
pattern graph Q (of a constant size), every indivisible algorithm – no matter randomized
or deterministic – must perform Ω(|E|ρ/(Mρ−1B)) I/Os in the worst case to emit all
the occurrences of Q, where ρ is the fractional edge covering number of Q (for triangle,
ρ = 1.5). Matching this lower bound for arbitrary Q has been an intriguing open problem.
In [19], Hu and Yi developed a deterministic algorithm that achieves an I/O complexity
of O(|E|ρ

Mρ−1B · logM/B
|E|
B) for any acyclic pattern graph Q; their algorithm, however, does

not work for cyclic Q. In [27], Koutris, Beame, and Suciu presented a technique that can
convert an algorithm from the so-called massively parallel computation (MPC) model to an
algorithm in EM. By combining their technique with a recent MPC algorithm of Ketsman,
Suciu, and Tao [23], one can obtain a randomized EM algorithm that can solve, w.h.p., the
subgraph enumeration problem for any pattern graph Q in O(|E|ρ

Mρ−1B · polylog |E|) I/Os, as
long as M ≥ |E|c where c < 1 is a positive constant dependent on Q.

All the above algorithms are indivisible. Outside the indivisible class, we are aware of only
one algorithm due to Eppstein et al. [13], which is designed for triangle enumeration. Their
(randomized) solution guarantees an expected I/O cost of O(sort(α|V |)+sort(|E|⌈ α log wlen

wlen ⌉)+
sort(OUT)) where OUT is the number of occurrences, wlen is the number of bits in a word,
and α is the arboricity value of G (the algorithm was designed for writing all occurrences
to the disk; it can also be deployed for result emission, but the I/O complexity does not
decrease). The value of α falls between 1 and O(

√
E). Compared to the aforementioned

indivisible solutions [20,35] to triangle enumeration, the algorithm of [13] may have a lower
I/O complexity when α and OUT are sufficiently small.

ICDT 2023

4:4 Enumerating Subgraphs of Constant Sizes in External Memory

Table 1 Comparison of our and previous results on subgraph enumeration.

pattern Q I/O cost in big-O source remark
triangle |E|1.5/(

√
MB) expected [35] rand.

triangle |E|1.5
√

MB
logM/B

|E|
B

[35] det.
triangle |E|1.5/(

√
MB) [20] det.

triangle sort(α|V |) + sort(|E|⌈ α log wlen
wlen ⌉) α := arboricity of G

+sort(OUT) expected [13] wlen := word length
rand., outside indivisible class

acyclic |E|ρ

Mρ−1B
logM/B

|E|
B

[19] det.
arbitrary |E|ρ

Mρ−1B
· polylog |E| w.h.p. [23] rand., needs M ≥ |E|c for some

Q-dependent constant c ∈ (0, 1)

arbitrary |E|k/2

Mk/2−1B
log M

B

|E|
B

+ |E|ρ

Mρ−1B
ours rand., optimal when ρ > k

2

w.h.p. and expected or M
B

≥ (|E|
B

)ϵ for any constant ϵ > 0

1.3 Our Contributions
The main result of this paper is:

▶ Theorem 1. Let G := (V, E) be a simple undirected graph with no isolated vertices. Let
Q := (VQ, EQ) be a simple undirected connected pattern graph with k := O(1) vertices. When
|E| ≥ M , there is an algorithm in EM that, with high probability, emits every occurrence of
Q in G exactly once with O(|E|k/2

Mk/2−1B
logM/B

|E|
B + |E|ρ

Mρ−1B) I/Os, where ρ is the fractional
edge covering number of Q, M is the number of words in memory, and B is the number of
words in a disk block. The same I/O complexity holds also in expectation.

The theorem applies to all M and B satisfying M ≥ 2B. The value of ρ is at least k/2
for all pattern graphs Q, but can reach k − 1 for some Q [36]. Our algorithm is indivisible;
when ρ > k/2, its I/O complexity becomes O(|E|ρ

Mρ−1B), matching the indivisible lower bound
Ω(|E|ρ

Mρ−1B) (see Section 1.2). When ρ = k/2, the algorithm is still optimal as long as
M/B ≥ (|E|/B)ϵ for an arbitrarily small constant ϵ > 0 (a condition likely to hold in reality).
Table 1 presents a comparison between our and previous results.

2 Preliminaries

We will cast subgraph enumeration as a join problem for two reasons. First, it permits
us to simplify presentation by leveraging relational algebra’s expressive power. Second,
our algorithm has a crucial connection to the isolated cartesian product theorem recently
developed by Ketsman, Suciu, and Tao [23], which is stated on joins and still lacks an intuitive
interpretation on graphs currently. In Section 2.1, we will define the relevant concepts of
joins, formulate the join enumeration problem in EM, and review a textbook join algorithm.
In Section 2.2, we will explain how to reduce subgraph enumeration to joins. Finally, in
Section 2.3, we will introduce a concentration bound that will be useful in our analysis.

2.1 Joins on Binary Relations
Joins. Define att as an arbitrary finite set of attributes. A tuple over a set U ⊆ att of
attributes is a function t : U → dom, where dom is an arbitrary infinite set. For any
Usub ⊆ U , we define t[Usub] as the tuple tsub over Usub such that tsub(X) = t(X) for every

S. Deng, F. Silvestri, and Y. Tao 4:5

X ∈ Usub. A relation is a set R of tuples over the same set U of attributes; the schema of
R – denoted as schema(R) – is U . R is unary if schema(R) has one attribute, or binary if
schema(R) has two attributes.

We define a join as a set Q of relations. Let schema(Q) :=
⋃

R∈Q schema(R). The join
result, denoted as join(Q), is a relation over schema(Q) that can be formalized as

join(Q) := {tuple t over schema(Q) | ∀R ∈ Q : t[schema(R)] ∈ R}.

The input size of Q is defined as
∑

R∈Q |R|, namely, the total number of tuples in all relations.
We will call Q a binary join if all its relations are binary.

Schema Graphs. We define the schema graph of a join Q as the hypergraph G := (X , E)
where X := schema(Q) and E := {schema(R) | R ∈ Q}. We will consistently refer to the
vertices in X as “attributes” and to the elements in E as “hyperedges”. Note that G is a
“hyper”-graph, rather than just a “graph”, because each of its hyperedges may not have
exactly two attributes (e.g., if a relation R ∈ Q is unary, then the hyperedge schema(R) ∈ E
has only one attribute). Moreover, G may have identical hyperedges (this happens when two
relations in Q have the same schema). A hyperedge e ∈ E is unary if |e| = 1, or binary if
|e| = 2. Two vertices X1 ∈ X and X2 ∈ X are adjacent in G if there exists a hyperedge e ∈ E
containing both X1 and X2.

A function W mapping each hyperedge e ∈ E to a non-negative real value W (e) is called a
fractional edge covering of G if it satisfies the following condition: for every attribute X ∈ X ,∑

e∈E:X∈e W (e) ≥ 1, namely, the weights of all the hyperedges containing X add up to at
least 1. The total weight of W is defined as

∑
e∈E W (e). The fractional edge covering number

of G is the smallest total weight of all the fractional edge coverings of G.

Active Domains and Degrees. Let Q be a binary join with schema graph G :=
(X , E). For each attribute X ∈ X , we define the active domain of X as adom(X) :=⋃

R∈Q:X∈schema(R){t(X) | t ∈ R}. Henceforth, we will take the view that the attributes in
schema(Q) have mutually disjoint active domains (this loses no generality because one can
conceptually prefix each value with an attribute name, if necessary). Define the combined
active domain of Q as

adom :=
⋃

X∈schema(Q)

adom(X). (1)

Fix any attribute X ∈ X and any value v ∈ adom(X). We define the degree of v as

max
R∈Q:X∈schema(R)

|{u ∈ R | u(X) = v}|.

Intuitively, the degree tells us at most how many tuples can carry value v under attribute X

in a relation of Q. Moreover, define

degree of Q := max
v∈adom

degree of v. (2)

Join Result Enumeration in EM. Let Q be a binary join with input size N :=
∑

R∈Q |R|
and schema graph G. We will study the evaluation of Q under the EM model, assuming
that G has O(1) attributes. At the beginning of an algorithm, each relation R ∈ Q is stored
in O(|R|/B) consecutive blocks in the disk, and G is stored in memory using O(1) words.
Result reporting is done through a special function emit(.): every time the algorithm finds a
tuple t ∈ join(Q), it can emit t for free by calling emit(t). Every tuple in join(Q) should be

ICDT 2023

4:6 Enumerating Subgraphs of Constant Sizes in External Memory

emitted exactly once. If the algorithm is randomized, we will use the statement “an event
holds with high probability (w.h.p.)” to state that the event holds with probability at least
1 − 1/N ξ, where ξ can be an arbitrarily large constant.

Blocked Nested Loop (BNL). This textbook algorithm works for arbitrary joins:

▶ Lemma 2. Let Q be a join with r = O(1) input relations. The BNL algorithm emits every
tuple of join(Q) exactly once in O(⌈ Nr

Mr−1B ⌉) I/Os, where N :=
∑

R∈Q |R|, M is the number
of words in memory, and B is the number of words in a disk block.

The proof is trivial and omitted. BNL will serve as a building block in our algorithms.

2.2 Reduction from Subgraph Enumeration to Binary Joins
We can convert subgraph enumeration to binary-join evaluation with no degradation in terms
of worst-case I/O complexity. Consider an instance of subgraph enumeration with data graph
G := (V, E) and pattern graph Q := (VQ, EQ). We create a binary join Q on |EQ| relations
by executing the following steps for each edge {X1, X2} ∈ EQ (where X1 and X2 are distinct
vertices in VQ):

Add a relation R to Q with schema schema(R) := {X1, X2}.
For each edge {u, v} ∈ E (where u and v are distinct vertices in V), define a tuple t1 with
t1(X1) := u and t1(X2) := v, and another tuple t2 with t2(X1) := v and t2(X2) := u.
Add both t1 and t2 to R.

The above conversion has several properties. First, the schema graph G := (X , E) of Q is
isomorphic to the pattern graph Q. Second, each relation R ∈ Q has 2|E| tuples such that
the input size of Q is 2|E| · |EQ| = Θ(|E|). Third, the relations in Q have distinct schemas.

The lemma below, which is proved in Appendix A, shows that an efficient algorithm for
evaluating Q implies an efficient algorithm for performing subgraph enumeration on G.

▶ Lemma 3. Consider any input to the subgraph enumeration problem with data graph G

and pattern graph Q. Let Q be the join constructed in the way explained above. If we have
an algorithm to emit all the tuples of join(Q) in T I/Os w.h.p., then we can emit every
occurrence of Q in G exactly once using T + O(⌈|E|/B⌉) I/Os w.h.p..

By virtue of the above lemma, we will turn our attention to joins on binary relations.

2.3 A Concentration Bound under Partial Dependence
Next, we will review a Chernoff-like result due to Janson [22]. Let X1, X2, ..., Xn be random
variables satisfying Xi − E[Xi] ≤ 1 for all i ∈ [n]; these variables may not follow the same
distribution. Suppose that we are also given a dependency graph Gdep with {X1, X2, ..., Xn}
as the vertex set. Gdep must fulfill the following independence requirement: for any S ⊆
{X1, X2, ..., Xn} and any vertex Xi /∈ S (for some i ∈ [n]), if Xi is not adjacent to any vertex
in S, then Xi is independent of the joint distribution of the variables in S. In Theorem 2.3
of [22], Janson proved:

▶ Lemma 4 ([22]). Set X :=
∑n

i=1 Xi, µ := E[X], and σ to any value at least
∑n

i=1 Var(Xi).
Define ∆ to be the maximum vertex degree in Gdep. Then, for any ϵ > 0, it holds that

Pr[X ≥ (1 + ϵ)µ] ≤ exp
(

− 8ϵ2 · µ2

25∆(σ + ϵ · µ/3)

)
. (3)

S. Deng, F. Silvestri, and Y. Tao 4:7

3 An EM Algorithm for Binary Joins of Bounded Degrees

This section serves as a proof of:

▶ Lemma 5. Consider a binary join Q whose relations have distinct schemas. Let G := (X , E)
be the schema graph of Q, and set N :=

∑
R∈Q |R| and k := |X |. Fix any value λ ≥

√
NM ,

where M is the number of words in memory. If N ≥ M and Q has a degree at most λ,
there is an EM algorithm that, with probability at least 1 − 1/λξ, emits every tuple of join(Q)
exactly once in O(λk/(Mk−1B)) I/Os, where ξ can be an arbitrarily large constant, and B is
the number of words in a disk block.

Note that the success probability is expressed using λ rather than N . This will be
an essential feature in Section 4 where we utilize the lemma as a subroutine to tackle
general binary joins. To prove Lemma 5, we consider only k ≥ 3; if k = 2, G has only
two attributes – namely, Q has only one single relation – in which case we can trivially
emit the tuples of join(Q) exactly once in O(N/B) I/Os. When k ≥ 3, it holds that
sort(N) = O(N1.5/(

√
MB)) = O(λk/(Mk−1B)).

3.1 An Algorithmic Framework
We will describe a high-level framework for evaluating the join Q in Lemma 5. Depending
on M , we will instantiate the framework differently in Sections 3.2 and 3.3, which together
will make a complete algorithm with the guarantees in Lemma 5.

Coloring. Set r := |Q|, i.e., the number of relations in Q (also the number of hyperedges in
E). Furthermore, define

s := ⌈λ/M⌉ (4)

and assume that we are given a function

Γ : adom → [s]. (5)

Recall that adom is the combined active domain of Q; see (1). We will refer to each possible
output of Γ as a color; in other words, Γ maps each value of adom to a color in [s]. We will
also assume that a coloring step has been performed to color all the tuples by Γ; namely,
for every relation R ∈ Q, any tuple t ∈ R, and each attribute X ∈ schema(R), the color
Γ(t(X)) is stored together with t (this means two extra words for each tuple). The choice
of Γ (henceforth named the coloring function), as well as the coloring step, is the key to
instantiating our algorithmic framework.

Color Schemes. We can divide the join result join(Q) by how the tuples therein are
colored by Γ. We say that two tuples t1 and t2 in join(Q) have the same color scheme if
Γ(t1(X)) = Γ(t2(X)) for every attribute X ∈ X . Formally, a color scheme is a function

γ : X → [s]. (6)

As each attribute can be colored any value in [s], there are in total s|X | = sk color schemes.
Every color scheme γ spawns a join of its own. For each relation R ∈ Q, define

Rγ := {t ∈ R | Γ(t(X)) = γ(X) for all X ∈ schema(R)}.

ICDT 2023

4:8 Enumerating Subgraphs of Constant Sizes in External Memory

Intuitively, Rγ is the subset of tuples in R that are colored by Γ in a way consistent with γ.
We can now define a join induced by γ:

Qγ := {Rγ | R ∈ Q}.

The sets join(Qγ) of all color schemes γ are mutually disjoint and their union is join(Q).

Algorithm. In Appendix B, we show that, after a preprocessing step with I/O cost
O(sort(N)), we can store the input relations of Qγ – for every color scheme γ – in consecutive
disk blocks. Then, for each γ, we deploy the BNL algorithm of Lemma 2 to emit the tuples
of join(Qγ). This completes the algorithm for evaluating Q.

Analysis. By Lemma 2, the BNL execution of all sk color schemes incurs a total I/O cost of

O

(∑
γ

⌈
Nγ

M

⌉r−1 ⌈
Nγ

B

⌉)
= O

(
sk +

∑
γ

Nγ
r

Mr−1B

)
= O

(
sk +

∑
γ

∑
R∈Q |Rγ |r

Mr−1B

)
(7)

where Nγ is the input size of Qγ , and the second equality used the fact that |Q| has only a
constant number of relations.

To facilitate the analysis of (7), let us impose an arbitrary ordering on the attributes in
X ; we use the notation X1 < X2 to denote the fact that attribute X1 ∈ X precedes another
attribute X2 ∈ X in the ordering. Fix any two colors c1 ∈ [s] and c2 ∈ [s]. For each relation
R ∈ Q whose schema(R) has attributes X1 and X2 with X1 < X2, define

Rc1,c2 := {t ∈ R | Γ(t(X1)) = c1 and Γ(t(X2)) = c2};

namely, Rc1,c2 includes every tuple of R that receives colors c1 and c2 on attributes X1 and
X2, respectively. We can now derive:

(7) = O
(

sk +
∑

R∈Q
∑

γ |Rγ |r

Mr−1B

)
= O

(
sk + sk−2

Mr−1B

∑
R∈Q

∑
c1,c2∈[s]

|Rc1,c2 |r
)

(8)

where the second equality holds because each pair (c1, c2) is relevant to sk−2 color schemes.
Given the value of s in (4), the term sk is O((λ/M)k) = O(λk/(Mk−1B)). What is

non-trivial is to argue that the term sk−2

Mr−1B

∑
R∈Q

∑
c1,c2∈[s] |Rc1,c2 |r can also be bounded

by O(λk/(Mk−1B)). We will do so by choosing the coloring function Γ carefully according
to the memory size M .

3.2 When M = O(λ/ log2 λ)

We will first explain how to choose the coloring function Γ to ensure that the algorithm
described in Section 3.1 performs O(λk/(Mk−1B)) I/Os in expectation. Then, we will slightly
modify the algorithm to achieve the same I/O complexity with probability at least 1 − 1/λξ.

Choice of Γ. We decide Γ by independently mapping each value of adom to a color chosen
uniformly at random from [s]. This Γ can be stored as a list of (value, color) pairs in O(N/B)
blocks. The coloring step (as defined in Section 3.1) can then be performed in sort(N) I/Os.

S. Deng, F. Silvestri, and Y. Tao 4:9

Identically-Colored Subsets. Let us first study a probability question that arises from
our analysis. Take an arbitrary relation R ∈ Q. Let X1 and X2 be the two attributes
in schema(R); w.l.o.g., assume X1 < X2 (recall from Section 3.1 that we have imposed
an arbitrary ordering on the attributes). Given an integer i ∈ [r], define an i-subset of R

to be a subset S ⊆ R with |S| = i. We say that S is identically colored if all the tuples
in S belong to the same color scheme; in other words, for any t1, t2 ∈ S, it holds that
Γ(t1(X1)) = Γ(t2(X1)) and Γ(t1(X2)) = Γ(t2(X2)). Define:

Yi := the number of identically colored i-subsets of R. (9)

Note that Yi is a random variable because its value varies with Γ. We want to understand
how large Yi is in expectation. The lemma below provides an answer.

▶ Lemma 6. E[Yi] = O(λ2 · M i−2) for each i ∈ [r].

Proof. Recall from the statement of Lemma 5 that λ ≥
√

NM . Next, we will use induction
to prove the claim “E[Yi] ≤ (4r2 · M)i−1N for all i ∈ [r]”, which will establish the lemma
because M i−1N ≤ λ2 · M i−2. For i = 1, E[Y1] is trivially bounded by N ; hence, the claim
holds at i = 1.

Assuming the claim’s correctness for i = j − 1 where j ≥ 2, next we give the proof for
i = j. Consider, w.l.o.g., |R| ≥ j (otherwise, Yj = 0 and the claim is vacuously true). Given
a (j − 1)- or j-subset S of R, we define Z(S) to be 1 if S is identically colored; otherwise,
Z(S) := 0. Impose an arbitrary ordering on the tuples of R. Given a j-subset Sj of R,
we can list the tuples of Sj in ascending order as t1, t2, ..., tj . We call Sj an extension
of the (j − 1)-subset Sj−1 := {t1, t2, ..., tj−1}. Next, we discuss the relationship between
Pr[Z(Sj−1) = 1] and Pr[Z(Sj) = 1] by distinguishing three cases.

Case 1: tj(X1) ∈ ΠX1(Sj−1) and tj(X2) ∈ ΠX2(Sj−1). Clearly, Z(Sj) always equals
Z(Sj−1) and, hence, Pr[Z(Sj−1) = 1] = Pr[Z(Sj) = 1].

Case 2: tj(X1) ∈ ΠX1(Sj−1) but tj(X2) /∈ ΠX2(Sj−1). First note that if Z(Sj−1) is
0, so must be Z(Sj). Consider now Z(Sj−1) = 1; hence, Γ maps all the values in
ΠX2(Sj−1) to the same color, say, c ∈ [s]. Z(Sj) = 1 if and only if Γ(tj(X2)) = c. Thus,
Pr[Z(Sj) = 1] = Pr[Z(Sj−1) = 1] · Pr[Γ(tj(X2)) = c | Z(Sj−1) = 1] = Pr[Z(Sj−1) = 1]/s.

Case 3: tj(X1) /∈ ΠX1(Sj−1) but tj(X2) ∈ ΠX2(Sj−1). This is symmetric to Case 2, and
we also have Pr[Z(Sj) = 1] = Pr[Z(Sj−1) = 1]/s.

Case 4: tj(X1) /∈ ΠX1(Sj−1) and tj(X2) /∈ ΠX2(Sj−1). Again, if Z(Sj−1) is 0, so must be
Z(Sj). When Z(Sj−1) = 1, Γ maps (i) all the values in ΠX1(Sj−1) to the same color, say,
c1 ∈ [s], and (ii) all the values in ΠX2(Sj−1) to the same color, say, c2 ∈ [s]. Z(Sj) = 1 if
and only if Γ(tj(X1)) = c1 and Γ(tj(X2)) = c2. Hence, Pr[Z(Sj) = 1] = Pr[Z(Sj−1) =
1] · Pr[Γ(tj(X1)) = c1, Γ(tj(X2)) = c2 | Z(Sj−1) = 1] = Pr[Z(Sj−1) = 1]/s2.

Denote by Sj and Sj−1 the set of all j- and (j − 1)-subsets of R, respectively. We bound
E[Yj] =

∑
Sj ∈ Sj

Pr[Z(Sj) = 1] using a charging argument. Each Sj ∈ Sj is the extension
of a unique (j − 1)-subset Sj−1. If Sj is a Case-1 extension, we charge a weight of 1 on
Sj−1; if Sj is a Case -2 or -3 extension, we charge a weight of 1/s on Sj−1; if Sj is a Case -4
extension, we charge a weight of 1/s2 on Sj−1. Note that each Sj−1 ∈ Sj−1 can be charged
more than once because Sj−1 can have multiple extensions. The above discussion implies

E[Yj] =
∑

Sj ∈ Sj

Pr[Z(Sj) = 1] =
∑

Sj−1 ∈ Sj−1

Pr[Z(Sj−1) = 1] · total weight charged on Sj−1. (10)

To analyze how much total weight can be charged on a (j − 1)-subset Sj−1 of R, observe:

ICDT 2023

4:10 Enumerating Subgraphs of Constant Sizes in External Memory

Sj−1 has at most (j − 1)2 extensions of Case 1. Such an extension must add to Sj−1 a
tuple tj satisfying tj(X1) ∈ ΠX1(Sj−1) and tj(X2) ∈ ΠX2(Sj−1). Since each of ΠX1(Sj−1)
and ΠX2(Sj−1) has size at most j − 1, at most (j − 1)2 tuples can be selected as tj .

Sj−1 has at most (j − 1)λ extensions of Case 2. Such an extension must add to Sj−1 a
tuple tj ∈ R satisfying tj(X1) = v, for some v ∈ ΠX1(Sj−1). As the degree of v is at
most λ (by definition of λ), at most λ tuples in R can be selected as tj . The bound
(j − 1)λ thus follows from the fact |ΠX1(Sj−1)| ≤ j − 1.

Symmetrically, Sj−1 has at most (j − 1)λ extensions of Case 3.

Trivially, Sj−1 has at most N extensions of Case 4.
It thus follows that the total weight charged on Sj−1 is at most (j − 1)2 + 2(j−1)λ

s + N
s2 , which

is at most 4r2M given the value of s in (4). We can then obtain from (10):

E[Yj] ≤
∑

Sj−1 ∈ Sj−1

Pr[Z(Sj−1) = 1] · (4r2M) = E[Yj−1] · (4r2M) ≤ (4r2M)j−1N

where the last inequality used our inductive assumption E[Yj−1] ≤ (4r2M)j−2N . ◀

I/O Cost in Expectation. We now proceed to analyze the expected I/O cost of the algorithm
in Section 3.1. The lemma below is essentially a corollary of Lemma 6.

▶ Lemma 7. For any R ∈ Q, E[
∑

c1,c2∈[s] |Rc1,c2 |r] = O(λ2 · Mr−2).

Proof. Because r is a constant,
∑

c1,c2∈[s] |Rc1,c2 |r = O(s2 +
∑

c1,c2∈[s]:|Rc1,c2 |≥r

(|Rc1,c2 |
r

)
),

where the term O(s2) accounts for the at most s2 pairs of (c1, c2) satisfying |Rc1,c2 | <

r.1 Observe that
∑

c1,c2∈[s]:|Rc1,c2 |≥r

(|Rc1,c2 |
r

)
is exactly Yr as defined in (9). Hence,

E[
∑

c1,c2∈[s] |Rc1,c2 |r] = E[O(s2 + Yr)] = O(λ2 · Mr−2) (here, we applied Lemma 6 and
the value of s in (4)). ◀

Hence, the term sk−2

Mr−1B

∑
R∈Q

∑
c1,c2∈[s] |Rc1,c2 |r has an expectation of O(sk−2

Mr−1B · λ2 ·
Mr−2) = O(λk/(Mk−1B)). We can now conclude that the algorithm in Section 3.1 has an
expected I/O cost of O(λk/(Mk−1B)) overall.

Achieving High Probability. Our analysis indicates that the I/O cost is O(λk/(Mk−1B))
as long as

∑
c1,c2∈[s] |Rc1,c2 |r = O(λ2 · Mr−2) for every R ∈ Q. By Markov inequality,

the probability for
∑

c1,c2∈[s] |Rc1,c2 |r to exceed 2r · E[
∑

c1,c2∈[s] |Rc1,c2 |r] = O(λ2 · Mr−2)
is at most 1/(2r). The union bound then assures us that, with probability at least 1/2,∑

c1,c2∈[s] |Rc1,c2 |r = O(λ2 · Mr−2) holds for all the r relations R ∈ Q. Once the coloring
function Γ has been chosen, by sorting, we can obtain the precise value

∑
c1,c2∈[s] |Rc1,c2 |r

for every R ∈ Q in sort(N) I/Os. As long as any
∑

c1,c2∈[s] |Rc1,c2 |r falls out of O(λ2 ·
Mr−2), we repeat from scratch by choosing another Γ. It takes O(log λ) repeats to ensure∑

c1,c2∈[s] |Rc1,c2 |r = O(λ2 · Mr−2) for all R ∈ Q with probability at least 1 − 1/λξ for an
arbitrarily large constant ξ. With the above modification, our algorithm has an I/O cost
O(sort(N) · log λ + λk/(Mk−1B)) with probability at least 1 − 1/λξ. The complexity is
O(λk/(Mk−1B)) as long as M = O(λ/ log2 λ).

1 Every such pair can contribute at most (r − 1)r = O(1) to
∑

c1,c2∈[s] |Rc1,c2 |r.

S. Deng, F. Silvestri, and Y. Tao 4:11

3.3 When M = Ω((λ log λ)2/3)
This subsection will present another instantiation of the framework in Section 3.1 that
runs in O(λk/(Mk−1B)) I/Os with probability at least 1 − 1/λξ when M = Ω((λ log λ)2/3).
Combining this instantiation with the one in Section 3.2 proves Lemma 5.

Choice of Γ. We classify a value v ∈ adom as a low-degree value if its degree is less than
λ/

√
M , or a high-degree value otherwise (review Section 2.1 for the notion “degree”). Let

adomlo (resp. adomhi) be the set of low- (resp. high-) degree values. We can obtain the
degrees of all values in adom – hence, adomlo and adomhi – in O(sort(N)) I/Os.

Different strategies are deployed to map adomlo and adomhi to [s]. For adomlo, we
independently map each value therein to a color chosen from [s] uniformly at random. The
strategy for adomhi is, however, deterministic. By scanning adomhi once in O(N/B) I/Os,
we can break adomhi into at most N/λ disjoint groups such that, for each group, the total
degree of all the values therein is at most 5λ.2 Note that, as a value in adomhi has degree at
least λ/

√
M , each group contains at most 5λ

λ/
√

M
= 5

√
M values. Moreover, since λ ≥

√
NM ,

there can be no more than N/λ ≤ λ/M ≤ s groups. We treat each group as a distinct color,
and define function Γ2 : adomhi → [s] that maps a value v ∈ adomhi to color c ∈ [s] if v

appears in the c-th group. Functions Γ1 and Γ2 together define the coloring function Γ in (5).
The coloring step (defined in Section 3.1) can then be performed with sorting in O(sort(N))
I/Os.

Analysis. Next, we analyze the I/O cost of our algorithm in Section 3.1, given the above
choice of Γ. Our objective is to prove that (8) is bounded by O(λk/(Mk−1B)). The lemma
below establishes a crucial fact towards that purpose.

▶ Lemma 8. When M = Ω((λ log λ)2/3), |Rc1,c2 | = O(M) holds with probability at least
1 − 1/λξ′ for any relation R ∈ Q and any colors c1, c2 ∈ [s], where ξ′ can be an arbitrarily
large constant.

Proof. Let X1, X2 be the attributes in schema(R) such that X1 < X2 (recall from Section 3.1
that we have imposed an arbitrary total order on attributes). Divide Rc1,c2 into four subsets:

Rlo,lo
c1,c2

, the set of tuples t ∈ Rc1,c2 such that t(X1) and t(X2) are both in adomlo;
Rlo,hi

c1,c2
, the set of tuples t ∈ Rc1,c2 such that t(X1) ∈ adomlo but t(X2) ∈ adomhi ;

Rhi,lo
c1,c2

, the set of tuples t ∈ Rc1,c2 such that t(X1) ∈ adomhi but t(X2) ∈ adomlo;
Rhi,hi

c1,c2
, the set of tuples t ∈ Rc1,c2 such that t(X1) and t(X2) are both in adomhi .

We will show that each subset has size O(M) with probability at least 1 − 1/(4λξ′), which is
sufficient for proving the lemma.

The case of Rhi,hi
c1,c2

is the easiest. Every tuple t ∈ Rhi,hi
c1,c2

must set t(X1) to a high-degree
value from color (a.k.a. group) c1 and t(X2) to a high-degree value from color (a.k.a. group)
c2. As mentioned, every group has at most 5

√
M values. Hence, |Rhi,hi

c1,c2
| ≤ 25M .

2 Add the next high-degree value v to the current group as long as doing so will not push the group’s total
degree over 3λ. Otherwise, start a new group with only v; the preceding group must have a total weight
as least 2λ because the degree of v is bounded by λ. If the last group has a total degree less than 2λ,
combine it with the previous group (if it exists), which will yield a group with total weight at most 5λ.
This way, we guarantee that either only a single group exists, or every group has a total weight at least
2λ. As each tuple can contribute one to the degrees of at most two values in adomhi , the total weights
of all the groups add up to at most 2N . The number of groups is therefore at most 2N/(2λ) = N/λ.

ICDT 2023

4:12 Enumerating Subgraphs of Constant Sizes in External Memory

To analyze Rlo,lo
c1,c2

, define Rlo,lo to be the set of tuples t ∈ R such that t(X1) and t(X2)
are both low-degree values. For each tuple t ∈ Rlo,lo, introduce a random variable Zt

that equals 1 if t ∈ Rlo,lo
c1,c2

, or 0 otherwise. Our function Γ1 ensures Pr[Zt = 1] = 1/s2

with variance Var(Zt) = 1
s2 − 1

s4 . Define Z := |Rlo,lo
c1,c2

| =
∑

t∈Rlo,lo Zt. We will deploy
Lemma 4 to analyze how likely Z can deviate significantly from E[Z]. For this purpose,
create a dependency graph Glo,lo as follows. Each vertex of Glo,lo is the variable Zt of a
distinct tuple t ∈ Rlo,lo. Two vertices Zt1 and Zt2 are adjacent in Glo,lo if and only if
tuples t1 and t2 share the same value on attribute X1 or X2. It is easy to verify that
Glo,lo fulfills the independence requirement described in Section 2.3 and has a maximum
vertex degree at most 2λ/

√
M by definition of low-degree value. Now, apply Lemma 4

with µ := E[Z] = |Rlo,lo|/s2, σ := |Rlo,lo|/s2 >
∑

t∈Rlo,lo Var(Zt), ∆ := 2λ/
√

M , and
ϵ := Ms2/|Rlo,lo|. The application yields Pr[Z ≥ 2M] ≤ exp(−Θ(1) · M1.5

λ), which is at most
1/(4λξ′) as long as M = Ω((λ log λ)2/3).

The analysis of Rhi,lo
c1,c2

and Rlo,hi
c1,c2

is similar and deferred to Appendix C. ◀

We now return to our algorithm’s I/O cost in (8). As mentioned before, sk is bounded
by O(λk/(Mk−1B)). By the above lemma, with probability at least 1 − 1/λξ for an arbi-
trarily large constant ξ, sk−2

Mr−1B

∑
R∈Q

∑
c1,c2∈[s] |Rc1,c2 |r is bounded by O(sk−2

Mr−1B · s2Mr) =
O(λk/(Mk−1B)), applying the value of s in (4). We thus complete the proof of Lemma 5.

4 An EM Algorithm for Arbitrary Binary Joins

This section serves as a proof of:

▶ Theorem 9. Consider a binary join Q whose relations have distinct schemas. Let
G := (X , E) be the schema graph of Q, k := |X |, and N :=

∑
R∈Q |R|. There is an

algorithm in EM that, with high probability, emits every tuple of join(Q) exactly once in
O(Nk/2

Mk/2−1B
logM/B

N
B + Nρ

Mρ−1B) I/Os, where ρ is the fractional edge covering number of G,
M is the number of words in memory, and B is the number of words in a disk block.

Theorem 1 follows from the above result and Lemma 3. Our solution can be regarded as
an efficient EM translation of an MPC algorithm in [23]. The non-trivial part is to show
that the I/O cost is as claimed. We will achieve the purpose by utilizing a mathematical
property of binary joins recently revealed by the isolated cartesian product theorem [23].

We consider |X | ≥ 3; otherwise, Q has only one relation and the tuples of join(Q) can
be emitted in O(N/B) I/Os. For each hyperedge e ∈ E , we will use Re to denote the (only)
relation in Q with schema e. As before, let adom be the combined active domain of Q.
Henceforth, we will fix

λ :=
√

NM. (11)

4.1 Residual Joins
We say that a value v ∈ adom is heavy if its degree is at least λ, or light otherwise. The
number of heavy values is O(N/λ). Let H be any subset of X := schema(Q). A configuration
of H is defined as a tuple η over H whose η(X) is heavy for every attribute X ∈ H. Let
config(H) be the set of all configurations η of H satisfying

η[e] ∈ Re for every e ∈ E such that e ⊆ H. (12)

S. Deng, F. Silvestri, and Y. Tao 4:13

It is clear that

|config(H)| = O((N/λ)|H|) = O((N/M)|H|/2) (13)

Fix any configuration η ∈ config(H). For each hyperedge e ∈ E satisfying e \ H ̸= ∅, we
define relation Re(η) to be a subset of Re that includes every tuple t ∈ Re satisfying (i)
t(X) = η(X) for all X ∈ e ∩ H; (ii) t(X) is light for every X ∈ e \ H. Note that if e ∩ H = ∅,
then Re(η) = Re. Every such hyperedge e has a residual relation R′

e(η) defined as

R′
e(η) := Πe\H(Re(η)). (14)

The configuration η induces a residual join Q′(η) formalized as

Q′(η) := {R′
e(η) | e ∈ E , e \ H ̸= ∅} (15)

whose input size is

Nη :=
∑

R∈Q′(η)

|R|. (16)

▶ Example 10. Figure 1(a) shows the schema graph G := (X , E) of a join Q, where X := {A,

B, ..., L} and the hyperedges in E are represented as ellipses. Set H := {E, F, I} and consider
the configuration η with heavy values η(E) := e, η(F) := f, and η(I) := i. The figure
illustrates η by darkening vertices E, F, and I. Suppose η ∈ config(H), which means that
η[EF] is a tuple in REF, and η[EI] is a tuple in REI. Relation RDE(η) includes all such tuples
t ∈ RDE that use value e for t(E) and a light value for t(D). The residual relation R′

DE(η) is a
unary relation that is the projection of RDE(η) on D. The reader can verify that the residual
relations R′

AD(η), R′
DG(η), and R′

DH(η) are identical to RAD, RDG, and RDH, respectively. Edges
EI and EF define no residual relations. ⌟

The lemma below, proved in Appendix D, will be useful in our analysis later.

▶ Lemma 11. The statements below are true for every H ⊆ X :∑
η∈config(H) Nη = O(Nk/2/Mk/2−1);

in O(Nk/2

Mk/2−1B
logM/B

N
B) I/Os, we can ensure the following for all η ∈ config(H): each

relation of Q′(η) is stored in consecutive disk blocks.

It is easy to verify that

join(Q) =
⋃
H

(⋃
η∈config(H)

join(Q′(η)) × {η}
)

. (17)

Next, we will present an algorithm that, given any H ⊆ X , emits each tuple of⋃
η∈config(H) join(Q′(η)) ×{η} exactly once. Executing the algorithm for all the 2|X | = O(1)

subsets H ⊆ X emits the entire join(Q), with no tuple emitted twice.

4.2 Simplifying Residual Joins
Fix an arbitrary H ⊆ X and define L := X \ H. We will call the attributes in H and L as
heavy and light attributes, respectively. An attribute X ∈ X is a border attribute if it is
adjacent to at least one heavy attribute.

By removing all the heavy attributes from G := (X , E), we obtain a residual graph
G′ := (X ′, E ′) where X ′ := X \ H and E ′ := {e \ H | e ∈ E and e \ H ̸= ∅}. An attribute
X ∈ X ′ is isolated if it is adjacent to no other attributes in G′. Denote by I the set of isolated
attributes. An isolated attribute is always a border attribute, but the reverse is not true.

ICDT 2023

4:14 Enumerating Subgraphs of Constant Sizes in External Memory

A B C

D
E = e

F = f

G
I = i K

H J
L

A B C

D

G
K

H J
L

A B C

D

G
K

H J
L

(a) Schema graph G of Q. (b) Residual graph G′. (c) Simplified residual graph. G′′

Figure 1 A running example.

▶ Example 12. Figure 1(b) shows the residual graph G′ := (X ′, E ′) of the schema graph
in Figure 1(a), after removing E, F, and I, as well as the hyperedges that have become
empty. The border attributes are B, C, D, H, J, K, and L, while the set of isolated attributes
is I = {B, C, J}. ⌟

Fix any configuration η ∈ config(H). G′ is the schema graph of Q′(η) (true for all η).
For each border attribute X ∈ X ′, G′ has at least one relation with schema {X}. Define:

R′′
X(η) :=

⋂
e∈E′:X∈e

ΠX(R′
e(η)) (18)

where R′
e(η) is defined in (14). Only the values in R′′

X(η) can contribute to join(Q′(η)).

▶ Example 13. Continuing on Example 12, consider again the residual graph G′ := (X ′, E ′)
in Figure 1(b). Set X to the border attribute D. The residual join Q′(η) has four relations
whose schemas contain D: unary relation R′

DE(η) and binary relations R′
AD(η), R′

DG(η), and
R′

DH(η), all of which were explained in Example 10. R′′
D (η) equals the intersection of

ΠD(R′
DE(η)) = R′

DE(η), ΠD(R′
AD(η)), ΠD(R′

DG(η)), and ΠD(R′
DH(η)). As another example, set X

to the isolated attribute J, which appears in two hyperedges in G′, both unary. R′′
J (η) is the

intersection of ΠJ(R′
IJ(η)) = R′

IJ(η) and ΠJ(R′
EJ(η)) = R′

EJ(η). ⌟

For every binary e := {X1, X2} ∈ E ′, we define a relation R′′
e (η) ⊆ R′

e(η) as follows:
If X1 and X2 are both border attributes, then R′′

e (η) := R′
e(η) ▷◁ R′′

X1
(η) ▷◁ R′′

X2
(η);

If only X1 is a border attribute, then R′′
e (η) := R′

e(η) ▷◁ R′′
X1

(η);
If only X2 is a border attribute, then R′′

e (η) := R′
e(η) ▷◁ R′′

X2
(η);

If neither is a border attribute, then R′′
e (η) := R′

e(η).
Only the tuples in R′′

e (η) can contribute to join(Q′(η)).

▶ Example 14. Continuing on Example 13, if we set the hyperedge e to DH in E ′, then
R′′

e (η) contains only the tuples t ∈ R′
DH(η) with t(D) ∈ R′′

D (η) and t(H) ∈ R′′
H (η). For another

example, if e := GH, then R′′
e (η) contains only the tuples t ∈ R′

GH(η) with t(H) ∈ R′′
H (η). ⌟

We can now define a simplified residual join induced by η:

Q′′(η) := {R′′
e (η) | binary e ∈ E ′} ∪ {R′′

X(η) | X ∈ I}. (19)

Define G′′ := (X ′′, E ′′) – the simplified residual graph – as the hypergraph where X ′′ := X ′,
and E ′′ includes (i) all the binary edges in E ′ and (ii) a unary edge {X} for every isolated
attribute X ∈ I. G′′ is the schema graph of Q′′(η) for all η ∈ config(H).

▶ Example 15. Continuing on Ex.14, Figure 1(c) shows the simplified residual graph G′′. ⌟

S. Deng, F. Silvestri, and Y. Tao 4:15

It is rudimentary to verify several facts about the join Q′′(η) in (19). First, its input size
is at most that of Q′(η), which is Nη; see (16). Second, its relations have distinct schemas.
Third, as each relation of Q′(η) has been stored in consecutive disk blocks (Lemma 11), we
can achieve the same for Q′′(η) in O(sort(Nη)) I/Os; doing so for all η ∈ config(H) requires∑

η∈config(H)

O(sort(Nη)) = O
(

|config(H)| +
∑

η∈config(H)

Nη

B
log M

B

N

B

)
= O

(
Nk/2

Mk/2−1B
log M

B

N

B

)
I/Os, where the last equality used (13) and the first bullet of Lemma 11. Fourth,
join(Q′′(η)) = join(Q′(η)); hence, to process the original join Q in Theorem 9, it suf-
fices to emit every result tuple of join(Q′′(η)) exactly once, for all η ∈ config(H) and
H ⊆ X .

4.3 Processing Simplified Residual Joins
Fix an arbitrary H ⊆ X , and define L, I, and G′′ := (X ′′, E ′′) as in the previous subsection.
Given an arbitrary η ∈ config(H), we will present an algorithm for processing the simplified
residual join Q′′(η). First, let us divide Q′′(η) into Q′′

bin(η) := {R′′
e (η) | binary e ∈ E ′′} and

Q′′
iso(η) := {R′′

X(η) | X ∈ I}. It is clear that join(Q′′(η)) = join(Q′′
bin(η)) × join(Q′′

iso(η)).

▶ Example 16. Continuing on Example 15, Q′′
bin(η) includes relations R′′

AD(η), R′′
DG(η),

R′′
DH(η), R′′

GH(η), and R′′
KL(η), while Q′′

iso(η) includes R′′
B (η), R′′

C (η), and R′′
J (η). ⌟

Observe that Q′′
bin(η) is a binary join whose scheme graph has |L \ I| attributes; fur-

thermore, the relations of Q′′
bin(η) contain only light values, implying that Q′′

bin(η) has a
degree at most λ. On the other hand, Q′′

iso(η) is merely the cartesian product of all the
(unary) relations therein. We process Q′′(η) by integrating BNL with the algorithm in
Lemma 5. Specifically, we chop each relation R′′

X(η) ∈ Q′′
iso(η) into O(⌈|R′′

X(η)|/M⌉) disjoint
subsets – called chunks – each of which fits in M/(k + 1) words. Define a chunk combination
as a collection of |Q′′

iso| chunks, each from a distinct relation in Q′′
iso. For every chunk

combination, load the |Q′′
iso| corresponding chunks in memory and then use the remaining at

least M/(k + 1) = Ω(M) words of memory to run the algorithm in Lemma 5. Every time the
algorithm emits a tuple t ∈ join(Q′′

bin(η)), we emit all the tuples of join(Q′′(η)) that can be
produced by t and the memory-resident chunk data (this requires only CPU computation).
As there are at most O(

∏
X∈I⌈ |R′′

X (η)|
M ⌉) chunk combinations, the total I/O cost spent on

Q′′(η) is O(
∏

X∈I⌈ |R′′
X (η)|
M ⌉ · λ|L\I|

M |L\I|−1B
) with probability at least 1 − 1/λξ′ for an arbitrarily

large constant ξ′.
Processing all η ∈ config(H) in the above manner incurs a total I/O cost of

O
(

λ|L\I|

M |L\I|−1B

∑
η∈config(H)

∏
X∈I

⌈ |R′′
X(η)|
M

⌉)
= O

((
N

M

) |L\I|
2 M

B

∑
η∈config(H)

∏
X∈I

(|R′′
X(η)|
M

+ 1
))

(20)

where the derivation applied the definition of λ in (11).

▶ Lemma 17.
∑

η∈config(H)
∏

X∈I

(
|R′′

X (η)|
M + 1

)
= O((N

M)ρ− |L\I|
2), where ρ is the fractional

edge covering number of the join Q stated in Theorem 9.

Proof. For each η ∈ config(H) and any non-empty J ⊆ I, define CPsizeJ (η) :=∏
X∈J |R′′

X(η)|. Crucially, observe that∏
X∈I

(|R′′
X(η)|
M

+ 1
)

= 1 +
∑

J ⊆I:J ̸=∅

∏
X∈J

|R′′
X(η)|
M

= 1 +
∑

J ⊆I:J ̸=∅

CPsizeJ (η)
M |J | .

ICDT 2023

4:16 Enumerating Subgraphs of Constant Sizes in External Memory

Next, we will show that
∑

η∈config(H) 1 and the term
∑

η∈config(H)
CPsizeJ (η)

M |J | of each non-
empty J ⊆ I are all bounded by O((N/M)ρ− |L\I|

2), which will then establish Lemma 17
because there are 2|I| − 1 = O(1) choices for J .

From (11) and (13), we know
∑

η∈config(H) 1 = |config(H)| = O((N/M)|H|/2). As a
well-known fact [36], the value of ρ is at least |X |/2, where |X | is the number of attributes
in the schema graph of Q. Because |X | = |H| + |L| ≥ |H| + |L \ I|, we know |H|/2 ≤
(|X | − |L \ I|)/2 ≤ ρ − |L\I|

2 .
It remains to analyze the term

∑
η∈config(H)

CPsizeJ (η)
M |J | for each non-empty J ⊆ I. We

apply Lemma 11 of [23] – a weaker version of the isolated cartesian product theorem in [23] –
which states

∑
η∈config(H) CPsizeJ (η) = O((N/M)ρ−(|J |+|L|)/2 · N |J |). This yields

∑
η∈config(H)

CPsizeJ (η)
M |J | = O

((N
M

)ρ− |J |+|L|
2 · N |J |

M |J |

)
= O

((
N

M

)ρ− |L\J |
2
)

= O
((

N

M

)ρ− |L\I|
2
)

where the derivation used the fact J ⊆ I ⊆ L. ◀

Plugging the result of Lemma 17 into (20), we know that the simplified residual joins
induced by all the η ∈ config(H) can be processed using O(Nρ/(Mρ−1B)) I/Os in total
with probability at least 1 − |config(H)|/λξ′ , namely, w.h.p. if we set ξ′ sufficiently large.
Repeating the algorithm for all the O(1) subsets H ⊆ X settles the the original join Q in
O(Nρ/(Mρ−1B)) w.h.p.. We thus complete the proof of Theorem 9.

5 Conclusions

This paper has presented new progress in designing I/O-efficient algorithms for subgraph
enumeration, where the objective is to find all the occurrences of a pattern graph Q having
k = O(1) vertices in a data graph G := (V, E). Our algorithm guarantees an I/O complexity
O(|E|k/2

Mk/2−1B
logM/B

|E|
B + |E|ρ

Mρ−1B) with high probability, where ρ ≥ k/2 is the fractional edge
covering number of Q, M is the number of words in memory, and B is the number of words
in a disk block. The algorithm matches an existing I/O lower bound of Ω(|E|ρ

Mρ−1B) on the
class of indivisible algorithms whenever ρ > k/2 or M/B ≥ (|E|/B)ϵ for any constant ϵ > 0.
The main open problem left behind by our work is to eliminate the logM/B(|E|/B) factor
altogether, thus obtaining an algorithm that matches the lower bound in all cases.

References

1 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM (CACM), 31(9):1116–1127, 1988.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM),
42(4):844–856, 1995.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997.

4 Kaleb Alway, Eric Blais, and Semih Salihoglu. Box covers and domain orderings for beyond
worst-case join processing. In Proceedings of International Conference on Database Theory
(ICDT), pages 3:1–3:23, 2021.

5 Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. Near-linear time homomorphism
counting in bounded degeneracy graphs: The barrier of long induced cycles. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2315–2332, 2021.

S. Deng, F. Silvestri, and Y. Tao 4:17

6 Andreas Bjorklund, Petteri Kaski, and Lukasz Kowalik. Counting thin subgraphs via packings
faster than meet-in-the-middle time. ACM Transactions on Algorithms, 13(4):48:1–48:26,
2017.

7 Andreas Bjorklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing tri-
angles. In Proceedings of International Colloquium on Automata, Languages and Programming
(ICALP), pages 223–234, 2014.

8 N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal of
Computing, 14(1):210–223, 1985.

9 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of ACM
Symposium on Theory of Computing (STOC), pages 151–158, 1971.

10 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of ACM Symposium on Theory of Computing
(STOC), pages 210–223, 2017.

11 David Eppstein. Arboricity and bipartite subgraph listing algorithms. Information Processing
Letters (IPL), 51(4):207–211, 1994.

12 David Eppstein. Subgraph isomorphism in planar graphs and related problems. J. Graph
Algorithms Appl., 3(3):1–27, 1999.

13 David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Manuel R. Torres. 2-3
cuckoo filters for faster triangle listing and set intersection. In Proceedings of ACM Symposium
on Principles of Database Systems (PODS), pages 247–260, 2017.

14 David Eppstein, Maarten Loffler, and Darren Strash. Listing all maximal cliques in sparse
graphs in near-optimal time. In International Symposium on Algorithms and Computation
(ISAAC), volume 6506, pages 403–414, 2010.

15 Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Detecting and
counting small pattern graphs. SIAM J. Discret. Math., 29(3):1322–1339, 2015.

16 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and B. V. Raghavendra
Rao. Faster algorithms for finding and counting subgraphs. Journal of Computer and System
Sciences (JCSS), 78(3):698–706, 2012.

17 Pierre-Louis Giscard, Nils M. Kriege, and Richard C. Wilson. A general purpose algorithm for
counting simple cycles and simple paths of any length. Algorithmica, 81(7):2716–2737, 2019.

18 Chinh T. Hoang, Marcin Kaminski, Joe Sawada, and R. Sritharan. Finding and listing induced
paths and cycles. Discrete Applied Mathematics, 161(4-5):633–641, 2013.

19 Xiao Hu and Ke Yi. Towards a worst-case i/o-optimal algorithm for acyclic joins. In Proceedings
of ACM Symposium on Principles of Database Systems (PODS), pages 135–150, 2016.

20 Xiaocheng Hu, Miao Qiao, and Yufei Tao. I/O-efficient join dependency testing, loomis-
whitney join, and triangle enumeration. Journal of Computer and System Sciences (JCSS),
82(8):1300–1315, 2016.

21 Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. I/O-Efficient Algorithms on Triangle Listing
and Counting. ACM Transactions on Database Systems (TODS), 39(4):27:1–27:30, 2014.

22 Svante Janson. Large deviations for sums of partly dependent random variables. Random
Structures and Algorithms, 24(3):234–248, 2004.

23 Bas Ketsman, Dan Suciu, and Yufei Tao. A near-optimal parallel algorithm for joining binary
relations. Log. Methods Comput. Sci., 18(2), 2022.

24 Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. Joins via geometric
resolutions: Worst-case and beyond. In Proceedings of ACM Symposium on Principles of
Database Systems (PODS), pages 213–228, 2015.

25 Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Re, and Atri Rudra. Joins via geometric
resolutions: Worst case and beyond. ACM Transactions on Database Systems (TODS),
41(4):22:1–22:45, 2016.

26 Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced subgraphs
efficiently. Information Processing Letters (IPL), 74(3-4):115–121, 2000.

ICDT 2023

4:18 Enumerating Subgraphs of Constant Sizes in External Memory

27 Paraschos Koutris, Paul Beame, and Dan Suciu. Worst-case optimal algorithms for parallel
query processing. In Proceedings of International Conference on Database Theory (ICDT),
pages 8:1–8:18, 2016.

28 Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma. Optimal joins using compact
data structures. In Proceedings of International Conference on Database Theory (ICDT),
volume 155, pages 21:1–21:21, 2020.

29 Jaroslav Nesetril and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

30 Hung Q. Ngo, Dung T. Nguyen, Christopher Re, and Atri Rudra. Beyond worst-case analysis
for joins with minesweeper. In Proceedings of ACM Symposium on Principles of Database
Systems (PODS), pages 234–245, 2014.

31 Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-Case Optimal Join Algorithms:
[Extended Abstract]. In Proceedings of ACM Symposium on Principles of Database Systems
(PODS), pages 37–48, 2012.

32 Hung Q. Ngo, Ely Porat, Christopher Re, and Atri Rudra. Worst-case optimal join algorithms.
Journal of the ACM (JACM), 65(3):16:1–16:40, 2018.

33 Hung Q. Ngo, Christopher Re, and Atri Rudra. Skew strikes back: new developments in the
theory of join algorithms. SIGMOD Rec., 42(4):5–16, 2013.

34 Anna Pagh and Rasmus Pagh. Scalable computation of acyclic joins. In Proceedings of ACM
Symposium on Principles of Database Systems (PODS), pages 225–232, 2006.

35 Rasmus Pagh and Francesco Silvestri. The input/output complexity of triangle enumeration.
In Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 224–233,
2014.

36 Edward R. Scheinerman and Daniel H. Ullman. Fractional Graph Theory: A Rational Approach
to the Theory of Graphs. Wiley, New York, 1997.

37 Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Proceedings of
International Conference on Database Theory (ICDT), pages 96–106, 2014.

38 Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted
subgraphs. SIAM Journal of Computing, 42(3):831–854, 2013.

A Proof of Lemma 3

Every tuple t ∈ join(Q) defines |EQ| edges in G as follows: for every relation R ∈ Q
with schema(R) := {X1, X2}, t defines an edge {t(X1), t(X2)} in G. In general, for every
occurrence Gsub of Q in G, there must be at least one tuple t ∈ join(Q) defining exactly the
|EQ| edges in Gsub. The reverse, however, is not true: the |EQ| edges of a tuple t ∈ join(Q)
may not always induce a subgraph of G isomorphic to Q.

Every time a tuple t ∈ join(Q) is emitted, all the |EQ| edges defined by t are memory-
resident. Hence, we can check for free if those edges induce a subgraph of G isomorphic
to Q. If the answer is negative, we ignore t. Next, let us focus on the scenario where the
|EQ| edges do induce a subgraph Gsub isomorphic to Q. If we always emit Gsub in such a
case, we may risk emitting Gsub multiple times because join(Q) can contain multiple tuples
all of which define the edges of Gsub. Let S be the set of those tuples. To avoid duplicate
emissions, a simple strategy is to impose an (arbitrary) ordering on S, and emit Gsub only
if t is the smallest tuple in S according to the ordering. Whether t is indeed the smallest
can be checked in memory with no extra I/Os. This is because S is determined by the |EQ|
edges defined by t and, hence, can be enumerated in memory for free.

It is clear from the above discussion that, apart from the initial construction of Q which
incurs O(⌈|E|/B⌉) I/Os, we can emit all the occurrences of Q in G with no more I/Os
compared to evaluating Q. This completes the proof of the lemma.

S. Deng, F. Silvestri, and Y. Tao 4:19

B Obtaining the Input Relations of Each Qγ in Section 3.1

Decide an arbitrary ordering on the attributes of X ; w.l.o.g., denote the attributes as
X1, X2, ..., Xk in ascending order. Every color scheme γ can now be represented as a vector
(γ(X1), γ(X2), ..., γ(Xk)). Let us impose a lexicographic order on the sk color schemes,
viewing each (γ(X1), γ(X2), ..., γ(Xk)) as a k-character string. Let R be a relation in Q;
w.l.o.g., assume that schema(R) = {Xi, Xj} for some i, j satisfying 1 ≤ i < j ≤ k. In
preprocessing, we sort the tuples t ∈ R by lexicographic order on (Γ(t(Xi)), Γ(t(Xj)) –
viewing the pair as a 2-character string – and group those tuples by (Γ(t(Xi)), Γ(t(Xj)) in
the disk. We do so for all the relations R ∈ Q; the total preprocessing cost is O(sort(N)).

As mentioned in Section 4.1, we deploy BNL to evaluate the joins Qγ induced by all the
color schemes γ. We do so according to the lexicographic order on (γ(X1), γ(X2), ..., γ(Xk)).
For each γ, every relation Rγ ∈ Qγ is a group inside the relation R ∈ Q and, hence, has
been stored in consecutive blocks. The groups of each relation R ∈ Q are accessed in the
same lexicographic order determined in preprocessing. For each γ, the I/O cost of reading
the input relations of Qγ is dominated by that of BNL.

C Completing the Proof of Lemma 8

Because the analysis of Rhi,lo
c1,c2

is symmetric to that of Rlo,hi
c1,c2

, we will discuss only the former.
Define Rhi,lo

c1
as the set of tuples t ∈ R such that t(X1) is a high-degree value mapped to color

c1, and t(X2) is a low-degree value. Hence, |Rhi,lo
c1

| ≤ 5λ (because “group c1” – see the creation
of function Γ2 in Section 3.3 – has a total degree at most 5λ). For each tuple t ∈ Rhi,lo

c1
,

introduce a random variable Zt that equals 1 if t ∈ Rhi,lo
c1,c2

, or 0 otherwise. Our function
Γ1 ensures Pr[Zt = 1] = 1/s and Var(Zt) = 1

s − 1
s2 . Define Z := |Rhi,lo

c1,c2
| =

∑
t∈Rhi,lo

c1
Zt.

Create a dependency graph Ghi,lo
c1

as follows. Each vertex of Ghi,lo
c1

is the variable Zt of a
distinct tuple t ∈ Rhi,lo

c1
. Two vertices Zt1 and Zt2 are adjacent in Ghi,lo

c1
if and only if tuples

t1 and t2 share the same value on attribute X2. It is easy to verify that Ghi,lo
c1

fulfils the
independence requirement described in Section 2.3 and has a maximum vertex degree at most
λ/

√
M . Applying Lemma 4 with µ := E[Z] = |Rhi,lo

c1
|/s, σ := |Rhi,lo

c1
|/s >

∑
t∈Rhi,lo

c1
Var(Zt),

∆ := λ/
√

M , and ϵ := Ms/|Rhi,lo
c1

| yields Pr[Z ≥ 6M] ≤ exp(−Θ(1) · M1.5

λ), which is at most
1/(4λξ′) as long as M = Ω((λ log λ)2/3).

D Proof of Lemma 11

The first statement follows directly from Lemma 6 of [23]. We will prove only the second
statement. We first perform O(sort(N)) I/Os to obtain, for each attribute X ∈ H, the
list of all the O(

√
N/M) heavy values in the active domain of X . Then, we compute

the cartesian product – denoted as S – of the |H| lists in O(|S|/B) I/Os; note that S is
the set of all configurations. In another O(sort(|S|)) I/Os, we can remove from S those
configurations violating (12) and, thus, produce config(H) in the disk. The cost so far is
O(sort(|S|)) = O(Nk/2

Mk/2−1B
logM/B

N
B) because |S| = O((

√
N/M)|H|).

Next, we explain how to generate the input relations of the residual joins Q′(η) for
all η ∈ config(H). For this purpose, consider each hyperedge e ∈ E in turn (recall that
G := (X , E) is the schema graph of Q). If e∩H = ∅, Re (i.e., the relation in Q with schema e)
appears in all the residual joins Q′(η) where η ∈ config(H). As Re is already stored in
consecutive blocks, this relation requires no more processing. If e ⊆ H, then Re contributes
nothing to residual joins. It remains to discuss the case where e ∩ H has a single attribute.

ICDT 2023

4:20 Enumerating Subgraphs of Constant Sizes in External Memory

W.o.l.g., assume that e = {X1, X2} with X1 /∈ H but X2 ∈ H. Each tuple t ∈ Re appears
in the residual join of every configuration η ∈ config(H) satisfying η(X2) = t(X2); the
number of such η is O((

√
N/M)|H|−1). To compute residual relations, we first sort both Re

and config(H) on attribute X2 and then produce Re ▷◁ config(H) in the disk by merging the
two sorted lists; the cost is O(sort(|config(H)|)+sort(N)+|Re ▷◁ config(H)|/B). Then, group
the tuples t ∈ Re ▷◁ config(H) by t[H], which can be done in O(sort(|Re ▷◁ config(H)|)) I/Os.
Each group corresponds to a configuration η ∈ config(H) where η = t[H] for an arbitrary
tuple t in the group (all tuples in the group share the same t[H]). The X1-values of the group’s
tuples constitute the residual relation R′

e(η). The total I/O cost is O(Nk/2

Mk/2−1B
logM/B

N
B)

because |Re ▷◁ config(H)| = O(N · (
√

N/M)|H|−1) and |H| ≤ k − 1 (recall that X1 /∈ H).

An Optimal Algorithm for Sliding Window Order
Statistics
Pavel Raykov #

Google Zürich, Switzerland

Abstract
Assume there is a data stream of elements and a window of size m. Sliding window algorithms
compute various statistic functions over the last m elements of the data stream seen so far. The
time complexity of a sliding window algorithm is measured as the time required to output an
updated statistic function value every time a new element is read. For example, it is well known that
computing the sliding window maximum/minimum has time complexity O(1) while computing the
sliding window median has time complexity O(log m). In this paper we close the gap between these
two cases by (1) presenting an algorithm for computing the sliding window k-th smallest element in
O(log k) time and (2) prove that this time complexity is optimal.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases sliding window, order statistics, median, selection algorithms

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.5

Acknowledgements We thank anonymous reviewers for their useful comments which led to an
improved manuscript. We would also like to thank Mikhail Churakov, Christian Matt, and Dimitris
Paparas for proofreading the paper.

1 Introduction

Selection and sliding window algorithms are considered to be among the classical computer
science algorithms with numerous applications [7]. In this paper we consider the overlap
between these two areas: what is the optimal sliding window algorithm for selecting the k-th
smallest element? The sliding window average, median, minimum, and maximum algorithms
have been well studied and have become a part of folklore. It is well known that for a data
stream of elements and a window of size m, one can compute the sliding window average,
minimum, and maximum in O(1) time each time the sliding window moves [9, 25]. The
situation is different for the median – the best possible algorithm can only compute the sliding
window median in O(log m) time [11, 14, 24]. Motivated by the gap between the median and
other order statistics algorithms, we study the sliding window algorithms for selecting the
k-th smallest element for arbitrary k. In this paper we present the first algorithm computing
the sliding window k-th smallest element in time O(log k) while using only O(m) of memory
storage. We also present a lower bound showing that this algorithm has the optimal running
time complexity.

1.1 Prior Work
Algorithms for computing various statistics over a data stream play an important role in
computer science and database processing in particular [4]. One can roughly divide these
algorithms into two groups: exact and approximate ones. The research in the area of the
approximate algorithms focuses on the problem where the whole data stream (or the sliding
window) cannot fit into the memory and hence one seeks for a tradeoff between how much of
the data need to be stored additionally while reading the input stream a limited number of
times vs how accurate the output computed statistics can be [2, 3, 5, 8, 12, 18].

© Pavel Raykov;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 5; pp. 5:1–5:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:praykov+icdt23@google.com
https://doi.org/10.4230/LIPIcs.ICDT.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 An Optimal Algorithm for Sliding Window Order Statistics

The exact algorithms can be further subdivided into those who operate on the whole
input set and on the sliding window only. Once it was shown that the selection algorithms
can be linear [6], the research in the area of the exact algorithms that work with the whole
input set focused on algorithms minimizing the overall number of basic operations [22] and
the algorithms performing well in practice [1]. There is also a corpus of the exact algorithms
that do not only compute a statistical function over a fixed data set but also support range
queries over it [17, 27].

The exact algorithms working with the sliding window include algorithms for standard
aggregation functions like maximum, minimum, average, sum, count [9, 19, 26] and their
monoid-compatible extensions [25]. The exact algorithms for computing quantiles over the
sliding window are limited to the median filtering algorithms [14, 24]. These algorithms
produce their output over the sliding window by maintaining a data structure holding the
elements of the window and updating it accordingly whenever the window moves. Depending
on the aggregation function all the known exact sliding window algorithms can update the
sliding window in constant, logarithmic, or linear time in terms of the sliding window size.

This paper considers the latter model where the aggregation function outputs the k-th
smallest element. For a window of size m and the order statistic k, we present an algorithm
that requires O(m) memory to store the elements of the sliding window and can make updates
to it in O(log k) time whenever the sliding window moves.

2 Notation and Tools

We define a sliding window algorithm as an algorithm that exposes a single interface
update-window reading a new data stream element v and outputting a statistic function over
the last m elements read. If fewer than m elements have been read so far, the output is not
defined. The time complexity of the algorithm is defined as the time complexity of a single
invocation of update-window. The space complexity of the algorithm is defined as the amount
of storage the algorithm utilises.

In the context of this paper we consider the sliding window algorithms that compute the
k-th smallest element of the sliding window:

▶ Definition 1. We say that a sliding window algorithm parameterised with integers k and m

computes the sliding window k-smallest element if update-window returns the k-th smallest
element among the last m elements read by the algorithm.

The smallest element is indexed starting with 1, i.e., the 1-st smallest element corresponds
to the window minimum, while the m-th smallest element corresponds to the window maximum.

We will also assume that k ≤ m/2 everywhere. To derive the same results for k > m/2,
one needs to update all the algorithms to use a reverse order on the elements and output the
(m − k + 1)-th smallest element.

Without loss of generality, we assume that the input data stream has unique elements
only.1 The easiest approach to achieve this is to enumerate each new data stream value v

with an increasing index i and then operate on the tuples (i, v) instead of the values only.
Then, we can compare the tuples in the natural way by first looking at their values, and if
they are the same, break the ties using the index entry. In the end, when producing the
output one needs to drop the index entry of the tuples and output the value only.

1 We use this assumption to simplify the machinery around the binary search trees which do not have a
canonical multiset support. We believe that this requirement can be dropped at an expense of a more
sophisticated analysis of handling the duplicate elements.

P. Raykov 5:3

We employ a standard notion of arrays. Given an array a, we refer to an individual
element in the array at index i by writing a[i]; we start array indexing with 0 by default.
We write a[i, j] to denote the range of array elements a[i], a[i + 1], . . . , a[j]. If j < i, then
the expression a[i, j] returns the empty set. Let k-smallest-set(a[i, j]) denote the set of the k

smallest elements in a[i, j].
We assume there exists an implementation of AWBBS (augmented weight-balanced binary

search) trees [20](e.g., based on red-black trees where each node is additionally augmented
with the size of its subtree) that supports execution of the following operations on a tree
with n elements in O(log n) time:

add: adds an element to the tree;
remove: removes an element from the tree;
max: outputs the maximum element of the tree;
size: outputs the size of the tree;
find-rank-one-tree: outputs an element of the tree with the given rank.

We also assume that the tree can be implemented using O(n) space to store n elements.
Given several separate trees we define the k-th smallest element between them to be the

k-th smallest element among all the elements of the trees. Given three AWBBS trees of size
at most n we assume that there is a function computing the k-th smallest element between
them in time O(log n). An example implementation of such a function find-rank-three-trees
is given in Section A.

3 The Algorithm

3.1 Overview
The first trivial approach for the k-th smallest element sliding window algorithm is to
maintain an AWBBS tree with m elements of the sliding window. Then, at each invocation of
update-window we just execute add for the newly added element, call remove on the element
that falls outside of the sliding window, and then search for the element with rank k in the
tree by invoking find-rank-one-tree. The issue with this algorithm is that each operation takes
time proportional to the size of the sliding window O(log m) and we would like to design a
faster algorithm.

The first refinement of the trivial approach is to limit the size of the AWBBS tree by
storing only the k smallest elements of the sliding window in it. This will bring down
the complexity of the elementary operations from O(log m) to O(log k) but it is not clear
how to implement this approach. In particular, while adding a new element to such a tree
is straightforward (we add a new element and then remove the maximum if the tree size
exceeds k), removal of the elements that fall outside of the sliding window is not clear. If
the removed element is one of the k smallest elements we need to find the smallest element
outside of the maintained tree that now needs to be added to it. This seems to require
sorting the elements of the sliding window which again incurs O(log m) costs.

The second refinement is based on the following idea: while it does not seem to be possible
to maintain a single AWBBS tree with the k smallest elements of the sliding window, we can
split the sliding window into separate blocks and maintain a separate AWBBS tree with the
k smallest elements of each block and not the whole sliding window. Then, finding the k-th
smallest element of the sliding window now requires searching for an element with rank k in
multiple AWBBS trees which still can be done in O(log k) time (see Section A for an example
of such an algorithm). Note that the “maintenance burden” of keeping the AWBBS tree
with the k smallest window elements is now distributed among multiple blocks. In particular,

ICDT 2023

5:4 An Optimal Algorithm for Sliding Window Order Statistics

one of the blocks will receive a new data stream element, while another one has the element
falling outside of the sliding window and has to deal with its deletion. The trick is that while
the window slides we will have enough time to prepare each block for deletions so that they
also will incur only O(log k) costs once the deletion happens.

3.2 Description
We assume that the input data stream is split into consecutive blocks of size m/2.2 At any
moment of time the sliding window W spans over three consecutive blocks Bleft, Bmiddle and
Bright as shown in the picture:

BmiddleBleft Bright

WmiddleWleft Wright

.

Figure 1 Sliding window spanning over Bleft, Bmiddle, Bright.

The sliding window then consists of the following three parts: Wleft intersecting with Bleft,
Wmiddle equals to Bmiddle, and Wright intersecting with Bright.3 The proposed algorithm main-
tains AWBBS trees Tleft, Tmiddle, and Tright with the k smallest elements of the Wleft, Wmiddle,
and Wright parts, respectively. Computing the k-th smallest element of the sliding window
is done by calling function find-rank-three-trees (see Section A for its description) over Tleft,
Tmiddle, and Tright.

The maintenance of the trees is done separately for each of the trees. Tright is maintained
in a straightforward way as we have already noticed before: we add a new element to it and
then remove the maximum if the size of Tright exceeds k. Nothing is done for maintaing
Tmiddle: it is just assigned to Tright every m/2 steps. The core of the algorithm lies in
preparing a data for maintaining Tleft. This data is computed based on Bmiddle and then used
for maintaining Tleft once the window slides to a point of time when the elements of Bmiddle
become Bleft. We prepare a data structure which allows us to move from a tree containing
k-smallest-set(Bmiddle[0, m/2−1]) to a tree containing k-smallest-set(Bmiddle[1, m/2−1]) (then
to a tree containing k-smallest-set(Bmiddle[2, m/2−1]) and so on). The difficulty is that while
we know that we need to remove Bmiddle[0] from the k-smallest-set(Bmiddle[0, m/2 − 1]) , we
do not know which element should be added back to it if Bmiddle[0] was one of the k smallest
elements. We solve this by first learning how to construct k-smallest-set(Bmiddle[0, m/2 − 1])
from k-smallest-set(Bmiddle[1, m/2−1]). This can be done by the same procedure we described
for Tright: first add Bmiddle[0] to k-smallest-set(Bmiddle[1, m/2 − 1]) and then remove the
maximum from this set if its size exceeds k. The key observation is that while doing this we
can record the maximum max that was removed. This allows us to “revert” the process in
order to obtain k-smallest-set(Bmiddle[1, m/2−1]) from k-smallest-set(Bmiddle[0, m/2−1]): we
add this max and then remove Bmiddle[0]. Now we record these max’s during the preparation
phase. The preparation costs are also distributed across the iterations so that the total
complexity stays at O(log k) per invocation of update-window. The maintenance of Tleft is
now done based on the max array computed when Bleft was Bmiddle: we add the stored max
element and remove the element falling outside the window from Tleft.

2 Here and everywhere through paper we assume that m is even to simplify the notation. If m is odd one
needs to update all the places where m/2 is used with ⌊m/2⌋ or ⌈m/2⌉ accordingly.

3 We use a convention that if W is shifted by a multiple of m/2 then Wleft is empty while Wright = Bright.

P. Raykov 5:5

Algorithm 1 The sliding window k-th smallest element algorithm.
Input: integers k, m

1: Initialize Tleft, Tmiddle, Tright, and Ttemp as empty AWBBS trees.
2: Initialize incoming elements counter j as 0.
3: Initialize Bleft, Bmiddle, Bright as arrays of size m/2.
4: Initialize max and maxtemp as arrays of size m/2 − k.
5: procedure update-window(v)
6: ▷ General updates:
7: shift := j mod m/2
8: j := j + 1
9: if shift = 0 then

10: max := maxtemp
11: Tleft := Tmiddle
12: Tmiddle := Tright
13: Bleft := Bmiddle
14: Bmiddle := Bright
15: Set Tright and Ttemp to empty tree and Bright to a new array of size m/2
16: end if
17: Bright[shift] := v

18:
19: ▷ Maintaining Tright:
20: add(Tright, v)
21: if size(Tright) > k then
22: remove(Tright, max(Tright))
23: end if
24:
25: ▷ Preparing Bmiddle:
26: if j > m/2 then
27: add(Ttemp, Bmiddle[m/2 − 1 − shift])
28: if shift ≥ k then
29: maxtemp[m/2 − 1 − shift] := max(Ttemp)
30: remove(Ttemp, maxtemp[m/2 − 1 − shift])
31: end if
32: end if
33:
34: ▷ Maintaining Tleft:
35: if j > m then
36: if shift ≤ m/2 − k − 1 then
37: add(Tleft, max[shift])
38: end if
39: remove(Tleft, Bleft[shift])
40: end if
41:
42: ▷ Producing the output (if j ≥ m)
43: Output find-rank-three-trees(Tleft, Tmiddle, Tright, k)
44: end procedure

ICDT 2023

5:6 An Optimal Algorithm for Sliding Window Order Statistics

▶ Theorem 2. Algorithm 1 computes the sliding window k-th smallest element with time
complexity O(log k) and space complexity O(m).

Proof. The algorithm splits the update-window method into four logical parts:
(lines 6–17) The general part responsible for keeping the counters and proper wiring of
the left,middle,right parts whenever we reach a block’s boundary (when the shift variable
is 0).
(lines 19–23) The Tright maintenance part.
(lines 25–32) The Bmiddle preparation part.
(lines 34–40) The Tleft maintenance part.

The proof will show that at each iteration Tleft, Tmiddle, and Tright indeed contain the k

smallest elements of the corresponding window parts.

Correctness. We start by proving three lemmata about the state of Tleft, Tmiddle, and Tright
in the update-window method.

▶ Lemma 3. In the end of the method update-window at line 43 Tright contains only
k-smallest-set(Bright[0, shift]).

Proof. Consider an iteration where the right part of the sliding window is Bright[0, shift].
By construction we consecutively added elements Bright[0], Bright[1], . . . , Bright[shift] to Tright.
Whenever the size of Tright grew bigger than k (line 21), we removed the largest ele-
ment of Tright (line 22) to bring the size of Tright back to k. Hence Tright contains only
k-smallest-set(Bright[0, shift]). ◀

▶ Lemma 4. If j > m/2, in the end of the method update-window at line 43 Tmiddle contains
only k-smallest-set(Bmiddle[0, m/2 − 1]).

Proof. Note that Tmiddle only changes at line 12 whenever the next m/2 elements have been
consumed and shift equals to 0. Because of Lemma 3, we know that at such an iteration
Tright contains only k-smallest-set(Bright[0, m/2 − 1]). Since Tmiddle is assigned to Tright at
line 12 and Bmiddle is assigned to Bright at line 14, we conclude that Tmiddle always contains
only k-smallest-set(Bmiddle[0, m/2 − 1]). ◀

▶ Lemma 5. If j > m, in the end of the method update-window at line 43 Tleft contains only
k-smallest-set(Bleft[shift + 1, m/2 − 1]) if shift < m/2 − 1 and is empty if shift is m/2 − 1.

Proof. We start by proving a slightly different statement that at line 36 Tleft contains
only k-smallest-set(Bleft[shift, m/2 − 1]). We prove this by induction on the shift variable.
The base case of shift = 0 holds by construction since in this case Tleft has just been
assigned to Tmiddle, while Bleft has been assigned to Bmiddle. Because of Lemma 4 it holds
that Tmiddle contains only k-smallest-set(Bmiddle[0, m/2 − 1]), and hence Tleft contains only
k-smallest-set(Bleft[0, m/2 − 1]) at line 36 when shift is 0. Assume now this holds for some
shift = t and we need to prove it for shift = t + 1. By the preparation phase at lines 25–
32 max[t] is the maximum element of k-smallest-set(Bleft[t + 1, m/2 − 1]) with the added
Bleft[t]. Hence, adding max[t] to k-smallest-set(Bleft[t, m/2 − 1]) and removing Bleft[t] results
in k-smallest-set(Bleft[t + 1, m/2 − 1]) which becomes the new value of Tleft after line 40 is
completed. Finally, we observe that whenever shift becomes strictly bigger than m/2 − k − 1
then the size of the left part of the window becomes ≤ k and it is sufficient to always remove
Bleft[shift] from Tleft in this part of the maintenance phase so that Tleft always contains
k-smallest-set(Bleft[shift, m/2 − 1]).

P. Raykov 5:7

The main lemma statement follows from observing that if at line 36 Tleft contains only
k-smallest-set(Bleft[shift, m/2 − 1]), then at line 43 Tleft must contain only
k-smallest-set(Bleft[shift + 1, m/2 − 1]) for shift values < m/2 − 1 while for shift = m/2 − 1
the tree Tleft is empty. ◀

Now we have that Tleft consists of the k smallest elements of Bleft[shift + 1, m/2 − 1],
Tmiddle consists of the k smallest elements of Bmiddle[0, m/2 − 1], and Tright consists of the
k smallest elements of Bright[0, shift]. Since find-rank-three-trees is correct we have that
find-rank-three-trees will output a correct k-th smallest element of Tleft, Tmiddle and Tright
every time line 43 is executed.

Complexity analysis. In update-window we invoke max at most two times (lines 22, 29),
add at most three times (lines 20, 27, 37), and remove at most three times (lines 22, 30, 39).
While these operations take O(log k) time, all other operations are elementary (like assigning
variables and objects) and take O(1) time. Also, the specialized operation find-rank-three-
trees takes O(log k) time (see Theorem 11). Hence, the time complexity of update-window is
O(log k).

The space complexity is O(m) since we have used O(k) memory for the trees Tleft,
Tmiddle, Tright, Ttemp; and O(m) memory for storing the window parts Bleft, Bmiddle, Bright
and auxiliary arrays max and maxtemp.

We also note that array assigning operations among Bleft, Bmiddle and Bright can take
Ω(m) time if implemented naively. Instead, whenever we assign arrays to each other we
assign their pointers in O(1) time and do not copy the array contents. Furthermore, we do
not need to allocate a new memory for Bright at line 15 – instead, it is sufficient to assign
its pointer to the contents of Bleft which become unused otherwise. With this approach all
array allocations happen once at lines 3 and 4 only. ◀

3.3 Discussing the Preparation Phase
Essentially, the preparation phase allows us to create a directly accessible view of every
k-smallest-set(Bmiddle[i, m/2−1]) for i = 0, 1, . . . , m−1. First of all, we could have simplified
the algorithm by running all the preparation steps at once whenever Bmiddle becomes available
and extract this functionality as a separate method. While the amortised time complexity
of the algorithm would not change in this case, the worst case complexity would become
O(m log k) instead of O(log k) which is undesirable. Second, instead of building an ad-hoc
algorithm computing max array used for “reverting” operations on AWBBS trees, we could
have tried using the standard approach for persistent data structures [10] to build the
sequence of AWBBS trees [21, 13, 23]. However, as explained in [17] such a generic approach
would require copying the tree paths each time add/remove operation is invoked. This would
lead to the suboptimal O(m log k) space complexity of the algorithm.

4 Lower Bounds

In order to prove lower bounds on the time complexity for the sliding window k-smallest
element algorithms we give a reduction from them to sorting algorithms. Then, based on the
well-known lower bounds for sorting algorithms we establish the lower bounds for the sliding
window k-smallest element algorithms.

We give a reduction from computing the sliding window k-th smallest element to piecewise
sorting. As opposed to the classical sorting piecewise sorting only sorts contiguous blocks of
the input array without ensuring any order between the elements from different blocks. In

ICDT 2023

5:8 An Optimal Algorithm for Sliding Window Order Statistics

order to sort each contiguous block of size k of an input array we will run a sliding window
k-smallest element algorithm on this array with the caveat that when comparing elements
from blocks i and j we use a custom comparison operator ensuring that all elements from
block i are smaller than the elements from block j for i < j.

We note that our reduction is similar to the reductions that are used to prove the lower
bounds on the sliding window median algorithms [11, 14, 17, 24]. While all these papers
also present a reduction to sorting, the main difference to the reduction presented below is
that all the previous reductions could only be adapted to work in a setting where k is Θ(m)
(k = m/2 is a concrete case of the median considered there), whereas the reduction presented
in this paper works for arbitrary k ≤ m/2.

▶ Definition 6. An array a is k-piecewise sorted if each contiguous k-size block a[k · i, k ·
(i + 1) − 1] is sorted.

An algorithm that takes an input array a and outputs array x which is k-piecewise sorted
and each contiguous k-size block x[k · i, k · (i + 1) − 1] is a permutation of a[k · i, k · (i + 1) − 1]
is called a k-piecewise sorting algorithm.

Algorithm 2 A reduction from sliding window k-smallest element to k-piecewise sorting.
Input: array of n elements a[0], a[1], . . . , a[n − 1]
Output: array of n elements x[0], x[1], . . . , x[n − 1] where each consecutive k size block
x[k · i, k · (i + 1) − 1] is sorted and is a permutation of a[k · i, k · (i + 1) − 1].

1: Consider array s of n + m − 1 elements where
(k − 1 prefix elements) s[i] := (−∞, −∞) for i = −1, −2, . . . , −k + 1;
(n main elements) s[i] := (⌊i/k⌋, a[i]) for i = 0, 1, . . . , n − 1;
(m − k suffix elements) s[i] := (+∞, +∞) for i = n, n + 1, . . . , n + m − k − 1.

2: Define comparison operator on tuples in s as: (i, v) < (j, u) if (i < j) or (i = j and
v < u).

3: Invoke a sliding window k-th smallest algorithm on array s (by feeding s[−k + 1], s[−k +
2], . . . , s[n + m − k − 1] one by one to its update-window interface). Denote the produced
output as y[0], y[1], . . . , y[n − 1].

4: Let x[i] be the second tuple entry of y[i] for i = 0, 1, . . . , n − 1. Output array x.

▶ Lemma 7. In the regime where m ≥ 2k, Algorithm 2 sorts each consecutive block of size
k of the input array in time (n + m − 1) · f(m, k) + O(n + m) where f(m, k) is the time
complexity of the underlying sliding window k-smallest element algorithm instantiated with
the window size m and the order statistics k.

Proof. The core of the reduction lies in the construction of the intermediate array s such
that running a sliding window k-smallest element algorithm on it basically sorts the input
array. The array s elements are constructed at step 1 based on the input array elements a

with the feature that the elements from each contiguous block of size k in s are greater than
the elements from the previous blocks. This is achieved by augmenting each element within
the block with the block index and using the block index to compare the elements. Because
the sliding window k-smallest element algorithm operates on windows of size m and outputs
the k-the smallest element, we also need to add k − 1 prefix elements in the beginning of
s and m − k − 1 suffix elements to its end, so that the sliding window algorithm operates
correctly around the ends of the array.

P. Raykov 5:9

Correctness. Consider any k-size contiguous block in the input array a[k · i, k · (i + 1) − 1].
We claim that y[k · i + j] is the (j + 1)-th smallest element in this array for j = 0, 1, . . . k − 1.
By construction, y[k · i + j] corresponds to the k-th smallest element in the window W =
s[k · (i − 1) + j + 1, k · (i − 1) + j + m]. We now define a partition of W around the indices
divisible by k in blocks:

we let the block B1 contain all the window W elements up to the (k · i)-th index, i.e.,
B1 = s[k · (i − 1) + j + 1, k · i − 1];
all consecutive blocks have fixed size k, i.e., B2 = s[k · i, k · (i + 1) − 1], B3 = s[k · (i +
1), k · (i + 2) − 1] and so on as long as we can take a full block of size k within W .
the last block contains the remaining elements of W .

Because m ≥ 2k we know that the second block B2 = s[k · i, k · (i + 1) − 1] completely lies
inside the sliding window W = s[k · (i − 1) + j + 1, k · (i − 1) + j + m] and hence the window
W consists of at least B1 and B2.

By construction, elements in the earlier blocks are smaller than the elements in the
successive blocks, e.g., all the elements in B1 are smaller than the elements in B2. This
means that the k-th smallest element in W is greater than all k − j − 1 elements in B1, and
is actually the (j + 1)-th smallest element in B2. The (j + 1)-th smallest element in B2
corresponds to the (j + 1)-the smallest element in a[k · i, k · (i + 1) − 1].

Complexity analysis. The reduction takes O(n+m) time to process elements at steps 1 and 4.
Then, at step 3 the invocation of the underlying sliding window k-smallest element algorithm
takes f(m, k) time. Hence, the resulting time complexity is (n+m−1)·f(m, k)+O(n+m). ◀

We will now apply existing sorting lower bounds in the comparison model to obtain lower
bounds for the sliding window k-th smallest element algorithms using the reduction we have
just described in Lemma 7.

▶ Theorem 8. Any algorithm computing the sliding window k-th smallest element has time
complexity Ω(log k) in the comparison model.

Proof. Assume we have an algorithm that can solve sliding window k-th smallest element
with time complexity f(m, k). Take an arbitrary array of n − m + 1 elements where m ≤ n/2.
Then, based on the reduction in Lemma 7 we can k-piecewise sort this array in time
n · f(m, k) + O(n). We know that k-piecewise sorting of (n − m + 1)-size array can only be
done in Ω((n − m + 1) · log k) [15]. Given that m ≤ n/2, we have that n · f(m, k) + O(n)
must be in Ω(n log k). This means that f(m, k) is Ω(log k). ◀

5 Conclusions and Future Work

In this paper we have presented the first optimal algorithm for finding the sliding window
k-th smallest element with time complexity O(log k) and proved that this complexity is
optimal. We note that the presented algorithm has fixed time complexity of O(log k) per
newly read element which is independent of the window size m; it also requires only O(m)
memory storage.

The presented algorithm subsumes the existing results on the sliding window minim-
um/maximum algorithms [9, 25] (case k = 1) and median algorithms [14] (case k = m/2).
One distinct feature of the specialized algorithms [9, 25, 14] is the possibility of their extreme
concise representation which effectively fits into several lines of pseudocode. While the
algorithm presented in this paper does share some ideas with these specialized algorithms
(like maintaining an ordered tree of the window elements [14] and keeping only those window

ICDT 2023

5:10 An Optimal Algorithm for Sliding Window Order Statistics

elements that can potentially become the corresponding order statistics [9]), its pseudocode
representation is still significantly larger. It would be interesting to investigate if all these
sliding windows algorithms can be cast to a common framework with a simplified pseudocode
representation.

References
1 Andrei Alexandrescu. Fast deterministic selection. In Costas S. Iliopoulos, Solon P. Pissis,

Simon J. Puglisi, and Rajeev Raman, editors, 16th International Symposium on Experimental
Algorithms, SEA 2017, June 21-23, 2017, London, UK, volume 75 of LIPIcs, pages 24:1–24:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.SEA.2017.24.

2 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/jcss.1997.
1545.

3 Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over sliding
windows. In Catriel Beeri and Alin Deutsch, editors, Proceedings of the Twenty-third ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 14-16, 2004,
Paris, France, pages 286–296. ACM, 2004. doi:10.1145/1055558.1055598.

4 Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models
and issues in data stream systems. In Lucian Popa, Serge Abiteboul, and Phokion G. Kolaitis,
editors, Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 3-5, Madison, Wisconsin, USA, pages 1–16. ACM, 2002.
doi:10.1145/543613.543615.

5 Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining variance
and k-medians over data stream windows. In Frank Neven, Catriel Beeri, and Tova Milo,
editors, Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 9-12, 2003, San Diego, CA, USA, pages 234–243. ACM,
2003. doi:10.1145/773153.773176.

6 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre
Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973. doi:10.1016/
S0022-0000(73)80033-9.

7 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

8 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002. doi:10.1137/
S0097539701398363.

9 Scott C. Douglas. Running max/min calculation using a pruned ordered list. IEEE Trans.
Signal Process., 44(11):2872–2877, 1996. doi:10.1109/78.542446.

10 James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making
data structures persistent. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages
109–121. ACM, 1986. doi:10.1145/12130.12142.

11 David Eppstein. Nontrivial algorithm for computing a sliding window median [online]. 2014.
URL: https://cstheory.stackexchange.com/questions/21730/nontrivial-algorithm-
for-computing-a-sliding-window-median.

12 Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile
summaries. In Sharad Mehrotra and Timos K. Sellis, editors, Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, Santa Barbara, CA, USA, May
21-24, 2001, pages 58–66. ACM, 2001. doi:10.1145/375663.375670.

13 Dana Jansens. Persistent binary search trees [online]. 2009. URL: https://cglab.ca/~dana/
pbst/.

https://doi.org/10.4230/LIPIcs.SEA.2017.24
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1145/1055558.1055598
https://doi.org/10.1145/543613.543615
https://doi.org/10.1145/773153.773176
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1137/S0097539701398363
https://doi.org/10.1137/S0097539701398363
https://doi.org/10.1109/78.542446
https://doi.org/10.1145/12130.12142
https://cstheory.stackexchange.com/questions/21730/nontrivial-algorithm-for-computing-a-sliding-window-median
https://cstheory.stackexchange.com/questions/21730/nontrivial-algorithm-for-computing-a-sliding-window-median
https://doi.org/10.1145/375663.375670
https://cglab.ca/~dana/pbst/
https://cglab.ca/~dana/pbst/

P. Raykov 5:11

14 Martti Juhola, Jyrki Katajainen, and Timo Raita. Comparison of algorithms for standard
median filtering. IEEE Trans. Signal Process., 39(1):204–208, 1991. doi:10.1109/78.80784.

15 Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms,
2nd Edition. Addison-Wesley, 1973. URL: https://www.worldcat.org/oclc/310903895.

16 Georgiy Korneev. Designing an algorithm that searches for the kth largest element between
two AVL trees [online]. 2016. URL: https://stackoverflow.com/questions/40473890/
designing-an-algorithm-that-searches-for-the-kth-largest-element-between-two-
avl.

17 Danny Krizanc, Pat Morin, and Michiel H. M. Smid. Range mode and range median queries
on lists and trees. Nord. J. Comput., 12(1):1–17, 2005.

18 Xuemin Lin, Hongjun Lu, Jian Xu, and Jeffrey Xu Yu. Continuously maintaining quantile
summaries of the most recent N elements over a data stream. In Z. Meral Özsoyoglu and Stan-
ley B. Zdonik, editors, Proceedings of the 20th International Conference on Data Engineering,
ICDE 2004, 30 March - 2 April 2004, Boston, MA, USA, pages 362–373. IEEE Computer
Society, 2004. doi:10.1109/ICDE.2004.1320011.

19 Bongki Moon, Inés Fernando Vega López, and Vijaykumar Immanuel. Scalable algorithms for
large temporal aggregation. In David B. Lomet and Gerhard Weikum, editors, Proceedings of
the 16th International Conference on Data Engineering, San Diego, California, USA, February
28 - March 3, 2000, pages 145–154. IEEE Computer Society, 2000. doi:10.1109/ICDE.2000.
839401.

20 Jürg Nievergelt and Edward M. Reingold. Binary search trees of bounded balance. In Patrick C.
Fischer, H. Paul Zeiger, Jeffrey D. Ullman, and Arnold L. Rosenberg, editors, Proceedings of
the 4th Annual ACM Symposium on Theory of Computing, May 1-3, 1972, Denver, Colorado,
USA, pages 137–142. ACM, 1972. doi:10.1145/800152.804906.

21 Chris Okasaki. Red-black trees in a functional setting. J. Funct. Program., 9(4):471–477, 1999.
doi:10.1017/s0956796899003494.

22 Mike Paterson. Progress in selection. In Rolf G. Karlsson and Andrzej Lingas, editors,
Algorithm Theory - SWAT ’96, 5th Scandinavian Workshop on Algorithm Theory, Reykjavík,
Iceland, July 3-5, 1996, Proceedings, volume 1097 of Lecture Notes in Computer Science, pages
368–379. Springer, 1996. doi:10.1007/3-540-61422-2_146.

23 Abhiroop Sarkar. Persistent red black trees in Haskell [online]. 2017. URL: https://abhiroop.
github.io/Haskell-Red-Black-Tree/.

24 Jukka Suomela. Median filtering is equivalent to sorting. CoRR, abs/1406.1717, 2014.
arXiv:1406.1717.

25 Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. Low-latency sliding-window aggreg-
ation in worst-case constant time. In Proceedings of the 11th ACM International Conference
on Distributed and Event-based Systems, DEBS 2017, Barcelona, Spain, June 19-23, 2017,
pages 66–77. ACM, 2017. doi:10.1145/3093742.3093925.

26 Jun Yang and Jennifer Widom. Incremental computation and maintenance of temporal
aggregates. VLDB J., 12(3):262–283, 2003. doi:10.1007/s00778-003-0107-z.

27 Andrew Chi-Chih Yao. Space-time tradeoff for answering range queries (extended abstract). In
Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors,
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982,
San Francisco, California, USA, pages 128–136. ACM, 1982. doi:10.1145/800070.802185.

A Finding the k-smallest Element in Three AWBBS Trees

We assume that each node of the input trees is augmented with its weight, i.e., contains
the size of its subtree. Then, searching for the k-th smallest element in such a tree is
straightforward: one traverses the tree from the root down to the leaves and at each step
chooses the left or the right subtree depending on whether the k-th smallest element can

ICDT 2023

https://doi.org/10.1109/78.80784
https://www.worldcat.org/oclc/310903895
https://stackoverflow.com/questions/40473890/designing-an-algorithm-that-searches-for-the-kth-largest-element-between-two-avl
https://stackoverflow.com/questions/40473890/designing-an-algorithm-that-searches-for-the-kth-largest-element-between-two-avl
https://stackoverflow.com/questions/40473890/designing-an-algorithm-that-searches-for-the-kth-largest-element-between-two-avl
https://doi.org/10.1109/ICDE.2004.1320011
https://doi.org/10.1109/ICDE.2000.839401
https://doi.org/10.1109/ICDE.2000.839401
https://doi.org/10.1145/800152.804906
https://doi.org/10.1017/s0956796899003494
https://doi.org/10.1007/3-540-61422-2_146
https://abhiroop.github.io/Haskell-Red-Black-Tree/
https://abhiroop.github.io/Haskell-Red-Black-Tree/
http://arxiv.org/abs/1406.1717
https://doi.org/10.1145/3093742.3093925
https://doi.org/10.1007/s00778-003-0107-z
https://doi.org/10.1145/800070.802185

5:12 An Optimal Algorithm for Sliding Window Order Statistics

be there. The task of finding the k-th smallest element in multiple trees is similar: we
simultaneously traverse all trees from their roots down to the leaves while choosing in which
subtrees the k-th smallest element still can be. One needs to carefully analyze the traversal
condition to make sure that the algorithm works in linear time in terms of the tree heights,
since otherwise the incurred costs can lead to higher complexity (e.g., for two trees it can
become quadratic [16]).

The algorithm that we present below can be seen as the fixed version of the algorithm
from Lemma 2 of [17], where the condition 2 is corrected to continue the search instead of
stopping. (Without this correction the algorithm of [17] won’t work.)

A.1 The Algorithm
We assume that there exists a function find-rank-one-tree which outputs the k-th smallest
element in one tree in time O(h) where h is the height of the tree. At each step of our
algorithm we maintain the remaining trees T1, T2 and T3 where we continue to search for the
k-th smallest element. Wlog, we assume that the root elements of the trees are ordered, i.e.,
the root r1 of T1 is smaller than the root r2 of T2 which is smaller than the root r3 of T3.
Let S denote the elements of the left subtrees L1, L2 and L3. By construction, we know that
the rank of r1 in the union of T1, T2 and T3 is at most |S| + 1, whereas the rank of r3 in the
union of T1, T2 and T3 is at least |S| + 3. These inequalities allow us to identify the subtree
where the element of rank k cannot be: if |S| + 3 > k, then the k-th smallest element cannot
be r3 and cannot be in R3; if |S| + 3 ≤ k, then r1 and elements in L1 are all smaller than
the k-th smallest element and hence can be discarded. We continue this traversal until one
of the trees becomes empty, then we apply the same reasoning for the two remaining trees
only. Finally, once we are left with a single tree we use find-rank-one-tree to output the k-th
smallest element in the remaining tree.

Algorithm 3 find-rank-three-trees finds the k-smallest element in three trees.
Input: trees T1, T2, T3 and the target rank k.
Output: k-th smallest element in T1, T2 and T3.

1: target-rank := k

2: while True do
3: if all but one tree are empty then
4: return target-rank-th smallest element in the non-empty tree by calling find-rank-

one-tree.
5: end if
6: Let T1, T2, . . . , Tℓ denote the non-empty trees left
7: Let Lj , Rj , rj be the left subtree, the right subtree, and the root of Tj , respectively
8: Wlog, assume r1 < r2 < · · · < rℓ (otherwise, rename the trees)
9: if

∑ℓ
j=1 size(Lj) + ℓ > target-rank then

10: Tℓ := Lℓ

11: else
12: T1 := R1
13: target-rank := target-rank − size(L1) − 1
14: end if
15: end while

▶ Lemma 9. Algorithm 3 finds the k-th smallest element in T1, T2 and T3 in O(h1 + h2 + h3)
time where h1, h2 and h3 are the tree heights of T1, T2 and T3, respectively.

P. Raykov 5:13

Proof.
Correctness. Let T i

j denote the state of the trees at the beginning of the while loop at
step 2 at iteration i. That is, T 0

1 , T 0
2 and T 0

3 represent the initial input trees, T 1
1 , T 1

2 and T 1
3

represent the trees after one iteration, and so on. Similarly, let target-ranki denote the state
of the target rank variable at the beginning of the i-th iteration. We prove correctness by
validating the following invariant:

▷ Claim 10. The target-ranki-th smallest element among T i
1, T i

2 and T i
3 is the target-ranki+1-

th smallest element among T i+1
1 , T i+1

2 and T i+1
3 .

Proof. Let Li
j , Ri

j , ri
j denote the corresponding loop variables during the iteration i. Consider

two cases:∑ℓ
j=1 size(Li

j) + ℓ > target-ranki : Because the rank of ri
ℓ is at least

∑ℓ
j=1 size(Li

j) + ℓ,
and ℓ ≥ 2 the element with rank target-ranki must be smaller than ri

ℓ and all the elements
in Ri

ℓ. Hence, we can continue searching for the element with rank target-ranki in
T1, . . . , Tℓ−1 and the left subtree of Tℓ which is Lℓ. This is implemented in line 10.∑ℓ

j=1 size(Li
j) + ℓ ≤ target-ranki : Because the rank of ri

1 is at most
∑ℓ

j=1 size(Li
j) + 1,

and ℓ ≥ 2 the element with rank target-ranki must be greater than ri
1 and all the elements

in Li
1. Hence, we can continue searching for the element with rank target-ranki+1 =

target-ranki − size(Li
1) − 1 in T2, T3, . . . , Tℓ and the right subtree of T1 which is R1. This

is implemented in lines 12 and 13. ◁

As long as more than two trees T i
1, T i

2, . . . T i
ℓ are non-empty we search for the right element

in them. Once all but one tree are empty we will output the element with the correct rank
because find-rank-one-tree is correct.

Complexity analysis. Every time the while loop (lines 2 to 15) is executed either T1’s,
T2’s, or T3’s height is decreased by 1. Hence, the maximum number of loop executions is
h1 + h2 + h3. Furthermore, whenever only one of the trees is non empty the loop returns the
output of the find-rank-one-tree call. One invocation of find-rank-one-tree takes time O(h)
where h is the height of the non-empty tree during the invocation. By construction h is smaller
than h1, h2 and h3. This means that the overall time complexity is O(h1 + h2 + h3). ◀

Instantiating Algorithm 5 in the setting where the binary search trees are weight-balanced
we obtain the desired result.

▶ Theorem 11. Algorithm 5 finds the k-th smallest element in O(log n) time where T1, T2
and T3 are AWBBS trees of size at most n.

Proof. The theorem follows by combining the result of Lemma 9 and the observation that
the height of T1, T2 and T3 is O(log n). ◀

ICDT 2023

Space-Query Tradeoffs in Range Subgraph
Counting and Listing
Shiyuan Deng #

The Chinese University of Hong Kong, China

Shangqi Lu #

The Chinese University of Hong Kong, China

Yufei Tao #

The Chinese University of Hong Kong, China

Abstract
This paper initializes the study of range subgraph counting and range subgraph listing, both of which
are motivated by the significant demands in practice to perform graph analytics on subgraphs
pertinent to only selected, as opposed to all, vertices. In the first problem, there is an undirected
graph G where each vertex carries a real-valued attribute. Given an interval q and a pattern Q, a
query counts the number of occurrences of Q in the subgraph of G induced by the vertices whose
attributes fall in q. The second problem has the same setup except that a query needs to enumerate
(rather than count) those occurrences with a small delay. In both problems, our goal is to understand
the tradeoff between space usage and query cost, or more specifically: (i) given a target on query
efficiency, how much pre-computed information about G must we store? (ii) Or conversely, given a
budget on space usage, what is the best query time we can hope for? We establish a suite of upper-
and lower-bound results on such tradeoffs for various query patterns.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Subgraph Pattern Counting, Subgraph Pattern Listing, Conjunctive Queries

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.6

Related Version Full Version: https://arxiv.org/abs/2301.03390

Funding Supported in part by GRF Projects 14207820, 14203421, and 14222822 from HKRGC.

1 Introduction

Consider G = (V, E) as a data graph and Q as a pattern graph. A subgraph of G, if isomorphic
to Q, is said to be an occurrence of Q. The goal of pattern searching is to either list the
occurrences of Q or to count the number of them. Both are fundamental problems in
computer science and have attracted considerable attention in the past few decades.

This paper studies pattern searching in vertex-induced subgraphs. Here, a query selects
a subset U ⊆ V of vertices and needs to count/list the occurrences of Q in G′, where G′

is the subgraph of G induced by U . Note that if an occurrence uses any vertex outside U ,
the occurrence should not be counted/listed. Trivially, one can answer the query by first
generating G′ and then counting/listing Q in G′ “from scratch”, but this does not leverage
the power of preprocessing. Instead, our goal is to store G in a data structure that can
answer all queries with non-trivial guarantees. It is intriguing to investigate how much we
can minimize the query time subject to a space budget, and conversely, how much space we
must consume to achieve a target query time.

Vertex selection in database systems is done with a predicate q, which determines U as
{v ∈ V | v satisfies q}. Concentrating on range predicates, the problems we consider are:

© Shiyuan Deng, Shangqi Lu, and Yufei Tao;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 6; pp. 6:1–6:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sydeng@cse.cuhk.edu.hk
mailto:sqlu@cse.cuhk.edu.hk
mailto:taoyf@cse.cuhk.edu.hk
https://doi.org/10.4230/LIPIcs.ICDT.2023.6
https://arxiv.org/abs/2301.03390
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Space-Query Tradeoffs in Range Subgraph Counting and Listing

Problem 1 (Range Subgraph Counting). G = (V, E) is an undirected graph where
each vertex v ∈ V carries a real-valued attribute Av. For an interval q = [x1, x2], define
Vq = {v ∈ V | x1 ≤ Av ≤ x2} and Gq as the subgraph of G induced by Vq. Let Q be a
connected (only one connected component) pattern graph with O(1) vertices. Given
an interval q, a query returns the number of occurrences of Q in Gq. The pattern Q is
fixed for all queries.

Problem 2 (Range Subgraph Listing). Same setup except that a query reports the
occurrences of Q in Gq.

Universal Notations. Several notations will apply throughout the paper. Set n = |V |
and m = |E|. Symbol ω < 2.37286 [1] represents the matrix multiplication exponent. The
notations Õ(.) and Ω̃(.) hide a factor polylogarithmic to the underlying problem’s parameters.

1.1 Motivation
Practical Applications. Subgraph patterns are important for understanding the char-
acteristics of a data graph G, as has been documented in a long string of papers, e.g.,
[2, 3,8, 10,11,17,18,24–28,30,33,36–38,50]. In practice, analysts are interested in not only
patterns from the whole G but also those pertinent only to selected vertices. Consider a social
network G where each vertex represents an individual. A graph’s clustering coefficient [49],
a popular measurement in network science, is the ratio between the number of triangles
(3-cliques1) and the number of wedges (2-paths2). The coefficient of G, however, is just a
single value revealing little about the features of specific demographic groups. It is more
informative to, for example, compare the coefficients of (i) the subgraph of G induced by
people with ages ∈ [20, 30], and (ii) that induced by age ∈ [60, 70]. A step further, by putting
together the coefficients induced by “age ∈ [i · 10, (i + 1) · 10]” for each i ∈ [1, 10], one obtains
an interesting comparison across different age groups. Refined analysis can then concentrate
on the pattern occurrences of a target group. The power of the above analysis owes to queries
of Problem 1 and 2 with arbitrary selection ranges. Designing effective data structures is
essential to avoid lengthy response time.

Importance of Space-Query Tradeoffs. One should not confuse the space-query tradeoff
with the tradeoff between preprocessing time and query cost, as has been studied in the
literature on join processing [5, 12,20–23,35,41–43,45]. Both tradeoffs are important, but
they matter in different ways. Unlike preprocessing time, which is “one-time cost” (because
a structure, once built, can be used forever), the space consumption is permanent. In other
words, the space-query tradeoff has a (much) more durable effect on the underlying database
system. However, in spite of their importance, the space-query tradeoffs on joins have
received surprisingly little attention: we are aware of only a single paper [20], which, as will
be discussed in Section 1.3, does not consider query predicates (or equivalently, only one
query, which always outputs the entire join, exists) and concerns only reporting (but not
counting). Our work can be thought of as a step in the same direction as [20] because, as
explained in Section 5, subgraph searching can be cast as a join problem (in fact, some of
our results are explicitly about joins), and actually the first step on predicate-driven queries
and counting.

1 An ℓ-clique is a clique with ℓ vertices.
2 An ℓ-path is a path with ℓ edges.

S. Deng, S. Lu, and Y. Tao 6:3

Table 1 A summary of our results.

Problem Pattern Q Space Query Remark
1 (cnt) any fixed Q O(n2) Õ(1) near optimal†

1 wedge Õ(m2/λ2) Õ(λ) for any λ ∈ [1,
√

m], near optimal†

1 (lower wedge Õ(m2−δ/λ2) Õ(λ) for λ ∈ [1,
√

m] and any δ > 0,
bound) impossible subj. to strong set disjointness conj.

1 ℓ-clique O(m) Õ(1)
2 (rep) any fixed Q Õ(m + mρ∗

/∆) delay Õ(∆) for any ∆ ≥ 1,
ρ∗ = frac. edge covering num. of Q

2 triangle O(m) delay Õ(1+ m∗ = num. of edges in
(m∗)

ω−1
ω+1) at least one triangle in Gq

2 ℓ-star O(m) delay Õ(1) near optimal
2 2ℓ-cycle Õ(#Pℓ) delay Õ(1) #Pℓ = num. of ℓ-paths in G

Remark: “near optimal” means no polynomial improvement (i.e., nδ for arbitrary small constant
δ > 0) possbile. The near optimality marked with † is subject to the strong set disjointness
conjecture.

Finally, it is worth mentioning that a useful structure, no matter how little space it
occupies, must be constructible in polynomial time. This is true for all the structures
developed in our paper. In fact, each of our structures can be built with at most the time
needed to find all the occurrences of the query pattern Q, ignoring polylog factors.

1.2 Our Contributions
Table 1 summarizes the main results of this paper. Next, we will explain the results in detail.

1.2.1 Problem 1
Wedges. We will show:

▶ Theorem 1. Consider Problem 1 with Q = wedge. For any real value λ ∈ [1,
√

m], there
is a structure of Õ(m2/λ2) space that answers a query in Õ(λ) time.

The space-query tradeoff may look disappointing. After all, wedge counting is easy in
one-off computation: we can count the number of wedges in G using O(n + m) time. It is
natural to wonder whether the space in Theorem 1 is necessary. We answer the question by
showing that any substantial improvement to Theorem 1 will yield a major breakthrough on
set disjointness:

Set Disjointness. The data is a collection of s ≥ 2 sets S1, S2, ..., Ss. Given distinct
set ids a, b ∈ [1, s], a query returns whether Sa ∩ Sb is empty.

Let N =
∑s

i=1 |Si| be the input size of set disjointness. Given any λ ∈ [1,
√

N], there is a
simple structure of O(N2/λ2) space with O(λ) query time (see Appendix B). Improving
the tradeoff by a polynomial factor even for one arbitrary λ has been a long-standing open
problem. The strong set disjointness conjecture [31,32] states that a structure with query
time λ must use Ω̃(N2/λ2) space for any λ ≥ 1. We will prove:

ICDT 2023

6:4 Space-Query Tradeoffs in Range Subgraph Counting and Listing

▶ Theorem 2. Consider Problem 1 with Q = wedge. Fix any λ ∈ [1,
√

m] and any constant
δ > 0. Suppose that we can obtain a structure of Õ(m2−δ/λ2) space answering a query in
Õ(λ) time. Then, for any set disjointness input of size N , we can obtain a structure of
Õ(N2−δ/λ2) space answering a query in Õ(λ) time (thus breaking the strong set disjointness
conjecture).

Cliques. We will show:

▶ Theorem 3. For Problem 1 with Q = ℓ-clique, there is a structure of O(m) space answering
a query in Õ(1) time.

Counting triangles (ℓ = 3) appears harder than counting wedges: in one-off computation,
the fastest known algorithm for the former takes O(m

2ω
ω+1) time. It is thus surprising to see

Q = triangle easier than Q = wedge in Problem 1. From Theorem 1 and 3, one sees that the
problem of calculating the clustering coefficient (see Section 1.1) of Gq for any q boils down
to counting the wedges in Gq. Effectively, this implies optimal settlement of that problem
(subject to the strong set disjointness conjecture), which bears practical significance due to
the popularity of clustering coefficients.

Arbitrary Subgraphs. We will show:

▶ Theorem 4. For any Q, there is a structure for Problem 1 that uses O(n2) space and
answers a query in Õ(1) time.

The above result is difficult to improve: reducing the space by an nδ factor for any
constant δ > 0 breaks the strong set disjointness conjecture. To explain, assume n = O(m).3
If there was a structure of O(n2−δ) = O(m2−δ) space and Õ(1) query time, applying the
structure to Q = wedge would yield a breakthrough on set disjointness by way of Theorem 2.
The reader should note that the hardness comes from producing a guarantee on all Q; it
is possible to do better for special patterns (Theorem 3). The hardness thus endows Q =
wedge with unique significance in Problem 1. Theorem 4 further implies that Problem 1
under Q = wedge is the hardest when G is the sparsest: m = o(n1+ϵ) for any constant ϵ > 0.
To see why, set m = n1+ϵ, which gives n2 = m

2
1+ϵ . Since 2

1+ϵ = 2 − 2ϵ
1+ϵ , Theorem 4 yields a

structure of O(m2−δ) space and Õ(1) query time with δ = 2ϵ
1+ϵ , improving Theorem 1 by a

polynomial factor at λ = Õ(1).

1.2.2 Problem 2
A listing query ensures a delay ∆ if it reports a new occurrence of Q or declares “no more
occurrences” within ∆ time after the previous occurrence4.

Arbitrary Subgraphs. We will show:

▶ Theorem 5. For any Q and ∆ ≥ 1, there is a structure for Problem 2 that uses Õ(m +
mρ∗

/∆) space and has a query delay of Õ(∆), where ρ∗ is the fractional edge covering number
of Q.

3 Discard “isolated” vertices with no incident edges.
4 The reader may assume that a dummy occurrence is always output at the beginning of a query algorithm.

S. Deng, S. Lu, and Y. Tao 6:5

Imagine assigning each edge of Q a non-negative weight such that (i) for each vertex of
Q, all its incident edges receive a combined weight at least 1 and (ii) the total weight of all
edges is minimized. The fractional edge covering number ρ∗ of Q is the total weight of an
optimal assignment. The maximum number of occurrences of Q in G is O(mρ∗) [4] and the
bound is tight in the worst case.

Our structure actually settles a problem on natural joins:

Range Join. Let R be a set of O(1) relations each with O(1) real-valued attributes.
Denote by join(R) the natural join result on the relations in R. Given an interval
q = [x1, x2], a query reports all the tuples t ∈ join(R) such that every attribute of t falls
in q.

Let N be the total number of tuples in the relations of R. For any ∆ ≥ 1, we give a structure
of Õ(N + Nρ∗

/∆) space answering a query with an Õ(∆) delay. Here, the fractional edge
covering number ρ∗ is with respect to the join’s hypergraph (details deferred to Section 5).

The challenge behind Theorem 5 is to design a structure that works for all Q. It is
possible to do better for specific Q. Next, we present three examples that are not only
important subproblems themselves but also illustrate different techniques.

Triangles. We will show:

▶ Theorem 6. For Problem 2 with Q = triangle, there is a structure of O(m) space answering
a query with an Õ(1 + (m∗)

ω−1
ω+1) delay, where m∗ is the number of edges appearing in at least

one reported triangle.

The fractional edge covering number ρ∗ is 1.5 for Q = triangle. To ensure Õ(m) space,
Theorem 5 needs to set ∆ =

√
m. As ω−1

ω+1 < 0.408, Theorem 6 achieves a polynomial
improvement in delay. The reader should note that the value m∗ in Theorem 6 never exceeds
m but can be much less (this happens when there are few triangles to list). When q is fixed
to (−∞, ∞), Problem 2 with Q = triangle had been used as a motivating problem in the
previous work of [20], which described a structure of O(m) space with a delay Õ(

√
m) and is

thus strictly improved by Theorem 6.

ℓ-Stars. An ℓ-star is a tree with ℓ leaves and one non-leaf vertex (a wedge is a 2-star). We
will show:

▶ Theorem 7. For Problem 2 where Q = ℓ-star, there is a structure of O(m) space answering
a query with an Õ(1) delay.

As a corollary, for any interval q, O(m) space suffices to detect the presence of an ℓ-star in
Gq using Õ(1) time. For Q = wedge, this means that the hardness manifested by Theorem 2
is indeed due to counting.

2ℓ-Cycles5. We will show:

▶ Theorem 8. For Problem 2 with Q = 2ℓ-cycle where ℓ ≥ 2, there is a structure of Õ(#Pℓ)
space answering a query with an Õ(1) delay, where #Pℓ is the number of ℓ-paths in G.

5 A cycle with 2ℓ vertices.

ICDT 2023

6:6 Space-Query Tradeoffs in Range Subgraph Counting and Listing

The fractional edge covering number ρ∗ is ℓ for a 2ℓ-cycle. Theorem 5 needs Õ(mℓ) space
to achieve an Õ(1) delay. The space in Theorem 8 is significantly better. For ℓ = 2 (Q =
4-cycle), the space is Õ(nm) which is the maximum number of wedges in G. For ℓ > 2, the
space is Õ(m⌈(ℓ+1)/2⌉) which is the maximum number of ℓ-paths in G.

1.3 Related Work
The preceding sections have covered the most relevant existing results. We will now proceed
to discuss other related work.

Pattern searching has been extensively studied in one-off computation. We refer the
reader to [3, 8, 10, 17, 18, 27, 28, 30, 37, 50] and [2, 11, 17, 24–26, 33, 36, 38, 39], as well as the
references therein, for algorithms on counting and listing, respectively. Those algorithms can
be applied in Problem 1 and 2 after Gq has been generated. Our focus in this work is to
avoid a full generation of Gq because doing so can take Ω(m) time.

In the other extreme, one can precompute the set S of occurrences of Q in G. The size of
S is O(mρ∗) (AGM bound), assuming that Q has a constant size. By resorting to standard
computational geometry techniques [19], we can store S in structures of Õ(mρ∗) space to
answer a query of Problem 1 in Õ(1) time and a query of Problem 2 with an Õ(1) delay.
For Problem 1, Theorem 4 achieves a better space bound on every Q with ρ∗ ≥ 2. When
ρ∗ < 2, Q has at most three vertices: a 1-path (single edge), a wedge, or a triangle. We have
resolved the wedge and triangle cases (Theorem 1 and 3), while Problem 1 is trivial for Q =
1-path. For Problem 2, Theorem 5 captures the above extreme idea as a special case with
∆ = Õ(1) and offers a tunable space-query tradeoff.

A relational event graph, introduced by Bannister et al. [6], is a graph G = (V, E) where
every edge e ∈ E carries a real-valued timestamp. For an interval q = [x1, x2], let Gedge

q be
the subgraph of G induced by all the edges whose timestamps are covered by q. A pattern
searching query counts/lists the occurrences of a pattern Q in Gedge

q . See [6, 14, 15] for
several data structures designed for such queries. Similar as it sounds, pattern searching on
a relational event graph is drastically different from Problem 1 and 2 such that there is little
overlap – in neither results nor techniques – between our solutions and those in [6, 14,15].

Delay minimization is an important topic in the literature of joins and conjunctive queries;
see [5, 9, 12, 13, 20–23,34,35, 41, 43–45] and their references. Regarding our problems, we are
not aware of previous work giving a result better than what has already been mentioned.
Our formulation of range join listing (Section 1.2.2) suggests that the presence of query
predicates can pose new challenges on joins (also conjunctive queries) from the indexing’s
perspective. Deep and Koutris [20] proved a result equivalent to Theorem 5 (up to an Õ(1)
factor) on Problem 2, but only in the special scenario where a query concerns the whole G,
i.e., fixing the query range q to (−∞, ∞).

2 Preliminaries

In this section, we will describe several technical tools to be deployed in our solutions.

Structures for Multidimensional Points. We will utilize some well-known geometry data
structures as introduced below. The reader does not need to be bothered with the details
of these structures because we will apply them as “black boxes”. Let P be a set of n

points in d-dimensional space Rd where d is a constant. Given a rectangle q of the form
[x1, y1] × [x2, y2] × ... × [xd, yd], a range reporting query enumerates the points in P ∩ q. We
can create a range tree [7, 19] on P , which uses Õ(n) space and permits us to answer such

S. Deng, S. Lu, and Y. Tao 6:7

a query with an Õ(1) delay. When d = 2, we can replace the range tree with a Chazelle’s
structure [16] which retains the aforementioned query performance but reduces the space
consumption to O(n).

We will also need range sum queries on P in the scenario where each point in P is 2D
(i.e., d = 2) and carries a real-valued weight. Given a rectangle q = [x1, y1] × [x2, y2], such
a query reports the total weight of the points in P ∩ q. We can again build a Chazelle’s
structure of [16] on P which occupies O(n) space and answers a query in Õ(1) time.

From “Delays with Duplicates” to “Delays under Distinctness”. Let us consider a
duplicate-removal scenario often encountered in designing algorithms with small delays.
Suppose that we have an algorithm A for enumerating a set S of elements. With a delay
of ∆, A can report an element e ∈ S, but cannot guarantee that e has never been reported
before. The good news, on the other hand, is that A can output the same element at most α

times for some α ≥ 1 .
By modifying a buffering technique in [47], we can convert A into an algorithm that

enumerates only the distinct elements of S with a delay of O(α · ∆ log |S|). Conceptually,
divide the execution of A into epochs, each of which runs for α · ∆ time6. As A runs, we
use a buffer B to stash the set of distinct elements that have been found by A but not yet
reported. Every time A finds an element e ∈ S, we check whether e has ever existed in B

(this takes O(log |S|) time, using a binary search tree on all the elements that have ever been
found so far). If so, e is ignored; otherwise, it is added to B. At the end of each epoch, we
output an arbitrary element from B and remove it from B. Finally, after A has terminated,
we simply output the remaining elements in B.

B always contains at least one element at the end of each epoch. To see why, consider the
end of the t-th epoch for some t ≥ 1. At this moment, A has been running for t · α · ∆ time
and therefore must have reported t · α elements, which may not be distinct. However, as
each element can be reported at most α times, there must be at least t (distinct) ones among
those t · α elements. Since we have reported only t − 1 elements in the preceding epochs,
B must still have at least one element at the end of epoch t. It is now straightforward to
verify that the modified algorithm has a delay of O(α · ∆ log |S|) in enumerating the distinct
elements of S.

3 Problem 1: Matching Upper and Lower Bounds

This section will establish the conditional lower bound in Theorem 2 and its matching upper
bound in Theorem 4. Our discussion on the upper bound will also establish Theorem 3.
Throughout the paper, we will assume that the vertices of G have distinct attribute values.
The assumption loses no generality because one can break ties by vertex id.

3.1 Lower Bound
Suppose that Problem 1 under Q = wedge admits a structure that uses Õ(m2−δ/λ2) space
and answers a query in Õ(λ) time for some λ ≥ 1. We will design a structure for set
disjointness that uses Õ(N2−δ/λ2) space and answers a query in Õ(λ) time. Recall that the
data input to set disjointness consists of s ≥ 2 sets S1, ..., Ss with a total size of N . Define
U =

⋃s
i=1 Si.

6 Recall that “time” in the RAM model is defined as the number of atomic operations (e.g., addition,
multiplication, comparison, accessing a memory word, etc.) executed. Each epoch is essentially a
sequence of α · ∆ such operations.

ICDT 2023

6:8 Space-Query Tradeoffs in Range Subgraph Counting and Listing

Create a graph G = (V, E) as follows. V has 2s + |U| vertices, including 2s set vertices
and |U| element vertices. Each set Si (i ∈ [1, s]) defines two set vertices, whose attribute
values are set to i and s + i, respectively. Each element in U defines an element vertex with
the same attribute value s + 1/2. Set E contains 2N edges: for each element e ∈ Si, add
to E two edges each between the element vertex of e and a set vertex of Si. Now, create a
Problem-1 structure under Q = wedge on G. The structure occupies Õ(N2−δ/λ2) space.

Consider a set disjointness query with set ids a and b. Assuming w.l.o.g. a < b, we issue
four Problem-1 wedge-counting queries on G with intervals q1 = [a, s + b], q2 = [a + 1, s + b],
q3 = [a, s + b − 1], and q4 = [a + 1, s + b − 1], respectively. Let c1, c2, ..., c4 be the counts
returned. We declare Sa ∩ Sb non-empty if and only if c1 − c2 − c3 + c4 > 0. The query
time is Õ(λ). Appendix A proves the algorithm’s correctness. This completes the proof of
Theorem 2.

3.2 Upper Bound
Next, we will attack Problem 1 by allowing Q to be an arbitrary pattern graph. Consider
any occurrence of Q in G. Let u (resp. v) be the vertex in this occurrence with the smallest
(resp. largest) attribute. We register the occurrence at the pair (u, v). Denote by cu,v the
number of occurrences registered at (u, v).

For a query with q = [x1, x2], an occurrence registered at (u, v) appears in Gq (i.e., the
subgraph of G induced by Vq) if and only if Au ≥ x1 and Av ≤ x2. We can therefore convert
the problem to range sum on 2D points. For each pair (u, v) ∈ V × V , create a point (Au, Av)
with weight cu,v. Let P be the set of points created; clearly, |P | = O(n2). The query result is
simply the total weight of all the points in P covered by the rectangle [x1, ∞) × (−∞, x2] (a
range sum operation). We can store P in a Chazelle’s structure (see Section 2) that occupies
O(|P |) = O(n2) space and performs a range sum operation in Õ(1) time. This establishes
Theorem 4.

Improvement for Cliques. The space of our structure can be lowered to O(m) when Q is a
clique. The crucial observation is that registering an occurrence at (u, v) implies {u, v} ∈ E.
We add to P only the points (Au, Av) with a non-zero cu,v (points with zero weights do not
affect a range sum operation). This reduces the size of P to at most m and, hence, the space
of the Chazelle’s structure to O(m). We thus complete the proof of Theorem 3.

4 Problem 1: Wedges

The section will explain how to achieve the guarantees in Theorem 1 for Problem 1 under
Q = wedge. We will represent a wedge occurrence in G = (V, E) as wedge(u, v, w) where u, v,

and w are vertices in V , and {u, v} and {v, w} are edges in E. Let us introduce a slightly
different problem:

Colored Range Wedge Counting. Define G = (V, E) and Av for each v ∈ V as in
Problem 1. Each vertex in V is colored black or white. Given an interval q, a query
returns the number of occurrences wedge(u, v, w) such that Au ∈ q, Aw ∈ q, and v is
black.

Note that no requirements exist on Av and the colors of u and w.
Let C be a set of subsets of V . We call C a canonical collection if
(P4-1) each vertex of V appears in Õ(1) subsets in C;
(P4-2) for any interval q, we can partition Vq (i.e., the set of vertices in V with attribute
values in q) into Õ(1) disjoint subsets, each being a member of C. The ids of these subsets
can be obtained in Õ(1) time.

S. Deng, S. Lu, and Y. Tao 6:9

It is rudimentary to find a canonical collection C satisfying
∑

U∈C |U | = Õ(n).7 We will work
with such a C henceforth. In Appendix B, we prove:

▶ Lemma 9. Consider the colored range wedge counting problem. For any real value
λ ∈ [1,

√
m], there is a structure of Õ(m2/λ2) space that answers a query in Õ(λ) time.

Equipped with the above, we now return to Problem 1 with Q = wedge.

Structure. For each U ∈ C (where U is a subset of V), we create a graph GU by adding
edges in three steps:
1. Initialize GU as an empty graph with no vertices and edges.
2. For every vertex u ∈ U , we add all its edges in G (i.e., the original data graph) to GU .

The addition of an edge {u, v} creates vertex v in GU if v is not present in GU yet.
3. Finally, color a vertex in GU black if it comes from U , or white otherwise.
We now build a structure of Lemma 9 on GU , which uses Õ(|EU |2/λ2) space where EU is
the set of edges in GU . By Property P4-1, each edge {u, v} of G can be added to the EU of
Õ(1) subsets U ∈ C. It thus follows that

∑
U∈C |EU | = Õ(m). The structures of all U ∈ C

occupy Õ(m2/λ2) space in total.

Query. Consider now a (Problem-1) query with interval q. By Property P4-2, in Õ(1) time
we can pick h = Õ(1) members U1, ..., Uh from C to partition Vq. For each i ∈ [1, h], issue
a colored range wedge counting query with interval q on GUi

. We return the sum of the h

queries’ outputs. The overall query time is h · Õ(λ) = Õ(λ).
To verify correctness, first observe that every wedge(u, v, w) counted by the colored query

on GUi
satisfies: Au ∈ q, Aw ∈ q (definition of colored range wedge counting), and Av ∈ q

(because v being black means v ∈ Ui ⊆ Vq). Conversely, every occurrence wedge(u, v, w)
satisfying {Au, Av, Aw} ⊆ q is counted only once: by the colored query on GUi

where Ui is
the only subset (among all i ∈ [1, h]) containing v. Indeed, for any Uj with j ̸= i, v is either
absent in GUj

or is white; in neither case can the wedge be counted. Correctness now follows.

5 Problem 2: Arbitrary Subgraphs

We now proceed to tackle Problem 2 for an arbitrary query pattern Q. We will, in fact, solve
the range join problem defined in Section 1.2.2. As shown in Appendix D, it is relatively
easy to convert our structure to prove Theorem 5.

For a relation R ∈ R (recall that R is the set of input relations; see Section 1.2.2) its
scheme, scheme(R), is the set of attributes in R. Let X =

⋃
R∈R scheme(R). The input size

N can now be expressed as
∑

R∈R |R|. We will assume, w.l.o.g., that (i) the relations in R
have distinct schemes, (ii) N is a power of 2, and (iii) each attribute X ∈ X has a domain
dom(X) comprising the integers in [1, N]. Given an interval q = [x1, x2], a query lists every
t in join(R) – the natural join result on R – satisfying t[X] ∈ q for all X ∈ X , where t[X] is
the tuple’s value under attribute X. We want to design a structure of small space to answer
such queries with a small delay.

7 It suffices to build a binary search tree T on the vertices’ attribute values. Each node in T defines a
subset in C, which consists of every v ∈ V whose attribute Av is stored in the node’s subtree. It is well
known (see, e.g., [46]) that, for any interval q, there exist O(log n) canonical nodes in T whose subtrees
are disjoint and together contain all and only the attribute values in q. Those nodes can be found in
O(log n) time and satisfy Property P4-2 with respect to Vq.

ICDT 2023

6:10 Space-Query Tradeoffs in Range Subgraph Counting and Listing

It will be convenient to work with a hypergraph G = (X , E) where E = {scheme(R) | R ∈
R}. Given an edge e ∈ E , we use Re to denote the (only) relation R ∈ R whose scheme is
e. For a function W that assigns a non-negative weight W (e) to every e ∈ E , its lump-sum
is
∑

e∈E W (e). The function W is a fractional edge covering if
∑

e∈E:X∈e W (e) ≥ 1 holds
on every attribute X ∈ X . The fractional edge covering number ρ∗ of G is the smallest
lump-sum of all fractional edge coverings. Henceforth, we will use W to represent an optimal
assignment function with lump-sum ρ∗.

The section’s main result is:

▶ Theorem 10. For the range join problem (see Section 1.2.2), given any ∆ ≥ 1, there is a
structure of Õ(N + Nρ∗

/∆) space that answers a query with an Õ(∆) delay.

5.1 A Generalization of the AGM Bound
The classical AGM bound [4] states that |join(R)| ≤

∏
e∈E |Re|W (e). Next, we will present a

more general version of this inequality.
Set d = |X | and impose an arbitrary ordering on the d attributes: X1, X2, ..., Xd. Given

intervals I1, I2, ..., Id where Ii ⊆ dom(Xi) for each i ∈ [1, d], define B(I1, ..., Id) as the d-
dimensional box I1 × ... × Id. For a relation R ∈ R, we use R ⋉ B(I1, ..., Id) to represent the
set of tuples t ∈ R such that t[Xi] ∈ Ii for every i satisfying Xi ∈ scheme(R).

We prove in Appendix C:

▶ Lemma 11. Let Ii, i ∈ [1, d], be a set of disjoint intervals in dom(Xi). Then:∑
I1∈I1

∑
I2∈I2

...
∑

Id∈Id

∏
e∈E

|Re ⋉ B(I1, ..., Id)|W (e) ≤
∏
e∈E

|Re|W (e). (1)

To see how (1) captures the AGM bound, consider the special Ii with size |dom(Xi)|,
namely, each interval in Ii is a value in dom(Xi) and vice versa. Thus, |Re ⋉B(I1, ..., Id)| is
either 0 or 1 such that the left hand side of (1) is precisely |join(R)|. The real power of (1),
however, comes from allowing Ii to be an arbitrary set of disjoint intervals, a feature crucial
for us to prove Theorem 10.

A remark is in order about why Lemma 11 is not trivial. It would be if the term∏
e∈E |Re⋉B(I1, ..., Id)|W (e) in (1) was replaced by the output size of the join on the relations

in {Re ⋉ B(I1, ..., Id) | e ∈ E}. By the AGM bound, the term
∏

e∈E |Re ⋉ B(I1, ..., Id)|W (e)

is an upper bound on the size of the join {Re ⋉ B(I1, ..., Id) | e ∈ E}. The non-trivial goal is
to show that the summation of all those upper bounds (i.e., the left hand side of (1)) still
cannot exceed

∏
e∈E |Re|W (e).

5.2 Range Join
This subsection serves as a proof of Theorem 10. Given an ℓ ≥ 0, we call an interval a level-ℓ
dyadic interval if it has the form [i · 2ℓ + 1, (i + 1) · 2ℓ] for some integer i ≥ 0. Because N is a
power of 2, for each ℓ ∈ [0, log2 N], we can partition [1, N] into N/2ℓ disjoint level-ℓ dyadic
intervals.

A dyadic combination is a sequence of d dyadic intervals (I1, ..., Id); recall that d = |X |.
The combination defines a (natural) join instance on the relations in {Re⋉B(I1, ..., Id) | e ∈ E}.
We will denote the instance as RI1,...,Id

. Define

AGM(I1, ..., Id) =
∏
e∈E

|Re ⋉ B(I1, ..., Id)|W (e). (2)

The AGM bound assures us that |join(RI1,...,Id
)| ≤ AGM(I1, ..., Id).

S. Deng, S. Lu, and Y. Tao 6:11

Structure. A dyadic combination (I1, ..., Id) with a non-empty join(RI1,...,Id
) is said to be

heavy if AGM(I1, ..., Id) > ∆, or light otherwise. For each heavy combination, we build a
structure of [20] that can enumerate the tuples in join(RI1,...,Id

) with an Õ(∆) delay. The
structure’s space is bounded by O(AGM(I1, ..., Id)/∆).8

We argue that the structures on all the heavy (dyadic) combinations use Õ(Nρ∗
/∆) space

in total. Fix d arbitrary level numbers ℓ1, ..., ℓd each between 0 and log2 N . For i ∈ [1, d], let
Ii be the set of all level-ℓi dyadic intervals. The total space occupied by the structures of all
heavy combinations (I1, ..., Id) ∈ I1 × ... × Id is

1
∆

∑
(I1,...,Id)∈I1×...×Id

AGM(I1, ..., Id). (3)

up to an Õ(1) factor. The above includes a term for every light combination but such terms
can only over-estimate the space. Each Ii is a set of disjoint intervals in dom(Xi). Applying
the definition in (2) and Lemma 11, we can see that (3) is bounded by Nρ∗

/∆, noticing that
the right hand side of (1) is at most Nρ∗ .

In the above analysis, we have fixed a set of ℓ1, ..., ℓd. As each ℓi has O(log N) choices,
all together there are O(logd N) = Õ(1) different sets of ℓ1, ..., ℓd. We can now conclude that
the overall space is Õ(Nρ∗

/∆).
Finally, we need a hash table to check in constant time whether a dyadic combination is

heavy. The hash table occupies Õ(Nρ∗
/∆) space because our earlier analysis implies a bound

Õ(Nρ∗
/∆) on the number of heavy dyadic combinations. The overall space of our entire

structure is therefore Õ(N + Nρ∗
/∆), where the term Õ(N) counts the space for storing the

relations of R.

Query. Consider a range join query with interval q = [x1, x2]. We consider, w.l.o.g., that
x1 and x2 are integers in [1, N]. In Õ(1) time, we can partition the box B(q, ..., q︸ ︷︷ ︸

t

) into

O(logd N) = Õ(1) disjoint boxes, each in the form B(I1, ..., Id) where (I1, ..., Id) is a dyadic
combination; we say that (I1, ..., Id) is canonical for q. The query result is⋃

canonical (I1, ..., Id)

join(RI1,...,Id
).

The results join(RI1,...,Id
) of all the canonical (I1, ..., Id) are disjoint. If a canonical (I1, ..., Id)

is heavy, we enumerate join(RI1,...,Id
) with an Õ(∆) delay using the structure of [20] on

(I1, ..., Id). Otherwise, we apply a worst-case optimal join algorithm [39,40,48] to compute
join(RI1,...,Id

). The algorithm finishes in Õ(AGM(I1, ..., Id)) time, which is Õ(∆) by definition
of light dyadic combination. Our algorithm guarantees a delay of Õ(∆). This completes the
proof of Theorem 10.

Remark. In [36], Khamis et al. used dyadic intervals in their algorithm for one-off computa-
tion of join(R). Their main technical issue was to select “good” dyadic boxes (i.e., boxes of
the form B(I1, ..., Id)) to cover the tuples in join(R) once. That issue is non-existent in our
context, where the primary obstacle is to argue that the total space given in (3) is affordable.
We overcame the obstacle using Lemma 11, which, though perpahs no longer surprising given
all the existing variations of the AGM bound, deserves a careful treatment that, we believe,
has not appeared before.

8 Strictly speaking, the space should also account for the relations in RI1,...,Id
. In our context, it suffices to

store the relations of R once and generate the relations in RI1,...,Id
when answering a query. Appendix D

has additional details about [20].

ICDT 2023

6:12 Space-Query Tradeoffs in Range Subgraph Counting and Listing

6 Problem 2: Triangles

This section will describe a structure for Problem 2 under Q = triangle. We will first attack,
in Section 6.1 and 6.2, two fundamental problems whose solutions are vital to establishing
Theorem 6, the proof of which is presented in Section 6.3.

6.1 The Range Triangle Edges Problem
This subsection will discuss the following standalone problem.

Range Triangle Edges (RTE). Let G be an undirected graph with m edges. Given
an interval q = [x1, x2], a query returns: (i) all the edges appearing in at least one
triangle of Gq; and (ii) Θ(m∗) triangles where m∗ is the number of edges reported in (i).

We will develop a structure of O(m) space that can answer a query in Õ(m∗) time. Fur-
thermore, the query can enumerate the m∗ edges and the Θ(m∗) triangles both with a
delay ∆.

Let us represent a triangle occurrence in G as triangle(u, v, w) where u, v, and w are
the triangle’s vertices. Ordering is important: we will always adhere to the convention
Au < Av < Aw. Given an interval q, we denote by E∗

q the set of edges showing up in at least
one triangle of Gq. Hence, m∗ = |E∗

q |. If triangle(u, v, w) appears in Gq, we call {u, v} a
type-1 edge, {v, w} a type-2 edge, and {u, w} a type-3 edge. The total number of edges of
all three types is between m∗ and 3m∗.9. Next, we explain how to extract the edges of each
type in Gq.

Type 1 and 2. We will discuss only type 1 because type 2 is symmetric. For each edge
{u, v} in G (assume, w.l.o.g., Au < Av), identify a sentinel vertex w∗ for {u, v} as follows:

w∗ = null if G has no occurrence of the form triangle(u, v, w);
otherwise, w∗ has the smallest attribute among all the vertices w making a triangle
occurrence triangle(u, v, w) in G.

Consider any interval q = [x1, x2]. Observe that {u, v} is a type-1 edge for q if and only if
x1 ≤ Au and Aw∗ ≤ x2. This motivates us to convert type-1 edge retrieval to range reporting
on 2D points (introduced in Section 2). Towards the purpose, create a set P of points, which
has a point (Au, Aw∗) for every {u, v} whose sentinel w∗ is not null. Attach edge {u, v} to
the point (Au, Aw∗) so that the former can be fetched along with the latter. The size of P is
at most m. Given q = [x1, x2], we can find all the type-1 edges by enumerating the points of
P inside the rectangle [x1, ∞) × (−∞, x2]. Hence, we can store P in a Chazelle’s structure
(see Section 2) that has O(|P |) = O(m) space and ensures an Õ(1) delay in reporting the
type-1 edges of any q.

Type 3. A similar approach works for type 3. Let {u, w} be an edge appearing in at least
one occurrence triangle(u, v, w) in G. It is a type-3 edge of q = [x1, x2] if and only if x1 ≤ Au

and Aw ≤ x2. By adapting the earlier discussion in a straightforward manner, we conclude
that there is a structure of O(m) space allowing us to retrieve all the type-3 edges with an
Õ(1) delay.

9 Even for the same q, an edge can be of different types in various triangle occurrences.

S. Deng, S. Lu, and Y. Tao 6:13

Listing Θ(m∗) Triangles. The above has explained how to retrieve E∗
q , but an RTE query

still needs to report Θ(m∗) triangles. Next, we remedy the issue by slightly modifying our
solution so far.

Recall that, in dealing with type 1, we attached the edge {u, v} to the point (Au, Aw∗)
generated from the edge. Now, we attach triangle(u, v, w∗) to (Au, Aw∗) as well. This way,
when (Au, Aw∗) is found, we obtain both {u, v} and triangle(u, v, w∗) for free. After applying
the same idea to type-2 and type-3, we can assert that, whenever the query algorithm finds a
type-1, -2, or -3 edge, it must have also found a triangle in Gq. Therefore, the algorithm can
report the triangles in Gq with an Õ(1) delay, although the same triangle may be reported
up to three times10. By applying the duplicate-removal technique in Section 2, we now have
an algorithm that can enumerate Θ(m∗) distinct triangles with an Õ(1) delay. The number
of distinct triangles reported is at least m∗/3 and at most 3m∗.

6.2 The Small-Delay Triangle Listing Problem

In this subsection, we will concentrate on a standalone problem defined as follows.

Small-Delay Triangle Listing (SDTL). G is an undirected graph with m edges, each
of which appears in at least one triangle. We are given Ω(m) free triangles and O(m)
forbidden triangles. Design an algorithm to enumerate all the triangles of G – except
for the forbidden ones – with a small delay (free triangles must be enumerated). No
preprocessing is allowed.

We will settle the problem with an algorithm of delay Õ(m
ω−1
ω+1).

Suppose that G has OUT triangles in total. Our starting point is an algorithm of
Bjorklund et al. [11] which is able to list k triangles in α · m

3(ω−1)
ω+1 k

3−ω
ω+1 time, where α = Õ(1),

for a parameter k ∈ [Ω(m), OUT]. As far as the algorithm of [11] is concerned, we can consider
OUT known because it can be found in O(m2ω/(ω+1)) time [3] which is O(m

3(ω−1)
ω+1 k

3−ω
ω+1).

The algorithm of Bjorklund et al. does not have a small delay, but we will turn it into one
that does.

We run the algorithm of Bjorklund et al. [11] with geometrically-increasing k and, in each
run, report only some, but not all, of the triangles. How many triangles are reported in each
run is decided strategically to keep the delay small. Let S0

no be the set of forbidden triangles
and S0

yes the set of free triangles in the beginning. Set k0 = |S0
no| + |S0

yes|. When running
the algorithm of [11] for the i-th time, we set its parameter k to ki = min{3ik0, OUT}.
We enforce the invariant that, when run i starts, there are always a set Si−1

no of forbidden
triangles and a set Si−1

yes of free triangles. The set Si−1
yes will be reported with a small delay

during the i-th run (details to be clarified shortly).
Specifically, suppose that the i-th run finds a set Si

raw of ki triangles (some of which have
been output in previous runs). We generate the forbidden and free sets for the next run as
follows:

Si
no = Si−1

no ∪ Si−1
yes and then Si

yes = Si
raw \ Si

no.

10 An occurrence triangle(u, v, w) can be reported only when {u, v}, {v, w}, or {u, w} is output as a type-1,
-2, or -3 edge, respectively.

ICDT 2023

6:14 Space-Query Tradeoffs in Range Subgraph Counting and Listing

Run i finishes in α · m
3(ω−1)

ω+1 k
3−ω
ω+1
i time. We instruct the run to output a triangle from Si−1

yes
every

α · m
3(ω−1)

ω+1 k
3−ω
ω+1
i

|Si−1
yes |

(4)

atomic operations. We will show |Si−1
yes | = Ω(ki), with which the delay in (4) can be

bounded as:

Õ

m
3(ω−1)

ω+1

k
2ω−2
ω+1

i

 = Õ
(

m
ω−1
ω+1

)
(5)

where the equality used ki ≥ k0 = Ω(m).
For i = 1, |Si−1

yes | = Ω(k0) follows directly from the definition of the SDTL problem (i.e.,
we have Ω(m) free triangles to start with). To prove |Si−1

yes | = Ω(ki) for i ≥ 2, we derive:

|Si−1
no | ≤ |S0

no| + |S0
yes| +

i−2∑
j=1

|Sj
raw| = k0 +

i−2∑
j=1

3j · k0 =
i−2∑
j=0

3j · k0 <
3i−1k0

2 .

Therefore:

|Si−1
yes | ≥ |Si−1

raw | − |Si−1
no | > ki−1 − 3i−1k0/2 = ki−1/2 = Ω(ki).

We now conclude that the delay of our algorithm is as given in (5).

6.3 Proof of Theorem 6
We are ready to explain how to solve Problem 2 with Q = triangle. In preprocessing, we
build an RTE structure (Section 6.1) on G. Now, consider a (Problem-2) query with interval
q. We start by issuing an RTE query to retrieve E∗

q , i.e., the set of edges appearing in at least
one triangle of Gq. This, in effect, generates G∗

q , which is the subgraph of Gq induced by the
edges in E∗

q . In addition, the RTE query has also enumerated a set S of Θ(m∗) triangles in
Gq, where m∗ = |E∗

q |. The size of S falls in [m∗

3 , 3m∗].
Our remaining mission is to enumerate the triangles in G∗

q that are outside S. Note that
G∗

q is a graph with m∗ edges and at least Θ(m∗) triangles. This motivates us to convert the
mission to the SDTL problem, which has been solved in Section 6.2. However, the SDTL
problem requires Θ(m∗) free triangles and O(m∗) forbidden triangles as part of the input.
Unfortunately, we do not seem to have these triangles at the moment.

We overcome this obstacle by, interestingly, dividing S into Syes and Sno, such that
Syes (resp. Sno) serves as the set of free (resp. forbidden) triangles. Recall that the RTE
query algorithm, denoted as A, is designed to enumerate an edge in E∗

q with a delay
∆ = Õ(1) and a triangle in S also with a delay ∆. Therefore, it must finish within
tmax = max{∆ · (|E∗

q | + 1), ∆ · (|S| + 1)} ≤ ∆ · (3m∗ + 1) time. We can now apply the
buffering technique in Section 2 with α = 18 to turn A into an algorithm that outputs a
triangle at the end of each epoch, which has a length 18∆. The total number of epochs is at
most tmax

18∆ ≤ 3m∗+1
18 . Thus, when A finishes, we have output at most (3m∗ + 1)/18 triangles,

whereas the buffer B (defined in Section 2) still has at least |S| − 3m∗+1
18 = Θ(m∗) triangles.

We can, thus, set Syes to the content of B when A finishes, and Sno to the set of triangles
already output.

We can now apply the SDTL algorithm on G∗
q and, thus, complete the proof of Theorem 6.

S. Deng, S. Lu, and Y. Tao 6:15

7 Problem 2: Near-Constant Delays

This section will focus on two instances of Problem 2 where it is possible to achieve Õ(1)
delays with space substantially smaller than Theorem 5. We will discuss first Q = ℓ-star
in Section 7.1 and then Q = 2ℓ-cycle in Section 7.2. We will focus on explaining how
to enumerate a perhaps-not-distinct occurrence with an Õ(1) delay, while ensuring each
occurrence to be output only a constant number of times. Owing to the duplicate-removal
method in Section 2, we can modify the algorithms to enumerate only distinct occurrences
with Õ(1) delays.

7.1 ℓ-Stars
Recall that an ℓ-star is a tree with only one non-leaf node, which we will refer to as the star’s
center. Consider a query with interval q. We refer to a node u as a q-center if Gq has at least
one ℓ-star occurrence with u as the center. Once u is found, it becomes a trivial matter to
enumerate all the ℓ-stars having u as the center with an Õ(1) delay. Specifically, we can first
(use a binary search tree to) retrieve all the neighbors v of u in G satisfying Av ∈ q. From
those neighbors, any ℓ distinct vertices form an ℓ-star together with u (as the center). It is
rudimentary to ensure an Õ(1) delay in enumerating all those stars.

Next, we concentrate on designing a structure to enumerate the q-centers with an Õ(1)
delay. Consider an arbitrary ℓ-star in G with center u. Sort the star’s ℓ + 1 vertices in
ascending order of attribute and look for the position of u. If u is the r-th smallest, we will
refer to the star as a rank-r ℓ-star and u as a rank-r q-center.

Now, fix an r ∈ [1, ℓ + 1]. We will describe a structure to support the following operation:

Given an interval q, find all the rank-r q-centers, i.e., all vertices u ∈ V s.t. Gq has a
rank-r ℓ-star with u as the center.

Consider any rank-r ℓ-star in G having u as the center. Let us write out the star’s vertices
as v1, ..., vr−1, u, vr+1, ..., vℓ in ascending order of attribute. For a q = [x1, x2], the ℓ-star
appears in Gq if and only if x1 ≤ Av1 and Avℓ

≤ x2. Refer to v1 as a left r-sentinel of u

and to vℓ as a right r-sentinel of u. From all the left r-sentinels of u (one from each rank-r
ℓ-star with center u), identify the one v∗

1 with the largest attribute. Similarly, from all the
right r-sentinels of u, identify the one v∗

ℓ with the smallest attribute. Observe that u is a
rank-r q-center if and only if x1 ≤ Av∗

1
and Av∗

ℓ
≤ x2. We can therefore convert the retrieval

of rank-r q-centers into range reporting on 2D points (review Section 2), in the same way
as illustrated in Section 6.1. Following Section 2, we can create a Chazelle’s structure on n

points – each point created for a vertex u ∈ V in the way explained – that has O(n) space
and, given any q, can list the rank-r q-centers with an Õ(1) delay. This completes the proof
of Theorem 7.

7.2 2ℓ-Cycles
We will start with an assumption: all queries specify a fixed q = (−∞, ∞), namely, there is
effectively only one query, which enumerates all the 2ℓ-cycles in G. The assumption allows us
to explain the core ideas with the minimum technical details and will be removed eventually.

Queries with q = (−∞, ∞). Given a 2ℓ-cycle occurrence, we refer to the vertex u in the
cycle having the smallest attribute as the occurrence’s anchor. Let v be the vertex in the
cycle such that cutting the cycle at u and v gives two ℓ-paths connecting u and v. We will

ICDT 2023

6:16 Space-Query Tradeoffs in Range Subgraph Counting and Listing

refer to v as the occurrence’s inverse anchor, the pair (u, v) as an anchor pair, and the two
aforementioned paths as cycle ℓ-paths. The number of cycle ℓ-paths is at most #Pℓ (recall
that #Pℓ is the total number of ℓ-paths).

The problem may appear deceivingly simple: can’t we answer a query by simply con-
catenating, for each anchor pair (u, v), every two cycle ℓ-paths from u to v? This does not
work because the two cycle ℓ-paths may share common vertices other than u and v, in which
case the concatenation does not yield a 2ℓ-cycle! This motivates a crucial notion: two cycle
ℓ-paths are interior disjoint if they (i) have the same anchor pair (u, v), and (ii) do not share
any common vertex except u and v. Concatenating two cycle ℓ-paths from u to v spawns a
2ℓ-cycle if and only if those paths are interior disjoint. The challenge we are facing at this
moment is the following problem.

Design a structure to support the following operation: given a cycle ℓ-path π from
anchor u to inverse anchor v, list all the cycle ℓ-paths interior disjoint with π with an
Õ(1) delay.

We will overcome the challenge with a structure of Õ(#Pℓ) space.
Our main observation is that the operation can be converted to range reporting on (ℓ − 1)-

dimensional points (review Section 2). To explain, let us consider any cycle ℓ-path π from
anchor u to inverse anchor v. After excluding u and v, the path has ℓ − 1 vertices, which we
list as w1, w2, ..., wℓ−1 in ascending order of attribute11. Convert π into an (ℓ−1)-dimensional
point (Aw1 , ..., Awℓ−1). Let Pu,v be the set of points thus obtained from all the cycle ℓ-paths
with (u, v) as the anchor pair.

Now, consider another cycle ℓ-path π′ from u to v. List the vertices of π′ other than u

and v as w′
1, w′

2, ..., w′
ℓ−1 also in ascending order of attribute. If π′ is interior disjoint with π,

each Aw′
i

(i ∈ [1, ℓ − 1]) must fall in one of the ℓ open intervals:

(−∞, Aw1), (Aw1 , Aw2), ..., (Awℓ−2 , Awℓ−1), (Awℓ−1 , ∞). (6)

Therefore, (Aw′
1
, ..., Aw′

ℓ−1
) – the point converted from π′ – must fall in one of the following

ℓℓ−1 = O(1) rectangles: q1 ×q2 × ...×qℓ−1, where each qi (i ∈ [1, ℓ−1]) is taken independently
from one of the intervals in (6). As per Section 2, by creating a range tree on Pu,v of Õ(|Pu,v|)
space, we can enumerate all the points in such a rectangle with an Õ(1) delay.

The conclusion from the above is that, for each anchor pair (u, v), we can create a
range tree of Õ(|Pu,v|) space which, given any cycle ℓ-path cycle π from u to v, permits the
enumeration of every cycle ℓ-path π′, which is interior disjoint with π, with an Õ(1) delay.
The structures of all the anchor pairs use in total

∑
anc. pair (u, v) Õ(|Pu,v|) = Õ(#Pℓ) space.

With the challenge conquered, listing all the 2ℓ-cycles becomes an easy matter. We simply
look at each cycle ℓ-path π, retrieve every ℓ-path π′ interior disjoint with π, and make a
cycle by concatenating π and π′. The delay in cycle reporting is Õ(1) (each 2ℓ-cycle can be
reported twice).

Arbitrary Queries. Next, we remove the constraint q = (−∞, ∞) and tackle queries with
arbitrary q. A new issue now arises: a query can no longer afford to look at all the cycle
ℓ-paths. We say that a cycle ℓ-path from anchor u to inverse anchor v contributes to Gq if it
makes a 2ℓ-cycle in Gq with another interior disjoint cycle ℓ-path. We need a way to list
only the contributing cycle ℓ-paths.

11 The order should not be confused with the order by which the vertices appear in π.

S. Deng, S. Lu, and Y. Tao 6:17

Fix any cycle ℓ-path π with anchor pair (u, v). Let Sπ be the set of 2ℓ-cycles in G that
include π and have (u, v) as the anchor pair. Take an arbitrary cycle from Sπ. By definition
of anchor, u has the smallest attribute among the cycle’s vertices. Let w be the vertex in
the cycle with the largest attribute. For q = [x1, x2], the cycle appears in Gq if and only if
x1 ≤ Au and Aw ≤ x2. Let w∗ be the vertex with the smallest attribute among all such
w’s. It becomes evident that π contributes to the Gq of q = [x1, x2] if and only if x1 ≤ Au

and Aw∗ ≤ x2. We can therefore convert the retrieval of contributing cycle ℓ-paths to range
reporting on 2D points, using the method in Section 6.1. The resulting structure (a Chazelle’s
structure) stores a point converted from every cycle ℓ-path and uses O(#Pℓ) space. Give
any q, we can list the cycle ℓ-paths contributing to Gq with an Õ(1) delay.

Suppose that we have found a contributing cycle ℓ-path π with anchor pair (u, v). As
before, we proceed to find the cycle ℓ-paths π′ interior disjoint with π. The new requirement
here, however, is that π′ needs to be contributing as well. Recall that, in the q = (−∞, ∞)
scenario, we converted the task to range reporting on (ℓ − 1)-dimensional points. To deal
with arbitrary q = [x1, x2], we will increase the dimension by one.

To explain, in a fashion like before, let us list out the vertices of π – after excluding u

and v – as w1, ..., wℓ−1 in ascending order of attribute. Denote by wmax the vertex in π with
the largest attribute (wmax can be v). Convert π to an ℓ-dimensional point (Aw1 , ..., Awℓ−1 ,

Awmax). Let (Aw′
1
, ..., Aw′

ℓ−1
, Aw′

max
) be the point converted from π′ in the same manner. As

we already know Au ∈ [x1, x2] (recall that π is a contributing path), π′ is a path we want if
and only if it satisfies the conditions below:

Aw′
i

(1 ≤ i ≤ ℓ − 1) falls in one of the ℓ intervals in (6);
Aw′

max
≤ x2.

Thus, the point (Aw′
1
, ..., Aw′

ℓ−1
, Aw′

max
) must fall in one of the following ℓℓ−1 = O(1) rectan-

gles: q1 × q2 × ... × qℓ−1 × (−∞, x2], where each qi (i ∈ [1, ℓ − 1]) is an interval taken
independently from (6). By the above reasoning, for each anchor pair (u, v), we cre-
ate a set Pu,v of ℓ-dimensional points, each converted from a cycle ℓ-path with anchor
pair (u, v), and then build a range tree on Pu,v. The range trees of all anchor pairs use∑

anc. pair (u, v) Õ(|Pu,v|) = Õ(#Pℓ) space in total.
We now elaborate on the overall algorithm for answering a (Problem-2) query with

parameter q. First, enumerate all the cycle ℓ-paths contributing to Gq with an Õ(1) delay;
call this the outer enumeration. Every time such a path π – say with anchor pair (u, v) – is
obtained, we suspend outer enumeration and utilize the range tree on Pu,v to find all the
paths π′ discussed previously with an Õ(1) delay. Upon the delivery of a π′, concatenate
it with π and output the 2ℓ-cycle obtained. After exhausting all such π′, we resume outer
enumeration. This concludes the proof of Theorem 8.

References
1 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539, 2021.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM),
42(4):844–856, 1995.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997.

4 Albert Atserias, Martin Grohe, and Daniel Marx. Size bounds and query plans for relational
joins. SIAM Journal on Computing, 42(4):1737–1767, 2013.

5 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In Computer Science Logic, pages 208–222, 2007.

ICDT 2023

6:18 Space-Query Tradeoffs in Range Subgraph Counting and Listing

6 Michael J Bannister, Christopher DuBois, David Eppstein, and Padhraic Smyth. Windows
into relational events: Data structures for contiguous subsequences of edges. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 856–864, 2013.

7 Jon Louis Bentley. Decomposable searching problems. Information Processing Letters (IPL),
8(5):244–251, 1979.

8 Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. Near-linear time homomorphism
counting in bounded degeneracy graphs: The barrier of long induced cycles. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2315–2332, 2021.

9 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunctive queries
under updates. In Proceedings of ACM Symposium on Principles of Database Systems (PODS),
pages 303–318, 2017.

10 Andreas Bjorklund, Petteri Kaski, and Lukasz Kowalik. Counting thin subgraphs via packings
faster than meet-in-the-middle time. ACM Transactions on Algorithms, 13(4):48:1–48:26,
2017.

11 Andreas Bjorklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing tri-
angles. In Proceedings of International Colloquium on Automata, Languages and Programming
(ICALP), pages 223–234, 2014.

12 Nofar Carmeli and Markus Kroll. On the enumeration complexity of unions of conjunctive
queries. ACM Transactions on Database Systems (TODS), 46(2):5:1–5:41, 2021.

13 Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole Schweikardt.
Answering (unions of) conjunctive queries using random access and random-order enumeration.
In Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 393–409,
2020.

14 Farah Chanchary and Anil Maheshwari. Time windowed data structures for graphs. J. Graph
Algorithms Appl., 23(2):191–226, 2019.

15 Farah Chanchary, Anil Maheshwari, and Michiel Smid. Querying relational event graphs using
colored range searching data structures. Discrete Applied Mathematics, 286:51–61, 2020.

16 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM Journal of Computing, 17(3):427–462, 1988.

17 N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal of
Computing, 14(1):210–223, 1985.

18 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of ACM Symposium on Theory of Computing
(STOC), pages 210–223, 2017.

19 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

20 Shaleen Deep and Paraschos Koutris. Compressed representations of conjunctive query results.
In Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 307–322,
2018.

21 Arnaud Durand. Fine-grained complexity analysis of queries: From decision to counting and
enumeration. In Proceedings of ACM Symposium on Principles of Database Systems (PODS),
pages 331–346, 2020.

22 Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree
are computable with constant delay. ACM Trans. Comput. Log., 8(4):21, 2007.

23 Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. Enumerating answers to first-order
queries over databases of low degree. In Proceedings of ACM Symposium on Principles of
Database Systems (PODS), pages 121–131, 2014.

24 David Eppstein. Arboricity and bipartite subgraph listing algorithms. Information Processing
Letters (IPL), 51(4):207–211, 1994.

25 David Eppstein. Subgraph isomorphism in planar graphs and related problems. J. Graph
Algorithms Appl., 3(3):1–27, 1999.

S. Deng, S. Lu, and Y. Tao 6:19

26 David Eppstein, Maarten Loffler, and Darren Strash. Listing all maximal cliques in sparse
graphs in near-optimal time. In International Symposium on Algorithms and Computation
(ISAAC), volume 6506, pages 403–414, 2010.

27 Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Detecting and
counting small pattern graphs. SIAM J. Discret. Math., 29(3):1322–1339, 2015.

28 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and B. V. Raghavendra
Rao. Faster algorithms for finding and counting subgraphs. Journal of Computer and System
Sciences (JCSS), 78(3):698–706, 2012.

29 Ehud Friedgut. Hypergraphs, entropy, and inequalities. Am. Math. Mon., 111(9):749–760,
2004.

30 Pierre-Louis Giscard, Nils M. Kriege, and Richard C. Wilson. A general purpose algorithm for
counting simple cycles and simple paths of any length. Algorithmica, 81(7):2716–2737, 2019.

31 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Conditional lower bounds
for space/time tradeoffs. In Algorithms and Data Structures Workshop (WADS), pages 421–436.
Springer, 2017.

32 Isaac Goldstein, Moshe Lewenstein, and Ely Porat. On the hardness of set disjointness
and set intersection with bounded universe. In International Symposium on Algorithms and
Computation (ISAAC), pages 7:1–7:22, 2019.

33 Chinh T. Hoang, Marcin Kaminski, Joe Sawada, and R. Sritharan. Finding and listing induced
paths and cycles. Discrete Applied Mathematics, 161(4-5):633–641, 2013.

34 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in static and dynamic
evaluation of hierarchical queries. In Proceedings of ACM Symposium on Principles of Database
Systems (PODS), pages 375–392, 2020.

35 Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of structures
with bounded expansion. In Proceedings of ACM Symposium on Principles of Database Systems
(PODS), pages 297–308, 2013.

36 Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. Joins via geometric
resolutions: Worst-case and beyond. In Proceedings of ACM Symposium on Principles of
Database Systems (PODS), pages 213–228, 2015.

37 Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced subgraphs
efficiently. Information Processing Letters (IPL), 74(3-4):115–121, 2000.

38 Jaroslav Nesetril and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

39 Hung Q. Ngo, Ely Porat, Christopher Re, and Atri Rudra. Worst-case optimal join algorithms.
Journal of the ACM (JACM), 65(3):16:1–16:40, 2018.

40 Hung Q. Ngo, Christopher Re, and Atri Rudra. Skew strikes back: new developments in the
theory of join algorithms. SIGMOD Rec., 42(4):5–16, 2013.

41 Dan Olteanu and Jakub Zavodny. Size bounds for factorised representations of query results.
ACM Transactions on Database Systems (TODS), 40(1):2:1–2:44, 2015.

42 Saladi Rahul. Improved bounds for orthogonal point enclosure query and point location
in orthogonal subdivisions in R3. In Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 200–211, 2015.

43 Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. Enumeration for FO queries over
nowhere dense graphs. In Proceedings of ACM Symposium on Principles of Database Systems
(PODS), pages 151–163, 2018.

44 Luc Segoufin. Constant delay enumeration for conjunctive queries. SIGMOD Rec., 44(1):10–17,
2015.

45 Luc Segoufin and Alexandre Vigny. Constant delay enumeration for FO queries over databases
with local bounded expansion. In Proceedings of International Conference on Database Theory
(ICDT), volume 68, pages 20:1–20:16, 2017.

46 Yufei Tao. Algorithmic techniques for independent query sampling. In Proceedings of ACM
Symposium on Principles of Database Systems (PODS), 2022.

ICDT 2023

6:20 Space-Query Tradeoffs in Range Subgraph Counting and Listing

47 Yufei Tao and Ke Yi. Intersection joins under updates. Journal of Computer and System
Sciences (JCSS), 124:41–64, 2022.

48 Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Proceedings of
International Conference on Database Theory (ICDT), pages 96–106, 2014.

49 Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393:440–442, 1998.

50 Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted
subgraphs. SIAM Journal of Computing, 42(3):831–854, 2013.

A Correctness of the Reduction in Section 3.1

In our construction, Si (i ∈ [1, s]) corresponds to two set vertices with attribute values i and
i + s, respectively. To facilitate derivation, we make a copy of each set: define Si = Si−s

for each i ∈ [s + 1, 2s]. In the rest of the proof, we hold the view that each Si (i ∈ [1, 2s])
corresponds to only one set vertex, the one with attribute value i.

Consider a wedge occurrence with vertices u, v, and w where the edges are {u, v} and
{v, w}. We classify it as one of the two types below:

(type e-s-e) u and w are element vertices and v is a set vertex;

(type s-e-s) u and w are set vertices and v an element vertex.

▶ Lemma 12. For any interval q = [x, y] satisfying 1 ≤ x < s + 1/2 < y ≤ 2s, we have

the number of e-s-e wedges in Gq is
∑

i∈[x,y]
(|Si|

2
)
;

the number of s-e-s wedges in Gq is
∑

i∈[x,y],j∈[i+1,y] |Si ∩ Sj |.

Proof. To prove the first bullet, define an e-s-e tuple as (e1, Si, e2) where i ∈ q and e1 and
e2 are distinct elements in Si. The number of such tuples is

∑y
i=x

(|Si|
2
)
. Our construction

ensures a one-one correspondence between e-s-e tuples and e-s-e wedges in Gq.
To prove the second bullet, define an s-e-s tuple as (Si, e, Sj) where x ≤ i < j ≤ y and

e ∈ Si ∩Sj . The number of such tuples is
∑

i∈[x,y],j∈[i+1,y] |Si ∩Sj |. Our construction ensures
a one-one correspondence between s-e-s tuples and s-e-s wedges in Gq. ◀

To find out whether Sa ∩ Sb is empty, our reduction issues four Problem-1 queries with
intervals q1 = [a, s + b], q2 = [a + 1, s + b], q3 = [a, s + b − 1], and q4 = [a + 1, s + b − 1],
respectively. The above lemma is applicable to all these intervals. For i ∈ [1, 4], let c′

i (resp.
c′′

i) be the number of e-s-e (resp. s-e-s) wedges in Gqi ; this means that ci, the total number
of wedges in Gqi

, equals c′
i + c′′

i . According to Lemma 12, we have:

c′
1 − c′

2 − c′
3 + c′

4

=
∑

i∈[a,s+b]

(
|Si|
2

)
−

∑
i∈[a+1,s+b]

(
|Si|
2

)
−

∑
i∈[a,s+b−1]

(
|Si|
2

)

+
∑

i∈[a+1,s+b−1]

(
|Si|
2

)
= 0

S. Deng, S. Lu, and Y. Tao 6:21

and

c′′
1 − c′′

2 − c′′
3 + c′′

4

=

 ∑
i∈[a,s+b]

j∈[i+1,s+b]

|Si ∩ Sj | −
∑

i∈[a+1,s+b]
j∈[i+1,s+b]

|Si ∩ Sj |

−

 ∑
i∈[a,s+b−1]

j∈[i+1,s+b−1]

|Si ∩ Sj | −
∑

i∈[a+1,s+b−1]
j∈[i+1,s+b−1]

|Si ∩ Sj |

=
∑

j∈[a+1,s+b]

|Sa ∩ Sj | −
∑

j∈[a+1,s+b−1]

|Sa ∩ Sj |

= |Sa ∩ Ss+b|
= |Sa ∩ Sb|.

We thus conclude that c1 − c2 − c3 + c4 = |Sa ∩ Sb|.

B Proof of Lemma 9

Let us first consider a variant of the set disjointness problem.

Weighted Set Intersection Size. We have s ≥ 2 sets S1, S2, ..., Ss. Each Si (i ∈ [1, s])
is associated with a function weightSi

which assigns to each element e ∈ Si a value
weightSi

(e). Given distinct set ids a, b ∈ [1, s], a query returns

size(Sa, Sb) =
∑

e∈Sa∩Sb

weightSa
(e) · weightSb

(e). (7)

Let N =
∑s

i=1 |Si|. For any λ ∈ [1,
√

N], it is straightforward to build a structure
of O(N2/λ2) space answering a query in O(λ) time. Call Si (i ∈ [1, s]) a large set if
|Si| > λ, or a small set otherwise. The number of large sets is at most N/λ. For each pair
(i, j) ∈ [1, s] × [1, s], i ̸= j, such that Si and Sj are both large, we store size(Si, Sj); the space
needed is O(N2/λ2). Given a query with parameters a and b, return size(Sa, Sb) directly if
Sa and Sb are both large. Otherwise, assume, w.l.o.g., that Sa is small. We compute Sa ∩ Sb

in O(λ) time using a hash table (for each e ∈ Sa, check if e ∈ Sb). The result size(Sa, Sb)
can then be obtained easily.

Equipped with the above, next we describe a structure for the colored range wedge
counting problem to prove Lemma 9.

Structure. First obtain a canonical collection C of V (defined in Section 4) satisfying∑
U∈C |U | = Õ(n). For each U ∈ C – recall that U is a subset of V – construct a weighted

set as follows:
SU = the set of black vertices adjacent to at least one vertex in U ;
for each b ∈ SU , weightSU

(b) = the number of vertices in U adjacent to b.
These weighted sets constitute an instance of the weighted set intersection size problem.
Build a structure described earlier on the instance using the given parameter λ. The lemma
below implies that the structure occupies Õ(m2/λ2) space.

ICDT 2023

6:22 Space-Query Tradeoffs in Range Subgraph Counting and Listing

▶ Lemma 13.
∑

U∈C |SU | = Õ(m).

Proof. Each b ∈ SU is adjacent to a vertex u ∈ U . Pay a dollar to the edge {b, u} for each
such pair (b, u). Since an edge can receive a dollar only if it has a vertex in U , it can receive
up to two dollars12. |SU | is no more than the number of dollars paid. Do the above for all
U ∈ C. Each edge in G can receive Õ(1) dollars in total because every vertex appears in Õ(1)
subsets in C (Property P4-1 of C; see Section 4). ◀

For any distinct U, U ′ ∈ C, define size(SU , SU ′) as in (7). On the other hand, for each
U ∈ C, define

size(SU , SU) =
∑

b∈SU

(
weightSU

(b)
2

)
.

We store the value size(SU , SU) for all U . The total space is Õ(m2/λ2).
Before proceeding, the reader should note the following subtle fact about the function

size(., .):

Fact B-1: size(SU , SU ′) is the number of occurrences wedge(u, v, w) in G such that
u ∈ SU , w ∈ SU ′ , and v is black.

The fact holds even if U = U ′.

Query. Given a query with interval q, in Õ(1) time we can pick h = Õ(1) members U1, ..., Uh

from C that form a partition of Vq (Property P4-2 of C). The query returns∑
i,j∈[1,h]:i≤j

size(SUi , SUj). (8)

Each size(SUi
, SUj

) is either explicitly stored or can be obtained from the weighted set
intersection size structure in O(λ) time. The overall query time is therefore Õ(λ).

Fact B-1 and U1, ..., Uh forming a partition of Vq assure us that (8) counts only occurrences
wedge(u, v, w) in G such that Au ∈ q, Aw ∈ q, and v is black. To complete the correctness
argument, we still need to show that (8) counts every such occurrence exactly once. Indeed,
there exist unique a, b ∈ [1, h] such that a ≤ b, u ∈ Ua, and w ∈ Ub. The wedge is counted
only by the term in (8) with i = a and j = b.

C Proof of Lemma 11

Let us first review Hölder’s Inequality. Fix some positive integers α and β. Let
xi,j , for each i ∈ [1, α] and j ∈ [1, β], be non-negative real numbers;
yj , for each j ∈ [1, β], be non-negative real numbers satisfying

∑β
j=1 yj ≥ 1.

Under the convention 00 = 0, Hölder’s inequality states that:

α∑
i=1

β∏
j=1

x
yj

i,j ≤
β∏

j=1

(
α∑

i=1
xi,j

)yj

. (9)

A proof can be found in [29].

12 Two is possible: this happens when b and u are both black and both appear in U .

S. Deng, S. Lu, and Y. Tao 6:23

We now return to the context of Lemma 11. Given any j ∈ [1, d − 1] and (I1, I2, ..., Ij) ∈
I1 × ...Ij , we will use B(I1, I2, ..., Ij) as a short-form for the d-dimensional box

B(I1, ..., Ij , dom(Xj+1), ..., dom(Xd)).

As a special case, define B(∅) = B(dom(X1), ..., dom(Xd)).

▶ Lemma 14. For any j ∈ [1, d], we have∑
Ij∈Ij

∏
e∈E

|Re ⋉ B(I1, ..., Ij)|W (e) ≤
∏
e∈E

|Re ⋉ B(I1, ..., Ij−1)|W (e).

Proof. Define

Ej = {e ∈ E | Xj ∈ e}.

Since
∑

e∈Ej
W (e) ≥ 1 (W is a fractional edge covering), from Hölder’s inequality (9) we

have

∑
Ij∈Ij

∏
e∈Ej

|Re ⋉ B(I1, ..., Ij)|W (e)

≤
∏

e∈Ej

(∑
Ij∈Ij

|Re ⋉ B(I1, ..., Ij)|
)W (e)

≤
∏

e∈Ej

∣∣∣Re ⋉ B
(
I1, ..., Ij−1, dom(Xj)

)∣∣∣W (e)

=
∏

e∈Ej

|Re ⋉ B(I1, ..., Ij−1)|W (e) (10)

where the second inequality used the fact that Ij is a set of disjoint intervals in dom(Xj).
For each e ∈ E \ Ej , Re ⋉ B(I1, ..., Ij) does not depend on Ij and can be rewritten as

Re ⋉ B(I1, ..., Ij−1). We can thus derive:

∑
Ij∈Ij

∏
e∈E

|Re ⋉ B(I1, ..., Ij)|W (e)

=
∑

Ij∈Ij

(∏
e∈E\Ej

|Re ⋉ B(I1, ..., Ij)|W (e) ·
∏

e∈Ej

|Re ⋉ B(I1, ..., Ij)|W (e)
)

=
∏

e∈E\Ej

|Re ⋉ B(I1, ..., Ij)|W (e) ·
∑

Ij∈Ij

∏
e∈Ej

|Re ⋉ B(I1, ..., Ij)|W (e)

≤
∏

e∈E\Ej

|Re ⋉ B(I1, ..., Ij−1)|W (e) ·
∏

e∈Ej

|Re ⋉ B(I1, ..., Ij−1)|W (e)

=
∏
e∈E

|Re ⋉ B(I1, ..., Ij−1)|W (e).

where the inequality used (10). ◀

ICDT 2023

6:24 Space-Query Tradeoffs in Range Subgraph Counting and Listing

We can prove Lemma 11 with d applications of Lemma 14:∑
I1∈I1

...
∑

Id∈Id

∏
e∈E

|Re ⋉ B(I1, ..., Id)|W (e)

≤
∑

I1∈I1

...
∑

Id−1∈Id−1

∏
e∈E

|Re ⋉ B(I1, ..., Id−1)|W (e)

≤
∑

I1∈I1

...
∑

Id−2∈Id−2

∏
e∈E

|Re ⋉ B(I1, ..., Id−2)|W (e)

≤ ...

≤
∑

I1∈I1

∏
e∈E

|Re ⋉ B(I1)|W (e)

≤
∏
e∈E

|Re|W (e).

D Proof of Theorem 5

The reader should read this proof after having finished Section 5. The basic idea is to convert
Problem 2 to range join. Let X (resp. E) be the set of vertices (resp. edges) in the pattern
graph Q. The reader should not confuse X and E with V and E: the latter two are defined
on the data graph G. For each edge e ∈ E , construct a relation Re with two attributes by
inserting, for each edge {u, v} in G, two tuples (u, v) and (v, u). This defines a join instance
R = {Re | e ∈ E} with input size N = 2m · |E| = O(m).

Every occurrence of Q corresponds to a constant number of tuples in join(R). Motivated
by this, given a Problem-2 query with interval q, we issue a range join query on R with
q, which guarantees retrieving all the occurrences. The issue, however, is that not every
tuple in join(R) gives rise to an occurrence. To see this, consider Q = 4-cycle and, hence,
R has four relations with schemes (X1, X2), (X2, X3), (X3, X4), and (X4, X1), respectively.
Let {u, v} be an arbitrary edge in E; tuples (u, v), (v, u), (u, v), and (v, u) exist in the four
relations, respectively. Thus, join(R) contains a tuple (u, v, u, v) that does not correspond
to any occurrence.

The issue can be eliminated by slightly modifying the structure of [20], which we review
next. Consider an arbitrary set R of relations (with any number of attributes) defined in
Section 5. Deep and Koutris [20] proved the existence of a set B of boxes such that:

each box has the form B(I1, ..., Id) where Ii is an interval in dom(Xi) for i ∈ [1, d];
the boxes are disjoint and their union is B(dom(X1), dom(X2), ...,dom(Xd));
for each box B(I1, ..., Id), the join instance RI1,...,Id

has a non-empty result;
each box B(I1, ..., Id) satisfies AGM(I1, ..., Id) ≤ ∆;
|B| = O(Nρ∗

/∆).
The structure of [20] simply stores B itself and uses O(Nρ∗

/∆) space13. To enumerate
join(R), the algorithm of [20] looks at each B(I1, ..., Id) ∈ B and applies a worst-case optimal
join algorithm [39, 40, 48] to compute join(RI1,...,Id

) in Õ(AGM(I1, ..., Id)) = Õ(∆) time.
This guarantees a delay of Õ(∆).

We now adapt the structure to list all the occurrences of Q in G (fixing q = (−∞, ∞)).
Construct R from G and Q as before. Apply [20] to find a set B with all the properties
explained earlier. Then, inspect each box B(I1, ..., Id) ∈ B in turn and remove it from B if

13 Obviously, the relations of R also need to be stored separately.

S. Deng, S. Lu, and Y. Tao 6:25

all the occurrences of Q producible from join(RI1,...,Id
) can already be produced from the

boxes inspected earlier. The size of B can only decrease and therefore is still bounded by
O(Nρ∗

/∆). To find the occurrences, apply a worst-case optimal join algorithm on each box
in B. As each box generates at least one new occurrence, we guarantee a delay of Õ(∆).

To support (Problem-2) queries with arbitrary q, use the adapted structure to replace
that of [20] in the solution presented in Section 5.2. All the analysis still holds through. We
thus complete the proof of Theorem 5.

ICDT 2023

Constant-Delay Enumeration for SLP-Compressed
Documents
Martín Muñoz #

Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile

Cristian Riveros #

Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile

Abstract
We study the problem of enumerating results from a query over a compressed document. The
model we use for compression are straight-line programs (SLPs), which are defined by a context-free
grammar that produces a single string. For our queries we use a model called Annotated Automata,
an extension of regular automata that allows annotations on letters. This model extends the notion
of Regular Spanners as it allows arbitrarily long outputs. Our main result is an algorithm which
evaluates such a query by enumerating all results with output-linear delay after a preprocessing phase
which takes linear time on the size of the SLP, and cubic time over the size of the automaton. This
is an improvement over Schmid and Schweikardt’s result [25], which, with the same preprocessing
time, enumerates with a delay which is logarithmic on the size of the uncompressed document.
We achieve this through a persistent data structure named Enumerable Compact Sets with Shifts
which guarantees output-linear delay under certain restrictions. These results imply constant-delay
enumeration algorithms in the context of regular spanners. Further, we use an extension of annotated
automata which utilizes succinctly encoded annotations to save an exponential factor from previous
results that dealt with constant-delay enumeration over vset automata. Lastly, we extend our results
in the same fashion Schmid and Schweikardt did [26] to allow complex document editing while
maintaining the constant-delay guarantee.

2012 ACM Subject Classification Theory of computation → Database theory

Keywords and phrases SLP compression, query evaluation, enumeration algorithms

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.7

Funding This work was funded by ANID – Millennium Science Initiative Program – Code ICN17_002.

1 Introduction

A constant-delay enumeration algorithm is an efficient solution to an enumeration problem:
given an instance of the problem, the algorithm performs a preprocessing phase to build
some indices, to then continue with an enumeration phase where it retrieves each output, one
by one, taking constant-delay between consecutive outcomes. These algorithms provide a
strong guarantee of efficiency since a user knows that, after the preprocessing phase, she will
access the output as if we have already computed them. For these reasons, constant-delay
algorithms have attracted researchers’ attention, finding sophisticated solutions to several
query evaluation problems. Starting with Durand and Grandjean’s work [14], researchers
have found constant-delay algorithms for various classes of conjunctive queries [6, 10], FO
queries over sparse structures [19, 27], and MSO queries over words and trees [5, 2].

The enumeration problem over documents (i.e., strings) has been studied extensively
under the framework of document spanners [15]. A constant-delay algorithm for evaluating
deterministic regular spanners was first presented in [16] and extended to non-deterministic
in [3]. After these results, people have studied the enumeration problem of document spanners
in the context of ranked enumeration [12, 8], nested documents [22], or grammars [23, 4].

© Martín Muñoz and Cristian Riveros;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 7; pp. 7:1–7:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mmunos@uc.cl
mailto:cristian.riveros@uc.cl
https://doi.org/10.4230/LIPIcs.ICDT.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Constant-Delay Enumeration for SLP-Compressed Documents

Recently, Schmid and Schweikardt [25, 26] studied the evaluation problem for regular
spanners over a document compressed by a Straight-line Program (SLP). In this setting, one
encodes a document through a context-free grammar that produces a single string (i.e., the
document itself). This mechanism allows highly compressible documents, in some instances
allowing logarithmic space compared to the uncompressed copy. The enumeration problem
consists now of evaluating a regular spanner over an SLP-compressed document. In [25],
the authors provided a logarithmic-delay (over the uncompressed document) algorithm for
the problem, and in [26], they extended this setting to edit operations over SLP documents,
maintaining the delay. In particular, these works left open whether one can solve the
enumeration problem of regular spanners over SLP-compressed documents with a constant-
delay guarantee.

This paper aims to extend the understanding of the evaluation problem over SLP-
compressed documents in several directions. First, we study the evaluation problem of
annotated automata (AnnA) over SLP-compressed documents. These automata are a general
model for defining regular enumeration problems, which strictly generalizes the model of
extended variable-set automaton used in [25]. Second, we provide an output-linear delay
enumeration algorithm for the problem of evaluating an unambiguous AnnA over an SLP-
compressed document. In particular, this result implies a constant-delay enumeration
algorithm for evaluating extended variable-set automaton, giving a positive answer to the
open problem left in [25]. Third, we can show that we can extend this result to what we call a
succinctly annotated automaton, a generalization of AnnA whose annotations are succinctly
encoded by an enumeration scheme. We can develop an output-linear delay enumeration
algorithm for this model, showing a constant-delay algorithm for sequential (non-extended)
vset automata, strictly generalizing the work in [25]. Finally, we show that one can maintain
these algorithmic results when dealing with complex document editing as in [26].

The main technical result is to show that the data structure presented in [22], called
Enumerable Compact Set (ECS), can be extended to deal with shift operators (called Shift-
ECS). This extension allows us to compactly represent the outputs and “shift” the results in
constant time, which is to add or substract a common value to all elements in a set. Then, by
using matrices with Shift-ECS nodes, we can follow a bottom-up evaluation of the annotated
automaton over the grammar (similar to [25]) to enumerate all outputs with output-linear
delay. The combination of annotated automata and Shift-ECSs considerably simplifies the
algorithm presentation, reaching a better delay bound.

Organization of the paper. In Section 2 we introduce the setting and its corresponding
enumeration problem. In Section 3, we present our data structure for storing and enumerating
the outputs, and in Section 4 we show the evaluation algorithm. Section 5 offers the application
of the algorithmic results to document spanners and Section 6 shows how to extend these
results to deal with complex document editing. We finish the paper with future work in
Section 7.

2 Setting and main problem

In this section, we present the setting and state the main result. First, we define straight-line
programs, which we will use for the compressed representation of input documents. Then
we introduce the definition of annotated automaton, an extension of regular automata to
produce outputs. We use annotated automata as our computational model to represent
queries over documents. By combining both formalisms, we state the main enumeration
problem and main technical result.

M. Muñoz and C. Riveros 7:3

Documents. Given a finite alphabet Σ, a document d over Σ (or just a document) is a
string d = a1a2 . . . an ∈ Σ∗. Given documents d1 and d2, we write d1 ·d2 (or just d1d2) for the
concatenation of d1 and d2. We denote by |d| = n the length of the document d = a1 . . . an

(i.e., the number of symbols) and by ε the document of length 0. We use Σ∗ to denote the
set of all documents, and Σ+ for all documents with one or more symbols. To simplify the
notation, in the sequel we will use d for a document, and a or b for a symbol in Σ.

SLP compression. A context-free grammar is a tuple G = (N,Σ, R, S0), where N is a
non-empty set of non-terminals, Σ is finite alphabet, S0 ∈ N is the start symbol and
R ⊆ N × (N ∪ Σ)+ is the set of rules. As a convention, the rule (A,w) ∈ R is commonly
written as A→ w, and Σ and N are called terminal and non-terminal symbols, respectively. A
context-free grammar S = (N,Σ, R, S0) is a straight-line program (SLP) if R is a total function
from N to (N ∪ Σ)+ and the directed graph (N, {(A,B) | (A,w) ∈ R and B appears in w})
is acyclic. For every A ∈ N , let R(A) be the unique w ∈ (N ∪Σ)+ such that (A,w) ∈ R, and
for every a ∈ Σ let R(a) = a. We extend R to a morphism R∗ : (N ∪ Σ)∗ → Σ∗ recursively
such that R∗(d) = d when d is a document, and R∗(α1 . . . αn) = R∗(

R(α1) · . . . · R(αn)
)
,

where αi ∈ (N ∪ Σ), for i ≤ n. By our definition of SLP, R∗(A) is in Σ+, and uniquely
defined for each A ∈ N . Then we define the document encoded by S as doc(S) = R∗(S0).

▶ Example 1. Let S = (N,Σ, R, S0) be a SLP with N = {S0, A,B}, Σ = {a, b, r}, and
R = {S0 → ArBABA,A→ ba, B → Ara}. We then have that doc(A) = ba, doc(B) = bara
and doc(S) = doc(S0) = barbarababaraba, namely, the string represented by S.

We define the size of an SLP S = (N,Σ, R, S0) as |S| =
∑

A∈N |R(A)|, namely, the sum
of the lengths of the right-hand sides of all rules. It is important to note that an SLP S can
encode a document doc(S) such that | doc(S)| is exponentially larger with respect to |S|.
For this reason, SLPs stay as a commonly used data compression scheme [28, 20, 24, 11],
and they are often studied in particular because of their algorithmic properties; see [21] for
a survey. In this paper, we consider SLP compression to represent documents and use the
formalism of annotated automata for extracting relevant information from the document.

Annotated automata. An annotated automaton (AnnA for short) is a finite state automaton
where we label transitions with annotations. Formally, it is a tuple A = (Q,Σ,Ω,∆, q0, F)
where Q is a state set, Σ is an input alphabet, Ω is an output alphabet, q0 ∈ Q and F ⊆ Q are
the initial state and final set of states, respectively, and: ∆ ⊆ Q×Σ×Q ∪ Q× (Σ×Ω)×Q
is the transition relation, which contains read transitions of the form (p, a, q) ∈ Q× Σ×Q,
and read-write transitions of the form (p, (a, o⌣), q) ∈ Q× (Σ× Ω)×Q.

Similarly to transducers [7], a symbol a ∈ Σ is an input symbol that the machine reads
and o⌣∈ Ω is a symbol that indicates what the machine prints in an output tape. A run ρ of
A over a document d = a1a2 . . . an ∈ Σ∗ is a sequence of the form ρ = q0

b1−→ q1
b2−→ . . .

bn−→ qn

such that for each i ∈ [1, n] one of the following holds: (1) bi = ai and there is a transition
(qi−1, ai, qi) ∈ ∆ or (2) bi = (ai, o⌣) and there is a transition (qi−1, (ai, o⌣), qi) ∈ ∆. We say
that ρ is accepting if qn ∈ F .

We define the annotation of ρ as ann(ρ) = ann(b1) · . . . · ann(bn) such that ann(bi) = (o⌣, i)
if bi = (a, o⌣), and ann(bi) = ε otherwise, for each i ∈ [1, n]. Given an annotated automaton
A and a document d ∈ Σ∗, we define the set [[A]](d) of all outputs of A over d as: [[A]](d) =
{ann(ρ) | ρ is an accepting run of A over d}. Note that each output in [[A]](d) is a sequence
of the form (o⌣1, i1) . . . (o⌣k, ik) for some k ≤ n where i1 < i2 < . . . < ik and each (o⌣j , ij)
means that position ij is annotated with the symbol o⌣j .

ICDT 2023

7:4 Constant-Delay Enumeration for SLP-Compressed Documents

q0 q1 q2 q3

Σ

(b, ◦)

Σ \ {b}

(b, ◦)

Σ \ {b}

(b, ◦)

Σ

Figure 1 Example of an annotated automaton.

▶ Example 2. Consider an AnnA A = (Q,Σ,Ω,∆, q0, F) where Q = {q0, q1, q2, q3}, Σ =
{a, b, r}, Ω = {◦}, and F = {q3}. We define ∆ as the set of transitions that are depicted
in Figure 1. For the document d = barbarababaraba the set [[A]](d) contains the results
(◦, 1)(◦, 4)(◦, 8), (◦, 4)(◦, 8)(◦, 10) and (◦, 8)(◦, 10)(◦, 14). Intuitively, A selects triples of b
which are separated by characters other than b.

Annotated automata are the natural regular counterpart of annotated grammars intro-
duced in [4]. Moreover, it is the generalization and simplification of similar automaton
formalisms introduced in the context of information extraction [15, 23], complex event
processing [18, 17], and enumeration in general [8, 22]. In Section 5, we show how we can
reduce the automaton model of document spanners, called a variable-set automaton, into a
(succinctly) annotated automaton, generalizing the setting in [25].

As for other automata models, the notion of an unambiguous automaton is crucial for
removing duplicate outputs. We say that an AnnA A = (Q,Σ,Ω,∆, q0, F) is unambiguous
if for every d ∈ Σ∗ and every ν ∈ [[A]](d) there is exactly one accepting run ρ of A over d
such that ν = ann(ρ). On the other hand, we say that A is deterministic if ∆ is a partial
function of the form ∆ : (Q× Σ ∪ Q× (Σ× Ω))→ Q. Note that a deterministic AnnA is
also unambiguous. The definition of unambiguous is in line with the notion of unambiguous
annotated grammar [4] (see also [22]), and determinism with the idea of I/O-determinism
used in [16, 8, 18]. As usual, one can easily show that for every AnnA A there exists an
equivalent deterministic AnnA and, therefore, an equivalent unambiguous AnnA.

▶ Lemma 3. For every annotated automaton A there exists a deterministic annotated
automaton A′ such that [[A]](d) = [[A′]](d) for every d ∈ Σ∗.

Regarding the expressiveness of annotated automata, one can note that they have the same
expressive power as MSO formulas with monadic second-order free variables. We refer the
reader to [22] for an equivalent result in the context of nested documents.

Main problem and main result. We are interested in the problem of evaluating annotated
automata over an SLP-compressed document, namely, to enumerate all the annotations over
the document represented by an SLP. Formally, we define the main evaluation problem of
this paper as follows. Let C be a class of AnnA (e.g. unambiguous AnnA).

Problem: SLPEnum[C]
Input: an AnnA A ∈ C and an SLP S

Output: Enumerate [[A]](doc(S)).

As it is common for enumeration problems, we want to impose an efficiency guarantee
regarding the preprocessing of the input (e.g., A and S) and the delay between two consecutive
outputs. For this purpose, one often divides the work of the enumeration algorithm into
two phases: first, a preprocessing phase in which it receives the input and produces some
object D (e.g., a collection of indices) which encodes the expected output and, second, an

M. Muñoz and C. Riveros 7:5

enumeration phase which extracts the results from D. We say that such an algorithm has
f-preprocessing time if there exists a constant c such that, for every input I , the time for
the preprocessing phase of I is bounded by c · f(|I |). Instead, we say that the algorithm
has output-linear delay if there exists a constant d such that whenever the enumeration
phase delivers the sequence of outputs O1, . . . , Oℓ, the time for producing the next output
Oi is bounded by c · |Oi| for every i ≤ ℓ. As is expected, we assume here the computational
model of Random Access Machines (RAM) with uniform cost measure and addition and
subtraction as basic operations [1]. For a formal presentation of the output-linear delay
guarantee, we refer the reader to [16]. As it is commonly done on algorithms over SLPs and
other compression schemes, we assume that the registers in the underlying RAM-model allow
for constant-time arithmetical operations over positions in the uncompressed document (i.e.,
they have O(log | doc(S)|) size).

The notion of output-linear delay is a refinement of the better-known constant-delay
bound, which requires that each output has a constant size (i.e., concerning the input). Since
even the document encoded by an SLP can be of exponential length, it is more reasonable in
our setting to use the output-linear delay guarantee.

The following is the main technical result of this work.

▶ Theorem 4. Let C be the class of all unambiguous AnnAs. Then one can solve the problem
SLPEnum[C] with linear preprocessing time and output-linear delay. Specifically, there exists
an enumeration algorithm that runs in |A|3 × |S|-preprocessing time and output-linear delay
for enumerating JAK(doc(S)) given an unambiguous AnnA A and a SLP S.

We dedicate the rest of the paper to presenting the enumeration algorithm of Theorem 4.
In Section 4 we explain the preprocessing phase of the algorithm. Before that, in the next
section, we explain how Enumerable Compact Sets with Shifts work, which is the data
structure used in the preprocessing phase to store outputs.

3 Enumerable compact sets with shifts

We present here the data structure, called Enumerable Compact Sets with Shifts, to compactly
store the outputs of evaluating an annotated automaton over a straight-line program. This
structure extends Enumerable Compact Sets (ECS) introduced in [22] (we note that a similar
data structure for constant-delay enumeration was previously proposed in [2]). Indeed, people
have also used ECS extensions in [4, 9]. This new version extends ECS by introducing a shift
operator, which helps compactly move all outputs’ positions with a single call. Although
the shift nodes require a revision of the complete ECS model, it simplifies the evaluation
algorithm in Section 4 and achieves output-linear delay for enumerating all outputs. For
completeness of presentation, this section goes through all main details as in [22].

The structure. Let Ω be an output alphabet such that Ω has no elements in common with
Z or {∪,⊙} (i.e., Ω ∩ Z = ∅ and Ω ∩ {∪,⊙} = ∅). We define an Enumerable Compact Set
with Shifts (Shift-ECS) as a structure D = (Ω, V, ℓ, r, λ) such that V is a finite sets of nodes,
ℓ : V → V and r : V → V are the left and right partial functions, and λ : V → Ω∪Z∪ {∪,⊙}
is a labeling function. We assume that D forms an acyclic graph (i.e., (V, {(v, ℓ(v)), (v, r(v)) |
v ∈ V }) is acyclic). Further, for every node v ∈ V , ℓ(v) is defined iff λ(v) ∈ Z ∪ {∪,⊙}, and
r(v) is defined iff λ(v) ∈ {∪,⊙}. Notice that, by definition, nodes labeled by Ω are bottom
nodes in the acyclic structure formed by D, and nodes labeled by Z or {∪,⊙} are inner

ICDT 2023

7:6 Constant-Delay Enumeration for SLP-Compressed Documents

nodes. Here, Z-nodes are unary operators (i.e., r(·) is not defined over them), and ∪-nodes
or ⊙-nodes are binary operators. Indeed, we say that v ∈ V is a bottom node if λ(v) ∈ Ω, a
product node if λ(v) = ⊙, a union node if λ(v) = ∪, and a shift node if λ(v) ∈ Z. Finally, we
define |D| = |V |.

The outputs retrieved from a Shift-ECS are strings of the form (o⌣1, i1)(o⌣2, i2) . . . (o⌣ℓ, iℓ),
where o⌣j ∈ Ω and ij ∈ Z. To build them, we use the shifting function sh : (Ω×Z)×Z→ (Ω×Z)
such that sh((o⌣, i), k) = (o⌣, i + k). We extend this function to strings over Ω × Z such
that sh((o⌣1, i1) . . . (o⌣ℓ, iℓ), k) = (o⌣1, i1 + k) . . . (o⌣ℓ, iℓ + k) and to set of strings such that
sh(L, k) = {sh(ν, k) | ν ∈ L} for every L ⊆ (Ω× Z)∗.

Each node v ∈ V of a Shift-ECS D = (Ω, V, ℓ, r, λ) defines a set of output strings.
Specifically, we associate a set of strings [[D]](v) recursively as follows: (1) [[D]](v) = {(o⌣, 1)}
whenever λ(v) = o⌣∈ Ω, (2) [[D]](v) = [[D]](ℓ(v))∪ [[D]](r(v)) whenever λ(v) = ∪, (3) [[D]](v) =
[[D]](ℓ(v)) · [[D]](r(v)) whenever λ(v) = ⊙, where L1 · L2 = {w1 · w2 | w1 ∈ L1 and w2 ∈ L2},
and (4) [[D]](v) = sh([[D]](ℓ(v)), λ(v)) whenever λ(v) ∈ Z.

▶ Example 5. Suppose Ω = {x, y}. Consider the Shift-ECS D = (Ω, V, ℓ, r, λ) where
V = {v1, v2, v3, v4, v5}, ℓ(v1) = v4, r(v1) = v2, ℓ(v2) = v3, ℓ(v3) = v4, r(v3) = v5, λ(v1) = ⊙,
λ(v2) = +2, λ(v3) = ∪, λ(v4) = x and λ(v5) = y. We show this Shift-ECS in Figure 2 (a). The
sets of words [[D]] associated to each node are thus: [[D]](v4) = {(x, 1)}, [[D]](v5) = {(y, 1)},
[[D]](v3) = {(x, 1), (y, 1)}, [[D]](v2) = {(x, 3), (y, 3)} and [[D]](v1) = {(x, 1)(x, 3), (x, 1)(y, 3)}.

Enumeration. Given that every node of a Shift-ECS represents a set of strings, we are
interested in enumerating them with output-linear delay. Specifically, we focus on the
following problem. Let C be a class of Enumerable Compact Sets with Shifts.

Problem: ShiftECSEnum[C]
Input: a Shift-ECS D ∈ C and a node v of D

Output: Enumerate [[D]](v).

The plan then is to provide an enumeration algorithm with output-linear delay for
ShiftECSEnum[C] and some helpful class C. A reasonable strategy to enumerate the set
[[D]](v) is to do a traversal on the structure while accumulating the shift values in the path
to each leaf. However, to be able to do this without repetitions and output-linear delay, we
need to guarantee two conditions: first, that one can obtain every output from D in only
one way and, second, union and shift nodes are close to an output node (i.e., a bottom node
or a product node), in the sense that we can always reach them in a bounded number of
steps. To ensure that these conditions hold, we impose two restrictions for an ECS.

For the first restriction, we say that an ECS D is duplicate-free if the following hold: (1)
for every union node v in D it holds that [[D]](ℓ(v)) and [[D]](r(v)) are disjoint and (2) for
every product node v and for every w ∈ [[D]](v), there exists a unique way to decompose
w = w1 · w2 such that w1 ∈ [[D]](ℓ(v)) and w2 ∈ [[D]](r(v)).

For the second restriction, we define k-bounded Shift-ECS. Given a Shift-ECS D, define
the (left) output-depth of a node v ∈ V , denoted by odepthD(v), recursively as follows:
odepthD(v) = 0 whenever λ(v) ∈ {⊙} ∪ Ω, and odepthD(v) = odepthD(ℓ(v)) + 1 whenever
λ(v) ∈ {∪}∪Z. Then, for k ∈ N we say that D is k-bounded if odepthD(v) ≤ k for all v ∈ V .

▶ Proposition 6. Fix k ∈ N. Let Ck be the class of all duplicate-free and k-bounded Shift-
ECSs. Then one can solve the problem ShiftECSEnum[Ck] with output-linear delay and
without preprocessing (i.e. constant preprocessing time).

M. Muñoz and C. Riveros 7:7

Operations. The next step is to provide a set of operations that allow extending a Shift-ECS
D in a way that maintains k-boundedness. Fix a Shift-ECS D = (Ω, V, ℓ, r, λ). Then for any
o⌣∈ Ω, v1, . . . , v4, v ∈ V and k ∈ Z, we define the operations:

add(o⌣) → v′ prod(v1, v2) → v′

union(v3, v4) → v′ shift(v, k) → v′

such that [[D]](v′) := {(o⌣, 1)}; [[D]](v′) := [[D]](v1) · [[D]](v2); [[D]](v′) := [[D]](v3) ∪ [[D]](v4);
and [[D]](v′) := sh([[D]](v), k), respectively. Here we assume that the union and prod respect
properties (1) and (2) of a duplicate-free Shift-ECS, namely, [[D]](v3) and [[D]](v4) are disjoint
and, for every w ∈ [[D]](v1) · [[D]](v2), there exists a unique way to decompose w = w1 · w2
such that w1 ∈ [[D]](v1) and w2 ∈ [[D]](v2).

Strictly speaking, each operation above should receive as input the data structure D, and
output a fresh node v′ plus a new data structure D′ = (Ω, V ′, ℓ′, r′, λ′) such that D′ is an
extension of D, namely, obj ⊆ obj′ for every obj ∈ {V, ℓ, r, λ} and v′ ∈ V ′ \ V . Note that we
assume that each operation can only extend the data structure with new nodes and that old
nodes are immutable after each operation. For simplification, we will not explicitly refer to
D on the operations above, although they modify D directly by adding new nodes.

To define the above operations, we impose further restrictions on the structure below the
operations’ input nodes to ensure k-boundedness. Towards this goal, we introduce the notion
of safe nodes. We say that a node v ∈ V is safe if v is a shift node and either ℓ(v) is an
output node (i.e., a bottom or product node), or u = ℓ(v) is an union node, odepthD(u) = 1,
and r(u) is a shift node with odepthD(r(u)) ≤ 2. In other words, v is safe if it is a shift
node over an output node or over a union node with an output on the left and a shift node
on the right, whose output depth is less or equal to 2. The trick then is to show that all
operations over Shift-ECSs receive only safe nodes and always output safe nodes. As we will
see, safeness will be enough to provide a light structural restriction on the operations’ input
nodes in order to maintain k-boundedness after each operation.

Next, we show how to implement each operation assuming that every input node is safe.
In fact, the cases of add and shift are straightforward. For add(o⌣) → v′ we extend D with
two fresh nodes v′ and u such that λ(u) = o⌣, λ(v′) = 0, and ℓ(v′) = u. In other words, we
hang a fresh 0-shift node v′ over a fresh o⌣-node u, and output v′. For shift(v, k)→ v′, add
the fresh node v′ to D, and set ℓ(v′) = ℓ(v) and λ(v′) = λ(v) + k. One can easily check that
in both cases the node v′ represents the desired set, is safe, and k-boundedness is preserved.

To show how to implement prod(v1, v2) → v′, recall that v1 and v2 are safe and, in
particular, both are shift nodes. Then we need to extend D with fresh nodes v′, v′′, and v′′′

such that ℓ(v′) = v′′, ℓ(v′′) = ℓ(v1), r(v′′) = v′′′, ℓ(v′′′) = ℓ(v2), λ(v′) = λ(v1), λ(v′′) = ⊙
and λ(v′′′) = λ(v2) − λ(v1). Figure 2(b) shows a diagram of this gadget. One can easily
check that v′ represents the product of v1 and v2, v′ is safe, and the new version of D is
k-bounded whenever D is also k-bounded.

The last operation is union(v3, v4)→ v′. For the sake of presentation, we only provide
the construction for the most involved case, which is when both u3 = ℓ(v3) and u4 = ℓ(v4)
are union nodes. We show the gadget for this case in Figure 2(c). This construction has
several interesting properties. First, one can check that [[D]](v′) = [[D]](v3) ∪ [[D]](v4) since
each shift value is carefully constructed so that the accumulated shift value from v′ to
each node remains unchanged. Thus, the semantics is well-defined. Second, union can be
computed in constant time in |D| given that we only need to add a fixed number of fresh
nodes. Furthermore, the produced node v′ is safe, although some of the new nodes are not
necessarily safe. Finally, the new D is 3-bounded whenever D is 3-bounded. To see this, we

ICDT 2023

7:8 Constant-Delay Enumeration for SLP-Compressed Documents

xv4 : yv5 :

∪v3 :

+2v2 :

⊙v1 :

(a)

ℓ(v1)

k1v1 :

ℓ(v2)

k2v2 :

(k2 − k1)v′′′ :

⊙v′′ :

k1v′ :

(b)
ℓ(u3) ℓ(r(u3))

k′
1r(u3) :

∪u3 :

k1v3 :

ℓ(u4)) ℓ(r(u4))

k′
2r(u4) :

∪u4 :

k2v4 :

k1v′ :

∪v′
1 :

k2 − k1v′
2 :

∪v′
3 :

k1 + k′
1 − k2v′

4 :

∪v′
5 :

k2 + k′
2

−k1 − k′
1

v′
6 :

(c)

Figure 2 (a) An example of a Shift-ECS with output alphabet {x, y}. (b) Gadget for
prod(D, v1, v2, k). (c) Gadget for union(D, v3, v4). We use dashed and solid edges for the left
and right mappings, respectively. Node names are in grey at the left of each node. In (b) and (c),
square nodes are the input and output nodes of each operation.

first have to notice that ℓ(u3) and ℓ(u4) are output nodes, and that odepth(ℓ(r(u3))) ≤ 1
and odepth(ℓ(r(u4))) ≤ 1. We can check the depth of each node going from the bottom to
the top: odepth(v′

6) ≤ 2, odepth(v′
5) ≤ 2, odepth(v′

4) ≤ 3, odepth(v′
3) ≤ 1, odepth(v′

2) ≤ 2,
odepth(v′

1) ≤ 1 and odepth(v′) ≤ 2.
By the previous discussion, if we start with a Shift-ECS D which is 3-bounded (in

particular, empty) and we apply the add, prod, union and shift operators between safe nodes
(which also produce safe nodes), then the result is 3-bounded as well. Furthermore, the
data structure is fully-persistent [13]: for every node v in D, [[D]](v) is immutable after each
operation. Finally, by Proposition 6, the result can be enumerated with output-linear delay.

▶ Theorem 7. The operations add, prod, union and shift take constant time and are fully
persistent. Furthermore, if we start from an empty Shift-ECS D and apply these operations
over safe nodes, the result node v′ is always a safe node and the set [[D]](v) can be enumerated
with output-linear delay (without preprocessing) for every node v.

The empty- and ε-nodes. The last step of constructing our model of Shift-ECS is the
inclusion of two special nodes that produce the empty set and the empty string, called empty-
and ε-nodes, respectively.

We start with the empty node, which is easier to incorporate into a Shift-ECS. Consider
a special node ⊥ and include it on every Shift-ECS D, such that [[D]](⊥) = ∅. Then extend
the operations prod, union, and shift accordingly to the empty set, namely, prod(v1, v2)→ ⊥
whenever v1 or v2 is equal to ⊥, union(v,⊥) = union(⊥, v) → v, and shift(⊥, k) → ⊥ for
every nodes v1, v2, v, and k ∈ Z. It is easy to check that one can include the ⊥-node into
Shift-ECSs without affecting the guarantees of Theorem 7.

M. Muñoz and C. Riveros 7:9

The other special node is the ε-node. Let ε denote a special node, included on every
Shift-ECS D, such that [[D]](ε) = {ε}. With these new nodes in a Shift-ECS, we need to revise
our notions of output-depth, duplicate-free, and k-boundedness to change the enumeration
algorithm, and to extend the operations add, prod, union, and shift over so-called ε-safe nodes
(i.e., the extension of safe nodes with ε). Given space restrictions, we omit the details on
how to implement these ε-nodes and how we can preserve Proposition 6 and Theorem 7.

For the rest of the paper, we assume that a Shift-ECS is a tuple D = (Ω, V, ℓ, r, λ,⊥, ε)
where we define Ω, V, ℓ, r, λ as before, and ⊥, ε ∈ V are the empty and ε nodes, respectively.
Further, we assume that ℓ, r, and λ are extended accordingly, namely, ℓ(v) and r(v) are not
defined whenever v ∈ {⊥, ε}, and λ : V → Ω∪Z∪{∪,⊙,⊥, ε} such that λ(v) = ⊥ (λ(v) = ε)
iff v = ⊥ (v = ε, resp.). Finally, we can extend Theorem 7 for the Shift-ECS extension as
follows.

▶ Theorem 8. The operations add, prod, union and shift over Shift-ECS extended with bot-
and ε-nodes take constant time. Furthermore, if we start from an empty Shift-ECS D and
apply add, prod, union, and shift over ε-safe nodes, the resulting node v′ is always an ε-safe
node, and the set [[D]](v) can be enumerated with output-linear delay without preprocessing
for every node v.

4 Evaluation of annotatated automata over SLP-compressed strings

This section shows our algorithm for evaluating an annotated automaton over an SLP-
compressed document. This evaluation is heavily inspired by the preprocessing phase in [25],
as it primarily adapts the algorithm to the Shift-ECS data structure. In a nutshell, we
keep matrices of Shift-ECS nodes, where each matrix represents the outputs of all partial
runs of the annotated automaton over fragments of the compressed strings. We extend the
operations of Shift-ECS over matrices of nodes, which will allow us to compose matrices, and
thus compute sequences of compressed strings. Then the algorithm proceeds in a dynamic
programming fashion, where matrices are computed bottom-up for each non-terminal symbol.
Finally, the start symbol of the SLP will contain all the outputs. The result of this process
is that each matrix entry succinctly represents an output set, can be operated in constant
time, and can be enumerated with output-linear delay.

Matrices of nodes. The main ingredient for the evaluation algorithm are matrices of nodes
for encoding partial runs of annotated automata. To formalize this notion, fix an unambiguous
AnnA A = (Q,Σ,Ω,∆, q0, F) and a Shift-ECS D = (Ω, V, ℓ, r, λ,⊥, ε). We define a partial
run ρ of A over a document d = a1a2 . . . an ∈ Σ∗ as a sequence ρ = p0

b1−→ . . .
bn−→ pn

such that either bi = ai and (qi−1, ai, qi) ∈ ∆, or bi = (ai, o⌣) and (qi−1, (ai, o⌣), qi) ∈ ∆.
Additionally, we say that the partial run ρ is from state p to state q if p0 = p and pn = q. In
other words, partial runs are almost equal to runs, except they can start at any state p.

For the algorithm, we use the set of all Q × Q matrices where entry M [p, q] is a node
in V for every p, q ∈ Q. Intuitively, each node M [p, q] represents all outputs [[D]](M [p, q])
of partial runs from state p to state q, which can be enumerated with output-linear delay
by Theorem 8. Intuitively, M [p, q] = ⊥ represents that there is no run from p to q, and
M [p, q] = ε represents that there is a single run without outputs.

To combine matrices over D-nodes, we define two operations. The first operation is
the matrix multiplication over the semiring (2(Ω×Z)∗

,∪, ·, ∅, {ε}) but represented over D.
Formally, let Q = {q0, . . . , qm−1} with m = |Q|. Then, for two m×m matrices M1 and M2,
we define M1 ⊗M2 such that for every p, q ∈ Q:

ICDT 2023

7:10 Constant-Delay Enumeration for SLP-Compressed Documents

Algorithm 1 The enumeration algorithm of an unambiguous AnnA A = (Q, Σ, Ω, ∆, q0, F) over
an SLP S = (N, Σ, R, S0).

1: procedure Evaluation(A, S)
2: Initialize D as an empty Shift-ECS
3: NonTerminal(S0)
4: v ← ⊥
5: for each q ∈ F do
6: v ← union(v,MS0 [q0, q])
7: Enumerate(v,D)

8: procedure Terminal(a)
9: Ma ← {[p, q]→ ⊥ | p, q ∈ Q}

10: for each (p, (a, o⌣), q) ∈ ∆ do
11: Ma[p, q]← union(Ma[p, q], add(o⌣))
12: for each (p, a, q) ∈ ∆ do
13: Ma[p, q]← union(Ma[p, q], ε)
14: lena ← 1

15: procedure NonTerminal(X)
16: MX ← {[p, q]→ ⊥ | p, q ∈ Q, p ̸= q}∪

{[p, q]→ ε | p, q ∈ Q, p = q}
17: lenX ← 0
18: for i = 1 to |R(X)| do
19: Y ← R(X)[i]
20: if MY is not defined then
21: if Y ∈ Σ then
22: Terminal(Y)
23: else
24: NonTerminal(Y)
25: MX ←MX ⊗ shift(MY , lenX)
26: lenX ← lenX + lenY

(M1 ⊗M2)[p, q] := unionm−1
i=0

(
prod

(
M1[p, qi],M2[qi, q]

))
where unionm−1

i=0 Ei := union(. . . union(union(E1, E2), E3) . . . , Em). In other words, the node
(M1 ⊗M2)[p, q] represents the set

⋃m−1
i=0

(
[[D]](M1[p, qi]) · [[D]](M2[qi, q])

)
.

The second operation for matrices is the extension of the shift operation. Formally,
shift(M,k)[p, q] := shift(M [p, q], k) for a matrix M , k ∈ Z, and p, q ∈ Q. Since each operation
over D takes constant time, overall multiplying M1 with M2 takes time O(|Q|3) and shifting
M with k takes time O(|Q|2).

The algorithm. We present the evaluation algorithm for the SLPEnum problem in Al-
gorithm 1. As expected, the main procedure Evaluation receives as input an unambiguous
annotated automaton A = (Q,Σ,Ω,∆, q0, F) and an SLP S = (N,Σ, R, S0), and enumerates
all outputs in [[A]](doc(S)). To simplify the notation, in Algorithm 1 we assume that A and
S are globally defined, and we can access them in any subprocedure. Similarly, we use a
Shift-ECS D, and matrix MX and integer lenX for every X ∈ N ∪ Σ, which can globally be
accessed at any place as well.

The main purpose of the algorithm is to compute MX and lenX . On one hand, MX is a
Q×Q matrix where each node entry MX [p, q] represents all outputs of partial runs from p

to q. On the other hand, lenX is the length of the string R∗(X) (i.e., the string produced
from X). Both MX and lenX start undefined, and we compute them recursively, beginning
from the non-terminal symbol S0 and by calling the method NonTerminal(S0) (line 3).
After MS0 was computed, we can retrieve the set [[A]](S) by taking the union of all partial
run’s outputs from the initial state q0 to a state q ∈ F , and storing it in node v (lines 4–6).
Finally, we can enumerate [[A]](S) by enumerating all outputs represented by v (line 7).

The workhorses of the evaluation algorithm are procedures NonTerminal and Terminal
in Algorithm 1. The former computes matrices MX recursively whereas the latter is in
charge of the base case Ma for a terminal a ∈ Σ. For computing this base case, we can
start with Ma with all entries equal to the empty node ⊥ (line 9). Then if there exists a
read-write transition (p, (a, o⌣), q) ∈ ∆, we add an output node o⌣ to Ma[p, q], by making the

M. Muñoz and C. Riveros 7:11

union between the current node at Ma[p, q] with the node add(o⌣) (line 11). Also, if a read
transition (p, a, q) ∈ ∆ exists, we do the same but with the ε-node (line 13). Finally, we set
the length of lena to 1, and we have covered the base case.

For the recursive case (i.e., procedure NonTerminal(X)), we start with a sort of
“identity matrix” MX where all entries are set up to the empty-node except the ones where
p = q that are set up to the ε-node, and the value lenX = 0 (lines 16–17). Then we iterate
sequentially over each symbol Y of R(X), where we use R(X)[i] to denote the i-th symbol
of R(X) (lines 18–19). If MY is not defined, then we recursively compute Terminal(Y)
or NonTerminal(Y) depending on whether Y is in Σ or not, respectively (lines 20–24).
The matrix MY is memoized (by having the check in line 20 to see if it is defined or not)
so we need to compute it at most once. After we have retrieved MY , we can compute all
outputs for R(X)[1] . . . R(X)[i] by multiplying the current version of MX (i.e., the outputs
of R(X)[1] . . . R(X)[i− 1]), with the matrix MY shifted by the current length lenX (line 25).
Finally, we update the current length of X by adding lenY (line 26).

Regarding correctness, the algorithm follows a direct matrix evaluation over the SLP
grammar, where its correctness depends on the Shift-ECS D. Notice that, although all
operations over nodes are not necessarily duplicate-free, we know that the runs from the initial
state q0 to the final states are unambiguous. Then the operations used for the final output
are duplicate-free. Regarding performance, the main procedure calls NonTerminal or
Terminal at most once for every symbol. Note that after making all calls to Terminal, each
transition in ∆ is seen exactly once, and NonTerminal takes time at most O(|R(X)|× |Q|3)
not taking into account the calls inside. Overall, the preprocessing time is O(|A|+ |S|× |Q|3).

▶ Theorem 9. Algorithm 1 enumerates the set [[A]](S) correctly for every unambiguous AnnA
A and every SLP-compressed document S, with output-linear delay and after a preprocessing
phase that takes time O(|A|+ |S| × |Q|3).

We want to finish by noticing that, contrary to [25], our evaluation algorithm does not
need to modify the grammar S into Chomsky’s normal form (CNF) since we can evaluate A
over S directly. Although passing S into CNF can be done in linear time over S [25], this
step can incur an extra cost, which we can avoid in our approach.

5 Applications in regular spanners

It was already shown in [4] that working with annotations directly and then providing a
reduction from a spanner query to an annotation query is sometimes more manageable. In this
section we will do just that: starting from a document-regular spanner pair (d,M), we will
show how to build a document-annotated automaton pair (d′,A) such that M(d) = [[A]](d′).
Although people have studied various models of regular spanners in the literature, we will
focus here on sequential variable-set automata (VA) [15] and sequential extended VA [16].
The latter, which we handle first, is essentially the model that the work of Schmid and
Schweikardt used in their results. In the second half of the section we reduce the former
to succinctly annotated automata, an extension of AnnA that allows output symbols to be
stored concisely. These reductions imply constant-delay enumeration for the spanner tasks.

Variable-set automata. Consider a document d = a1 . . . an over an input alphabet Σ.
A span of d is a pair [i, j⟩ with 1 ≤ i ≤ j ≤ n + 1. We define the substring of [i, j⟩ by
d[i, j⟩ = ai . . . aj−1. We also consider a finite set of variables X and we define a mapping as
a partial function that maps some of these variables to spans. We define a document spanner
as a function assigning every input document d to a set of mappings [15].

ICDT 2023

7:12 Constant-Delay Enumeration for SLP-Compressed Documents

A variable-set automaton (VA for short) is a tuple A = (Q,Σ,X ,∆, q0, F) where Q is
a set of states, q0 ∈ Q, F ⊆ Q, and ∆ consists of read transitions (p, a, q) ∈ Q × Σ × Q
and variable transitions (p,⊢x, q) or (p,⊣x, q) where p, q ∈ Q and x ∈ X . The symbols
⊢x and ⊣x are referred to as variable markers of x, where ⊢x is opening and ⊣x is closing.
Given a document d = a1 . . . an ∈ Σ∗ a configuration of A is a pair (q, i) where q ∈ Q and
i ∈ [1, n+ 1]. A run ρ of A over d is a sequence ρ = (q0, i0) σ1−→ (q1, i1) σ2−→ · · · σm−−→ (qm, im)
where i0 = 1, im = n + 1, and for each j ∈ [0,m − 1], (qj , σj+1, qj+1) ∈ ∆ and either (1)
σj+1 = aij and ij+1 = ij + 1, or (2) σj+1 ∈ {⊢x,⊣x| x ∈ X } and ij+1 = ij . We say that
ρ is accepting if qm ∈ F and that it is valid if variables are non-repeating, and they are
opened and closed correctly. If ρ is accepting and valid, we define the mapping µρ which
maps x ∈ X to the span [ij , ik⟩ iff σj =⊢x and σk =⊣x. We say that A is sequential if
every accepting run is also valid. Finally, define the document spanner [[A]] as the function
[[A]](d) = {µρ | ρ is an accepting and valid run of A over d}. Like in AnnAs, we say A is
unambiguous if for each mapping µ ∈ [[A]](d) there is exactly one accepting run ρ of T over d
such that µρ = µ.

Extended VA. For the sake of presentation, we will skip a formal definition for extended
VA, and we refer the reader to [16]. These are automata in which the transitions read either
letters in Σ or sets of markers from {⊢x,⊣x| x ∈ X }. Runs are defined as sequences which
alternate between transitions that read letters and sets, and a mapping associated to a run
is defined as one would expect, where x ∈ X is mapped to the span [i, j⟩ iff ⊢x is in the i-th
set of the run, and ⊣x is in the j-th set in the run. We define sequential and unambiguous
extended VA analogously to VA.

To illustrate the reduction from sequential extended VA to annotated automata, consider
a document d = aab, and a run of some extended VA with variable set X = {x, y} over d:

ρ = q0
∅−→ q0

a−→ q1
{⊢x,⊣x,⊢y}−−−−−−−→ p1

a−→ q2
∅−→ q2

b−→ q3
{⊣y}−−−→ p3

This run defines the mapping µ which assigns µ(x) = [2, 2⟩ and µ(y) = [2, 4⟩. To translate
this run to the annotated automata model, first we append an end-of-document character to
d, and then we “push” the marker sets one transition to the right. We then obtain a run of
some annotated automaton with output set Ω = 2{⊢x,⊣x|x∈X} over the document d′ = aab#:

ρ′ = q′
0

a−→ q′
1

(a,{⊢x,⊣x,⊢y})−−−−−−−−−→ q′
2

b−→ q′
3

(#,{⊣y})−−−−−→ q′
4

The annotation of this run would then be ν = (2, {⊢x,⊣x,⊢y})(4, {⊣y}), from where the
mapping µ can be extracted directly. The reduction from extended VA into annotated
automata operates in a similar fashion: the read transitions are kept, and for each pair of
transitions (p, S, q), (q, a, r) in the former, a transition (p, (a, S), r) is added to the latter.

The equivalence between mappings and annotations is formally defined as follows: For
some document d of size n, a mapping µ from X to spans in d is equivalent to an annotation
ν = (S1, i1) . . . (Sm, im) iff Sj = {⊢x| µ(x) = [ij , k⟩} ∪ {⊣x| µ(x) = [k, ij⟩} for every j ≤ m.

▶ Proposition 10. For any unambiguous sequential extended VA A with state set Q and
transition set ∆, there exists an AnnA A′ of size O(|Q|×|∆|) such that for every document d,
each mapping µ ∈ [[A]](d) is equivalent to some unique ν ∈ [[A′]](d#) and vice versa.

Combining Proposition 10 and Theorem 4, we get a constant-delay algorithm for evaluating
an unambiguous sequential extended VA over a document, proving the extension of the result
in [25]. Notice that the result in [25] is for deterministic VA, where here we generalize this
result for the unambiguous case plus constant-delay.

M. Muñoz and C. Riveros 7:13

Succinctly annotated automata. For the next result, we need an extension to annotated
automata which features succinct representations of sets of annotations.

A succinct enumerable representation scheme (SERS) is a tuple S = (R,Ω, | · |,L, E)
made of an infinite set of representations R, and an infinite set of annotations Ω. It includes
a function | · | that indicates, for each r ∈ R and o⌣∈ Ω, the sizes |r| and | o⌣|, i.e., the number
of units needed to store r and o⌣ in the underlying computational model (e.g. the RAM
model). The function L maps each element r ∈ R to some finite non-empty set L(r) ⊆ Ω.
Lastly, there is an algorithm E which enumerates the set L(r) with output-linear delay
for every r ∈ R. Intuitively, a SERS provides us with representations to encode sets of
annotations. Moreover, there is the promise of the enumeration algorithm E where we can
recover all the annotations with output-linear delay. This representation scheme allows us to
generalize the notion of annotated automaton for encoding an extensive set of annotations in
the transitions.

Fix a SERS S = (R,Ω, | · |,L, E). A Succinctly Annotated Automaton over S (sAnnA for
short) is a tuple T = (Q,Σ,Ω,∆, q0, F) where all sets are defined like in AnnA, except that in
∆ read-write transitions are of the form (p, (a, r), q) ∈ Q× (Σ×R)×Q. That is, transitions
are now annotated by a representation r which encodes sets of annotations in Ω. For a
read-write transition t = (p, (a, r), q), we define its size as |t| = |r|+1 and for a read transition
t = (p, a, q) we define its size as |t| = 1. A run ρ over a document d = a1 . . . an is also
defined as a sequence ρ = q0

b1−→ q1
b2−→ . . .

bn−→ qn with the same specifications as in AnnA
with the difference that it either holds that bi = ai, or bi = (ai, r) for some representation r.
We now define the set of annotations of ρ as: ann(ρ) = ann(b1, 1) · . . . · ann(bn, n) such that
ann(bi, i) = {(o⌣, i) | o⌣∈ L(r)}, if bi = (a, r), and ann(bi, i) = {ε} otherwise. The set [[T]](d)
is defined as the union of sets ann(ρ) for all accepting runs ρ of T over d. In this model, we
say that T is unambiguous if for every document d and every annotation ν ∈ [[T]](d) there
exists only one accepting run ρ of T over d such that ν ∈ ann(ρ). Finally, we define the size
of ∆ as |∆| =

∑
t∈∆ |t|, and the size of T as |T | = |Q|+ |∆|.

This annotated automata extension allows for representing output sets more compactly.
Moreover, given that we can enumerate the set of annotations with output-linear delay, we
can compose it with Theorem 4 to get an output-linear delay algorithm for the whole set.

▶ Theorem 11. Fix a SERS S. There exists an enumeration algorithm that, given an
unambiguous sAnnA T over S and an SLP S, it runs in |T |3 × |S|-preprocessing time and
output-linear delay for enumerating JTK(doc(S)).

The purpose of sAnnA is to encode sequential VA succinctly. Indeed, as shown in [16],
representing sequential VA with extended VA has an exponential blow-up in the number of
variables that cannot be avoided. Therefore, the reduction from Proposition 10 cannot work
directly. Instead, we can use a Succinctly Annotated Automaton over some specific SERS to
translate every sequential VA into the annotation world efficiently.

▶ Proposition 12. There exists an SERS S such that for any unambiguous sequential VA A
with state set Q and transition set ∆ there exists a sAnnA T over S of size O(|Q| × |∆|)
such that for every document d, each mapping µ ∈ [[A]](d) is equivalent to some unique
ν ∈ [[A]](d#) and vice versa. Furthermore, the number of states in T is in O(|Q|).

By Proposition 12 and Theorem 11 we prove the extension of the output-linear delay
algorithm for unambiguous sequential VA.

ICDT 2023

7:14 Constant-Delay Enumeration for SLP-Compressed Documents

6 Constant delay-preserving complex document editing

In this section, we show that the results obtained by Schmid and Schweikardt [26] regarding
enumeration over document databases and complex document editing still hold, maintaining
the same time bounds in doing these edits, but allowing output-linear delay. We also include
a refinement of the result for whenever the edits needed are limited to the concatenation of
two documents. To be precise, we will give an overview of the following theorem.

▶ Theorem 13. Let D = {d1, . . . , dm} be a document database that is represented by an SLP
S in normal form. Let A1, . . . ,Ak be unambiguous sequential variable-set automata. When
given the query data structures for S and A1, . . . ,Ak, and a CDE-expression φ over D, we
can construct an extension S′ of S and new query data structures for S′ and A1, . . . ,Ak,
and a new non-terminal Ã of S′, such that doc(Ã) = eval(φ).

If φ contains operations other than concat, we require S to be strongly balanced. Then,
S′ is also strongly balanced, and this construction can be done in time O(k · |φ| · log |d∗|)
with data complexity where |d∗| = |maxφ(D)|.
If φ only contains concat, then this can be done in O(k · |φ|) with data-complexity.

Afterwards, upon input of any d ∈ docs(S′) (represented by a non-terminal of S′) and any
i ∈ [1,m], the set [[Ai]](d) can be enumerated with constant-delay.

Note that a similar result was proved in [26] but with extended VA instead of VA, and
with logarithmic delay instead of constant-delay. The rest of this section will be dedicated
to define the concepts we have not yet introduced, and show how the techniques presented
in [26] allow us to obtain this result.

Normal form, balanced and rootless SLPs. We define a rootless SLP as a triple S =
(N,Σ, R), where N is a set of non-terminals, Σ is the set of terminals, and R is a set of rules.
Rootless SLPs are defined as SLPs with the difference that there is no starting symbol, and
thus doc(S) is not defined. Instead, we define doc(A) for each A ∈ N as doc(A) = R∗(A).
We say that S is in Chomsky normal form if every rule in R has the form A→ a or A→ BC,
where a ∈ Σ and A,B,C ∈ N . Also, we say that S is strongly balanced if for each rule
A → BC, the value ord(B) − ord(C) is either -1, 0 or 1, where ord(X) is the maximum
distance from X to any terminal in the derivation tree.

Document Databases. A document database over Σ is a finite collection D = {d1, . . . , dm}
of documents over Σ. Document databases are represented by a rootless SLP as follows. For
an SLP S = (N,Σ, R), let docs(S) = {doc(A) | A ∈ N} be the set of documents represented
by S. The rootless SLP S is a representation for a document database D if D ⊆ docs(S).

For a document database D, it is assumed that a rootless SLP S that represents D is in
normal form and strongly balanced. It is also assumed that for each nonterminal A for which
its rule has the form A→ BC, the values | doc(A)|, ord(A) and nonterminals B and C are
accessible in constant time. All these values can be precomputed with a linear-time pass over
S. We call S along with constant-time access to these values the basic data structure for S.

Complex Document Editing. As in [26], given a document database D = {d1, . . . , dm} our
goal is to create new documents by a sequence of text-editing operations. Here we introduce
the notion of a CDE-expression over D, which is defined by the following syntax:

φ := dℓ, ℓ ∈ [1,m] | concat(φ,φ) | extract(φ, i, j) | delete(φ, i, j) | insert(φ,φ, k) | copy(φ, i, j, k)

M. Muñoz and C. Riveros 7:15

where the values i, j are valid positions, and k is a valid gap. The semantics of these
operations, called basic operations, works as follows:

concat(d, d′) = d · d′ insert(d, d′, k) = d[1, k⟩ · d′ · d[k, |d|+ 1⟩
extract(d, i, j) = d[i, j + 1⟩ delete(d, i, j) = d[1, i⟩ · d[j + 1, |d|+ 1⟩
copy(d, i, j, k) = insert(d, d[i, j + 1⟩, k)

We write eval(φ) for the document obtained by evaluating φ on D according to these semantics.
For an operation extract(φ, i, j), delete(φ, i, j), insert(φ,ψ, k), or copy(φ, i, j, k), i, j are valid
positions if i, j ∈ [1, |eval(φ)|], and k is a valid gap if k ∈ [1, |eval(φ)|+ 1]. We define |φ| as
the number of basic operations in φ. To adding these new documents in the database we
will use the notion of extending a rootless SLP. A rootless SLP S′ = (N ′,Σ, R′) is called an
extension of S if S′ is in normal form, N ⊆ N ′, and R′(A) = R(A) for every A ∈ N . In this
context, we call N ′ \N the set of new non-terminals. We define the maximum intermediate
document size |maxφ(D)| induced by a CDE-expression φ on a document database D as
the maximum size of eval(ψ) for any sub-expression ψ of φ (i.e., any substring ψ of φ that
matches the CDE syntax).

Having defined most of the concepts mentioned in Theorem 13, we can introduce the
following Theorem in [26], which will be instrumental in the final proof.

▶ Theorem 14 ([26], Theorem 4.3). Let D be a document database represented by a strongly
balanced rootless SLP S in normal form. When given the basic data structure for S and a
CDE-expression φ over D, we can construct a strongly balanced extension S′ of S, along
with its basic data structure, and a non-terminal Ã of S′ such that doc(Ã) = eval(φ). This
construction takes time O(|φ|·log |maxφ(D)|). In particular, the number of new non-terminals
|N ′ \N | is in O(|φ| · log |maxφ(D)|).

For the second bullet point in Theorem 13, we use the following fact, given without proof:

▶ Observation 15. Let D be a document database that is represented by a rootless SLP
S in normal form. Given the basic data structure for S and a CDE-expression φ over D
which only mentions concat, we can construct an extension S′ of S, along with its basic data
structure, and a nonterminal Ã of S′ such that doc(Ã) = eval(φ). This construction takes
time O(|φ|). In particular, the number of new non-terminals |N ′ \N | is in O(|φ|).

The query data structure. The structure we will use is the one produced in Theorem 11.
This structure is built by an algorithm that receives an SLP S, an unambiguous sAnnA T , and
produces a (succinct) Shift-ECS D indexed by the matrices MA, for each non-terminal A in S.
These matrices store nodes v = MA[p, q] such that [[D]](v) contains all partial annotations
from a path of T which starts p, ends in q, and reads the string doc(A). Note that, although
the algorithm receives a “rooted” SLP, it can be adapted quite easily to rootless SLPs by
adding a node vA for each non-terminal A in S, built as vA = unionq∈F (MA[q0, q]) (the same
construction that was done for S0 in the algorithm).

We define the query data structure for S and T as the mentioned succinct Shift-ECS along
with constant-time access to every index MA[p, q] for states p and q and non-terminal A.
Note that for each A it holds that [[D]](vA) = [[A]](doc(A)). In particular, if S represents a
document database D, then for each d ∈ D there is a v in D for which [[D]](v) = [[A]](d).
Recall that for every node v ∈ D, the set [[D]](v) can be enumerated with output-linear delay.

▶ Lemma 16. Let S be an SLP in normal form and an extension S′ of S with new non-
terminals Ñ = N ′ \N . Also, let T be an unambiguous sAnnA and assume we are given the
query data structure for S and A, and the basic data structure for S′. We can construct the
query data structure for S′ and T in O(|A|3 · |Ñ |) time.

ICDT 2023

7:16 Constant-Delay Enumeration for SLP-Compressed Documents

To prove Theorem 13, we first reduce the variable-set automata A1, . . .Ak to sAnnAs
T1, . . . , Tk using the construction of Proposition 12. Note, however, that this reduction
requires the input document to be modified as well. This can be solved by adding a non-
terminal A# for each A ∈ N , and a rule A# → AH, where H is a new non-terminal with the
rule H → #. Then, in the query data structure for S and T , the nodes vA are defined over
the matrices MA# instead. That way, when the user chooses a document d ∈ docs(S) and a
variable set automata Ai, she can be given the set [[T i]](d#) as output. Note that this has no
influence in the time bounds given so far for the edit, except for a factor that is linear in |Ñ |.

It can now be seen that the result follows from Theorem 14, Observation 15, and Lemma 16.
The fact that for each d ∈ docs(S′) the set [[A]](d) can be enumerated with output-linear
delay follows from the definition of the query data structure for S′ and A.

7 Future work

One natural direction for future work is to study which other compression schemes allow
output-linear delay enumeration for evaluating annotated automata. To the best of our
knowledge, the only model for compressed data in which spanner evaluation has been studied
is SLPs. However, other models (such as some based on run-length encoding) allow better
compression rates and might be more desirable results in practice.

Regarding the Shift-ECS data structure, it would be interesting to see how further one
could extend the data structure while still allowing output-linear delay enumeration. Another
aspect worth studying is whether there are enumeration results in other areas that one can
improve using Shift-ECS. Lastly, it would be interesting to study whether one can apply fast
matrix multiplication techniques to Algorithm 1 to improve the running time to sub-cubic
time in the number of states.

References
1 Alfred V Aho and John E Hopcroft. The design and analysis of computer algorithms. Pearson

Education India, 1974.
2 Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-based approach

to efficient enumeration. In ICALP, volume 80, pages 111:1–111:15, 2017.
3 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-delay

enumeration for nondeterministic document spanners. ACM Trans. Database Syst., 46(1):2:1–
2:30, 2021.

4 Antoine Amarilli, Louis Jachiet, Martin Muñoz, and Cristian Riveros. Efficient enumeration
for annotated grammars. In PODS, pages 291–300, 2022.

5 Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear
delay. In CSL, pages 167–181, 2006.

6 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In CSL, pages 208–222, 2007.

7 Jean Berstel. Transductions and context-free languages. Springer-Verlag, 2013.
8 Pierre Bourhis, Alejandro Grez, Louis Jachiet, and Cristian Riveros. Ranked enumeration of

MSO logic on words. In ICDT, volume 186, pages 20:1–20:19, 2021.
9 Marco Bucchi, Alejandro Grez, Andrés Quintana, Cristian Riveros, and Stijn Vansummeren.

CORE: a complex event recognition engine. VLDB, 15(9):1951–1964, 2022.
10 Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole Schweikardt.

Answering (unions of) conjunctive queries using random access and random-order enumeration.
In PODS, pages 393–409, 2020.

11 Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based compression. Fundam.
Informaticae, 111(3):313–337, 2011.

M. Muñoz and C. Riveros 7:17

12 Johannes Doleschal, Benny Kimelfeld, Wim Martens, and Liat Peterfreund. Weight annotation
in information extraction. Log. Methods Comput. Sci., 18(1), 2022.

13 James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making
data structures persistent. In STOC, pages 109–121, 1986.

14 Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree
are computable with constant delay. ACM Trans. Comput. Log., 8(4):21, 2007.

15 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document spanners:
A formal approach to information extraction. J. ACM, 62(2):12:1–12:51, 2015.

16 Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and Domagoj
Vrgoc. Efficient enumeration algorithms for regular document spanners. ACM Trans. Database
Syst., 45(1):3:1–3:42, 2020.

17 Alejandro Grez and Cristian Riveros. Towards streaming evaluation of queries with correlation
in complex event processing. In ICDT, volume 155, pages 14:1–14:17, 2020.

18 Alejandro Grez, Cristian Riveros, Martín Ugarte, and Stijn Vansummeren. A formal framework
for complex event recognition. ACM Trans. Database Syst., 46(4):1–49, 2021.

19 Wojciech Kazana and Luc Segoufin. First-order query evaluation on structures of bounded
degree. Log. Methods Comput. Sci., 7(2), 2011.

20 John C. Kieffer and En-Hui Yang. Grammar-based codes: A new class of universal lossless
source codes. IEEE Trans. Inf. Theory, 46(3):737–754, 2000.

21 Markus Lohrey. Algorithmics on slp-compressed strings: A survey. Groups Complex. Cryptol.,
4(2):241–299, 2012.

22 Martin Muñoz and Cristian Riveros. Streaming enumeration on nested documents. In ICDT,
volume 220, pages 19:1–19:18, 2022.

23 Liat Peterfreund. Grammars for document spanners. In ICDT, volume 186, pages 7:1–7:18,
2021.

24 Wojciech Rytter. Application of lempel-ziv factorization to the approximation of grammar-
based compression. In CPM, volume 2373, pages 20–31, 2002.

25 Markus L. Schmid and Nicole Schweikardt. Spanner evaluation over slp-compressed documents.
In PODS, pages 153–165, 2021.

26 Markus L. Schmid and Nicole Schweikardt. Query evaluation over slp-represented document
databases with complex document editing. In PODS, pages 79–89, 2022.

27 Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. Enumeration for FO queries over
nowhere dense graphs. In PODS, pages 151–163, 2018.

28 James A. Storer and Thomas G. Szymanski. Data compression via textual substitution. J.
ACM, 29(4):928–951, 1982.

ICDT 2023

Degree Sequence Bound for Join Cardinality
Estimation
Kyle Deeds #

University of Washington, Seattle, WA, USA

Dan Suciu #

University of Washington, Seattle, WA, USA

Magda Balazinska #

University of Washington, Seattle, WA, USA

Walter Cai #

University of Washington, Seattle, WA, USA

Abstract
Recent work has demonstrated the catastrophic effects of poor cardinality estimates on query
processing time. In particular, underestimating query cardinality can result in overly optimistic
query plans which take orders of magnitude longer to complete than one generated with the true
cardinality. Cardinality bounding avoids this pitfall by computing an upper bound on the query’s
output size using statistics about the database such as table sizes and degrees, i.e. value frequencies.
In this paper, we extend this line of work by proving a novel bound called the Degree Sequence
Bound which takes into account the full degree sequences and the max tuple multiplicity. This work
focuses on the important class of Berge-Acyclic queries for which the Degree Sequence Bound is tight.
Further, we describe how to practically compute this bound using a functional approximation of the
true degree sequences and prove that even this functional form improves upon previous bounds.

2012 ACM Subject Classification Information systems → Query optimization; Information systems
→ Query planning; Theory of computation → Database query processing and optimization (theory);
Theory of computation → Data modeling

Keywords and phrases Cardinality Estimation, Cardinality Bounding, Degree Bounds, Functional
Approximation, Query Planning, Berge-Acyclic Queries

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.8

Related Version Full Version: https://arxiv.org/pdf/2201.04166 [4]

Funding This work is supported by National Science Foundation grants NSF IIS 1907997 and
NSF-BSF 2109922.

1 Introduction

The weakest link in a modern query processing engine is the cardinality estimator. There
are several major decisions where the system needs to estimate the size of a query’s output:
the optimizer uses the estimate to compute an effective query plan; the scheduler needs the
estimate to determine how much memory to allocate for a hash table and to decide whether
to use a main-memory or an out-of-core algorithm; a distributed system needs the estimate
to decide how many servers to reserve for subsequent operations. Today’s systems estimate
the cardinality of a query by making several strong and unrealistic assumptions, such as
uniformity and independence. As a result, the estimates for multi-join queries commonly
have relative errors up to several orders of magnitude. An aggravating phenomenon is that
cardinality estimators consistently underestimate (this is a consequence of the independence
assumption), and this leads to wrong decisions for the most expensive queries [15, 3, 10].
A significant amount of effort has been invested in the last few years into using machine

© Kyle Deeds, Dan Suciu, Magda Balazinska, and Walter Cai;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kdeeds@cs.washington.edu
https://orcid.org/0000-0003-2267-3276
mailto:suciu@cs.washington.edu
mailto:magda@cs.washington.edu
mailto:wzcai92@gmail.com
https://doi.org/10.4230/LIPIcs.ICDT.2023.8
https://arxiv.org/pdf/2201.04166
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Degree Sequence Bound for Join Cardinality Estimation

Name ...
Alice ...
Alice ...
Bob ...
Carlos ...
Carlos ...
Carlos ...
David ...
Eseah ...
Eseah ...
Eseah ...
Eseah ...
Eseah ...
Vivek ...
Vivek ...
Vivek ...
Gael ...
Hans ...
Hans ...
John ...
Karl ...
Lee ...

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Degree Sequence

Functional Representation

Compressed Representation

Figure 1 The degree sequence of Name. The first rank represents Eseah whose degree is 5, the next
two ranks are for Carlos and Vivek whose degrees are 3. The degree sequence can be represented
compactly using a staircase functions, and even more compactly using lossy compression.

learning for cardinality estimation [20, 22, 23, 24, 21, 16, 17], but this approach still faces
several formidable challenges, such as the need for large training sets, the long training time
of complex models, and the lack of guarantees about the resulting estimates.

An alternative approach to estimating the cardinality is to compute an upper bound for
the size of the query answer. This approach originated in the database theory community,
through the pioneering results by Grohe and Marx [8] and Atserias, Grohe, and Marx [1].
They described an elegant formula, now called the AGM bound, that gives a tight upper
bound on the query result in terms of the cardinalities of the input tables. This upper bound
was improved by the polymatroid bound, which takes into account both the cardinalities, and
the degree constraints and includes functional dependencies as a special case [7, 13, 14, 18].
In principle, an upper bound could be used by a query optimizer in lieu of a cardinality
estimator and, indeed, this idea was recently pursued by the systems community, where the
upper bound appears under various names such as bound sketch or pessimistic cardinality
estimator [3, 11]. In this paper, we will call it a cardinality bound. As expected, a cardinality
bound prevents query optimizers from choosing disastrous plans for the most expensive
queries [3], however, their relative error is often much larger than that of other methods [19, 6].
While the appeal of a guaranteed upper bound is undeniable, in practice overly pessimistic
bounds are unacceptable.

In this paper, we propose a new upper bound on the query size based on degree sequences.
By using a slightly larger memory footprint, this method has the potential to achieve much
higher accuracy than previous bounds. Given a relation R, an attribute X, and a value
u ∈ ΠX(R), the degree of u is the number of tuples in R with u in the X attribute, formally
d(u) = |σX=u(R)|. The degree sequence of an attribute X in relation R is the sorted sequence
of all degrees for the values of that attribute, d(u1) ≥ d(u2) ≥ · · · ≥ d(un). Going forward, we
drop any reference to values and instead refer to degrees by their index in this sequence,
also called their rank, i.e. d1 ≥ · · · ≥ dn.1 A degree sequence can easily be computed

1 Note that the degree sequence is very similar to a rank-frequency distribution in the probability literature
and has been extensively used in graph analysis [2, 9].

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:3

offline, and can be compressed effectively, with a good space/accuracy tradeoff due to its
monotonicity; see Fig. 1 for an illustration. Degree sequences offer more information on the
database instance than the statistics used by previous upper bounds. For example, the AGM
bound uses only the cardinality of the relations, which is

∑
i di, while the extension to degree

constraints [14] uses the cardinality,
∑

i di, and the maximum degree, d1.
For this new bound we had to develop entirely new techniques over those used for the

AGM and the polymatroid bounds. Previous techniques are based on information theory. If
some relation R(X, Y) has cardinality N , then any probability space over R has an entropy
that satisfies H(XY) ≤ log N ; if the degree sequence of the attribute X is d1 ≥ d2 ≥ . . ., then
H(Y |X) ≤ log d1. Both the AGM and the polymatroid bound start from such constraints
on the entropy. Unfortunately, these constraints do not extend to degree sequences, because
H is ignorant of d2, d3, . . . Information theory gives us only three degrees of freedom, namely
H(XY), H(X), H(Y), while the degree sequence has an arbitrary number of degrees of
freedom. Rather than using information theory, our new framework models relations as
tensors, and formulates the upper bound as a linear optimization problem. This framework
is restricted to Berge-acyclic, fully conjunctive queries [5] (reviewed in Sec. 2); throughout
the paper we will assume that queries are in this class. As we explain in Appendix A.1 [4]
these are the most common queries found in applications.

The Worst-Case Instance. Our main result (Theorems 3.2 and 4.1) is a tight cardinality
bound given the degree sequences of all relations. This bound is obtained by evaluating
the query on a worst-case instance that satisfies those degree constraints.2 Intuitively, each
relation of the worst-case instance is obtained by matching the highest degree values in
the different columns, and the same principle is applied across relations. For example,
consider the join R(X, . . .) ⋊⋉ S(X, . . .), where the degree sequences of R.X and S.X are
a1 ≥ a2 ≥ · · · and b1 ≥ b2 ≥ · · · respectively. The true cardinality of the join is

∑
i aibτ(i) for

some unknown permutation τ , while the maximum cardinality is3 ∑
i aibi, and is obtained

when the highest degree values match. Our degree sequence bound holds even when the
input relations are allowed to be bags. Furthermore, we prove (Theorem 4.6) that this bound
is always below the AGM and polymatroid bounds, although the latter restrict the relations
to be sets. To prove this we had to develop a new, explicit formula for the polymatroid
bound for Berge-acyclic queries, which is of independent interest (Theorem 4.3).

Compact Representation. A full degree sequence is about as large as the relation instance,
while cardinality estimators need to run in sub-linear time. Fortunately, a degree sequence
can be represented compactly using a piece-wise constant function, called a staircase function,
as illustrated in Fig. 1. Our next result, Theorem 5.2, is an algorithm for the degree sequence
bound that runs in quasi-linear time (i.e. linear plus a logarithmic factor) in the size of
the representation, independent of the size of the instance. The algorithm makes some
rounding errors (Lemma 5.1), hence its output may be slightly larger than the exact bound,
however we prove that it is still lower than the AGM and polymatroid bounds (Theorem 5.5).
The algorithm can be used in conjunction with a compressed representation of the degree
sequence. By using few buckets and upper-bounding the degree sequence one can trade off
the memory size and estimation time for accuracy. At one extreme, we could upper bound

2 In graph theory, the problem of computing a graph satisfying a given degree sequence is called the
realization problem.

3 For example, if a1 ≥ a2, b1 ≥ b2, then a1b1 + a2b2 ≥ a1b2 + a2b1.

ICDT 2023

8:4 Degree Sequence Bound for Join Cardinality Estimation

the entire sequence using a single bucket with the constant d1, at the other extreme we could
keep the complete sequence. Neither the AGM bound nor the polymatroid bound have this
tradeoff ability.

Max Tuple Multiplicity. Despite using more information than previous upper bounds, our
bound can still be overly pessimistic, because it needs to match the most frequent elements in
all attributes. For example, suppose a relation has two attributes whose highest degrees are a1
and b1 respectively. Its worst-case instance is a bag and must include some tuple that occurs
min(a1, b1) times. Usually, a1 and b1 are large, since they represent the frequencies of the
worst heavy hitters in the two columns, but in practice they rarely occur together min(a1, b1)
times. To avoid such worst-case matchings, we use one additional piece of information on
each base table: the max multiplicity over all tuples, denoted B. Usually, B is significantly
smaller than the largest degrees, and, by imposing it as an additional constraint, we can
significantly improve the query’s upper bound; in particular, when B = 1 then the relation
is restricted to be a set. Our main results in Theorems 3.2 and 4.1 extend to max tuple
multiplicities, but in some unexpected ways. The worst-case relation, while still tight, is
not a conventional relation: it may have tuples that occur more than B times, and, when
the relation has 3 or more attributes it may even have tuples with negative multiplicities.
Nevertheless, these rather unconventional worst-case relations provide an even better degree
sequence bound than by ignoring B.

▶ Example 1.1. To give a taste of our degree-sequence bound, consider the full conjunctive
query Q(· · ·) = R(X, · · ·) ⋊⋉ S(X, Y, · · ·) ⋊⋉ T (Y, · · ·), where we omit showing attributes
that appear in only one of the relations. Alternatively, we can write Q(X, Y) = R(X) ⋊⋉
S(X, Y) ⋊⋉ T (Y) where R, S, T are bags rather than sets. Assume the following degree
sequences:

d(R.X) = (3, 2, 2) d(T.Y) = (2, 1, 1, 1) d(S.X) = (5, 1) d(S.Y) = (3, 2, 1) (1)

The AGM bound uses only the cardinalities, which are:

|R| = 7 |S| = 6 |T | = 5

The AGM bound4 is |R| · |S| · |T | = 210. The extension to degree constraints in [14] uses in
addition the maximum degrees:

deg(R.X) = 3 deg(S.X) = 5 deg(S.Y) = 3 deg(T.Y) = 2
and the bound is the minimum between the AGM bound and the following quantities:

|R| · deg(S.X) · deg(T.Y) = 7 · 5 · 2 = 70
deg(R.X) · |S| · deg(T.Y) = 3 · 6 · 2 = 36
deg(R.X) · deg(S.Y) · |T | = 3 · 3 · 5 = 45

Thus, the degree-constraint bound is improved to 36.
Our new bound is given by the answer to the query on the worst-case instance of the

relations R, S, T , shown here together with their multiplicities (recall that they are bags):

R =
a 3
b 2
c 2

, S =
a u 3
a v 2
b w 1

, T =

u 2
v 1
w 1
z 1

,

4 Recall that each of the three relations has private variables, e.g. R(X, U), S(X, Y, V, W), T (Y, Z). The
only fractional edge cover is 1, 1, 1.

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:5

The three relations have the required degree sequences, for example S.X consists of 5 a’s
and 1 b, thus has degree sequence (5, 1). Notice the matching principle: we assumed that the
most frequent element in R.X and S.X are the same value a, and that the most frequent
values in S.X and in S.Y occur together. On this instance, we compute the query and obtain
the answer Q.

Q =
a u 3 · 3 · 2 = 18
a v 3 · 2 · 1 = 6
b w 2 · 1 · 1 = 2

S′ =

a u 2
a v 2
a w 1
b u 1

The upper bound is the size of the answer on this instance, which is 18 + 6 + 2 = 26, and
it improves over 36. Here, the improvement is relatively minor, but this is a consequence
of the short example. In practice, degree sequences often have a long tail, i.e. with a few
large leading degrees d1, d2, . . . followed by very many small degrees dm, dm+1, . . . , dn (with
a large n). In that case the improvements of the new bound can be very significant.

Suppose now that we have one additional information about S: every tuple occurs at
most B = 2 times. Then we need to reduce the multiplicity of (a, u), and the new worst-case
instance, denoted S′, is the following relation which decreases the cardinality bound to 25.

2 Problem Statement

Tensors. In this paper, it is convenient to define tensors using a named perspective, where
each dimension is associated with a variable. We write variables with capital letters X, Y, . . .

and sets of variables with boldface, X, Y , . . . We assume that each variable X has an
associated finite domain DX

def= [nX] for some number nX ≥ 1. For any set of variables X

we denote by DX
def=
∏

Z∈X DZ . We use lower case for values, e.g. z ∈ DZ and boldface
for tuples, e.g. x ∈ DX . An X-tensor, or simply a tensor when X is clear from the
context, is M ∈ RDX . We say that M has |X| dimensions. Given two X-tensors M , N ,
we write M ≤N for the component-wise order (Mx ≤ Nx, for all x). If X, Y are two sets
of variables, then we denote their union by XY . If, furthermore, X, Y are disjoint, and
x ∈ DX , y ∈ DY , then we denote by xy ∈ DXY the concatenation of the two tuples.

▶ Definition 2.1. Let M , N be an X-tensor, and a Y -tensor respectively. Their tensor
product is the following XY -tensor:

∀z ∈ DXY : (M ⊗N)z
def=MπX (z) ·NπY (z) (2)

If X, Y are disjoint and M is an XY -tensor then we define its X-summation to be the
following Y -tensor:

∀y ∈ DY : (SUMX(M))y
def=

∑
x∈DX

Mxy (3)

If M , N are XY and Y Z tensors, where X, Y , Z are disjoint sets of variables, then their
dot product is the XZ-tensor:

∀x ∈ DX , z ∈ DZ : (M ·N)xz
def=SUMY (M ⊗N)xz =

∑
y∈DY

MxyNyz (4)

In other words, in this paper we use ⊗ like a natural join. For example, if M is an
IJ-tensor (i.e. a matrix) and N is an KL-tensor, then M ⊗N is the Kronecker product;
if P is an IJ-tensor (like M) then M ⊗ P is the element-wise product. The dot product

ICDT 2023

8:6 Degree Sequence Bound for Join Cardinality Estimation

sums out the common variables, for example if a is a J-tensor, then M · a is the standard
matrix-vector multiplication, and its result is an I-tensor. The following is easily verified. If
M is an X-tensor, N is a Y -tensor and X, Y are disjoint sets of variables, then:

∀X0 ⊆X, ∀Y0 ⊆ Y : SUMX0Y0(M ⊗N) =SUMX0(M)⊗ SUMY0(N) (5)

Permutations. A permutation on D = [n] is a bijective function σ : D → D; the set of
permutations on D is denoted SD, or simply Sn. If D = D1 × · · · ×Dk then we denote by
SD

def= SD1 × · · · × SDk
. Given an X-tensor M ∈ RDX and permutations σ ∈ SDX

, the
σ-permuted X-tensor is M ◦ σ ∈ RDX :

∀x ∈ DX : (M ◦ σ)x
def=Mσ(x)

Sums are invariant under permutations, for example if a, b ∈ RDZ are Z-vectors and σ ∈ SDZ
,

then (a ◦ σ) · (b ◦ σ) = a · b, because
∑

i∈DZ
aσ(i)bσ(i) =

∑
i∈DZ

aibi.

Queries. A full conjunctive query Q is:

Q(X) = ⋊⋉R∈R R(XR) (6)

where R
def= R(Q) denotes the set of its relations, X is a set of variables, and XR ⊆ X

for each relation R ∈ R. The incidence graph of Q is the following bipartite graph: T
def=

(R∪X, E
def= {(R, Z) | Z ∈XR}). It can be shown that Q is Berge-acyclic [5] iff its incidence

graph is an undirected tree (see Appendix A.1 [4]). Unless otherwise stated, all queries in
this paper are assumed to be full, Berge-acyclic conjunctive queries. We use bag semantics
for query evaluation, and represent an instance of a relation R ∈ R by an XR-tensor, M (R),
where M

(R)
t is defined to be the multiplicity of the tuple t ∈ DXR

in the bag R. The number
of tuples in the answer to Q is:

|Q| = SUMX

(⊗
R∈R

M (R)

)
(7)

▶ Example 2.2. Consider the following query:

Q(X, Y, Z, U, V, W) =R(X, Y) ⋊⋉ S(Y, Z, U) ⋊⋉ T (U, V) ⋊⋉ K(Y, W)

Its incidence graph is T = ({R, . . . , K} ∪ {X, . . . , W}, {(R, X), (R, Y), (S, Y), . . . , (K, W)})
and is an undirected tree. An instance of R(X, Y) is represented by a matrix M (R) ∈
RDX ×DY , where M

(R)
xy = the number of times the tuple (x, y) occurs in R. Similarly, S is

represented by a tensor M (S) ∈ RDY ×DZ ×DU . The size of the query’s output is:

|Q| =
∑

x,y,z,u,v,w

M (R)
xy M (S)

yzuM (T)
uv M (K)

yw

Degree Sequences. We denote by R+
def= {x | x ∈ R, x ≥ 0} and we say that a vector

f ∈ R[n]
+ is non-increasing if fr−1 ≥ fr for r ∈ [2, . . . , n].

▶ Definition 2.3. Fix a set of variables X, with domains DZ , Z ∈ X. A degree sequence
associated with the dimension Z ∈ X is a non-increasing vector f (Z) ∈ RDZ

+ . We call the
index r the rank, and f

(Z)
r the degree at rank r. An X-tensor M is consistent w.r.t. f (Z) if:

SUMX−{Z}(M) ≤f (Z) (8)

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:7

M is consistent with a tuple of degree sequences f (X) def= (f (Z))Z∈X , if it is consistent with
every f (Z). Furthermore, given B ∈ R+ ∪ {∞}, called the max tuple multiplicity, we say
that M is consistent w.r.t. B if Mt ≤ B for all t ∈ DX . We denote:

Mf (X),B
def={M ∈ RDX |M is consistent with f (X), B}

M+
f (X),B

def={M ∈ RDX
+ |M is non-negative and consistent with f (X), B} (9)

For a simple illustration consider two degree sequences f ∈ R[m], g ∈ R[n]. Mf ,g,∞ is the
set of matrices M whose row-sums and column-sums are ≤ f and ≤ g respectively; M+

f ,g,∞
is the subset of non-negative matrices; M+

f ,g,B is the subset of matrices that also satisfy
Mij ≤ B, ∀i, j.

Problem Statement. Fix a query Q. For each relation R, we are given a set of degree
sequences f (R,XR) def=

(
f (R,Z))

Z∈XR
, and a tuple multiplicity B(R) ∈ R+ ∪ {∞}. We are

asked to find the maximum size of Q over all database instances consistent with all degree
sequences and tuple multiplicities. To do this, we represent a relation instance R by an
unknown tensor M (R) ∈M+

f (R,XR),B(R) and an unknown set of permutations σ(R) ∈ SDXR
,

and solve the following problem:

▶ Problem 1 (Degree Sequence Bound). Solve the following optimization problem:

Maximize: |Q| = SUMX

(⊗
R∈R

(M (R) ◦ σ(R))
)

(10)

Where: ∀R ∈ R, σ(R) ∈ SDXR
, M (R) ∈M+

f (R,XR),B(R)

This is a non-linear optimization problem: while the set M+ defined in Eq. (9) is a set
of linear constraints, the objective (10) is non-linear. In the rest of the paper we describe an
explicit formula for the degree sequence bound, which is optimal (i.e. tight) when B(R) =∞,
for all R, and is optimal in a weaker sense in general.

▶ Example 2.4. Continuing Example 1.1, the four degree sequences in (1) correspond to the
variables in each relation R.X, S.X, S.Y , and T.Y . Since S.X has a shorter degree sequence
than R.X, we pad it with a 0, so it becomes d(S.X) = (5, 1, 0); similarly for d(S.Y). Instead
of values c, b, a, we use indices 1, 2, 3, similarly u, v, w, z becomes 1, 2, 3, 4. For example,

S =
3 1 3
3 2 2
2 3 1

is isomorphic to the instance in Example 1.1. It is represented by M ◦ (σ, τ)

where the matrix M =
(

3 2 0 0
0 0 1 0
0 0 0 0

)
, (its row-sums are 5, 1, 0 and column-sums are 3, 2, 1, 0,

as required) and the permutations are, in two-line notation, σ
def=
(1 2 3

3 2 1

)
and τ

def= the
identity. Similarly, the relations R, T , are represented by vectors a, b and permutations θ, ρ.
The bound of Q is the maximum value of

∑
i=1,3

∑
j=1,4 Mσ(i)τ(j)aθ(i)bρ(j), where M , a, b

are consistent with the given degree sequences, and σ, τ, θ, ρ are permutations. This is a
special case of Eq. (10).

ICDT 2023

8:8 Degree Sequence Bound for Join Cardinality Estimation

3 The Star Query

We start by computing the degree sequence bound for a star query, which is defined as:

Qstar =S(X1, . . . , Xd) ⋊⋉ R(1)(X1) ⋊⋉ · · · ⋊⋉ R(d)(Xd) (11)

Assume that the domain of each variable Xp is [np] for some np > 0, and denote by
[n] def= [n1]× · · · × [nd]. Later, in Sec. 4, we will use the bound for Qstar as a building block
to compute the degree sequence bound of a general query Q. There, S will be one of the
relations of the query, for which we know the degree sequences f (Xp) ∈ R[np]

+ , p = 1, . . . , d

and tuple bound B, while the unary relations R(1), . . . , R(d) will be results of subqueries,
which are unknown. The instance of each R(p) is given by an unknown vector a(p) ∈ R[np]

+ ,
which we can assume w.l.o.g. to be non-increasing, by permuting the domain of Xp in both
S and in R(p). Therefore, S will be represented by M ◦ σ, where M ∈ M+

f (X),B
is some

tensor and σ some permutation, and the size of Qstar is:

|Qstar| =
∑

(i1,...,id)∈[n]

(M ◦ σ)i1···id
· a(X1)

i1
· · · a(Xd)

id
(12)

Equivalently: |Qstar| = SUMX

(
(M ◦ σ)⊗

⊗
p a(Xp)

)
= (M ◦ σ) · a(X1) · · ·a(Xd).

Our goal is to find the unknown M ◦ σ for which |Qstar| is maximized, no matter what
the unary relations are. It turns out that σ can always be chosen the identity permutation,
thus it remains to find the optimal M , which we denote by C. This justifies:

▶ Problem 2 (Worst-Case Tensor). Fix f (X), B. Find a tensor C ∈Mf (X),∞ such that, for
all σ ∈ S[n], M ∈M+

f (X),B
, and all non-increasing vectors a(X1) ∈ R[n1]

+ , . . . , a(Xd) ∈ R[nd]
+ :

(M ◦ σ) · a(X1) · · ·a(Xd) ≤ C · a(X1) · · ·a(Xd) (13)

In the rest of this section we describe the solution C. If all entries in C are ≥ 0 and ≤ B,
then C ∈M+

f (X),B
and, by setting M

def= C and σ
def= the identity permutations, the relation

S represented by M ◦ σ maximizes |Qstar|, achieving our goal. But, somewhat surprisingly,
we found that sometimes this worst-case C has entries > B or < 0, yet it still achieves our
goal of a tight upper bound for |Qstar|. This is why we allow C ∈Mf (X),∞.

Let ∆Z denote the discrete derivative of an X-tensor w.r.t. a variable Z ∈X, and ΣZ

denote the discrete integral. Formally, if a ∈ R[n] is a Z-vector, then, setting a0
def= 0:

∀i ∈ [n] : (∆Za)i
def=ai − ai−1 (ΣZa)i =

∑
j=1,i

aj (14)

Notice that:

ΣZ(∆Za) =∆Z(ΣZa) = a SUMZ(∆Za) = an (15)

The subscript in ∆, Σ indicates on which variable they act. For example, if M is an XY Z-
tensor, then (∆Y M)xyz

def= Mxyz − Mx(y−1)z. One should think of the three operators
∆X , ΣX , SUMX as analogous to the continuous operators d···

dx ,
∫
· · · dx,

∫ n

0 · · · dx.

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:9

▶ Definition 3.1. The value tensor, V f (X),B ∈ R[n]
+ , is defined by the following linear

optimization problem:

∀m ∈ [n] : V f (X),B
m

def= Maximize:
∑

s≤m

Ms (16)

Where: M ∈M+
f (X),B

The worst-case tensor, Cf (X),B ∈ R[n], is defined as:

Cf (X),B def=∆X1 · · ·∆Xd
V f (X),B (17)

We will drop the superscripts when clear from the context, and write simply V , C. Our
main result in this section is:

▶ Theorem 3.2. Let f (X), B be given as above, and let V , C defined by (16)-(17). Then:
1. C is a solution to Problem 2, i.e. C ∈Mf (X),∞ and it satisfies Eq. (13). Furthermore,

it is tight in the following sense: there exists a tensor M ∈M+
f (X),B

and non-increasing
vectors a(p) ∈ R[np]

+ , p = 1, d, such that inequality (13) (with σ the identity) is an equality.
2. If there exists any solution C ′ ∈M+

f (X),B
to Problem 2, then C ′ = C.

3. When the number of dimensions is d = 2 then C is integral and non-negative. If d ≥ 3,
C may have negative entries.

4. If B <∞, then C may not be consistent with B, even if d = 2.
5. For any non-increasing vectors a(Xp) ∈ R[np]

+ , p = 2, d, the vector C · a(X2) · · ·a(Xd) is
in R[n1]

+ and non-increasing.
6. Assume B =∞. Then the following holds:

∀m ∈ [n] : Vm = min
(

F (X1)
m1

, . . . , F (Xd)
md

)
(18)

where F
(Xp)
r

def=
∑

j≤r f
(Xp)
j is the CDF associated to the PDF f (Xp), for p = 1, d.

Moreover, C can be computed by Algorithm 1, which runs in time O(
∑

p np). This further
implies that C ≥ 0, in other words C ∈M+

f (X),∞.

Algorithm 1 Efficient construction of C when B = ∞.

∀p = 1, d : sp ← 1; C = 0;
while ∀p : sp < np do

pmin ← arg minp(f (Xp)
sp) dmin ← minp(f (Xp)

sp)
Cs1,...,sd

← dmin

∀p = 1, d : f
(Xp)
sp ← f

(Xp)
sp − dmin

spmin
← spmin

+ 1
end while
return C

In a nutshell, the theorem asserts that the tensor C defined in (17) is the optimal solution
to Problem 2; this is stated in item 1. Somewhat surprisingly, C may be inconsistent w.r.t.
B, and may even be negative. When that happens, then, by item 2, no consistent solution
exists to Problem 2, hence we have to make do with C. In that case C may not represent
a traditional bag S, for example if it has entries < 0. However, this will not be a problem
for computing the degree sequence bound in Sec. 4, because all we need is to compute the

ICDT 2023

8:10 Degree Sequence Bound for Join Cardinality Estimation

product C · a(X2) · · ·a(Xd), which we need to be non-negative, and non-increasing: this is
guaranteed by item 5. The last item gives more insight into V and, by extension, into
C. Recall that Vm, defined by (16), is the largest possible sum of values of a consistent
m1 ×m2 × · · · ×md tensor M . Since the sum in each hyperplane X1 = r of M is ≤ f

(X1)
r ,

it follows that
∑

s≤m Ms ≤
∑

r=1,m1
f

(X1)
r

def= F
(X1)
m1 . Repeating this argument for each

dimension Xp implies that Vm ≤ minp=1,d(F (Xp)
mp). Item 6 states that this becomes an

equality, when B =∞.

▶ Example 3.3. Suppose that we want to maximize aT ·M · b, where M is a 3× 4 matrix
with degree sequences f = (6, 3, 1) and g = (4, 3, 2, 1); assume B =∞. The vectors a, b are
non-negative and non-increasing, but otherwise unknown. The theorem asserts that this
product is maximized by the worst-case matrix C. We show here the matrices C and V
defined by (16) and (17), together with degree sequences f , g next to C, and the cumulative
sequences F = Σf , G = Σg next to V :

C =

4 3 2 1

6 4 2 0 0
3 0 1 2 0
1 0 0 0 1

 V =

4 7 9 10

6 4 6 6 6
9 4 7 9 9

10 4 7 9 10

We can check that Vm1m2 = min(Fm1 , Gm2); for example V31 = min(10, 4) = 4. The

worst-case matrix C is defined as the second discrete derivative of V , more precisely
Cm1m2 = Vm1m2 − Vm1−1,m2 − Vm1,m2−1 + Vm1−1,m2−1. Alternatively, C can be computed
greedily, using Algorithm 1: start with C11 ← min(f1, g1) = 4, decrease both f1, g1 by 4,
set the rest of column 1 to 0 (because now g1 = 0) and continue with C12, etc. Another
important property, which we will prove below in the Appendix (Eq. 35 [4]), is that, for all
m1, m2,

∑
i≤m1,j≤m2

Cij = Vm1m2 ; for example
∑

i≤2,j≤3 Cij = 4 + 2 + 1 + 2 = 9 = V23.

While the proof of Theorem 3.2 provides interesting insight into the structure of the
degree sequence bound, it is not necessary for understanding the remainder of the paper and
requires the introduction of additional notation and machinery. Therefore, for the sake of
space and clarity, we omit it from the main text and instead include a proof of each item in
the appendix Section A.2 [4].

4 The Berge-Acyclic Query

We now turn to the general problem 1. Fix a Berge-acyclic query Q with relations R
def= R(Q),

degree sequences fR,Z , and max tuple multiplicities B(R) as in problem 1.

4.1 The Degree Sequence Bound
▶ Theorem 4.1. For any tensors M (R) ∈M+

f (R,XR),B(R) and permutations σ(R), for R ∈ R,
the following holds:

SUMX

(⊗
R∈R

(M (R) ◦ σ(R))
)
≤SUMX

(⊗
R∈R

Cf (R,XR),B(R)

)
def= DSB(Q) (19)

where Cf (R,XR),B(R) is the worst-case tensor from Def. 3.1.

The theorem simply says that the upper bound to the query Q can be computed by
evaluating Q on the worst case instances, represented by the worst case tensors Cf (R,XR),B(R) .
We call this quantity the degree sequence bound and denote it by DSB(Q). When all max

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:11

Algorithm 2 Computing DSB(Q) = SUMX

(⊗
R∈R

Cf(R,XR),B(R)
)

.

for each variable X ∈X and non-root relation R ∈ R, R ̸= root, in bottom-up order do
a(X) def=

⊗
R∈children(X) w(R) // element-wise product

w(R) def= Cf (R,XR),B(R) · a(X2) · · ·a(Xk) // where XR = (X1, . . . , Xk), X1 = parent(R)
end for
return Cf (root,XROOT),B(ROOT) · a(X1) · a(X2) · · ·a(Xk)

tuple multiplicities B(R) are∞, then the bound is tight, because in that case every worst-case
tensor Cf (R,XR),∞ is in M+

f (R,XR),∞ (by Th. 3.2 item 6); otherwise the bound may not be
tight, but it is locally tight, in the sense of Th. 3.2 item 1.

Before we sketch the main idea of the proof, we note that an immediate consequence is that
the degree sequence bound can be computed using a special case of the FAQ algorithm [12]. We
describe this briefly in Algorithm 2. Recall that the incidence graph of Q is a tree T . Choose
an arbitrary relation ROOT ∈ R(Q) and designate it as root, then make T a directed tree by
orienting all its edges away from the root. Denote by parent(R) ∈XR the parent node of a
relation R ̸= ROOT, associate an X-vector a(X) to each variable X, and a parent(R)-vector
w(R) to each relation name R, then compute these vectors by traversing the tree bottom-up,
as shown in Algorithm 2. Notice that, when X is a leaf variable, then children(X) = ∅ and
a(X) = (1, 1, . . . , 1)T ; similarly, if R(X) is leaf relation of arity 1 with variable X, then w(R)

is the degree sequence of its variable, because w(R) = C(f (R,X),B(R)) = f (R,X). We provide
an example in [4], Appendix A.3. It follows:

▶ Corollary 4.2. The degree sequence bound DSB(Q) can be computed in time polynomial
in the size of the largest domain (data complexity).

In the rest of this section we sketch the proof of Theorem 4.1, mostly to highlight the
role of item 5 of Theorem 3.2, and defer the formal details to Appendix A.3 [4]. Fix tensors
M (R) and permutations σ(R), for each R ∈ R. Choose one relation, say S ∈ R, assume it
has k variables X1, . . . , Xk, then write the LHS of (19) as:

SUMXS

((
M (S) ◦ σ(S)

)
⊗ b1 ⊗ · · · ⊗ bk

)
(20)

where each bp is a tensor expression sharing only variable Xp with S, where we sum out all
variables except Xp (using Eq. (5)). Compute the vectors bp first, sort them in non-decreasing
order, let τp be the permutation that sorts bp, and τ

def= (τ1, . . . , τk). Then (20) equals:

SUMXS

((
M (S) ◦ σ(R) ◦ τ

)
⊗ (b1 ◦ τ1)⊗ · · · ⊗ (bk ◦ τk)

)
(21)

because sums are invariant under permutations. Since each bp ◦ τp is sorted, by item 1 of
Theorem 3.2, the expression above is ≤ to the expression obtained by replacing M (S)◦σ(S)◦τ
with the worst-case tensor Cf(S,XS),B(S) . Thus, every tensor could be replaced by the worst-
case tensor, albeit at the cost of applying some new permutations τp to other expressions.
To avoid introducing these permutations, we proceed as follows. We choose an orientation of
the tree T , as in Algorithm 2, then prove inductively, bottom-up the tree, that each tensor
M ◦ σ can be replaced by the worst-case tensor C without decreasing the LHS of (19),
and that the resulting vector (in the bottom-up computation) is sorted. To prove this, we
re-examine Eq. (20), assuming X1 is the parent variable of S. By induction, all the tensors
occurring in b2, . . . , bk have already been replaced with worst-case tensors, and their results

ICDT 2023

8:12 Degree Sequence Bound for Join Cardinality Estimation

are non-increasing vectors. Then, in Eq. (21) it suffices to apply the permutation τ to the
parent expression b1 (which still has the old tensors M ◦ σ), use item 1 of Theorem 3.2 to
replace M (S) ◦ σ(S) ◦ τ by Cf(S,XS),B(S) , and, finally, use item 5 of Theorem 3.2 to prove
that the result returned by the node S is a non-decreasing vector, as required.

4.2 Connection to the AGM and Polymatroid Bounds
We prove now that DSB(Q) is always below the AGM [1] and the polymatroid bounds [14, 18].

The AGM bound is expressed in terms of the cardinalities of the relations. For each
relation R, let NR be an upper bound on its cardinality. Then the AGM bound is AGM(Q) def=
minw

∏
R NwR

R , where the vector w = (wR)R∈R ranges over the fractional edge covers of the
hypergraph associated to Q. If a database instance satisfies |R| ≤ NR for all R, then the
size of the query is |Q| ≤ AGM(Q), and this bound is tight, i.e. there exists an instance for
which we have equality.

The polymatroid bound uses both the cardinality constraints NR and the maximum
degrees. The general bound in [14] considers maximum degrees for any subset of variables, but
throughout this paper we restrict to degrees of single variables, in which case the polymatroid
bound is expressed in terms of the quantities NR and f

(R,X)
1 , one for each relation R and

each of its variables X. The AGM bound is the special case when f
(R,X)
1 = NR for all

R. We review the general definition of the polymatroid bound in [4], Appendix A.4, but
will mention that no closed formula is known for polymatroid bound, similar to the AGM
bound. We give here the first such closed formula, for the case of Berge-acyclic queries. Let
Q be a Berge-acyclic query with incidence graph T (which is a tree). Choose an arbitrary
relation ROOT ∈ R(Q) to designate as the root of T , and for each other relation R, denote by
ZR

def= parent(R), i.e. its unique variable pointing up the tree. Denote by:

PB(Q, ROOT) def=NROOT

∏
R ̸=ROOT

f
(R,ZR)
1 (22)

One can immediately check that the query answer on any database instance consistent with
the statistics satisfies |Q| ≤ PB(Q, ROOT). A cover of Q is set W = {Q1, Q2, . . . , Qm}, for
some m ≥ 1, where each Qi is a connected subquery of Q, and each variable of Q occurs in
at least one Qi, and we denote by:

PB(W) def=
∏

i=1,m

min
ROOT∈R(Qi)

PB(Qi, ROOTi) (23)

Since |Q| ≤ |Q1| · |Q2| · · · |Qm|, we also have |Q| ≤ PB(W). We prove in [4], Appendix A.4:

▶ Theorem 4.3. The polymatroid bound of a Berge-acyclic query Q is PB(Q) def=
minW PB(W), where W ranges over all covers.

▶ Example 4.4. Let Q = R(X, Y), S(Y, Z), T (Z, U), K(U, V). Then PB(Q, S) =
f

(R,Y)
1 NSf

(T,Z)
1 f

(K,U)
1 , PB({R, TK}) = NR · min

(
NT f (K,U), f (T,U)Nk

)
, and

PB({R, T, K}) = NRNT NK .

If we restrict the formula to the AGM bound, i.e. all max degrees are equal to the
cardinalities, f

(R,X)
1 = NR, then Eq. (22) becomes

∏
R∈R(Q) NR, while the polymatroid

bound (23) becomes minW

∏
R∈W NR, where W ranges over integral covers of Q. In

particular, the AGM bound of a Berge-acyclic query can be obtained by restricting to integral
edge covers, although this property fails for α-acylic queries. For example, consider the query

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:13

R(X, Y), S(Y, Z), T (Z, X), K(X, Y, Z); when |R| = |S| = |T | = |K| then the AGM bound is
obtained by the edge cover 0, 0, 0, 1, but when |R| = |S| = |T | ≪ |K| one needs the fractional
cover 1/2, 1/2, 1/2, 0. Next, we prove next that the degree sequence bound is always better.

▶ Lemma 4.5.
(1) For any choice of root relation, ROOT ∈ R(Q): DSB(Q) ≤ PB(Q, ROOT).
(2) For any cover Q1, . . . , Qm of Q, DSB(Q) ≤ DSB(Q1) · · ·DSB(Qm)

Proof. (1) Referring to Algorithm 2, we prove by induction on the tree that, for all R ̸= ROOT,
and every index i, w

(R)
i ≤

∏
S∈tree(R) f

(S,ZS)
1 . In other words, each element of the vector

w(R) is ≤ the product of all max degrees in the subtree rooted at R. Assuming this holds for
all children of R, consider the definition of w(R) in Algorithm 2. By induction hypothesis,
for each vector a(Xp) we have a

(Xp)
ip

≤
∏

S∈tree(Xp) f
(S,ZS)
1 , a quantity that is independent of

the index ip, and therefore we obtain the following:

w
(R)
i1

=
(

Cf(R,XR),B(R)
· a(X2) · · · a(Xk)

)
i1

≤

(∑
i2i3···ik

Cf(R,XR),B(R)

i1i2i3···ik

)
·

∏
S∈tree(R),S ̸=R

f
(S,ZS)
1

and we use the fact that
∑

i2i3···ik
Cf (R,XR),B(R)

i1i2···ik
≤ f

(R,X1)
i1

because, by Theorem 3.2 item 1,
Cf (R,XR),B(R) is consistent with the degree sequence f

(R,X1)
1 , and, finally, f

(R,X1)
i1

≤ f
(R,X1)
1 .

This completes the inductive proof. The algorithm returns Cf (root,XROOT),B(ROOT) · a(X1) ·
a(X2) · · ·a(Xk) ≤ SUM(Cf (root,XROOT),B(ROOT)) ·

∏
R ̸=ROOT f

(R,ZR)
1 ≤ |ROOT| ·

∏
R ̸=ROOT f

(R,ZR)
1 , which

is = PB(Q, ROOT), as required.
(2) We prove the statement only for m = 2 (the general case is similar) and show

that DSB(Q) ≤ DSB(Q1) ·DSB(Q2). Since DSB is the query answer on the worst case
instance, we need to show that |Q1 ⋊⋉ Q2| ≤ |Q1| · |Q2|. This is not immediately obvious
because the worst case instance may have negative multiplicities. Let X be the unique
common variable of Q1, Q2, and let a, b be the X-vectors representing the results of Q1 and
Q2 respectively. It follows from Theorem 3.2 item 5 that a, b are non-negative, therefore,
|Q| =

∑
i aibi ≤ (

∑
i ai)(

∑
i bi) = |Q1| · |Q2|. ◀

Our discussion implies:

▶ Theorem 4.6. Let Q be a Berge-acyclic query. We denote by DSB(Q, f , B) the DSB
computed on the statistics f

def= (fR,Z)R∈R(Q),Z∈XR
and B

def= (B(R))R∈R(Q). Then:

|Q| ≤ DSB(Q, f , 1) ≤ DSB(Q, f , B) ≤ DSB(Q, f , ∞) ≤ PB(Q) ≤ AGM(Q) (24)

where |Q| is the answer to the query on an database instance consistent with the given
statistics.

Recall that both AGM and PB bounds are defined over set semantics only. While the
AGM bound is tight, the PB bound is known to not be tight in general, and it is open
whether it is tight for Berge-acyclic queries. Our degree sequence bound under either set or
bag semantics improves over PB and, in the case of bag semantics (B =∞) DSB is tight.

5 Functional Representation

A degree sequence requires, in general, Ω(n) space, where n = maxX∈X nX is the size of the
largest domain, while cardinality estimators require sublinear space and time. However, a
degree sequence can be represented compactly, using a staircase function as illustrated in

ICDT 2023

8:14 Degree Sequence Bound for Join Cardinality Estimation

Fig. 1. In this section we show how the degree sequence bound, DSB, be approximated in
quasi-linear time in the size of the functional representation. We call this approximate bound
FDSB, show that DSB ≤ FDSB ≤ PB, and show that the staircase functions can be further
compressed, allowing a tradeoff between the memory size and computation time on one hand,
and accuracy of the FDSB on the other hand. We restrict our discussion to B(R) =∞.

In this section we denote a vector element by F (i) rather than Fi. For a non-decreasing
vector F ∈ R[n]

+ , we denote by F −1 : R+ → R+ any function satisfying the following, for all
v, 0 ≤ v ≤ F (n): if F (i) < v then i < F −1(v), and if F (i) > v then i > F −1(v). Such a
function always exists5, but is not unique. Then:

▶ Lemma 5.1. Let F1 ∈ R[n1]
+ , . . . , Fd ∈ R[nd]

+ be non-decreasing vectors satisfying F1(0) = 0
and, for all p = 1, d, F1(n1) ≤ Fp(np). Let a1 ∈ R[n1]

+ , . . . , ad ∈ R[nd]
+ be non-increasing

vectors. Denote by C, w the following tensor and vector:

Ci1···id

def= ∆i1 · · ·∆id
max(F1(i1), . . . , Fd(id)) (25)

w(i1) def=
n2∑

i2=1
. . .

nd∑
id=1

Ci1···id

∏
p∈[2,d]

ap(ip) (26)

Then the following inequalities hold:

w(i1) ≥ (∆i1F1(i1))
∏

p∈[2,d]

ap

(⌊
F −1

p (F1(i1))
⌋

+ 1
)

(27)

w(i1) ≤ (∆i1F1(i1))
∏

p∈[2,d]

ap

(⌈
F −1

p (F1(i1 − 1))
⌉)

(28)

We give the proof in Appendix [4]. The lemma implies that, in Algorithm 2, we can
use inequality (28) to upper bound the computation w(R) = C · a(X2) · · ·a(Xk). Indeed, in
that case each Fp(r) def=

∑
i=1,r fp(r) is the cdf of a degree sequence fp, hence Fp(0) = 0 and

Fp(np) = the cardinality of R, while the tensor C is described in item 6 of Theorem 3.2,
hence the assumptions of the lemma hold.

We say that a vector f ∈ Rn
+ is represented by a function f̂ : R+ → R+ if f(i) = f̂(i) for

all i = 1, n. A function f̂ is a staircase function with s steps, in short an s-staircase, if there
exists dividers m0

def= 0 < m1 < · · · < ms
def= n such that f̂(x) is a nonnegative constant on

each interval {x | mq−1 < x ≤ mq}, q = 1, s. The sum or product of an s1-staircase with
an s2-staircase is an (s1 + s2)-staircase. We denote the summation of a staircase f̂(x) as
F̂ (x) =

∫ x

0 f̂(t)dt which is then an increasing piecewise-linear function. Its standard inverse
F̂ −1 : R+ → R+ is also increasing and piecewise-linear. If F̂ represents the vector F , then
F̂ −1 is an inverse F −1 of that vector (as discussed above).

Fix a Berge-acyclic query Q, and let each degree sequence f (R,Z) be represented by some
sR,Z -staircase f̂R,Z , and we denote by F̂ (R,Z) its summation. Fix any relation ROOT ∈ R(Q)
to designated as root. The Functional Degree Sequence Bound at ROOT, FDSB(Q, ROOT), is
the value returned by Algorithm 3. This algorithm is identical to Algorithm 2, except that it
replaces both w(R) with a functional upper bound justified by the inequality 28 of Lemma 5.1,
and similarly for the returned result. All functions â(X) and ŵ(R) are staircase functions,
and can be computed in linear time, plus a logarithmic time need for a binary search to
lookup a segment in a staircase. Using this, we prove the following in Appendix A.6 [4]:

5 E.g. define it as follows: if ∃i s.t. F (i − 1) < v < F (i) then set F −1(v) def= i − 1/2, otherwise set
F −1(v) = i for some arbitrary i s.t. F (i) = v.

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:15

Algorithm 3 F DSB(Q, ROOT).

for each variable X ∈X and non-root relation R ∈ R, R ̸= root, in bottom-up order do
â(X) def=

⊗
R∈children(X) ŵ(R)

∀i1 : ŵ(R)(i1) def=
(

f̂ (R,X1)(i1)
)∏

p∈[2,d] a(Xp)
(

max(1, (F̂ (R,Xp))−1(F̂ (R,X1)(i1 − 1)))
)

end for
return

∑
i=1,|ROOT|

∏
p=1,k a(Xp)(max(1, (F ROOT,Xp)−1(i− 1)))

▶ Theorem 5.2.
(1) FDSB(Q, ROOT) ≥ DSB(Q).
(2) FDSB(Q, ROOT) can be computed in time TFDSB

def= Õ(m ·
∑

R,Z(arity(R) · sR,Z)), where
Õ hides a logarithmic term, and m = |R(Q)| is the number of relations in Q.

The theorem says that FDSB(Q, ROOT) is still an upper bound on |Q|, and can be
computed in quasi-linear time in the size of the functional representations of the degree
sequences. Next, we check if FDSB is below the polymatroid bound. Consider the com-
putation of ŵ(R)(i1) by the algorithm. On one hand f̂ (R,X1)(i1) ≤ f̂ (R,X1)(1); on the other
hand a(Xp)(max(1, . . .)) ≤ a(Xp)(1). This allows us to prove (inductively on the tree, in [4],
Appendix A.7):

▶ Lemma 5.3. FDSB(Q, ROOT) ≤ PB(Q, ROOT), where PB is defined in (22).

When we proved DSB ≤ PB in Lemma 4.5, we used two properties of DSB:
DSB(Q, ROOT) is independent of the choice of ROOT, and DSB(Q1 ⋊⋉ · · · ⋊⋉ Qm) ≤
DSB(Q1) · · ·DSB(Qm), for any cover W = {Q1, . . . , Qm}. Both hold because DSB(Q) is
standard query evaluation: it is independent of the query plan (i.e. choice of ROOT) and
it can only increase if we remove join conditions. But FDSB is no longer standard query
evaluation and these properties may fail. For that reason we introduce a stronger functional
degree sequence bound:

FDSB(Q) = min
W

∏
i=1,m

min
ROOT ∈R(Q)

FDSB(Qi, ROOT) (29)

where W range over the covers of Q. We prove in Appendix A.6.1 [4]:

▶ Theorem 5.4. FDSB(Q) can be computed in time O(2m · (2m + m · TF DSB)) (where
TF DSB is defined in Theorem 5.2).

Mirroring our results from Theorem 4.6, we prove the following in Appendix A.8 [4]:

▶ Theorem 5.5. Suppose Q is a Berge-acyclic query. Then the following hold:

|Q| ≤ FDSB(Q) ≤ PB(Q) ≤ AGM(Q) (30)

Together, Theorems 5.4 and 5.5 imply that we can compute in quasi-linear time in the
size of the representation an upper bound to the query Q that is guaranteed to improve over
the polymatroid bound. In practice, we expect this bound to be significantly lower than the
polymatroid bound, because it accounts for the entire degree sequence f , not just f1.

Finally, we show that one can tradeoff the size of the representation for accuracy, by
simply choosing more coarse staircase approximations of the degree sequences. They only
need to be non-increasing, and lie above the true degree sequences.

ICDT 2023

8:16 Degree Sequence Bound for Join Cardinality Estimation

▶ Theorem 5.6. Fix a query Q, let f (R,Z), B(R) be statistics as in Problem 1, and let U be
the cardinality bound defined by (10). Let f̂ (R,Z), B̂(R) be a new set of statistics, and Û the
resulting cardinality bound. If f (R,XR) ≤ f̂ (R,XR) and B(R) ≤ B̂(R) for all R, Z ∈ XR, then
U ≤ Û .

Proof. The proof follows immediately from the observation that the set of feasible solutions
can only increase (see Def. 2.3): M+

f (R,XR),B(R) ⊆M+
f̂ (R,XR),B̂(R) . ◀

6 Conclusions

We have described the degree sequence bound of a conjunctive query, which is an upper bound
on the size of its answer, given in terms of the degree sequences of all its attributes. Our
results apply to Berge-acyclic queries, and strictly improve over previously known AGM
and polymatroid bounds [1, 14]. On one hand, our results represent a significant extension,
because they account for the full degree sequences rather than just cardinalities or just the
maximum degrees. On the other hand, they apply only to a restricted class of acyclic queries,
although, we argue, this class is the most important for practial applications. While the full
degree sequence can be as large as the entire data, we also described how to approximate
the cardinality bound very efficiently, using compressed degree sequences. Finally, we have
argued for using the max tuple multiplicity for each relation, which can significantly improve
the accuracy of the cardinality bound.

References
1 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational

joins. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008,
October 25-28, 2008, Philadelphia, PA, USA, pages 739–748. IEEE Computer Society, 2008.
doi:10.1109/FOCS.2008.43.

2 Douglas Bauer, Haitze J Broersma, Jan van den Heuvel, Nathan Kahl, A Nevo, E Schmeichel,
Douglas R Woodall, and Michael Yatauro. Best monotone degree conditions for graph
properties: a survey. Graphs and combinatorics, 31(1):1–22, 2015.

3 Walter Cai, Magdalena Balazinska, and Dan Suciu. Pessimistic cardinality estimation: Tighter
upper bounds for intermediate join cardinalities. In Peter A. Boncz, Stefan Manegold, Anastasia
Ailamaki, Amol Deshpande, and Tim Kraska, editors, Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, pages 18–35. ACM, 2019. doi:10.1145/3299869.3319894.

4 Kyle Deeds, Dan Suciu, Magda Balazinska, and Walter Cai. Degree sequence bound for join
cardinality estimation. arXiv preprint, 2022. arXiv:2201.04166.

5 Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM,
30(3):514–550, 1983. doi:10.1145/2402.322390.

6 Amir Gilad, Shweta Patwa, and Ashwin Machanavajjhala. Synthesizing linked data under
cardinality and integrity constraints. In Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh
Srivastava, editors, SIGMOD ’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021, pages 619–631. ACM, 2021. doi:10.1145/3448016.3457242.

7 Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. Size and treewidth
bounds for conjunctive queries. J. ACM, 59(3):16:1–16:35, 2012. doi:10.1145/2220357.
2220363.

8 Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. In Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006,
Miami, Florida, USA, January 22-26, 2006, pages 289–298. ACM Press, 2006. URL: http:
//dl.acm.org/citation.cfm?id=1109557.1109590.

https://doi.org/10.1109/FOCS.2008.43
https://doi.org/10.1145/3299869.3319894
http://arxiv.org/abs/2201.04166
https://doi.org/10.1145/2402.322390
https://doi.org/10.1145/3448016.3457242
https://doi.org/10.1145/2220357.2220363
https://doi.org/10.1145/2220357.2220363
http://dl.acm.org/citation.cfm?id=1109557.1109590
http://dl.acm.org/citation.cfm?id=1109557.1109590

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:17

9 S Louis Hakimi and Edward F Schmeichel. Graphs and their degree sequences: A survey. In
Theory and applications of graphs, pages 225–235. Springer, 1978.

10 Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai Zeng, Gao
Cong, Yanzhao Qin, Andreas Pfadler, et al. Cardinality estimation in dbms: A comprehensive
benchmark evaluation. arXiv preprint arXiv:2109.05877, 2021.

11 Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. Simplicity done
right for join ordering. In 11th Conference on Innovative Data Systems Research, CIDR
2021, Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org, 2021. URL:
http://cidrdb.org/cidr2021/papers/cidr2021_paper01.pdf.

12 Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: questions asked frequently. In
Tova Milo and Wang-Chiew Tan, editors, Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA,
June 26 - July 01, 2016, pages 13–28. ACM, 2016. doi:10.1145/2902251.2902280.

13 Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. Computing join queries with functional
dependencies. In Tova Milo and Wang-Chiew Tan, editors, Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 327–342. ACM, 2016. doi:10.1145/
2902251.2902289.

14 Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What do shannon-type inequalities,
submodular width, and disjunctive datalog have to do with one another? In Emanuel Sallinger,
Jan Van den Bussche, and Floris Geerts, editors, Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL,
USA, May 14-19, 2017, pages 429–444. ACM, 2017. doi:10.1145/3034786.3056105.

15 Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas
Neumann. How good are query optimizers, really? Proc. VLDB Endow., 9(3):204–215, 2015.
doi:10.14778/2850583.2850594.

16 Jie Liu, Wenqian Dong, Dong Li, and Qingqing Zhou. Fauce: Fast and accurate deep ensembles
with uncertainty for cardinality estimation. Proc. VLDB Endow., 14(11):1950–1963, 2021. URL:
http://www.vldb.org/pvldb/vol14/p1950-liu.pdf, doi:10.14778/3476249.3476254.

17 Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul, Tim Kraska,
and Mohammad Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proc. VLDB
Endow., 14(11):2019–2032, 2021. URL: http://www.vldb.org/pvldb/vol14/p2019-negi.pdf,
doi:10.14778/3476249.3476259.

18 Hung Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and open problems.
In Jan Van den Bussche and Marcelo Arenas, editors, Proceedings of the 37th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, Houston, TX, USA, June
10-15, 2018, pages 111–124. ACM, 2018. doi:10.1145/3196959.3196990.

19 Yeonsu Park, Seongyun Ko, Sourav S. Bhowmick, Kyoungmin Kim, Kijae Hong, and Wook-
Shin Han. G-CARE: A framework for performance benchmarking of cardinality estimation
techniques for subgraph matching. In David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew
Tan, Abdussalam Alawini, and Hung Q. Ngo, editors, Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020, pages 1099–1114. ACM, 2020. doi:10.1145/3318464.3389702.

20 Ji Sun, Guoliang Li, and Nan Tang. Learned cardinality estimation for similarity queries.
In Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava, editors, SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China, June 20-25, 2021,
pages 1745–1757. ACM, 2021. doi:10.1145/3448016.3452790.

21 Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou. Are we
ready for learned cardinality estimation? Proc. VLDB Endow., 14(9):1640–1654, 2021. URL:
http://www.vldb.org/pvldb/vol14/p1640-wang.pdf, doi:10.14778/3461535.3461552.

ICDT 2023

http://cidrdb.org/cidr2021/papers/cidr2021_paper01.pdf
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/2902251.2902289
https://doi.org/10.1145/2902251.2902289
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.14778/2850583.2850594
http://www.vldb.org/pvldb/vol14/p1950-liu.pdf
https://doi.org/10.14778/3476249.3476254
http://www.vldb.org/pvldb/vol14/p2019-negi.pdf
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.1145/3196959.3196990
https://doi.org/10.1145/3318464.3389702
https://doi.org/10.1145/3448016.3452790
http://www.vldb.org/pvldb/vol14/p1640-wang.pdf
https://doi.org/10.14778/3461535.3461552

8:18 Degree Sequence Bound for Join Cardinality Estimation

22 Peizhi Wu and Gao Cong. A unified deep model of learning from both data and queries for
cardinality estimation. In Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava,
editors, SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, pages 2009–2022. ACM, 2021. doi:10.1145/3448016.3452830.

23 Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and Ion Stoica.
Neurocard: One cardinality estimator for all tables. Proc. VLDB Endow., 14(1):61–73, 2020.
doi:10.14778/3421424.3421432.

24 Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian, Jingren Zhou,
and Bin Cui. FLAT: fast, lightweight and accurate method for cardinality estimation. Proc.
VLDB Endow., 14(9):1489–1502, 2021. URL: http://www.vldb.org/pvldb/vol14/p1489-zhu.
pdf, doi:10.14778/3461535.3461539.

https://doi.org/10.1145/3448016.3452830
https://doi.org/10.14778/3421424.3421432
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf
https://doi.org/10.14778/3461535.3461539

Absolute Expressiveness of Subgraph-Based
Centrality Measures
Andreas Pieris #

University of Edinburgh, UK
University of Cyprus, Nicosia, Cyprus

Jorge Salas #

Pontificia Universidad Católica de Chile, Santiago, Chile
University of Edinburgh, UK

Abstract
In graph-based applications, a common task is to pinpoint the most important or “central” vertex
in a (directed or undirected) graph, or rank the vertices of a graph according to their importance.
To this end, a plethora of so-called centrality measures have been proposed in the literature. Such
measures assess which vertices in a graph are the most important ones by analyzing the structure
of the underlying graph. A family of centrality measures that are suited for graph databases has
been recently proposed by relying on the following simple principle: the importance of a vertex in
a graph is relative to the number of “relevant” connected subgraphs surrounding it; we refer to
the members of this family as subgraph-based centrality measures. Although it has been shown
that such measures enjoy several favourable properties, their absolute expressiveness remains largely
unexplored. The goal of this work is to precisely characterize the absolute expressiveness of the
family of subgraph-based centrality measures by considering both directed and undirected graphs.
To this end, we characterize when an arbitrary centrality measure is a subgraph-based one, or
a subgraph-based measure relative to the induced ranking. These characterizations provide us
with technical tools that allow us to determine whether well-established centrality measures are
subgraph-based. Such a classification, apart from being interesting in its own right, gives useful
insights on the structural similarities and differences among existing centrality measures.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Information systems
→ Graph-based database models

Keywords and phrases Graph centrality measures, ranking, expressiveness

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.9

Related Version Full Version: https://arxiv.org/abs/2206.06137

Funding Andreas Pieris: Pieris was supported by the EPSRC grant EP/S003800/1 “EQUID”.
Jorge Salas: Salas was supported by ANID – Millennium Science Initiative Program – Code
ICN17_002.

1 Introduction

Graphs are well-suited for representing complex networks such as biological networks, cognitive
and semantic networks, computer networks, and social networks, to name a few. In many
applications that involve (directed or undirected) graphs, a crucial task is to pinpoint the
most important or “central” vertex in a graph, or rank the vertices of a graph according to
their importance. Indeed, these graph-theoretic tasks naturally appear in many different
contexts, for example, finding people who are more likely to spread a disease in the event of
an epidemic [4], highlighting cancer genes in proteomic data [7], assessing the importance of
websites by search engines [12], identifying influencers in social networks [6], and many more.

© Andreas Pieris and Jorge Salas;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 9; pp. 9:1–9:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:apieris@inf.ed.ac.uk
https://orcid.org/0000-0003-4779-3469
mailto:jusalas@uc.cl
https://orcid.org/0000-0001-5535-3055
https://doi.org/10.4230/LIPIcs.ICDT.2023.9
https://arxiv.org/abs/2206.06137
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Absolute Expressiveness of Subgraph-Based Centrality Measures

To this end, a plethora of centrality measures have been proposed that assess the importance
of a vertex in a graph [3, 11]. Centrality measures have been also studied in a principled way
with the aim of providing axiomatic characterizations via structural properties over certain
classes of graphs; see, e.g., [8, 18, 19].

It is not surprising that centrality measures have been also considered in the context
of graph-structured data. Major graph database management systems such as Neo4j1

and TigerGraph2, have already adopted and implemented several centrality measures and
algorithms in their Graph Data Science library such as Eigenvector [2], PageRank [12],
Closeness [15], and many others. Moreover, applications of centrality measures have recently
emerged in the context of knowledge graphs for entity linking [9], and Semantic Web search
engines where ranking results is a central task [5].

Several existing centrality measures rely on the following intuitive principle: the import-
ance of a vertex in a graph is relative to the number of connected subgraphs (e.g., triangles,
paths, or cliques) surrounding it. We refer to such measures as subgraph-based. Interestingly,
subgraph-based centrality measures are of particular interest for graph-structured data since
a connected subgraph can be understood as the potential graph patterns occurring in a graph
database. Consider, for example, a property graph G, which is essentially a finite directed
graph, and a language L of basic graph patterns [1]. The evaluation of a query Q from L over
G, denoted Q(G), is the set of vertices of G that comply with the graph pattern expressed
by Q. It is reasonable to assume that the more queries Q’s from L such that v ∈ Q(G) exist,
the more important v is in G (relative to L). This way of defining the importance of a vertex
follows the general principle discussed above, where the relevant connected subgraphs are
the basic graph patterns from the language L.

A framework for defining and studying subgraph-based centrality measures has been
recently introduced by Riveros and Salas [14], where the importance of a vertex is defined as
the logarithm of the number of connected subgraphs surrounding it. As explicitly discussed
in [14], the choice of applying the logarithmic function is purely for technical simplicity, and
one could adopt any function, which we call filtering function, that leads to a richer family
of subgraph-based centrality measures. Note that [14] considered only undirected graphs,
but we can naturally define subgraph-based centrality measures over directed graphs. The
main outcome of the analysis performed in [14] is that subgraph-based centrality measures
satisfy desirable theoretical properties, typically called axioms, provided that the underlying
family of connected subgraphs enjoys certain properties.

Despite the thorough analysis performed in [14], the absolute expressiveness of the family
of subgraph-based centrality measures remains largely unexplored. Our main objective is to
delineate the limits of the family of subgraph-based measures for both directed and undirected
graphs. More precisely, we would like to understand when an arbitrary centrality measure is
a subgraph-based one, or when it induces the same ranking as a subgraph-based one.

Our Contributions. Our contributions can be summarized as follows:
In Section 4, we provide a precise characterization of when an arbitrary centrality measure
is subgraph-based. More precisely, we isolate a “bounded value” property P over centrality
measures, which essentially states that the total number of distinct values that can be
assigned to vertices surrounded by a certain number of connected subgraphs is bounded,
and then show that a measure can be expressed as a subgraph-based one iff it enjoys P .

1 https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/
2 https://docs.tigergraph.com/graphml/current/centrality-algorithms/

https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/
https://docs.tigergraph.com/graphml/current/centrality-algorithms/

A. Pieris and J. Salas 9:3

We then proceed in Section 5 to characterize when an arbitrary centrality measure induces
the same ranking as a subgraph-based measure. In this case, we isolate a “graph coloring”
property P over centrality measures, and then show that a centrality measure can be
expressed as a subgraph-based one relative to the induced ranking iff it enjoys P .
In Section 6, we focus on the family of monotonic subgraph-based measures, i.e., subgraph-
based measures with a monotonic filtering function, and provide analogous characteriza-
tions via refined properties in the spirit of the “bounded value” property discussed above.
An interesting finding is that in the case of connected graphs, every centrality measure
can be expressed as a monotonic subgraph-based measure relative to the induced ranking.
We finally proceed in Section 7 to determine if established measures (such as PageRank,
Eigenvector, and many others) are (monotonic) subgraph-based (relative to the induced
ranking). Such a classification, apart from being interesting in its own right, provides
insights on the structural similarities and differences among the considered measures.

Clarification Remark. In the rest of the paper, due to space constraints and for the sake of
clarity, we focus on undirected graphs, but all the notions and results can be transferred to
the case of directed graphs under the standard notion of weak connectedness.

2 Preliminaries

We recall the basics on undirected graphs and graph centrality measures. In the rest of the
paper, we assume the countable infinite set V of vertices. For n > 0, let [n] = {1, . . . , n}.

Undirected Graphs. An undirected graph (or simply graph) G is a pair (V, E), where V is a
finite non-empty subset of V (the set of vertices of G), and E ⊆ {{u, v} | u, v ∈ V } (the set
of edges of G). For notational convenience, given a graph G, we write V (G) and E(G) for the
set of its vertices and edges, respectively. We denote by G the set of all graphs, and by VG
the set of vertex-graph pairs {(v, G) ∈ V × G | v ∈ V (G)}. The neighbourhood of a vertex
v ∈ V (G) in G, denoted NG(v), is the set {u ∈ V (G) | {u, v} ∈ E(G)}. For u ∈ NG(v), we
say that v and u are adjacent in G. For a vertex v ∈ V, we write Gv for the graph ({v}, ∅).

A subgraph of a graph G is a graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G);
we write G′ ⊆ G to indicate that G′ is a subgraph of G. Note that the binary relation
⊆ over graphs forms a partial order. We denote by Sub(G) all the subgraphs of G, that
is, the set of graphs {G′ | G′ ⊆ G}. Given a set of vertices S ⊆ V (G), the subgraph
of G induced by S, denoted G[S], is the subgraph G′ of G such that V (G′) = S and
E(G′) = {{u, v} ∈ E(G) | u, v ∈ S}.

A path in G is a sequence of vertices π = v0, v1, . . . , vn, for n ≥ 0, such that {vi, vi+1} ∈
E(G) for every 0 ≤ i < n. We further say that π is a path from v0 to vn. The length of
π, denoted |π|, is the number of edges in π, i.e., n. By convention, there exists a path of
length 0 from a vertex to itself. The distance between two vertices u, v ∈ V (G) in G, denoted
dG(u, v), is defined as the length of a shortest path from u to v in G; if there is no path,
then dG(u, v) = ∞. We denote by SG(u, v) the set of all the shortest paths from u to v in G,
that is, the set {π | π is a path from u to v in G with |π| = dG(u, v)}.

A graph G is connected if, for every two distinct vertices u, v ∈ V (G), there exists a path
from u to v. We denote by A(v, G) the set of all connected subgraphs of G that contain v,
that is, the set {G′ ⊆ G | v ∈ V (G′) and G′ is connected}. By abuse of notation, we may
treat A(·, ·) as a function of the form VG → P(G); as usual, P(S) denotes the powerset of
a set S. A connected component (or simply component) of G is an induced subgraph G[S]

ICDT 2023

9:4 Absolute Expressiveness of Subgraph-Based Centrality Measures

of G, where S ⊆ V (G), such that G[S] is connected, and, for every v ∈ V (G) \ S, there is
no path in G from v to a vertex of S. It is clear that whenever G is connected, the only
component of G is G itself. We denote by Comp(G) all the components of G, that is, the set
of graphs {G′ | G′ is a component of G}. Let Kv(G) be the set of vertices of the component
of G containing the vertex v.

Two graphs G1 and G2 are isomorphic, denoted G1 ≃ G2, if there exists a bijective function
h : V (G1) → V (G2) such that {v, u} ∈ E(G1) iff {h(v), h(u)} ∈ E(G2). Furthermore, given
the vertices v1 ∈ V (G1) and v2 ∈ V (G2), we say that the pairs (v1, G1) and (v2, G2) are
isomorphic, denoted (v1, G1) ≃ (v2, G2), if G1 ≃ G2 witnessed by h and h(v1) = v2.

Centrality Measures. A centrality measure assigns a score to a vertex v in a graph G, which
reflects the importance of v in G. In other words, we adopt the standard assumption that the
higher the score of a vertex v in G, the more important or “central” v is in G. Furthermore,
it is typically assumed that the values assigned by a measure to the vertices of a graph do
not depend on the names of the vertices, but only on the structure of the graph. In other
words, two isomorphic vertices occurring in isomorphic graphs should be assigned the same
importance; the latter property is usually called closure under isomorphism or anonymity.
The formal definition of the notion of centrality measure follows:

▶ Definition 1 (Centrality Measure). A centrality measure (or simply measure) is a function
C : VG → R such that, for every two pairs (v1, G1) ∈ VG and (v2, G2) ∈ VG, (v1, G1) ≃
(v2, G2) implies C(v1, G1) = C(v2, G2). ⌟

We proceed to recall three known centrality measures that will be used throughout the
paper; more centrality measures are discussed in Section 7.

Stress. This is a well-known centrality measure introduced in the 1950s [16]. It measures the
centrality of a vertex by counting the number of shortest paths that go via that vertex.
For a graph G and a vertex v ∈ V (G), let Sv

G(u, w) be the set of paths {π ∈ SG(u, w) |
π contains v}. The stress centrality of v in G is defined as follows:

Stress(v, G) =
∑

u,w∈V (G)\{v}

|Sv
G(u, w)| .

All-Subgraphs. This measure was recently introduced in the context of graph databases [14].
It states that a vertex is more central if it participates in more connected subgraphs.
Formally, given a graph G and a vertex v ∈ V (G), the all-subgraphs centrality of v in G is

All-Subgraphs(v, G) = log2 |A(v, G)|.

Closeness. This is a well-known measure introduced back in the 1960s [15]. It is usually
called a geometrical measure since it relies on the distance inside a graph. It essentially
states that the closer a vertex is to everyone in the graph the more central it is. Formally,
given a graph G and a vertex v ∈ V (G), the closeness centrality of v in G is the ratio

Closeness(v, G) = 1∑
u∈Kv(G) dG(v, u) .

Let us clarify that we define the sum of distances inside a component of G since the
distance between two vertices in different components of G is by definition infinite.

A. Pieris and J. Salas 9:5

3 Subgraph-based Centrality Measures

As already discussed in the Introduction, a natural way of measuring the importance of a
vertex in a graph is to count the relevant connected subgraphs surrounding it, and then
apply a certain filtering function from the non-negative integers to the reals on top of the
count. Of course, the relevant subgraphs and the adopted filtering function are determined by
the intention of the centrality measure. Interestingly, both the stress and the all-subgraphs
centrality measures are actually based on this principle. Let us elaborate further on this.
Consider a graph G and a vertex v ∈ V (G):

For the stress centrality, the important subgraphs for v in G are the shortest paths that
go via v in G, and the filtering function is f×2(x) = 2x since each shortest path is counted
twice. In other words, with Gπ being the graph that corresponds to a path π,

Stress(v, G) = f×2

∣∣∣∣∣∣
⋃

u,w∈V (G)\{v}

{Gπ | π ∈ Sv
G(u, w)}

∣∣∣∣∣∣
 .

For the all-subgraphs centrality, the important subgraphs for v in G are the connected
subgraphs of G that contain v, that is, the set A(v, G), and the filtering function is log2.
Indeed, by definition, we have that

All-Subgraphs(v, G) = log2 |A(v, G)|.

We proceed to formalize the above simple principle, originally introduced in [14], which
gives rise to a family of centrality measures, and then highlight our main research questions.

Subgraph-based Centrality Measures. We first need a mechanism that allows us to specify
what are the important subgraphs for a vertex v in a graph G. This is done via the notion
of subgraph family, which is defined as a function from vertex-graph pairs to sets of graphs
that is closed under isomorphism, that is, a function F : VG → P(G) such that:

for every (v, G) ∈ VG, F(v, G) ⊆ A(v, G), that is, F assigns to each (v, G) ∈ VG a set of
connected subgraphs of G surrounding v, and
for every two pairs (v1, G1) ∈ VG and (v2, G2) ∈ VG such that (v1, G1) ≃ (v2, G2)
witnessed by h, there exists a bijection µ : F(v1, G1) → F(v2, G2) such that, for every
G′ ∈ F(v1, G1), µ(G′) = ({h(v) | v ∈ V (G′)}, {{h(v), h(u)} | (v, u) ∈ G′}).

We also need the notion of filtering function, which, as said above, is simply a function of
the form f : N → R. We are now ready to define subgraph-based centrality measures:

▶ Definition 2 (⟨F, f⟩-measure). Consider a subgraph family F and a filtering function f .
The ⟨F, f⟩-measure is the function C⟨F, f⟩ : VG → R such that, for every pair (v, G) ∈ VG,
it holds that C⟨F, f⟩(v, G) = f(|F(v, G)|). ⌟

Since, by definition, subgraph families are closed under isomorphism, it is straightforward
to see that each ⟨F, f⟩-measure defines a valid centrality measure.

▶ Lemma 3. For a subgraph family F and a filtering function f , it holds that the ⟨F, f⟩-
measure is a centrality measure.

We say that a centrality measure C is a subgraph-based centrality measure if there are a
subgraph family F and a filtering function f such that C coincides with the ⟨F, f⟩-measure,
i.e., for every pair (v, G) ∈ VG, C(v, G) = C⟨F, f⟩(v, G). Coming back to our discussion on
stress and all-subgraph centralities, assuming that S is the subgraph family such that

ICDT 2023

9:6 Absolute Expressiveness of Subgraph-Based Centrality Measures

S(v, G) =
⋃

u,w∈V (G)\{v}

{Gπ | π ∈ Sv
G(u, w)} ,

it is straightforward to verify that

Stress = C⟨S, f×2⟩ and All-Subgraphs = C⟨A, log2⟩.

Main Research Questions. Having the family of subgraph-based centrality measures in
place, the natural question that comes up concerns its absolute expressive power. In other
words, we are interested in the following research question:

▶ Question I. When is a centrality measure a subgraph-based centrality measure?

One may wonder whether the above question is conceptually trivial in the sense that every
centrality measure can be expressed as a subgraph-based centrality measure by choosing
the subgraph family and the filtering function in the proper way as done for Stress and
All-Subgraphs. It turns out that there are measures that are not subgraph-based.

▶ Proposition 4. There is a centrality measure that is not a subgraph-based measure.

Proof. Consider the centrality measure C such that, for every (v, G) ∈ VG, it holds that
C(v, G) = |V (G)|, i.e., it simply assigns to each vertex v in a graph G the number of vertices
occurring in G. It suffices to show that C is not subgraph-based even if we focus on the set
of graphs G⋆ consisting of G1 = ({u1}, ∅), G2 = ({u2, v2}, ∅), and G3 = ({u3, v3, w3}, ∅). By
contradiction, assume that C is a subgraph-based measure over G⋆. Thus, there exists a
subgraph family F and a filtering function f such that, for every G ∈ G⋆ and v ∈ V (G),
C(v, G) = C⟨F, f⟩(v, G). We observe that:
1. For every (v, G) ∈ V × G⋆ with v ∈ V (G), it holds that C⟨F, f⟩(v, G) ∈ {1, 2, 3}, i.e., we

have three distinct values. This follows by the definition of C = C⟨F, f⟩.
2. For every (v, G) ∈ V × G⋆, it holds that |F(v, G)| ∈ {0, 1}, i.e., we have two possible sizes

for the sets of connected subgraphs.
Now, by the pigeonhole principle, we can safely conclude that there are two distinct pairs
(v, G), (u, G′) ∈ V × G⋆ with |F(v, G)| = |F(u, G′)| such that C⟨F, f⟩(v, G) ̸= C⟨F, f⟩(u, G′).
But this contradicts the fact that f is a function, and the claim follows. ◀

As we shall see, not only artificial measures as the one employed in the proof of Pro-
position 4, but also well-known centrality measures from the literature (such as Closeness)
are not subgraph-based. We are going to prove such inexpressibility results by using the
technical tools developed towards answering Question I.

In several applications that involve graphs, we are more interested in the relative than
the absolute importance of a vertex in a graph. More precisely, we are interested in the
ranking of the vertices of a graph induced by a measure C, and not in the absolute value
assigned to a vertex by C. This brings us to the next technical notion:

▶ Definition 5 (Induced Ranking). Let C be a centrality measure. The ranking induced by C,
denoted Rank(C), is the binary relation

{((u, G), (v, G)) | u, v ∈ V (G) and C(u, G) ≤ C(v, G)}

over VG. C is a subgraph-based centrality measure relative to the induced ranking if there
are a subgraph family F and a filtering function f with Rank(C) = Rank(C⟨F, f⟩). ⌟

A. Pieris and J. Salas 9:7

Interestingly, although the measure employed in the proof of Proposition 4 is not subgraph-
based, it is easy to show that it is a subgraph-based measure relative to the induced ranking. In
particular, by defining the subgraph family F as F(v, G) = {Gv}, for every (v, G) ∈ VG, and
the filtering function as the identity, it is not difficult to see that Rank(C) = Rank(C⟨F, f⟩).
This observation brings us to our next research question:

▶ Question II. When is a centrality measure a subgraph-based centrality measure
relative to the induced ranking?

As we shall see, the above question is conceptually non-trivial, i.e., there are measures
that are not subgraph-based measures relative to the induced ranking. In particular, we will
see that there are well-established measures (such as Closeness) that are not subgraph-based
centrality measures relative to the induced ranking. Such inexpressibility results are shown
by exploiting the tools developed towards answering Question II.

4 Characterizing Subgraph-based Centrality Measures

We proceed to provide an answer to Question I. More precisely, our goal is to isolate a
structural property P over centrality measures that precisely characterizes subgraph-based
measures, that is, for an arbitrary measure C, C is a subgraph-based measure iff C enjoys P .
Interestingly, the desired property can be somehow extracted from the proof of Proposition 4.
The crucial intuition provided by that proof is that the absolute expressiveness of subgraph-
based measures is tightly related to the amount of connected subgraphs that are available
for assigning different centrality values to vertices. In other words, a measure that assigns
“too many” values among vertices that are surrounded by “too few” connected subgraphs
cannot be expressed as a subgraph-based measure. We proceed to formalize this intuition.

We first collect all the different values assigned by a centrality measure C to the vertices
of a graph G that are surrounded by a bounded number of connected subgraphs of G. In
particular, for n > 0, we define the set of real values

ValnG(C) = {C(v, G) | v ∈ V (G) and |A(v, G)| ≤ n} .

We can then easily collect all the values assigned by C to the vertices of V that are surrounded
by a bounded number of connected subgraphs in some graph. In particular, for n > 0,

Valn(C) =
⋃

G∈G

ValnG(C).

We now define the following property over centrality measures:

▶ Definition 6 (Bounded Value Property). A measure C enjoys the bounded value property
if, for every n > 0, |Valn(C)| ≤ n + 1. ⌟

The bounded value property captures the key intuition discussed above. It actually bounds
the number of different values that can be assigned among vertices that are surrounded by a
limited number of connected subgraphs; hence the name “bounded value property”. Observe
that the measure C devised in the proof of Proposition 4 does not enjoy the bounded value
property; indeed, |Val1(C)| ≥ 3 > 2. Interestingly, the bounded value property is all we need
towards a precise characterization of subgraph-based measures.

▶ Theorem 7. Consider a centrality measure C. The following statements are equivalent:
1. C is a subgraph-based centrality measure.
2. C enjoys the bounded value property.

ICDT 2023

9:8 Absolute Expressiveness of Subgraph-Based Centrality Measures

Proof. (1 ⇒ 2) By contradiction, assume that C does not enjoy the bounded value property,
namely there exists an integer n ≥ 1 such that |Valn(C)| > n + 1. By hypothesis, C is a
subgraph-based centrality measure, and thus, there exist a subgraph family F and a filtering
function f such that the following holds: for every (v, G) ∈ VG, C(v, G) = C⟨F, f⟩(v, G).
We now define the set

Bn = {|F(v, G)| | (v, G) ∈ VG and |A(v, G)| ≤ n} .

Clearly, |Bn| ≤ n + 1 since F(v, G) ⊆ A(v, G). Let h : Valn(C) → Bn be such that

h(C(v, G)) = |F(v, G)|.

By the pigeonhole principle, h is not injective, i.e., there exist C(v1, G1) and C(v2, G2) such
that C(v1, G1) ̸= C(v2, G2) but |F(v1, G1)| = |F(v2, G2)|. This contradicts the fact that
C(v1, G1) = f(|F(v1, G1)|) ̸= f(|F(v2, G2)|) = C(v2, G2), and the claim follows.

(2 ⇒ 1) The goal is to show that there exist a subgraph family F and a filtering function f

such that, for every (v, G) ∈ VG, C(v, G) = C⟨F, f⟩(v, G). We start by defining a total order
⪯C over the set of values Val(C) =

⋃∞
i=1 Vali(C). By definition, for every n, m > 0 such that

n ≤ m, it holds that Valn(C) ⊆ Valm(C). In other words, as we increase the integer n we are
adding new values to the set Valn(C). We can now define the binary relation ⪯C over Val(C)
as follows: for each a, b ∈ Val(C), if there exists n such that a ∈ Valn(C) but b ̸∈ Valn(C)
then a ⪯C b, if not, then a ⪯C b if a ≤ b. It is easy to see that ⪯C is a total order over Val(C),
and thus, it is a total order over Valn(C) for each n > 0. For notational convenience, in the
rest of the proof we assume that Val(C) = {a1, a2, a3, . . .} and a1 ⪯C a2 ⪯C a3 ⪯C · · · .

By exploiting the total order ⪯C over Val(C), we proceed to define a subgraph family F.
Consider an arbitrary pair (v, G) ∈ VG, and let n = |A(v, G)|. By hypothesis, C enjoys the
bounded value property, which in turn implies that |Valn(C)| ≤ n + 1. Therefore, C(v, G),
which belongs to {a1, a2, ..., a|Valn(C)|}, is equal to Valn(C). We further observe that A(v, G)
is a finite set, and we let A(v, G) = {S1, S2, . . . , Sn}. Here we assume an arbitrary order for
A(v, G) that has the following property: for every pair (v′, G′) with (v, G) ≃ (v′, G′), assuming
that A(v′, G′) = {S′

1, S′
2, . . . , S′

n}, it holds that (v, Si) ≃ (v′
i, S′

i) for every i ∈ {1, . . . , n}. The
subgraph family F is defined as follows:

C(v, G) = ai implies F(v, G) = {S1, ..., Si−1}.

This is indeed a subgraph family since F(v, G) ⊆ A(v, G), while the chosen order for A(v, G)
and the fact that C is (by definition) closed under isomorphism ensures closure under
isomorphism. Notice that |F(v, G)| = i − 1 for i ∈ {1, . . . , |Valn(C)| + 1}. Finally, we define
the filtering function f : N → Val(C) as follows: for each i ∈ N,

f(i) = ai+1.

We proceed to show that F and f capture our intention, that is, for every (v, G) ∈ VG,
C(v, G) = C⟨F, f⟩(v, G), which will establish Theorem 7 . Let n = |A(v, G)|. If C(v, G) = ai ∈
Valn(C), then |F(v, G)| = i−1. Therefore, f(|F(v, G)|) = C⟨F, f⟩(v, G) = C(v, G). Conversely,
if C⟨F, f⟩(v, G) = ai, then |F(v, G)| = i − 1, and thus, by construction, C(v, G) = ai. ◀

The above characterization, apart from giving a definitive answer to Question I, it provides
a useful tool for establishing inexpressibility results. To show that a centrality measure C is
not a subgraph-based measure it suffices to show that there exists an integer n > 0 such that
|Valn(C)| > n + 1. For example, we can show that |Val5(Closeness)| > 6, and therefore:

▶ Proposition 8. Closeness is not a subgraph-based measure.

A. Pieris and J. Salas 9:9

Without Theorem 7 in place, it is completely unclear how one can prove that Closeness
(or any other established measure) is not a subgraph-based measure. More inexpressibility
results concerning well-established centrality measures are discussed in Section 7.

5 Characterizing Subgraph-based Measures Relative to the Induced
Ranking

We now focus on Question II. Our goal is to isolate a structural property P over centrality
measures that precisely characterizes subgraph-based measures relative to the induced ranking,
i.e., for an arbitrary measure C, C is subgraph-based relative to the induced ranking iff C
enjoys the property P . It turns out that P can be defined by exploiting a certain notion of
graph coloring relative to a centrality measure.

Graph Colorings. The high-level idea is to consider the sizes of the available subgraph famil-
ies that can be assigned to a vertex v in a graph G, i.e., the set of integers {0, . . . , |A(v, G)|},
as available colors. We can then refer to a precoloring of VG (i.e., of all the possible graphs)
as a function pc : VG → N that assigns to each vertex v in a graph G only available colors
from {0, . . . , |A(v, G)|}. Then, the goal is to isolate certain properties of such a precoloring
of VG that leads to the desired characterization, i.e., a measure C is subgraph-based relative
to the induced ranking iff there exists a precoloring of VG that enjoys the properties in
question. Such a characterization tells us that for a centrality measure being subgraph-based
relative to the induced ranking is tantamount to the fact that there are enough colors (i.e.,
sizes of sugbraph families, but without considering their actual topological structure) that
allow us to color VG in a valid way, namely in a way that the crucial properties are satisfied.
We proceed to formalize the above discussion about colorings.

Given a set S ⊆ VG, a precoloring of S is a function pc : S → N such that, for every
(v, G) ∈ S, pc(v, G) ∈ {0, . . . , |A(v, G)|}. The first key property of such a precoloring states
that the values assigned by a measure C to the vertices of a graph G should be respected,
i.e., vertices with different centrality values get different colors. This is formalized as follows:

▶ Definition 9 (Non-Uniform C-Injectivity). Consider a set S ⊆ VG, and a precoloring
pc : S → N of S. Given a centrality measure C, we say that pc is non-uniformly C-injective
if, for every (u, G), (v, G) ∈ S, C(u, G) ̸= C(v, G) implies pc(u, G) ̸= pc(v, G). ⌟

The term non-uniform in the above definition refers to the fact that C-injectivity is only
enforced inside a certain graph, and not across all the graphs mentioned in S, i.e., it might
be the case that a non-uniformly C-injective precoloring of S assigns to (u, G), (v, G′), where
G ̸= G′ and C(u, G) ̸= C(v, G′), the same color.

The second key property of a precoloring S states that S should be consistent with the
induced ranking, not only inside a certain graph, but also among different graphs mentioned
in S. In other words, if (u, G) comes before (v, G) and (u′, G′) comes before (v′, G′), then
one of the following should hold: (u, G) and (v′, G′) get different colors, or (u′, G) and (v, G′)
get different colors. This is formalized as follows:

▶ Definition 10 (C-Consistency). Consider a set S ⊆ VG, and a precoloring pc : S → N of S.
Given a measure C, we say that pc is C-consistent if, for every (u, G), (v, G), (u′, G′), (v′, G′) ∈
S, the following holds: if C(u, G) < C(v, G) and C(u′, G′) < C(v′, G′), then pc(u, G) ̸=
pc(v′, G′) or pc(u′, G) ̸= pc(v, G′). ⌟

Putting together the above two properties over precolorings, we get the notion of C-
colorability of a set S ⊆ VG:

ICDT 2023

9:10 Absolute Expressiveness of Subgraph-Based Centrality Measures

▶ Definition 11 (C-Colorability). We say that a set S ⊆ VG is C-colorable, for some measure
C, if there exists a precoloring of S that is non-uniformly C-injective and C-consistent. ⌟

The Characterization. Interestingly, C-colorability is all we need towards the desired
characterization, namely a measure C is subgraph-based relative to the induced ranking iff
VG (i.e., all possible graphs) is C-colorable. We further show that the C-colorability of VG
is equivalent to the C-colorability of every finite set S ⊊ VG. The latter, apart from being
interesting in its own right, it provides a tool that is more convenient than the C-colorability
of VG for classifying measures as subgraph-based relative to the induced ranking.

▶ Theorem 12. Consider a centrality measure C. The following statements are equivalent:
1. C is a subgraph-based centrality measure relative to the induced ranking.
2. Every finite set S ⊊ VG is C-colorable.
3. VG is C-colorable.

To show the above characterization, it suffices to establish the sequence of implications
(1) ⇒ (2) ⇒ (3) ⇒ (1). The implication (1) ⇒ (2) is a rather easy one and its full proof is
given below. The proofs of the implications (2) ⇒ (3) and (3) ⇒ (1) are more interesting
and we discuss their key ingredients below.

Implication (1) ⇒ (2)

Since, by hypothesis, C is a subgraph-based measure relative to the induced ranking, there
are a subgraph family F and a filtering function f such that Rank(C) = Rank(C⟨F, f⟩).
Given a finite set S ⊊ VG, we define the function pcS : S → N as follows: for every
(v, G) ∈ S, pcS(v, G) = |F(v, G)|. It is clear that pcS is a precoloring of S since, by definition,
F(v, G) ⊆ A(v, G), and thus, pcS(v, G) ∈ {0, . . . , |A(v, G)|}. It remains to show that pcS is
non-uniformly C-injective and C-consistent, which in turn implies that S is C-colorable:
Non-uniformly C-injective. Since Rank(C) = Rank(C⟨F, f⟩), for every (u1, G), (u2, G) ∈

S, it holds that C(u1, G) ̸= C(u2, G) iff C⟨F, f⟩(u1, G) ̸= C⟨F, f⟩(u2, G). Therefore,
pcS(u1, G) = |F(u1, G)| ̸= |F(u2, G)| = pcS(u2, G), and the claim follows.

C-consistent. By contradiction, assume that there are (v1, G1), (v2, G1), (u1, G2) and (u2, G2)
such that C(v1, G1) < C(v2, G1) and C(u1, G2) > C(u2, G2) but pcS(u1, G2) =
pcS(v1, G1) and pcS(v2, G1) = pcS(u2, G2). Therefore, |F(v1, G1)| = |F(u1, G2)| and
|F(v2, G1)| = |F(u2, G2)|. Consequently, using the fact that Rank(C) = Rank(C⟨F, f⟩),
C⟨F, f⟩(v1, G1) < C⟨F, f⟩(v2, G1) = C⟨F, f⟩(u2, G2) < C⟨F, f⟩(u1, G2) = C⟨F, f⟩(v1, G1),
which is clearly a contradiction, and the claim follows.

Implication (2) ⇒ (3)

The proof of this implication heavily relies on an old result that goes back in 1949 by
Rado [13] known as Rado’s Selection Principle. We write Pfin(A) for the finite powerset of
a set A, i.e., the set that collects all the finite subsets of A. Furthermore, given a function
f : A → B, we write f|C for the restriction of f to C ⊆ A.

▶ Theorem 13 (Rado’s Selection Principle). Let A and B be arbitrary sets. Assume that, for
each C ∈ Pfin(A), fC is a function C → B (a so-called “local function”). Assume further
that, for every x ∈ A, the set {fC(x) | C ∈ Pfin(A) and x ∈ C} is finite. Then, there is a
function f : A → B (a so-called “global function”) such that, for every C ∈ Pfin(A), there is
D ∈ Pfin(A) with C ⊊ D and f|C = fD |C .

A. Pieris and J. Salas 9:11

Several proofs and applications of Rado’s Theorem can be found in [10]. We proceed
to discuss how it is used to prove (2) ⇒ (3). By hypothesis, for each S ∈ Pfin(VG), there
exists a precoloring of S, i.e., a function pcS : S → N that is non-uniformly C-injective
and C-consistent. Since, for every (v, G) ∈ VG, A(v, G) is finite, we can conclude that the
following holds: for every (v, G) ∈ VG, the set {pcS(v, G) | S ∈ Pfin(VG) and (v, G) ∈ S}
is finite. This allows us to apply Theorem 13 with A = VG and B = N. Therefore, there
exists a function f : VG → N such that, for every S ∈ Pfin(VG), there exists S′ ∈ Pfin(VG)
with S ⊊ S′ and f|S = pcS′ |S . Interestingly, by exploiting the latter property of the function
f guaranteed by Theorem 13, and the fact that, for each S ∈ Pfin(VG), pcS is a precoloring
of S that is non-uniformly C-injective and C-consistent, it is not difficult to show that f is a
precoloring of VG that is non-uniformly C-injective and C-consistent, and item (3) follows.

Implication (3) ⇒ (1)

We finally discuss the proof of the last implication. The goal is to devise a subgraph family
F and a filtering function f such that Rank(C) = Rank(C⟨F, f⟩), which in turn proves item
(1). By hypothesis, there exists a precoloring pc of VG that is non-uniformly C-injective
and C-consistent. We define F in such way that, for every (v, G) ∈ VG, |F(v, G)| = pc(v, G);
note that such a subgraph family exists since pc(v, G) ∈ {0, . . . , |A(v, G)|}. Now, defining
the filtering function f is a non-trivial task. Let Rpc be the relation

{(i, j) ∈ N × N | there are (u, G), (v, G) in VG such that
C(u, G) < C(v, G), pc(u, G) = i, and pc(v, G) = j} .

The fact that pc is non-uniformly C-injective allows us to conclude that Rpc is irreflexive.
Moreover, the C-consistency of pc implies that Rpc is asymmetric. Observe now that if we
extend Rpc into a total order R⋆

pc over N, and then show that R⋆
pc can be embedded into a

carefully chosen countable subset N of R, then we obtain the desired filtering function f ,
which assigns real numbers to the sizes of the subgraph families assigned to the pairs of VG
by F as dictated by the embedding of R⋆

pc into N ⊊ R. Let us now briefly discuss how this is
done. The binary relation Rpc is first extended into the strict partial order R+

pc by simply
taking its transitive closure. Now, the fact that R+

pc can be extended into a total order R⋆
pc

over N follows by the order-extension principle (a.k.a. Szpilrajn Extension Theorem), shown
by Szpilrajn in 1930 [17], which essentially states that every partial order can be extended
into a total order. Finally, the fact that R⋆

pc can be embedded into N ⊊ R is shown via
the back-and-forth method, a technique for showing isomorphism between countably infinite
structures satisfying certain conditions.

A Bounded-Value-Like Property. An interesting question is whether we can isolate a
property in the spirit of the bounded value property (see Definition 6) that can characterize
subgraph-based measures relative to the induced ranking. Despite our efforts, we have
not managed to provide an answer to this question. On the other hand, we succeeded in
isolating a bounded-value-like property that is a necessary condition for a measure being
subgraph-based relative to the induced ranking. It is clear that the bounded value property is
not enough towards a necessary condition since, as discussed in Section 3, there is a measure
(see the one devised in the proof of Proposition 4) that is not subgraph-based, which means
that it does not enjoy the bounded value property, but it is subgraph-based relative to the
induced ranking. On the other hand, to our surprise, a non-uniform version of the bounded
value property leads to the desired necessary condition. Let us make this more precise. The

ICDT 2023

9:12 Absolute Expressiveness of Subgraph-Based Centrality Measures

ranking induced by a measure C compares only the values of vertices of the same graph; a
pair ((u, G), (v, G′)), where G ̸= G′, will never appear in Rank(C). This led us to conjecture
that for characterizing subgraph-based measures relative to the induced ranking, it suffices
to bound the number of different values that can be assigned among vertices inside the same
graph that are surrounded by a limited number of connected subgraphs. This leads to the
non-uniform version of the bounded value property:

▶ Definition 14 (Non-Uniform Bounded Value Property). A measure C enjoys the non-uniform
bounded value property if, for every n > 0 and G ∈ G, |ValnG(C)| ≤ n + 1. ⌟

We can then show the following implication:

▶ Proposition 15. Consider a centrality measure C. If there exists a precoloring of VG that
is non-uniformly C-injective, then C enjoys the non-uniform bounded value property.

Proof. Let pc be the non-uniform C-injective precoloring of VG, which exists by hypothesis.
Consider an arbitrary graph G and an integer n > 0. We define the set

Sn = {pc(v, G) | |A(v, G)| ≤ n}.

In simple words, Sn collects all the colors assigned by pc to vertices with at most n connected
subgraphs surrounding them. We then have that |ValnG(C)| ≤ |Sn| since pc is non-uniformly
C-injective. Since pc is a precoloring, Sn ⊆ {0, . . . , n}, and thus, |Sn| ≤ n + 1. This in turn
implies that |ValnG(C)| ≤ n + 1, and the claim follows. ◀

By combining Theorem 12 and Proposition 15, we get the following corollary, which
states that the non-uniform bounded value property leads to the desired necessary condition:

▶ Corollary 16. If a centrality measure is a subgraph-based measure relative to the induced
ranking, then it enjoys the non-uniform bounded value property.

The question whether the non-uniform bounded value property is also a sufficient condition
is negatively settled by the next result:

▶ Proposition 17. There exists a centrality measure that is not a subgraph-based measure
relative to the induced ranking, but it enjoys the non-uniform bounded value property.

Let us stress that Corollary 16 equips us with a convenient tool for showing that a measure
C is not a subgraph-based measure relative to the induced ranking: it suffices to show that
there is n > 0 and a graph G such that |ValnG(C)| > n + 1. In the case of closeness, we can
show that there exists a graph G such that |Val5G(Closeness)| > 6, which in turn implies that:

▶ Proposition 18. Closeness is not a subgraph-based measure relative to the induced ranking.

More inexpressibility results of the above form concerning established centrality measures
are presented and discussed in Section 7.

Connected Graphs. The proof of Proposition 8 establishes that Closeness is not a subgraph-
based measure even if we concentrate on connected graphs. On the other hand, the proof of
Proposition 18 heavily relies on the fact that the employed graphs are not connected. This
observation led us ask ourselves whether Closeness is a subgraph-based measure relative to
the induced ranking if we consider only connected graphs. It turned out that, for connected
graphs, not only Closeness, but every measure is subgraph-based relative to the induced
ranking. We proceed to formalize this discussion.

A. Pieris and J. Salas 9:13

Let VCG = {(v, G) ∈ VG | G is connected}. For an arbitrary centrality measure C, its
version that operates only on connected graphs is defined as the function ConC : VCG → R
such that, for every (v, G) ∈ VCG, C(v, G) = ConC(v, G), i.e., it is the restriction of C over
VCG. We then say that ConC is a subgraph-based measure (resp., subgraph-based measure
relative to the induced ranking) if there exist a subgraph family F and a filtering function f

such that ConC = ConC⟨F, f⟩ (resp., Rank(C) ∩ VCG2 = Rank(C⟨F, f⟩) ∩ VCG2). We can
then establish the following result:

▶ Theorem 19. Consider a centrality measure C. It holds that ConC is a subgraph-based
measure relative to the induced ranking.

Proof. We are going to define a subgraph family F and a filtering function f such that
Rank(C) ∩ VCG2 = Rank(C⟨F, f⟩) ∩ VCG2, which in turn implies that ConC is a subgraph-
based measure relative to the induced ranking, as needed. Consider an arbitrary connected
graph G. We first observe that, for every v ∈ V (G), it holds that |A(v, G)| ≥ |V (G)| since
every path from v to any other vertex in G is a connected subgraph containing v. We then
define the equivalence relation ≡G over V (G) as follows: v ≡G u if C(v, G) = C(u, G). Let
V (G)/≡G

= {C1, . . . , Cm} be the equivalence classes of ≡G. We can assume, without loss
of generality, that, for every i, j ∈ [m], with Ci = [v]≡G

and Cj = [u]≡G
, i < j implies

C(v, G) < C(u, G). We then define the subgraph family F in such a way that, for every vertex
v ∈ V (G), |F(v, G)| = i − 1 if [v]≡G

= Ci.3 Note that such a subgraph family F always
exists since, as discussed above, |A(v, G)| ≥ |V (G)|, but we have that |V (G)/≡G

| ≤ |V (G)|.
Note also that we can ensure that F is closed under isomorphism by using the same idea
as in the proof of Theorem 7. Finally, we define the filtering function f in such a way
that, for every i ∈ {0, . . . , m − 1}, f(i) = i + 1. It is now not difficult to verify that indeed
Rank(C) ∩ VCG2 = Rank(C⟨F, f⟩) ∩ VCG2, and the claim follows. ◀

As discussed above, ConCloseness is not a subgraph-based measure (this is implicit in the
proof of Proposition 8), whereas ConCloseness is a subgraph-based measure relative to the
induced ranking (follows from Theorem 19). This reveals a striking difference between the
two notions of expressiveness, that is, being subgraph-based or being subgraph-based realtive
to the induced ranking, when focussing on connected graphs.

We conclude this section by stressing that Theorem 19 provides a unifying framework
for all centrality measures in a practically relevant setting: connected graphs and induced
ranking. Indeed, graphs in real-life scenarios, although might be non-connected, they typically
consists of one dominant connected component and several small components that are usually
neglected as, by default, the most important vertex appears in the dominant component.
Moreover, in real-life graph-based applications, we are typically interested in the induced
ranking rather than the absolute centrality values assigned to vertices.

6 Monotonic Filtering Functions

Until now, we considered arbitrary filtering functions without any restrictions. On the
other hand, the filtering functions f×2 and log2 used to express Stress and All-Subgraphs,
respectively, as subgraph-based measures are monotonic; formally, a filtering function f is
monotonic if, for all x, y ∈ N, x ≤ y implies f(x) ≤ f(y). It is natural to ask Questions I and

3 Note that for pairs (u, G′), where G′ is a non-connected graph, we can simply define F(u, G′) as the
empty set since it is irrelevant what F does over non-connected graphs.

ICDT 2023

9:14 Absolute Expressiveness of Subgraph-Based Centrality Measures

II for monotonic subgraph-based centrality measures, i.e., subgraph-based centrality measures
C⟨F, f⟩ where f is monotonic. Needless to say, one can study a plethora of different families
of subgraph-based centrality measures that use filtering functions with certain properties
(e.g., linear functions, logarithmic functions, etc.). However, such a thorough analysis is
beyond the scope of this work, and it remains the subject of future research.

Monotonic Subgraph-based Measures. We first give a result analogous to Proposition 4,
showing that not all subgraph-based measures are monotonic, and thus, the bounded value
property is not the answer to Question I in the case of monotonic subgraph-based measures.

▶ Proposition 20. There is a subgraph-based centrality measure that is not monotonic.

Proof. Let G1 be the graph with just one isolated node ({v1}, ∅), and G2 be the graph
({v1, v2, v3}, {{v2, v3}}). Consider the (partial) function C : VG → R defined as follows:

C(v, G) =

1 G = G2 and v ∈ {v2, v3}
2 G = G2 and v = v1

3 G = G1 and v = v1.

It is easy to see that C can be extended to a proper centrality measure Ĉ: for every pair
(u, G′) ∈ VG such that (v, G) ≃ (u, G′), where (v, G) ∈ {(v1, G1), (v1, G2), (v2, G2), (v3, G2)},
let Ĉ(u, G′) = C(v, G), and in any other case let Ĉ(u, G′) = 1. We first show that Ĉ is a
subgraph-based measure. Notice that, for every vertex v ∈ V, Ĉ(v, Gv) = C(v1, G1) = 3.
Hence, we have only two options concerning the set of connected subgraphs assigned to the
vertices of G2 by a subgraph family, and the filtering function, which are the following: with
Guv being the single-edge graph ({u, v}, {{u, v}}), either

F1(v, G) =

∅ v = v1 and G = G1

{Gv1} v = v1 and G = G2

{Gv2 , Gv2v3} v = v2 and G = G2

{Gv3 , Gv2v3} v = v3 and G = G2

with f1(0) = 3, f1(1) = 2 and f1(2) = 1, or

F2(v, G) =

{Gv1} v = v1 and G = G1

∅ v = v1 and G = G2

{Gv2 , Gv2v3} v = v2 and G = G2

{Gv3 , Gv2v3} v = v3 and G = G2

with f2(0) = 2, f2(1) = 3 and f2(2) = 1. We can now extend F1 and F2 into subgraph families
that are closed under isomorphism as follows: for every (u, G′) ∈ VG with (v, G) ≃ (u, G′),
if (v, G) ∈ {(v1, G1), (v1, G2), (v2, G2), (v3, G2)}, then F1(v, G) ≃ F1(u, G′) and F2(v, G) ≃
F2(u, G′), otherwise, F1(u, G′) = ∅ and F2(u, G′) = {Gu}. It is clear that Ĉ = C⟨F1, f1⟩ =
C⟨F2, f2⟩. Observe, however, that both f1 and f2 are not monotonic functions. ◀

The proof of Proposition 20 essentially tells us that the key reason why the subgraph-based
measure Ĉ is not monotonic is because the maximum centrality value is assigned to a vertex
surrounded by few connected subgraphs. To formalize this intuition, we first collect all the
different values x assigned by a measure C to the vertices of a graph G that are surrounded by

A. Pieris and J. Salas 9:15

“too many” connected subgraphs such that x does not exceed the maximum value assigned
by C to the vertices of G surrounded by “too few” connected subgraphs. More precisely, for
an integer n > 0, we define the set of values

BValnG(C) =
{

x ∈
⋃

m>0
ValmG (C) | x ̸∈ ValnG(C) and x < max ValnG(C)

}
.

We then define the set of values

BValn(C) =
⋃

G∈G

BValnG(C).

We can now define a refined version of the bounded value property, which provides a better
upper bound for |Valn(C)|:

▶ Definition 21 (Monotonic Bounded Value Property). A centrality measure C enjoys the
monotonic bounded value property if, for every n > 0, |Valn(C)| ≤ n + 1 − |BValn(C)|. ⌟

It is not difficult to see that the measure C devised in the proof of Proposition 20 does
not enjoy the monotonic bounded value property. Indeed, Val1(C) = {1, 3} and BVal1 = {2},
and thus, |Val1(C)| = 2 > 1. The above refinement of the bounded value property is all we
need to get a precise characterization of monotonic subgraph-based measures; hence the
name “monotonic bounded balue property”.

▶ Theorem 22. Consider a centrality measure C. The following statements are equivalent:
1. C is a monotonic subgraph-based centrality measure.
2. C enjoys the monotonic bounded value property.

Induced Ranking. Concerning the expressiveness of monotonic subgraph-based centrality
measures relative to the induced ranking, we can show that the non-uniform version of the
monotonic bounded value property provides a precise characterization.

▶ Definition 23 (Non-Uniform Monotonic Bounded Value Property). A centrality measure C
enjoys the non-uniform monotonic bounded value property if, for every integer n > 0 and
graph G ∈ G, it holds that |ValnG(C)| ≤ n + 1 − |BValnG(C)|. ⌟

We can then establish the following characterization that is in striking difference with
Theorem 12, which shows that the non-uniform bounded value property is only a necessary
condition (but not a sufficient condition) for a centrality measure being subgraph-based
relative to the induced ranking.

▶ Theorem 24. Consider a centrality measure C. The following statements are equivalent:
1. C is a monotonic subgraph-based centrality measure relative to the induced ranking.
2. C enjoys the non-uniform monotonic bounded value property.

Connected Graphs. Recall that the family of subgraph-based measures relative to the
induced ranking provides a unifying framework for all centrality measures whenever we
concentrate on connected graphs (see Theorem 19). Interestingly, a careful inspection of the
proof of Theorem 19 reveals that this holds even for the family of monotonic subgraph-based
measures relative to the induced ranking.

▶ Theorem 25. Consider a centrality measure C. It holds that ConC is a monotonic
subgraph-based measure relative to the induced ranking.

ICDT 2023

9:16 Absolute Expressiveness of Subgraph-Based Centrality Measures

Table 1 Subgraph-based Measures.

Measure Absolute Values Induced Ranking
Stress ✓ ✓

All-Subgraphs ✓ ✓
Degree ✓ ✓

Cross-Clique ✓ ✓
Closeness ×[trees] × and ✓[con]
Harmonic ×[trees] × and ✓[con]
PageRank ×[trees] × and ✓[con]

Eigenvector ×[trees] ? and ✓[con]
Betweenness ? and ✓[trees] ? and ✓[con]

Table 2 Monotonic Subgraph-based Measures.

Measure Absolute Values Induced Ranking
⋆ as in Table 1 as in Table 1

Betweenness ×[con] and ✓[trees] × and ✓[con]

7 Classification

We proceed to determine whether existing measures belong to the family of (monotonic)
subgraph-based measures (relative to the induced ranking) by exploiting the technical tools
provided by the results of the previous sections. Such a classification, apart from being
interesting in its own right, will provide insights on the structural similarities and differences
among existing centrality measures. To this end, we focus on established measures from the
literature and provide a rather complete classification depicted in Tables 1 and 2; due to space
constraints, the formal definitions of the considered measures are omitted. The second (resp.,
third) column determines whether the measure C stated in the first column is subgraph-based
(resp., subgraph-based relative to the induced ranking); ✓ means that it is, × means that it
is not, ×[trees] means that it is not even for trees, ✓[con] means that it is over connected
graphs, ✓[trees] means that it is over trees, and ? means that it is open. Concerning Table 2,
⋆ refers to any measure considered in Table 1 apart from Betweenness, and ×[con] means
that the respective measure (i.e., Betweenness) is not monotonic subgraph-based even for
connected graphs. Note that Table 2 is identical to Table 1, apart from Betweenness, which
is provably not monotonic subgraph-based (relative to the induced ranking).

We would like to remark that the result ✓[con] for Eigenvector in both tables holds for a
broader class of graphs than connected graphs. Moreover, we can show that Betweenness is a
(monotonic) subgraph-based measure (relative to the induced ranking) for a class of graphs
that captures the class of trees and is incomparable to the class of connected graphs. For the
sake of readability, we state our expressibility results only for trees and connected graphs.

Take-home Messages. We highlight the key take-home messages of the above classification,
which we believe provide further insights concerning the centrality measures in question:
1. If we focus on the induced ranking rather than the absolute values over connected graphs,

then the family of monotonic subgraph-based measures should be understood as a unifying
framework that incorporates every other measure.

2. Our classification excludes a priori the adoption of certain centrality measures (e.g.,
Closeness, Harmonic, etc.) in applications where the importance of a vertex should be
measured based on the connected subgraphs surrounding it.

A. Pieris and J. Salas 9:17

3. Betweenness, which computes the percentage of the shortest paths in a graph going through
a vertex, is of different nature compared to all the other measures. Notably, although
it looks similar to Stress, it behaves in a significantly different way. The relationship of
Betweenness with (monotonic) subgraph-based measures deserves further investigation.

4. There is a notable difference between the two feedback measures considered in our
classification, namely PageRank and Eigenvector, that deserves further exploration. As
mentioned above, Eigenvector is a (monotonic) subgraph-based measure relative to the
induced ranking over a broader class C of graphs than connected graphs, whereas PageRank
is provable not a subgraph-based measure over the class C.

A Note on Directed Graphs. As discussed in the clarification remark at the end of the
Introduction, although our analysis (including the classification of this section) focused on
undirected graphs, all the notions and results can be transferred to directed graphs under
the notion of weak connectedness. The only exception is the negative result ×[trees] for
Eigenvector in Tables 1 and 2. Although we can show that for directed graphs, Eigenvector is
not a (monotonic) subgraph-based centrality measure, it remains open whether this holds
even for directed trees (i.e., directed graphs whose underlying undirected graph is a tree).

8 Conclusions

We have provided a rather complete picture concerning the absolute expressiveness of the
family of (monotonic) subgraph-based centrality measures (relative to the induced ranking)
by establishing precise characterizations. We have also presented a detailed classification of
standard centrality measures by using the tools provided by the aforementioned characteriza-
tions. Although our development focused on undirected graphs, all the notions and results
can be transferred to directed graphs under the standard notion of weak connectedness.

We would like to stress that the machinery on graph colorings, introduced in Section 5,
can be used to provide characterizations for all the families considered in the paper, and not
only for the family of subgraph-based measures relative to the induced ranking. For example,
we can show that a measure C is subgraph-based iff there exists a precoloring of VG that is
uniformly C-injective; the latter is defined as non-uniform C-injectivity with the difference
that C-injectivity is enforced across all the graphs (not only inside a certain graph).

The obvious question that remains open is whether we can isolate a bounded-value-like
property that characterizes subgraph-based measures relative to the induced ranking. We
believe that our coloring-based characterization (Theorem 24) is a useful tool towards such a
bounded-value-like characterization. Finally, towards a deeper understanding of subgraph-
based measures, one should perform a more refined analysis by focussing on restricted classes
of subgraph families and filtering functions that enjoy desirable structural properties.

References
1 Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj

Vrgoc. Foundations of modern query languages for graph databases. ACM Comput. Surv.,
50(5):68:1–68:40, 2017.

2 Phillip Bonacich. Power and centrality: A family of measures. American journal of sociology,
92(5):1170–1182, 1987.

3 Stephen P. Borgatti and Martin G. Everett. A graph-theoretic perspective on centrality. Soc.
Networks, 28(4):466–484, 2006.

4 Zoltán Dezső and Albert-László Barabási. Halting viruses in scale-free networks. Phys. Rev.
E, 65:055103, 2002.

ICDT 2023

9:18 Absolute Expressiveness of Subgraph-Based Centrality Measures

5 Aidan Hogan, Andreas Harth, Jürgen Umbrich, Sheila Kinsella, Axel Polleres, and Stefan
Decker. Searching and browsing linked data with SWSE: the semantic web search engine. J.
Web Semant., 9(4):365–401, 2011.

6 Xinyu Huang, Dongming Chen, Dongqi Wang, and Tao Ren. Identifying influencers in social
networks. Entropy, 22(4):450, 2020.

7 Gábor Iván and Vince Grolmusz. When the Web meets the cell: using personalized PageRank
for analyzing protein interaction networks. Bioinformatics, 27(3):405–407, 2010.

8 Mitri Kitti. Axioms for centrality scoring with principal eigenvectors. Social Choice and
Welfare, 46(3):639–653, 2016.

9 José-Lázaro Martínez-Rodríguez, Aidan Hogan, and Ivan López-Arévalo. Information extrac-
tion meets the semantic web: A survey. Semantic Web, 11(2):255–335, 2020.

10 Leonid Mirsky. Transversal Theory: An Account of Some Aspects of Combinatorial Mathematics.
Academic Press, 1971.

11 Mark Newman. Networks. Oxford University Press, 2018.
12 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation

ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, 1999.
13 Richard Rado. Axiomatic treatment of rank in infinite sets. Canad. J. Math., pages 337–343,

1949.
14 Cristian Riveros and Jorge Salas. A family of centrality measures for graph data based on

subgraphs. In ICDT, pages 23:1–23:18, 2020.
15 Gert Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603, 1966.
16 Alfonso Shimbel. Structural parameters of communication networks. Bull. Math. Biophysics,

15:501–507, 1953.
17 Edward Szpilrajn. Sur l’extension de l’ordre partiel. Fundamenta Matematicae, 16:386–389,

1930.
18 René van den Brink and Robert P. Gilles. Measuring domination in directed networks. Social

Networks, 22(2):141–157, 2000.
19 Tomasz Was and Oskar Skibski. Axiomatization of the pagerank centrality. In IJCAI, pages

3898–3904, 2018.

Diversity of Answers to Conjunctive Queries
Timo Camillo Merkl #

TU Wien, Austria

Reinhard Pichler #

TU Wien, Austria

Sebastian Skritek #

TU Wien, Austria

Abstract
Enumeration problems aim at outputting, without repetition, the set of solutions to a given problem
instance. However, outputting the entire solution set may be prohibitively expensive if it is too big.
In this case, outputting a small, sufficiently diverse subset of the solutions would be preferable. This
leads to the Diverse-version of the original enumeration problem, where the goal is to achieve a
certain level d of diversity by selecting k solutions. In this paper, we look at the Diverse-version of
the query answering problem for Conjunctive Queries and extensions thereof. That is, we study the
problem if it is possible to achieve a certain level d of diversity by selecting k answers to the given
query and, in the positive case, to actually compute such k answers.

2012 ACM Subject Classification Information systems → Data management systems

Keywords and phrases Query Answering, Diversity of Solutions, Complexity, Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.10

Related Version Full Version: https://arxiv.org/abs/2301.08848 [28]

Funding This work was supported by the Austrian Science Fund (FWF) project P30930-N35.

1 Introduction

The notion of solutions is ubiquitous in Computer Science and there are many ways of defining
computational problems to deal with them. Decision problems, for instance, may ask if the
set of solutions is non-empty or test for a given candidate if it indeed is a solution. Search
problems aim at finding a concrete solution and counting problems aim at determining the
number of solutions. In recent time, enumeration problems, which aim at outputting, without
repetition, the set of solutions to a given problem instance have gained a lot of interest, which
is, for instance, witnessed by two recent Dagstuhl seminars on this topic [8, 16]. Also in the
Database Theory community, enumeration problems have played a prominent role on the
research agenda recently, see e.g., [3, 24, 27]. Here, the natural problem to consider is query
answering with the answers to a given query constituting the “solutions” to this problem.

It is well known that even seemingly simple problems, such as answering an acyclic
Conjunctive Query, can have a huge number of solutions. Consequently, specific notions of
tractability were introduced right from the beginning of research on enumeration problems [22]
to separate the computational intricacy of a problem from the mere size of the solution
space. However, even with these refined notions of tractability, the usefulness of flooding
the user with tons of solutions (many of them possibly differing only minimally) may be
questionable. If the solution space gets too big, it would be more useful to provide an
overview by outputting a “meaningful” subset of the solutions. One way of pursuing this
goal is to randomly select solutions (also known as “sampling”) as was, for instance, done
in [4, 9]. In fact, research on sampling has a long tradition in the Database community [11] –
above all with the goal of supporting more accurate cardinality estimations [25, 26, 36].

© Timo Camillo Merkl, Reinhard Pichler, and Sebastian Skritek;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:timo.merkl@tuwien.ac.at
mailto:pichler@dbai.tuwien.ac.at
mailto:Sebastian.Skritek@tuwien.ac.at
https://doi.org/10.4230/LIPIcs.ICDT.2023.10
https://arxiv.org/abs/2301.08848
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Diversity of Answers to Conjunctive Queries

A different approach to providing a “meaningful” subset of the solution space aims at
outputting a small diverse subset of the solutions. This approach has enjoyed considerable
popularity in the Artificial Intelligence community [5, 15, 29] – especially when dealing with
Constraint Satisfaction Problems (CSPs) [20, 21, 30]. For instance, consider a variation of
the car dealership example from [20]. Suppose that I models the preferences of a customer
and S(I) are all cars that match these restrictions. Now, in a large dealership, presenting
all cars in S(I) to the customer would be infeasible. Instead, it would be better to go
through a rather small list of cars that are significantly different from each other. With
this, the customer can point at those cars which the further discussion with the clerk should
concentrate on.

Due to the inherent hardness of achieving the maximal possible diversity [20], the Database
community – apart from limited exceptions [13] – focused on heuristic and approximation
methods to find diverse solutions (see [37] for an extensive survey). Also, in contrast to the
present work, there diversification is usually treated as a post-processing task that is applied
to a set of solutions after materializing it.

The goal of our work is therefore to broaden the understanding of the theoretical
boundaries of diverse query answering and develop complementary exact algorithms. More
specifically, we want to analyze diversity problems related to answering Conjunctive Queries
(CQs) and extensions thereof. As pointed out in [21], to formalize the problems we are thus
studying, we, first of all, have to fix a notion of distance between any two solutions and an
aggregator to combine pairwise distances to a diversity measure for a set of solutions. For the
distance between two answer tuples, we will use the Hamming distance throughout this paper,
that is, counting the number of positions on which two tuples differ. As far as the choice of
an aggregator f is concerned, we impose the general restriction that it must be computable in
polynomial time. As will be detailed below, we will sometimes also consider more restricted
cases of f . Formally, for a class Q of queries and diversity measure δ that maps k answer
tuples to an aggregated distance, we will study the following problem Diverse-Q:

Diverse-Q
Input: A database instance I, query Q ∈ Q, and integers k and d.

Question: Do there exist pairwise distinct answers γ1, . . . , γk ∈ Q(I) such that
δ(γ1, . . . , γk) ≥ d?

That is, we ask if a certain level d of diversity can be achieved by choosing k pairwise distinct
answers to a given query Q over the database instance I. We refer to {γ1, . . . , γk} as the
desired diversity set. As far as the notation is concerned, we will denote the Hamming
distance between two answers γ, γ′ by ∆(γ, γ′). With diversity measure δ, we denote the
aggregated Hamming distances of all pairs of k answer tuples for an arbitrary, polynomial-time
computable aggregate function f . That is, let f :

⋃
k≥1 N

k(k−1)
2 → R and let di,j = ∆(γi, γj)

for 1 ≤ i < j ≤ k. Then we define δ(γ1, . . . , γk) := f((di,j)1≤i<j≤k). Moreover, we write δsum,
δmin, and δmon if the aggregator f is the minimum, the sum, or an arbitrary (polynomial-time
computable) monotone function, i.e., f(d1, . . . , dN) ≤ f(d′

1, . . . , d
′
N) whenever di ≤ d′

i holds
for every i ∈ {1, . . . , N} with N = k(k−1)

2 . The corresponding diversity problems are denoted
by Diversesum-Q, Diversemin-Q, and Diversemon-Q, respectively.

When we prove upper bounds on the complexity of several variations of the Diverse-Q
problem (in the form of membership in some favorable complexity class), we aim at the most
general setting, i.e., the Diverse-Q problem for an arbitrary, polynomial-time computable
aggregation function. However, in some cases, the restriction to sum, min, or mon will be
needed in order to achieve the desired upper bound on the complexity. In contrast, to prove
lower bounds (in the form of hardness results), we aim at restricted cases (in particular,

T. C. Merkl, R. Pichler, and S. Skritek 10:3

Diversesum-Q and Diversemin-Q). These hardness results, of course, carry over to the more
general cases. Somehow surprisingly, our analyses will reveal differences in the complexity
between the seemingly similar cases Diversesum-Q and Diversemin-Q.

We will analyze several variations of the Diverse-Q problem: as mentioned above, we
study various aggregator functions. Moreover, we consider several query classes Q – starting
with the class CQ of Conjunctive Queries and then extending our studies to the classes UCQ
and CQ¬ of unions of CQs and CQs with negation. In one case, we will also look at the class
FO of all first-order queries. Recall that, for combined complexity and query complexity,
even the question if an answer tuple exists at all is NP-complete for CQs [10]. We therefore
mostly restrict our study to acyclic CQs (ACQs, for short) with the corresponding query
classes ACQ and UACQ, allowing only ACQs and unions of ACQs, respectively. For CQs with
negation, query answering remains NP-complete even if we only allow ACQs [32]. Hence,
for CQ¬ we have to impose a different restriction. We thus restrict ourselves to CQs with
bounded treewidth. Finally note that, even if we have formulated Diverse-Q as a decision
problem, we also care about actually computing k solutions in case of a yes-answer.

We aim at a thorough complexity analysis of the Diverse-Q problem from various angles.
We thus mainly consider the problem parameterized by the size k of the diversity set. In the
non-parameterized case (i.e., if k is simply part of the input) we assume k to be given in unary
representation. This assumption is motivated by the fact that for binary representation of k,
the size k of the diversity set can be exponentially larger than the input: this contradicts
the spirit of the diversity approach which aims at outputting a small (not an exponentially
big) number of diverse solutions. As is customary in the Database world, we will distinguish
combined, query, and data complexity.

Summary of results.
We start our analysis of the Diverse-Q problem with the class of ACQs and study data
complexity, query complexity, and combined complexity. With the size k of the diversity
set as the parameter, we establish XP-membership for combined complexity, which is
strengthened to FPT-membership for data complexity. The XP-membership of combined
complexity is complemented by a W[1]-lower bound of the Diversesum-ACQ and Diversemin-
ACQ problems. For the non-parameterized case, we show that even the data complexity
is NP-hard.
The FPT-result of data complexity is easily extended to unions of ACQs. Actually, it even
holds for arbitrary FO-queries. However, rather surprisingly, we show that the combined
complexity and even query complexity of the Diversesum-UACQ and Diversemin-UACQ
problems are NP-complete. The hardness still holds, if the size k of the diversity set is 2
and the UACQs are restricted to unions of 2 ACQs.
Finally, we study the Diverse-Q problem for the class CQ¬. As was mentioned above, the
restriction to ACQs is not even enough to make the query answering problem tractable.
We, therefore, study the Diverse-CQ¬ problem by allowing only classes of CQs of bounded
treewidth. The picture is then quite similar to the Diverse-ACQ problem, featuring
analogous XP-membership, FPT-membership, W[1]-hardness, and NP-hardness results.

Structure. We present some basic definitions and results in Section 2. In particular, we will
formally introduce all concepts of parameterized complexity (complexity classes, reductions)
relevant to our study. We then analyze various variants of the Diverse-Q problem, where Q
is the class of CQs in Section 3, the class of unions of CQs in Section 4, and the class of CQs
with negation in Section 5, respectively. Some conclusions and directions for future work are
given in Section 6. Due to the space limit, most proofs are only sketched. Full details are
provided in [28].

ICDT 2023

10:4 Diversity of Answers to Conjunctive Queries

2 Preliminaries

Basics. We assume familiarity with relational databases. For basic notions such as schema,
(arity of) relation symbols, relations, (active) domain, etc., the reader is referred to any
database textbook, e.g., [1]. A CQ is a first-order formula of the form Q(X) := ∃Y

∧ℓ
i=1 Ai

with free variables X = (x1, . . . , xm) and bound variables Y = (y1, . . . , yn) such that each
Ai is an atom with variables from x1, . . . , xm, y1, . . . , yn. An answer to such a CQ Q(X)
over a database instance (or simply “database”, for short) I is a mapping γ : X → dom(I)
which can be extended to a mapping γ̄ : (X ∪ Y) → dom(I) such that instantiating each
variable z ∈ (X ∪ Y) to γ̄(z) sends each atom Ai into the database I. We write dom(I) to
denote the (finite, active) domain of I. By slight abuse of notation, we also refer to the
tuple (γ(X) = γ(x1), . . . , γ(xm)) as an answer (or an answer tuple). A UCQ is a disjunction∨N

i=1 Qi(X), where all Qi’s are CQs with the same free variables. The set of answers of a
UCQ is the union of the answers of its CQs. In a CQ with negation, we allow the Ai’s to
be either (positive) atoms or literals (i.e., negated atoms) satisfying a safety condition, i.e.,
every variable has to occur in some positive atom. An answer to a CQ with negation Q(X)
over a database I has to satisfy the condition that each positive atom is sent to an atom
in the database while each negated atom is not. The set of answers to a query Q over a
database I is denoted by Q(I).

For two mappings α and α′ defined on variable sets Z and Z ′, respectively, we write
α ∼= α′ to denote that the two mappings coincide on all variables in Z ∩Z ′. If this is the case,
we write α ∩ α′ and α ∪ α′ to denote the mapping obtained by restricting α and α′ to their
common domain or by combining them to the union of their domains, respectively. That
is, (α ∩ α′)(z) = α(z) for every z ∈ Z ∩ Z ′ and (α ∪ α′)(z) is either α(z) if z ∈ Z or α′(z)
otherwise. For X ⊆ Z and z ∈ Z, we write α|X and α|z for the mapping resulting from the
restriction of α to the set X or the singleton {z}, respectively. Also, the Hamming distance
between two mappings can be restricted to a subset of the positions (or, equivalently, of the
variables): by ∆X(α, α′) we denote the number of variables in X on which α and α′ differ.

Acyclicity and widths. In a landmark paper [34], Yannakakis showed that query evaluation
is tractable (combined complexity) if restricted to acyclic CQs. A CQ is acyclic if it has a
join tree. Given a CQ Q(X) := ∃Y

∧ℓ
i=1 Ai with At(Q(X)) = {Ai : 1 ≤ i ≤ ℓ}, a join tree

of Q(X) is a triple ⟨T, λ, r⟩ such that T = (V (T), E(T)) is a rooted tree with root r and
λ : V (T) → At(Q(X)) is a node labeling function that satisfies the following properties:
1. The labeling λ is a bijection.
2. For every v ∈ X ∪ Y , the set Tv = {t ∈ V (T) : v occurs in λ(t)} induces a subtree T [Tv].
Testing if a given CQ is acyclic and, in case of a yes-answer, constructing a join tree is feasible
in polynomial time by the GYO-algorithm, named after the authors of [19, 35].

Another approach to making CQ answering tractable is by restricting the treewidth (tw),
which is defined via tree decompositions [31]. Treewidth does not generalize acyclicity, i.e., a
class of acyclic CQs can have unbounded tw. We consider tw here only for CQs with negation.
Let Q(X) := ∃Y

∧ℓ
i=1 Li, be a CQ with negation, i.e., each Li is a (positive or negative)

literal. Moreover, let var(Li) denote the variables occurring in Li. A tree decomposition
of Q(X) is a triple ⟨T, χ, r⟩ such that T = (V (T), E(T)) is a rooted tree with root r and
χ : V (T) → 2X∪Y is a node labeling function with the following properties:
1. For every Li, there exists a node t ∈ V (T) with var(Li) ⊆ χ(t).
2. For every v ∈ X ∪ Y , the set Tv = {t ∈ V (T) : v ∈ χ(t)} induces a subtree T [Tv].

T. C. Merkl, R. Pichler, and S. Skritek 10:5

The sets χ(t) of variables are referred to as “bags” of the tree decomposition T . The width
of a tree decomposition is defined as maxt∈V (T)(|χ(t)| − 1). The treewidth of a CQ with
negation Q is the minimum width of all tree decompositions of Q. For fixed ω, it is feasible
in linear time w.r.t. the size of the query Q to decide if tw(Q) ≤ ω holds and, in case of a
yes-answer, to actually compute a tree decomposition of width ≤ ω [6].

Complexity. We follow the categorization of the complexity of database tasks introduced
in [33] and distinguish combined/query/data complexity of the Diverse-Q problem. That is,
for data complexity, we consider the query Q as arbitrarily chosen but fixed, while for query
complexity, the database instance I is considered fixed. In case of combined complexity, both
the query and the database are considered as variable parts of the input.

We assume familiarity with the fundamental complexity classes P (polynomial time) and
NP (non-deterministic polynomial time). We study the Diverse-Q problem primarily from
a parameterized complexity perspective [14]. An instance of a parameterized problem is
given as a pair (x, k), where x is the actual problem instance and k is a parameter – usually
a non-negative integer. The effort for solving a parameterized problem is measured by a
function that depends on both, the size |x| of the instance and the value k of the parameter.
The asymptotic worst-case time complexity is thus specified as O(f(n, k)) with n = |x|.

The parameterized analogue of tractability captured by the class P is fixed-parameter
tractability captured by the class FPT of fixed-parameter tractable problems. A problem is in
FPT, if it can be solved in time O(f(k) · nc) for some computable function f and constant c.
In other words, the run time only depends polynomially on the size of the instance, while a
possibly exponential explosion is confined to the parameter. In particular, if for a class of
instances, the parameter k is bounded by a constant, then FPT-membership means that the
problem can be solved in polynomial time. This also applies to problems in the slightly less
favorable complexity class XP, which contains the problems solvable in time O(nf(k)).

Parameterized complexity theory also comes with its own version of reductions (namely
“FPT-reductions”) and hardness theory based on classes of fixed-parameter intractable
problems. An FPT-reduction from a parameterized problem P to another parameterized
problem P ′ maps every instance (x, k) of P to an equivalent instance (x′, k′) of P ′, such
that k′ only depends on k (i.e., independent of x) and the computation of x′ is in FPT
(i.e., in time O(f(k) · |x|c) for some computable function f and constant c). For fixed-
parameter intractability, the most prominent class is W[1]. It has several equivalent
definitions, for instance, W[1] is the class of problems that allow for an FPT-reduction
to the Independent Set problem parameterized by the desired size k of an independent
set. We have FPT ⊆ W[1] ⊆ XP. It is a generally accepted assumption in parameterized
complexity theory that FPT ̸= W[1] holds – similar but slightly stronger than the famous
P ̸= NP assumption in classical complexity theory, i.e., FPT ̸= W[1] implies P ̸= NP, but not
vice versa.

3 Diversity of Conjunctive Queries

3.1 Combined and Query Complexity
We start our study of the Diverse-ACQ problem by considering the combined complexity and
then, more specifically, the query complexity. We will thus present our basic algorithm in
Section 3.1.1, which allows us to establish the XP-membership of this problem. We will then
prove W[1]-hardness in Section 3.1.2 and present some further improvements of the basic
algorithm in Section 3.1.3.

ICDT 2023

10:6 Diversity of Answers to Conjunctive Queries

3.1.1 Basic Algorithm

Our algorithm for solving Diverse-ACQ is based on a dynamic programming idea analogous
to the Yannakakis algorithm. Given a join tree ⟨T, λ, r⟩ and database I, the Yannakakis
algorithm decides in a bottom-up traversal of T at each node t ∈ V (T) and for each answer α
to the single-atom query λ(t) if it can be extended to an answer to the CQ consisting of
all atoms labeling the nodes in the complete subtree T ′ rooted at t. It then stores this
(binary) information by either keeping or dismissing α. Our algorithm for Diverse-ACQ
implements a similar idea. At its core, it stores k-tuples (α1, . . . , αk) of answers to the single-
atom query λ(t), each k-tuple describing a set of (partial) diversity sets. We extend this
information by the various vectors (di,j)1≤i<j≤k of Hamming distances that are attainable by
possible extensions (γ1, . . . , γk) to the CQ consisting of the atoms labeling the nodes in T ′.

In the following, we consider an ACQ Q(X) := ∃Y
∧ℓ

i=1 Ai where each atom is of the form
Ai = Ri(Zi) for some relation symbol Ri and variables Zi ⊆ X ∪ Y . For an atom A = R(Z)
and a database instance I, define A(I) as the set of mappings {α : Z → dom(I) : α(Z) ∈ RI}.
We extend the definition to sets (or conjunctions) ψ(Z) of atoms Ai(Zi) with Zi ⊆ Z. Then
ψ(I) is the set of mappings {α : Z → dom(I) : α(Zi) ∈ RI

i for all Ri(Zi) ∈ ψ(Z)}. Let
⟨T, λ, r⟩ be a join tree. For a subtree T ′ of T we define λ(T ′) = {λ(t) : t ∈ V (T ′)} and,
by slight abuse of notation, we write t(I) and T ′(I) instead of λ(t)(I) and λ(T ′)(I). Now
consider T ′ to be a subtree of T with root t. For tuples e ∈ {(α1, . . . , αk, (di,j)1≤i<j≤k) :
α1, . . . , αk ∈ t(I), di,j ∈ {0, . . . , |X|} for 1 ≤ i < j ≤ k}, we define extT ′(e) = {(γ1, . . . , γk) :
γ1, . . . , γk ∈ T ′(I) s.t. αi

∼= γi for 1 ≤ i ≤ k and ∆X(γi, γj) = di,j for 1 ≤ i < j ≤ k}.
Intuitively, our algorithm checks for each such tuple e whether there exist extensions γi

of αi that (a) are solutions to the subquery induced by T ′ and (b) exhibit di,j as their
pairwise Hamming distances. If this is the case, the tuple e is kept, otherwise, e is dismissed.
In doing so, the goal of the algorithm is to compute sets DT ′ that contain exactly those e
with extT ′(e) ̸= ∅. Having computed DT (i.e., for the whole join tree), Diverse-ACQ can now
be decided by computing for each e ∈ DT the diversity measure from the values di,j .

To do so, in a first phase, at every node t ∈ V (T), we need to compute and store the
set DT ′ (for T ′ being the complete subtree rooted in t). We compute this set by starting
with some set Dt and updating it until eventually, it is equal to DT ′ . In addition, to every
entry e in every set Dt, we maintain a set ρDt

(e) containing provenance information on
e. Afterwards, in the recombination phase, the sets DT ′ and ρDt(·) are used to compute a
diversity set with the desired diversity – if such a set exists.

Algorithm 1. Given Q(X), I, ⟨T, λ, r⟩, k, d, and a diversity measure δ defined via some
aggregate function f , the first phase proceeds in three main steps:

Initialization: In this step, for every node t ∈ V (T), initialize the set Dt as

Dt = {(α1, . . . , αk, (di,j)1≤i<j≤k) : αi ∈ t(I), di,j = ∆X(αi, αj)}.

That is, Dt contains one entry for every combination α1, . . . , αk ∈ t(I), and each value
di,j (1 ≤ i < j ≤ k) is the Hamming distance of the mappings αi|X and αj |X .
For every e ∈ Dt, initialize ρDt

(e) as the empty set.

Bottom-Up Traversal: Set the status of all non-leaf nodes in T to “not-ready” and the
status of all leaf nodes to “ready”. Then repeat the following action until no “not-ready”
node is left: Pick any “not-ready” node t that has at least one “ready” child node t′.

T. C. Merkl, R. Pichler, and S. Skritek 10:7

Update Dt to D′
t as

D′
t = {(α1, . . . , αk, (d̄i,j)1≤i<j≤k) : (α1, . . . , αk, (di,j)1≤i<j≤k) ∈ Dt,

(α′
1, . . . , α

′
k, (d′

i,j)1≤i<j≤k) ∈ Dt′ ,

αi
∼= α′

i for 1 ≤ i ≤ k,

d̄i,j = di,j + d′
i,j − ∆X(αi ∩ α′

i, αj ∩ α′
j)

for 1 ≤ i < j ≤ k}.

Expressed in a more procedural style: Take every entry e ∈ Dt and compare it to every
entry e′ ∈ Dt′ . If the corresponding mappings αi ∈ Dt and α′

i ∈ Dt′ agree on the shared
variables, the new set D′

t contains an entry ē with the mappings αi from e and the
Hamming distances computed from e and e′ as described above.
Set ρD′

t
(ē) = ρDt(e) ∪ {(t′, e′)}. If the same entry ē is created from different pairs (e, e′),

choose an arbitrary one of them for the definition of ρD′
t
(ē).

Finally, change the status of t′ from “ready” to “processed”. The status of t becomes
“ready” if the status of all its child nodes is “processed” and remains “not-ready” otherwise.
Finalization: Once the status of root r is “ready”, remove all (α1, . . . , αk, (di,j)1≤i<j≤k)
∈ Dr where f((di,j)1≤i<j≤k) < d. To ensure that all answers in the diversity set are
pairwise distinct, also remove all entries where di,j = 0 for some (i, j) with 1 ≤ i < j ≤ k.
If, after the deletions, Dr is empty, then there exists no diversity set of size k with a
diversity of at least d. Otherwise, at least one such diversity set exists.

Clearly, the algorithm is well-defined and terminates. The following theorem states that
the algorithm decides Diverse-ACQ and gives an upper bound on the run time.

▶ Theorem 1. The Diverse-ACQ problem is in XP (combined complexity) when parameterized
by the size k of the diversity set. More specifically, for an ACQ Q(X), a database I, and
integers k and d, Algorithm 1 decides the Diverse-ACQ problem in time O

(
|RI |2k·(|X|+1)k(k−1)

· pol(|Q|, k)
)

where RI is the relation from I with the most tuples and pol(|Q|, k) is a
polynomial in |Q| and k.

For any node t in the join tree, Dt denotes the data structure manipulated by Algorithm 1.
On the other hand, for the complete subtree T ′ rooted at t, DT ′ denotes the goal of our
computation, namely the set of tuples e = (α1, . . . , αk, (di,j)1≤i<j≤k) with extT ′(e) ̸= ∅. The
key to the correctness of Algorithm 1 is to show that, on termination of the bottom-up
traversal, Dt = DT ′ indeed holds for every node t in the join tree.

We briefly discuss the run time of the algorithm. |RI |2k · (|X| + 1)k(k−1) represents |Dt|2,
where |Dt| is the maximal number of entries e in any Dt during an execution of the algorithm:
|RI | restricts the number of mappings αi in any t(I), each di,j can take at most |X| + 1
different values (being the Hamming distance of mappings with at most |X| variables), giving
(|X| + 1)

k(k−1)
2 different tuples (di,j)1≤i<j≤k. |Dt|2 is because the bottom-up traversal can be

implemented via a nested loop, dominating the run time of the initialization and finalization
steps. The polynomial factor pol(|Q|, k) represents the computation of k(k−1)

2 Hamming
distances between at most |var(A)| variables (i.e., k2 · |var(A)| where A is the atom in Q with
the most variables), the number of nodes (i.e., |Q|), and the computation of the aggregate
function f (i.e., some polynomial polf (|X|, k) depending on |X| and k).

Theorem 1 shows that the first phase of the algorithm decides in XP the existence of a
diversity set with a given diversity. Computing a witness diversity set now means computing
one element (γ1, . . . , γk) ∈ extT (e) for some e ∈ DT with f((di,j)1≤i<j≤k) ≥ d and di,j ̸= 0

ICDT 2023

10:8 Diversity of Answers to Conjunctive Queries

for all i, j. Similarly to the construction of an answer tuple by the Yannakakis algorithm for
CQs, we can compute an arbitrary element from extT (e) by making use of the information
stored in the final sets ρDt

(e). By construction, for every node t ∈ V (T) and every entry
e ∈ DT ′ , the final set ρDt(e) contains exactly one pair (t′, e′) for every child node t′ of t.
Moreover, for the mappings α1, . . . , αk from e and α′

1, . . . , α
′
k from e′, αi

∼= α′
i holds for

all 1 ≤ i ≤ k, hence αi ∪ α′
i are again mappings. Thus, to compute the desired witness

(γ1, . . . , γk) ∈ extT (e) for the chosen e ∈ DT , start with (α1, . . . , αk) from e, take all (t′, e′)
from ρDr (e), extend each αi with α′

i from e′, and repeat this step recursively.

3.1.2 W[1]-Hardness
Having proved XP-membership combined complexity of the Diverse-ACQ problem in
Theorem 1, we now show that, for two important aggregators sum and min, a stronger
result in the form of FPT-membership is very unlikely to exist. More specifically, we prove
W[1]-hardness for query complexity and, hence, also for combined complexity in these cases.

▶ Theorem 2. The problems Diversesum-ACQ and Diversemin-ACQ, parameterized by the size k
of the diversity set, are W [1]-hard. They remain W [1]-hard even if all relation symbols are
of arity at most two and Q(X) contains no existential variables.

Proof sketch. The proof is by simultaneously reducing Independent Set parameterized
by the size of the independent set to both Diversesum-ACQ and Diversemin-ACQ. The only
difference between the two reductions will be in how we define the diversity threshold d.

Let (G, s) be an arbitrary instance of Independent Set with V (G) = {v1, . . . , vn} and
E(G) = {e1, . . . , em}. We define an instance ⟨I,Q, k, d⟩ of Diversesum-ACQ and Diversemin-
ACQ, respectively, as follows. The schema consists of a relation symbol R of arity one and m
relation symbols R1, . . . , Rm of arity two. The CQ Q(X) is defined as

Q(v, x1, . . . , xm) := R(v) ∧R1(v, x1) ∧ · · · ∧Rm(v, xm)

and the database instance I with dom(I) = {0, 1, . . . , n} is

RI ={(i) : vi ∈ V (G)} and

RI
j ={(i, i) : vi is not incident to ej} ∪ {(i, 0) : vi is incident to ej} for all j ∈ {1, . . . , m}.

Finally, set k = s and d =
(

k
2
)

· (m+ 1) for Diversesum-ACQ and d = m+ 1 for Diversemin-ACQ,
respectively. Clearly, this reduction is feasible in polynomial time, and the resulting problem
instances satisfy all the restrictions stated in the theorem.

The correctness of this reduction depends on two main observations. First, for each
i ∈ {1, . . . , n}, independently of G, there exists exactly one solution γi ∈ Q(I) with γi(v) = i,
and these are in fact the only solutions in Q(I). Thus, there is a natural one-to-one association
between vertices vi ∈ V (G) and solutions γi ∈ Q(I). And, second, the desired diversities
d =

(
k
2
)

· (m + 1) in case of sum and d = m + 1 in case of min, respectively, can only be
achieved by k solutions that pairwisely differ on all variables. ◀

3.1.3 Speeding up the Basic Algorithm
Algorithm 1 works for any polynomial-time computable diversity measures δ. To compute
the diversity at the root node, we needed to distinguish between all the possible values
for di,j (1 ≤ i < j ≤ k), which heavily increases the size of the sets Dt. However, specific
diversity measures may require less information as will now be exemplified for δsum.

T. C. Merkl, R. Pichler, and S. Skritek 10:9

▶ Theorem 3. The Diversesum-ACQ problem is in FPT query complexity when parameterized
by the size k of the diversity set. More specifically, Diversesum-ACQ for an ACQ Q(X), a
database instance I, and integers k and d, can be solved in time O(|RI |2k ·2k(k−1) ·pol(|Q|, k)),
where RI is the relation from I with the most tuples and pol(|Q|, k) is a polynomial in |Q|
and k.

Proof sketch. Note that pol(|Q|, k) is the same as in Theorem 1. For query complexity,
the size |RI | of a relation in I is considered as constant. Hence, the above-stated upper
bound on the asymptotic complexity indeed entails FPT-membership. To prove this upper
bound, the crucial property is that for a collection of mappings γ1, . . . , γk over variables
Z, the equality δsum(γ1, . . . , γk) =

∑
z∈Z δsum(γ1|z, . . . , γk|z) holds. The reason we had to

explicitly distinguish all possible values (α1, . . . , αk, (di,j)1≤i<j≤k) in the basic algorithm is
that, in general, given two collections (γ1, . . . , γk) and (γ′

1, . . . , γ
′
k) of mappings that agree on

the shared variables, we cannot derive δ(γ̂1, . . . , γ̂k) for γ̂i = γi ∪ γ′
i from δ(γ1, . . . , γk) and

δ(γ′
1, . . . , γ

′
k). In contrast, for δsum, this is possible. Hence, in principle, it suffices to store

in DT ′ for each collection (α1, . . . , αk) with αi ∈ t(I) (t being the root of T ′) such that there
exists γi ∈ T ′(I) with γi

∼= αi (for all 1 ≤ i ≤ k) the value

dT ′(α1, . . . , αk) = max
γ1,...,γk∈T ′(I)

s.t. γi
∼=αi for all i

δsum(γ1|X , . . . , γk|X).

I.e., each entry in DT ′ now is of the form (α1, . . . , αk, v) with v = dT ′(α1, . . . , αk). In the
bottom-up traversal step of the algorithm, when updating some Dt to D′

t by merging Dt′ ,
for every entry (α1, . . . , αk, v) ∈ Dt there exists an entry (α1, . . . , αk, v̄) ∈ D′

t if and only if
there exists at least one (α′

1, . . . , α
′
k, v

′) ∈ Dt′ such that αi
∼= α′

i for 1 ≤ i ≤ k. Then v̄ is

v̄ = max
(α′

1,...,α′
k,v′)∈Dt′

s.t. αi
∼=α′

i for all i

(v + v′ − δsum((α1 ∩ α′
1)|X , . . . , (αk ∩ α′

k)|X)).

In order to make sure that the answer tuples in the final diversity set are pairwise distinct,
the following additional information must be maintained at each DT ′ : from the partial
solutions α1, . . . , αk it is not possible to determine whether the set of extensions γ1, . . . , γk

contains duplicates or not. Thus, similar to the original values di,j describing the pairwise
diversity of partial solutions, we now include binary values bi,j for 1 ≤ i < j ≤ k that indicate
whether extensions γi and γj of αi and αj to var(T ′) differ on at least one variable of X
(bi,j = 1) or not in order to be part of extT ′(e). This increases the maximal size of DT ′

to |RI |2k · 2k(k−1). The bottom-up traversal step can be easily adapted to consider in the
computation of v̄ for an entry in D′

t only those entries from Dt and Dt′ that are consistent
with the values of bi,j , giving the stated run time. ◀

Actually, if we drop the condition that the answer tuples in the final diversity set must be
pairwise distinct, the query complexity of Diversesum-ACQ can be further reduced. Clearly,
in this case, we can drop the binary values bi,j for 1 ≤ i < j ≤ k from the entries in DT ′ ,
which results in a reduction of the asymptotic complexity to O(|RI |2k · pol(|Q|, k)). At first
glance, this does not seem to strengthen the FPT-membership result. However, a further,
generally applicable improvement (not restricted to a particular aggregate function and
not restricted to query complexity) is possible via the observation that the basic algorithm
computes (and manages) redundant information: for an arbitrary node t ∈ V (T) and set Dt,
if Dt contains an entry of the form (α1, . . . , αk, . . .), then Dt also contains entries of the form
(απ(1), . . . , απ(k), . . .) for all permutations π of (1, . . . , k). But we are ultimately interested

ICDT 2023

10:10 Diversity of Answers to Conjunctive Queries

in sets of answer tuples and do not distinguish between permutations of the members inside
a set. Keeping these redundant entries made the algorithm conceptually simpler and had no
significant impact on the run times (especially since we assume k to be small compared to
the size of the relations in I). However, given the improvements for Diversesum-ACQ from
Theorem 3 and dropping the binary values bi,j for 1 ≤ i < j ≤ k from the entries in Dt, we
can get a significantly better complexity classification:

▶ Theorem 4. The problem Diversesum-ACQ is in P (query complexity) when the diversity
set may contain duplicates and k is given in unary.

Proof sketch. To remove redundant rows from the sets Dt, we introduce some order ⪯ on
partial solutions α ∈ t(I) for each t ∈ V (T) (e.g. based on some order on the tuples in λ(t)I),
and only consider such collections α1, . . . , αk ∈ t(I) where α1 ⪯ · · · ⪯ αk together with the
value dT ′(α1, . . . , αk). Applying some basic combinatorics and assuming the size of I (and
thus of t(I)) to be constant, we get that the number of entries in any Dt is in O(k|t(I)|−1).
Using this upper bound for the size of |Dt| instead of |RI |k we get a polynomial run time. ◀

3.2 Data Complexity
We now inspect the data complexity of Diverse-ACQ both from the parameterized and non-
parameterized point of view. For the parameterized case, we will improve the XP-membership
result from Theorem 1 (for combined complexity) to FPT-membership for arbitrary monotone
aggregate functions. Actually, by considering the query as fixed, we now allow arbitrary FO-
queries, whose evaluation is well-known to be feasible in polynomial time (data complexity)
[33]. Thus, as a preprocessing step, we can evaluate Q and store the result in a table RI . We
may therefore assume w.l.o.g. that the query is of the form Q(x1, . . . , xm) := R(x1, . . . , xm)
and the database I consists of a single relation RI .

To show FPT-membership, we apply a problem reduction that allows us to iteratively
reduce the size of the database instance until it is bounded by a function of m and k, i.e.,
the query and the parameter. Let X = {x1, . . . , xm} and define

(
X
s

)
:= {Z ⊆ X : |Z| = s}

for s ∈ {0, . . . ,m}. Moreover, for every assignment α : Z → dom(I) with Z ⊆ X let
Q(I)α := {γ ∈ Q(I) : γ ∼= α}, i.e., the set of answer tuples that coincide with α on Z. The
key to our problem reduction is applying the following reduction rule Redt for t ∈ {1, . . . ,m}
exhaustively in order Red1 through Redm:

(Redt) If for some α : Z → dom(I) with Z ∈
(

X
m−t

)
, the set Q(I)α has at least t!2 ·kt elements,

then do the following: select (arbitrarily) t · k solutions Γ ⊆ Q(I)α that pairwisely differ
on all variables in X \ Z. Then remove the tuples corresponding to assignments Q(I)α \ Γ
from RI .

The intuition of the reduction rule is best seen by looking at Red1. Our ultimate goal is
to achieve maximum diversity by selecting k answer tuples. Now suppose that we fix m− 1
positions in the answer relation RI . In this case, if there are at least k different values in the
m-th component, the maximum is actually achieved by selecting k such tuples. But then
there is no need to retain further tuples with the same values in the m− 1 fixed positions.
This can be generalized to fixing fewer positions but the intuition stays the same. When
fixing m− t positions, there is also no need to retain all different value combinations in the
remaining t positions. Concretely, if there exists at least t!2 · kt different value combinations,
there also exist t · k tuples with pairwise maximum Hamming distance on the remaining
positions and it is sufficient to only keep those.

T. C. Merkl, R. Pichler, and S. Skritek 10:11

With the reduction rule Redt at our disposal, we can design an FPT-algorithm (data
complexity) for Diversemon-ACQ and, more generally, for the Diversemon-FO problem:

▶ Theorem 5. The problem Diversemon-FO is in FPT data complexity when parameterized
by the size k of the diversity set. More specifically, an instance ⟨I,Q, k, d⟩ of Diversemon-FO
with m-ary FO-query Q can be reduced in polynomial time (data complexity) to an equivalent
instance ⟨I ′, Q′, k, d⟩ of Diversemon-FO of size O(m!2 · km).

Proof sketch. As mentioned above, we can transform in polynomial time any (fixed) FO-
query into the form Q(x1, . . . , xm) = R(x1, . . . , xm) over a database I with a single relation RI .
The reduction to an equivalent problem instance of size O(m!2 · km) is then achieved by
applying Red1 through Redm to I in this order exhaustively. The crucial property of the
reduction rule Redt with t ∈ {1, . . . ,m} is as follows:

Claim A. Let t ∈ {1, . . . ,m} and suppose that all sets Q(I)α′ with α′ : Z ′ → dom(I) and
Z ′ ∈

(
X

m−(t−1)
)

have cardinality at most (t − 1)!2 · kt−1. Then the reduction rule Redt is
well-defined and safe. That is:

“well-defined”. If for some α : Z → dom(I) with Z ∈
(

X
m−t

)
, the set Q(I)α has at least

t!2 · kt elements, then there exist at least t · k solutions Γ ⊆ Q(I)α that pairwisely differ
on all variables in X \ Z.
“safe”. Let Iold denote the database instance before an application of Redt and let Inew
denote its state after applying Redt. Let γ1, . . . , γk be pairwise distinct solutions in Q(Iold).
Then there exist pairwise distinct solutions γ′

1, . . . , γ
′
k in Q(Inew) with δ(γ′

1, . . . , γ
′
k) ≥

δ(γ1, . . . , γk), i.e., the diversity achievable before deleting tuples from the database can
still be achieved after the deletion.

Note that a naive greedy algorithm always finds a witnessing Γ and the existence of this
greedy algorithm implies the well-definedness. The safety follows from the fact that each γi

that is removed, i.e., γi ∈ Q(I)α \ Γ, can be replaced by a γ′
i ∈ Γ that is kept. Concretely,

we can pick γ′
i ∈ Γ such that δ(. . . , γ′

i, . . .) ≥ δ(. . . , γi, . . .). ◀

We now study the data complexity of the Diverse-ACQ problem in the non-parameterized
case, i.e., the size k of the diversity set is part of the input and no longer considered as the
parameter. It will turn out that this problem is NP-hard for the two important aggregator
functions sum and min. Our NP-hardness proof will be by reduction from the Independent
Set problem, where we restrict the instances to graphs of degree at most 3. It was shown
in [2] that this restricted problem remains NP-complete.

▶ Theorem 6. The problems Diversesum-ACQ and Diversemin-ACQ are NP-hard data
complexity. They are NP-complete if the size k of the diversity set is given in unary.

Proof sketch. The NP-membership is immediate: compute Q(I) (which is feasible in
polynomial time when considering the query as fixed), then guess a subset S ⊆ Q(I)
of size k and check in polynomial time that S has the desired diversity.

For the NP-hardness, we define the query Q independently of the instance of the
Independent Set problem as Q(x1, x2, x3, x4, x5) := R(x1, x2, x3, x4, x5), i.e., the only
relation symbol R has arity 5. Now let (G, s) be an instance of Independent Set where
each vertex of G has degree at most 3.

Let V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}. Then the database I consists of a
single relation RI with n tuples (= number of vertices in G) over the domain dom(I) =
{free1, . . . , freen, taken1, . . . , takenm}. The i-th tuple in RI will be denoted (ei,1, . . . , ei,5).
For each vi ∈ V (G), the values ei,1, . . . , ei,5 ∈ dom(I) are defined by an iterative process:

ICDT 2023

10:12 Diversity of Answers to Conjunctive Queries

1. The iterative process starts by initializing all ei,1, . . . , ei,5 to freei for each vi ∈ V (G).
2. We then iterate through all edges ej ∈ E(G) and do the following: Let vi and vi′ be the

two incident vertices to ej and let t ∈ {1, . . . , 5} be an index such that ei,t and ei′,t both
still have the values freei and freei′ , respectively. Then set both ei,t and ei′,t to takenj .

In the second step above when processing an edge ej , such an index t must always exist. This
is due to the fact that, at the moment of considering ej , the vertex vi has been considered
at most twice (the degree of vi is at most 3) and thus, for at least three different values of
t ∈ {1, . . . , 5}, the value ei,t is still set to freei. Analogous considerations apply to vertex
vi′ and thus, for at least 3 values of t ∈ {1, . . . , 5}, we have ei′,t = freei′ . Hence, by the
pigeonhole principle, there exists t ∈ {1, . . . , 5} with ei,t = freei and ei′,t = freei′ .

After the iterative process, the database I is defined by RI = {(ei,1, ei,2, ei,3, ei,4, ei,5) :
i = 1, . . . , n}. Moreover, the size of the desired diversity set is set to k = s and the target
diversity is set to dsum = 5 · k·(k−1)

2 and dmin = 5 in the case of the Diversesum-ACQ and
Diversemin-ACQ problems, respectively. The resulting problem instances of Diversesum-ACQ
and Diversemin-ACQ are thus of the form ⟨I,Q, k, dsum⟩ and ⟨I,Q, k, dmin⟩, respectively.

The reduction is clearly feasible in polynomial time. Its correctness hinges on the
observation that the desired diversities dsum = 5 · k·(k−1)

2 and dmin = 5 can only be reached
by k answer tuples that pairwisely differ in all 5 positions. ◀

4 Diversity of Unions of Conjunctive Queries

We now turn our attention to UCQs. Of course, all hardness results proved for CQs and ACQs
in Section 3 carry over to UCQs and UACQs, respectively. Moreover, the FPT-membership
result from Theorem 5 for general FO-formulas of course also includes UCQs. It remains to
study the query complexity and combined complexity of UACQs. It turns out that the union
makes the problem significantly harder than for ACQs. We show next that Diverse-UACQ is
NP-hard (for the aggregators sum and min) even in a very restricted setting, namely a union
of two ACQs and with desired size k = 2 of the diversity set.

The proof will be by reduction from a variant of the List Coloring problem, which
we introduce next: A list assignment C assigns each vertex v of a graph G a list of colors
C(v) ⊆ {1, . . . , l}, l ∈ N. Then a coloring is a function c : V (G) → {1, . . . , l} and it is called
C−admissible if each vertex v ∈ V (G) is colored in a color of its list, i.e., c(v) ∈ C(v), and
adjacent vertices u, v ∈ E(G) are colored with different colors, i.e., c(u) ̸= c(v). Formally,
the problem is defined as follows:

List Coloring

Input: A graph G, an integer l ∈ N, and a list assignment C : V (G) → 2{1,...,l}.

Question: Does there exist a C-admissible coloring c : V (G) → {1, . . . , l}?

Clearly, List Coloring is a generalization of 3-Colorability and, hence, NP-complete.
It was shown in [12], that the List Coloring problem remains NP-hard even when assuming
that each vertex of G has degree 3, G is bipartite, and l = 3. This restriction will be used in
the proof of the following theorem.

▶ Theorem 7. The problems Diversesum-UACQ and Diversemin-UACQ are NP-hard query
complexity (and hence, also combined complexity). They remain NP-hard even if the desired
size of the diversity set is bounded by 2 and the UACQs are restricted to containing at most
two conjuncts and no existential variables. The problems are NP-complete if the size k of the
diversity set is given in unary.

T. C. Merkl, R. Pichler, and S. Skritek 10:13

Proof sketch. The NP-membership in case of k given in unary is immediate: guess k

assignments to the free variables of query Q, check in polynomial time that they are solutions,
and verify in polynomial time that their diversity is above the desired threshold.

For the NP-hardness, first observe that δsum and δmin coincide if we only allow two
solutions. Hence, we may use a single diversity function δ to prove the NP-hardness for both
Diversesum-UACQ and Diversemin-UACQ.

For our problem reduction, we consider a fixed database I over a fixed schema, which
consists of 9 relation symbols

R{1}, R{2}, R{3}, R{1,2}, R{1,3}, R{2,3}, R{1,2,3}, S, S
′.

The relations of the database are defined as follows:

RI
{1} = {(1, 1, 1)} RI

{1,2} = {(1, 1, 1), (2, 2, 2)}

RI
{2} = {(2, 2, 2)} RI

{1,3} = {(1, 1, 1), (3, 3, 3)}

RI
{3} = {(3, 3, 3)} RI

{2,3} = {(2, 2, 2), (3, 3, 3)}

RI
{1,2,3} = {(1, 1, 1), (2, 2, 2), (3, 3, 3)} SI = {(0)} S′I = {(1)}

Now let ⟨G, l, C⟩ be an arbitrary instance of List Coloring, where each vertex of G has
degree 3, G is bipartite, and l = 3. That is, G is of the form G = (V ∪ V ′, E) for vertex sets
V, V ′ and edge set E with V = {v1, . . . , vn}, V ′ = {v′

1, . . . , v
′
n}, and E = {e1, . . . , e3n}. Note

that |V | = |V ′| and |E| = 3 · |V | as each vertex in G has degree three and G is bipartite.
From this we construct a UACQ Q as follows: we use the 3n+ 1 variables x1, . . . , x3n, y

in our query. For each i ∈ {1, . . . , n}, we write eji,1 , eji,2 , eji,3 to denote the three edges
incident to the vertex vi. Analogously, we write ej′

i,1
, ej′

i,2
, ej′

i,3
to denote the three edges

incident to the vertex v′
i.

The UACQ Q is then defined as Q(x1, . . . , x3n, y) := φ ∨ ψ with

φ =
n∧

i=1
RC(vi)(xji,1 , xji,2 , xji,3) ∧ S(y),

ψ =
n∧

i=1
RC(v′

i
)(xj′

i,1
, xj′

i,2
, xj′

i,3
) ∧ S′(y).

Moreover, we set the target diversity to d = 3n+ 1 and we are looking for k = 2 solutions to
reach this diversity. Observe that each variable appears exactly once in φ and once in ψ,
which makes both formulas trivially acyclic. Furthermore, Q contains no existential variables.

The intuition of the big conjunction in φ (resp. ψ) is to “encode” for each vertex vi (resp.
v′

i) the 3 edges incident to this vertex in the form of the 3 x-variables with the corresponding
indices. The relation symbol chosen for each vertex vi or v′

i depends on the color list for this
vertex. For instance, if C(v1) = {2, 3} and if v1 is incident to the edges e4, e6, e7, then the
first conjunct in the definition of φ is of the form R{2,3}(x4, x6, x7). Note that the order of
the variables in this atom is irrelevant since the R-relations contain only tuples with identical
values in all 3 positions. Intuitively, this ensures that a vertex (in this case v1) gets the same
color (in this case color 2 or 3) in all its incident edges (in this case e4, e6, e7). ◀

5 Diversity of Conjunctive Queries with Negation

Lastly, we consider CQs¬. As was recalled in Section 1, the restriction to acyclicity is not
sufficient to ensure tractable answering of CQs¬ [32]. In the following, we thus restrict
ourselves to queries of bounded treewidth when analyzing the Diverse-CQ¬ problem.

ICDT 2023

10:14 Diversity of Answers to Conjunctive Queries

The data complexity case has already been settled for arbitrary FO-formulas in Theorem 5.
Hence, of course, also Diverse-CQ¬ is in FPT data complexity and NP-hard in the non-
parameterized case. Moreover, we observe that the query used in the proof of Theorem 2 has
a treewidth of one. Hence, it is clear that also Diverse-CQ¬ is W[1]-hard combined complexity
for queries with bounded treewidth. It remains to study the combined complexity, for which
we describe an XP-algorithm next.

Our algorithm is based on so-called nice tree decompositions – a normal form introduced
in [23]. A nice tree decomposition only allows leaf nodes plus three types of inner nodes:
introduce nodes, forget nodes, and join nodes. An introduce node t has a single child t′ with
χ(t) = χ(t′) ∪ {z} for a single variable z. Similarly, a forget node t has a single child t′ with
χ(t′) = χ(t) ∪ {z} for a single variable z. Finally, a join node t has two child nodes t1, t2 with
χ(t) = χ(t1) = χ(t2). It was shown in [23] that every tree decomposition can be transformed
in linear time into a nice tree decomposition without increasing the width.

The intuition of the present algorithm is very similar to the intuition of Algorithm 1
presented in Section 3.1.1. That is, both algorithms maintain information on tuples of k partial
solutions in a set Dt. Concretely, these tuples are again of the form (α1, . . . , αk, (di,j)1≤i<j≤k).
This time, however, partial solutions αi are not assignments that satisfy concrete atoms but
arbitrary assignments defined on χ(t). Nevertheless, a tuple gets added to Dt if and only
if it is possible to extend the partial solutions to mappings γ1, . . . , γk that (a) satisfy the
query associated to the subtree rooted in t and (b) for 1 ≤ i < j ≤ k the distance between γi

and γj is exactly di,j .
Formally, for a CQ¬ Q(X) := ∃Y

∧n
i=1 Li(X,Y) and nice tree decomposition ⟨T, χ, r⟩

of Q we define for t ∈ V (T) the subquery

Qt =
∧

i=1,...,n
var(Li)⊆χ(t)

Li,

i.e., Qt contains those literals of Q whose variables are covered by χ(t).

Algorithm 2. Given Q(X), I, k, d, a nice tree decomposition ⟨T, χ, r⟩ of minimum width,
and a diversity measure δ defined via some aggregate function f , the algorithm proceeds in
two main steps: First, the sets Dt are computed bottom-up for each t ∈ V (T), and then, it
is determined from Dr whether the diversity threshold d can be met. For the bottom-up
step, the type of t determines how Dt is computed:

Leaf Node: For a leaf node t ∈ V (T) we create Dt as

Dt = {(α1, . . . , αk, (di,j)1≤i<j≤k) : α1, . . . , αk : χ(t) → dom(I),
α1, . . . , αk satisfy Qt,

di,j = ∆X(αi, αj), 1 ≤ i < j ≤ k}.

Hence, we exhaustively go through all possible variable assignments α1, . . . , αk : χ(t) →
dom(I), keep those which satisfy the query Qt, and record their pairwise diversities.
Introduce Node: For an introduce node t ∈ V (T) with child c ∈ V (T) which introduces
the variable z ∈ χ(t) \ χ(c), we create Dt as

Dt = {(α1 ∪ β1, . . . , αk ∪ βk, (d′
i,j)1≤i<j≤k) : (α1, . . . , αk, (di,j)1≤i<j≤k) ∈ Dc,

β1, . . . , βk : {z} → dom(I),
α1 ∪ β1, . . . , αk ∪ βk satisfy Qt,

d′
i,j = di,j + ∆X(βi, βj), 1 ≤ i < j ≤ k}.

T. C. Merkl, R. Pichler, and S. Skritek 10:15

Thus, we extend the domain of the local variable assignments in Dc by z. We do this by
exhaustively going through all e ∈ Dc in combination with all β1, . . . , βk : {z} → dom(I),
check if the extensions α1 ∪ β1, . . . , αk ∪ βk satisfy all literals for which all variables are
covered, and, if this is the case, add the diversity achieved on the z-variable.
Forget Node: For a forget node t ∈ V (T) with child c ∈ V (T) we create Dt as

Dt = {(α1|χ(t), . . . , αk|χ(t), (di,j)1≤i<j≤k) : (α1, . . . , αk, (di,j)1≤i<j≤k) ∈ Dc}.

Join Node: For a join node t ∈ V (T) with children c1, c2 ∈ V (T) we create Dt as

Dt = {(α1, . . . , αk, (di,j)1≤i<j≤k) : (α1, . . . , αk, (d′
i,j)1≤i<j≤k) ∈ Dc1 ,

(α1, . . . , αk, (d′′
i,j)1≤i<j≤k) ∈ Dc2 ,

di,j = d′
i,j + d′′

i,j − ∆X(αi, αj), 1 ≤ i < j ≤ k}.

In this step, we match rows of Dc1 with rows of Dc2 that agree on the local variable
assignments and simply combine the diversities achieved in the two child nodes while
subtracting the diversity counted twice.

For the second step, the algorithm goes through all (α1, . . . , αk, (di,j)1≤i<j≤k) ∈ Dr and
removes those tuples where di,j = 0 for at least one 1 ≤ i < j ≤ k or f((di,j)1≤i<j≤k) < d.
Then, the algorithm returns “yes” if the resulting set is non-empty and otherwise “no”.

Clearly, the algorithm is well-defined and terminates. The next theorem states that the
algorithm decides Diverse-CQ¬, and discusses its run time.

▶ Theorem 8. For a class of CQs¬ of bounded treewidth, the problem Diverse-CQ¬ is in XP
when parameterized by the size k of the diversity set. More specifically, let Q(X) be from a
class of CQs¬ which have treewidth ≤ ω. Then, for a database instance I and integers k, d,
Algorithm 2 solves Diverse-CQ¬ in time O(dom(I)2·k·(ω+1) ·(|X|+1)k(k−1) ·pol(|Q|, k)), where
pol(|Q|, k) is a polynomial in |Q| and k.

Proof sketch. We briefly sketch how to arrive at the given run time. Note that the core ideas
are similar to the ones of Algorithm 1. Firstly, for the bottom-up traversal, dom(I)2·k·(ω+1) ·
(|X| + 1)k(k−1) is a bound for |Dt|2. Thus, for each node t, we can simply use (nested) loops
for the exhaustive searches and, as the checks only require polynomial time, compute each Dt

in the required time bound. Then, evaluating f also only requires polynomial time and has
to be applied at most |Dr| many times. Lastly, computing an appropriate tree decomposition
in the required time bound is possible due to [6] and [23]. ◀

We conclude this section by again stressing the analogy with Algorithm 1 for ACQs: First,
we have omitted from our description of Algorithm 2 how to compute a concrete witnessing
diversity set in the case of a yes-answer. This can be done exactly as in Algorithm 1 by
maintaining the same kind of provenance information. And second, it is possible to speed up
the present algorithm by applying the same kind of considerations as in Section 3.1.3. It is
thus possible to reduce the query complexity to FPT for the diversity measure δsum and even
further to P if we allow duplicates in the diversity set.

6 Conclusion and Future Work

In this work, we have had a fresh look at the Diversity problem of query answering. For
CQs and extensions thereof, we have proved a collection of complexity results, both for the
parameterized and the non-parameterized case. To get a chance of reaching tractability or

ICDT 2023

10:16 Diversity of Answers to Conjunctive Queries

at least fixed-parameter tractability (when considering the size k of the diversity set as the
parameter), we have restricted ourselves to acyclic CQs and CQs with bounded treewidth,
respectively. It should be noted that the restriction to acyclic CQs is less restrictive than it may
seem at first glance. Indeed, our upper bounds (in particular, the XP- and FPT-membership
results in Section 3) are easily generalized to CQs of bounded hypertree-width [18]. Moreover,
recent empirical studies of millions of queries from query logs [7] and thousands of queries
from benchmarks [17] have shown that CQs typically have hypertree-width at most 3.

For the chosen settings, our complexity results are fairly complete. The most obvious
gaps left for future work are concerned with the query complexity of ACQs and CQs with
negation of bounded treewidth. For the parameterized case, we have XP-membership but
no fixed-parameter intractability result in the form of W[1]-hardness. And for the non-
parameterized case, it is open if the problems are also NP-hard as we have shown for the
data complexity. Moreover, for future work, different settings could be studied. We mention
several modifications below.

First, different parameterizations might be of interest. We have only considered the
parameterization by the size k of the diversity set. Adding the hypertree-width (for Diverse-
ACQ) and the treewidth (for Diverse-CQ¬) to the parameter would leave our XP-membership
results unchanged. On the other hand, different parameterizations such as the threshold d

on the diversity are left for future work.
Another direction for future work is motivated by a closer look at our FPT- and XP-

membership results: even though such parameterized complexity results are generally
considered as favorable (in particular, FPT), the run times are exponential in the parameter
k. As we allow larger values of k, these run times may not be acceptable anymore. It would
therefore be interesting to study the diversity problem also from an approximation point of
view – in particular, contenting oneself with an approximation of the desired diversity.

A further modification of our settings is related to the choice of a different distance
measure between two answer tuples and different aggregators. As far as the distance measure
is concerned, we have so far considered data values as untyped and have therefore studied
only the Hamming distance between tuples. For numerical values, one might of course take
the difference between values into account. More generally, one could consider a metric on
the domain, which then induces a metric on tuples that can be used as a distance measure.
As far as the aggregator is concerned, we note that most of our upper bounds apply to
arbitrary (polynomial-time computable) aggregate functions. As concrete aggregators, we
have studied sum and min. This seems quite a natural choice since, for a fixed number k
of answer tuples, avg behaves the same as sum and count makes no sense. Moreover, max
is unintuitive if we want to achieve diversity above some threshold. However, a problem
strongly related to Diversity is Similarity [15], where one is interested in finding solutions close
to each other. In this case, max (and again sum) seems to be the natural aggregator. We
leave the study of Similarity for future work.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995. URL: http://webdam.inria.fr/Alice/.
2 Paola Alimonti and Viggo Kann. Hardness of approximating problems on cubic graphs. In

Gian Carlo Bongiovanni, Daniel P. Bovet, and Giuseppe Di Battista, editors, Algorithms and
Complexity, Third Italian Conference, CIAC ’97, Rome, Italy, March 12-14, 1997, Proceedings,
volume 1203 of Lecture Notes in Computer Science, pages 288–298. Springer, 1997. doi:
10.1007/3-540-62592-5_80.

http://webdam.inria.fr/Alice/
https://doi.org/10.1007/3-540-62592-5_80
https://doi.org/10.1007/3-540-62592-5_80

T. C. Merkl, R. Pichler, and S. Skritek 10:17

3 Antoine Amarilli, Louis Jachiet, Martin Muñoz, and Cristian Riveros. Efficient enumeration for
annotated grammars. In Leonid Libkin and Pablo Barceló, editors, PODS ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages
291–300. ACM, 2022. doi:10.1145/3517804.3526232.

4 Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. Efficient
logspace classes for enumeration, counting, and uniform generation. In Proc. PODS 2019,
pages 59–73. ACM, 2019. doi:10.1145/3294052.3319704.

5 Julien Baste, Michael R. Fellows, Lars Jaffke, Tomás Masarík, Mateus de Oliveira Oliveira,
Geevarghese Philip, and Frances A. Rosamond. Diversity of solutions: An exploration
through the lens of fixed-parameter tractability theory. Artif. Intell., 303:103644, 2022.
doi:10.1016/j.artint.2021.103644.

6 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

7 Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study of large SPARQL
query logs. VLDB J., 29(2-3):655–679, 2020. doi:10.1007/s00778-019-00558-9.

8 Endre Boros, Benny Kimelfeld, Reinhard Pichler, and Nicole Schweikardt. Enumeration
in data management (dagstuhl seminar 19211). Dagstuhl Reports, 9(5):89–109, 2019. doi:
10.4230/DagRep.9.5.89.

9 Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole Schweikardt.
Answering (unions of) conjunctive queries using random access and random-order enumeration.
In Proc. PODS 2020, pages 393–409. ACM, 2020. doi:10.1145/3375395.3387662.

10 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In John E. Hopcroft, Emily P. Friedman, and Michael A. Harrison,
editors, Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May 4-6,
1977, Boulder, Colorado, USA, pages 77–90. ACM, 1977. doi:10.1145/800105.803397.

11 Surajit Chaudhuri and Rajeev Motwani. On sampling and relational operators. IEEE Data Eng.
Bull., 22(4):41–46, 1999. URL: http://sites.computer.org/debull/99dec/surajit.ps.

12 Miroslav Chlebík and Janka Chlebíková. Hard coloring problems in low degree planar bipartite
graphs. Discret. Appl. Math., 154(14):1960–1965, 2006. doi:10.1016/j.dam.2006.03.014.

13 Ting Deng and Wenfei Fan. On the complexity of query result diversification. ACM Trans.
Database Syst., 39(2):15:1–15:46, 2014. doi:10.1145/2602136.

14 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

15 Thomas Eiter, Esra Erdem, Halit Erdogan, and Michael Fink. Finding similar/diverse
solutions in answer set programming. Theory Pract. Log. Program., 13(3):303–359, 2013.
doi:10.1017/S1471068411000548.

16 Henning Fernau, Petr A. Golovach, and Marie-France Sagot. Algorithmic enumeration: Output-
sensitive, input-sensitive, parameterized, approximative (dagstuhl seminar 18421). Dagstuhl
Reports, 8(10):63–86, 2018. doi:10.4230/DagRep.8.10.63.

17 Wolfgang Fischl, Georg Gottlob, Davide Mario Longo, and Reinhard Pichler. Hyperbench:
A benchmark and tool for hypergraphs and empirical findings. ACM J. Exp. Algorithmics,
26:1.6:1–1.6:40, 2021. doi:10.1145/3440015.

18 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and tractable
queries. J. Comput. Syst. Sci., 64(3):579–627, 2002. doi:10.1006/jcss.2001.1809.

19 Marc H. Graham. On The Universal Relation. Technical report, University of Toronto, 1979.
20 Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh. Finding diverse

and similar solutions in constraint programming. In Manuela M. Veloso and Subbarao
Kambhampati, editors, Proceedings, The Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference,
July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages 372–377. AAAI Press / The MIT Press,
2005. URL: http://www.aaai.org/Library/AAAI/2005/aaai05-059.php.

ICDT 2023

https://doi.org/10.1145/3517804.3526232
https://doi.org/10.1145/3294052.3319704
https://doi.org/10.1016/j.artint.2021.103644
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.4230/DagRep.9.5.89
https://doi.org/10.4230/DagRep.9.5.89
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.1145/800105.803397
http://sites.computer.org/debull/99dec/surajit.ps
https://doi.org/10.1016/j.dam.2006.03.014
https://doi.org/10.1145/2602136
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1017/S1471068411000548
https://doi.org/10.4230/DagRep.8.10.63
https://doi.org/10.1145/3440015
https://doi.org/10.1006/jcss.2001.1809
http://www.aaai.org/Library/AAAI/2005/aaai05-059.php

10:18 Diversity of Answers to Conjunctive Queries

21 Linnea Ingmar, Maria Garcia de la Banda, Peter J. Stuckey, and Guido Tack. Modelling
diversity of solutions. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pages 1528–1535. AAAI Press, 2020. URL:
https://aaai.org/ojs/index.php/AAAI/article/view/5512.

22 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On generating
all maximal independent sets. Inf. Process. Lett., 27(3):119–123, 1988. doi:10.1016/
0020-0190(88)90065-8.

23 Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer, 1994. doi:10.1007/BFb0045375.

24 Yasuaki Kobayashi, Kazuhiro Kurita, and Kunihiro Wasa. Linear-delay enumeration
for minimal steiner problems. In Leonid Libkin and Pablo Barceló, editors, PODS ’22:
International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022,
pages 301–313. ACM, 2022. doi:10.1145/3517804.3524148.

25 Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas Neumann.
Cardinality estimation done right: Index-based join sampling. In Proc. CIDR 2017.
www.cidrdb.org, 2017. URL: http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf.

26 Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join and XDB: online aggregation via
random walks. ACM Trans. Database Syst., 44(1):2:1–2:41, 2019. doi:10.1145/3284551.

27 Carsten Lutz and Marcin Przybylko. Efficiently enumerating answers to ontology-mediated
queries. In Leonid Libkin and Pablo Barceló, editors, PODS ’22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 277–289. ACM, 2022.
doi:10.1145/3517804.3524166.

28 Timo Camillo Merkl, Reinhard Pichler, and Sebastian Skritek. Diversity of answers to
conjunctive queries. CoRR, arXiv:2301.08848, 2023. doi:10.48550/arXiv.2301.08848.

29 Alexander Nadel. Generating diverse solutions in SAT. In Karem A. Sakallah and
Laurent Simon, editors, Theory and Applications of Satisfiability Testing - SAT 2011
- 14th International Conference, SAT 2011, Ann Arbor, MI, USA, June 19-22, 2011.
Proceedings, volume 6695 of Lecture Notes in Computer Science, pages 287–301. Springer,
2011. doi:10.1007/978-3-642-21581-0_23.

30 Thierry Petit and Andrew C. Trapp. Finding diverse solutions of high quality to constraint
optimization problems. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 260–267. AAAI Press, 2015. URL: http:
//ijcai.org/Abstract/15/043.

31 Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width. J. Comb. Theory,
Ser. B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

32 Marko Samer and Stefan Szeider. Algorithms for propositional model counting. J. Discrete
Algorithms, 8(1):50–64, 2010. doi:10.1016/j.jda.2009.06.002.

33 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In
Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors,
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982,
San Francisco, California, USA, pages 137–146. ACM, 1982. doi:10.1145/800070.802186.

34 Mihalis Yannakakis. Algorithms for acyclic database schemes. In Very Large Data Bases, 7th
International Conference, September 9-11, 1981, Cannes, France, Proceedings, pages 82–94.
IEEE Computer Society, 1981.

35 C. T. Yu and M. Z. Özsoyoglu. An algorithm for tree-query membership of a distributed query.
In The IEEE Computer Society’s Third International Computer Software and Applications
Conference, COMPSAC 1979, pages 306–312, 1979.

https://aaai.org/ojs/index.php/AAAI/article/view/5512
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1145/3517804.3524148
http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf
https://doi.org/10.1145/3284551
https://doi.org/10.1145/3517804.3524166
https://doi.org/10.48550/arXiv.2301.08848
https://doi.org/10.1007/978-3-642-21581-0_23
http://ijcai.org/Abstract/15/043
http://ijcai.org/Abstract/15/043
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/j.jda.2009.06.002
https://doi.org/10.1145/800070.802186

T. C. Merkl, R. Pichler, and S. Skritek 10:19

36 Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. Random sampling over
joins revisited. In Proc. SIGMOD 2018, pages 1525–1539. ACM, 2018. doi:10.1145/3183713.
3183739.

37 Kaiping Zheng, Hongzhi Wang, Zhixin Qi, Jianzhong Li, and Hong Gao. A survey of query
result diversification. Knowl. Inf. Syst., 51(1):1–36, 2017. doi:10.1007/s10115-016-0990-4.

ICDT 2023

https://doi.org/10.1145/3183713.3183739
https://doi.org/10.1145/3183713.3183739
https://doi.org/10.1007/s10115-016-0990-4

The Complexity of the Shapley Value for Regular
Path Queries
Majd Khalil #

Technion, Haifa, Israel

Benny Kimelfeld #

Technion, Haifa, Israel

Abstract
A path query extracts vertex tuples from a labeled graph, based on the words that are formed by the
paths connecting the vertices. We study the computational complexity of measuring the contribution
of edges and vertices to an answer to a path query, focusing on the class of conjunctive regular path
queries. To measure this contribution, we adopt the traditional Shapley value from cooperative game
theory. This value has been recently proposed and studied in the context of relational database
queries and has uses in a plethora of other domains.

We first study the contribution of edges and show that the exact Shapley value is almost always
hard to compute. Specifically, it is #P-hard to calculate the contribution of an edge whenever at
least one (non-redundant) conjunct allows for a word of length three or more. In the case of regular
path queries (i.e., no conjunction), the problem is tractable if the query has only words of length
at most two; hence, this property fully characterizes the tractability of the problem. On the other
hand, if we allow for an approximation error, then it is straightforward to obtain an efficient scheme
(FPRAS) for an additive approximation. Yet, a multiplicative approximation is harder to obtain.
We establish that in the case of conjunctive regular path queries, a multiplicative approximation of
the Shapley value of an edge can be computed in polynomial time if and only if all query atoms are
finite languages (assuming non-redundancy and conventional complexity limitations). We also study
the analogous situation where we wish to determine the contribution of a vertex, rather than an
edge, and establish complexity results of similar nature.

2012 ACM Subject Classification Theory of computation → Data provenance

Keywords and phrases Path queries, regular path queries, graph databases, Shapley value

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.11

Related Version Full Version: https://arxiv.org/abs/1412.2221 [15]

Funding This work was supported by the Israel Science Foundation (ISF), Grant 768/19, and the
German Research Foundation (DFG) Project 412400621 (DIP program).

1 Introduction

Graph databases arise in common applications where the underlying data is a network of
entities, especially when connectivity and path structures are of importance. Such usage spans
many fields, including the Semantic Web [2], social networks [10], biological networks [20,38],
data provenance [1], fraud detection [30], recommendation engines [37], and many more.
In its simplest form, a graph database is a finite, directed, edge-labeled graph. Vertices
represent entities and edges represent binary relationships of different types (labels) between
entities. Query mechanisms for graph databases enable the retrieval of parts of the graph
according to patterns of connections between vertices.

A canonical example of a graph query is the Regular Path Query (RPQ) [5, 7, 8, 36]. An
RPQ qualifies paths using a regular expression over the edge labels. When evaluated on
a graph, the answers are source-target pairs of vertices that are connected by a path that
conforms to the regular expression. This allows users to inspect complex connections in

© Majd Khalil and Benny Kimelfeld;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:smajd11@cs.technion.ac.il
mailto:bennyk@cs.technion.ac.il
https://orcid.org/0000-0002-7156-1572
https://doi.org/10.4230/LIPIcs.ICDT.2023.11
https://arxiv.org/abs/1412.2221
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 The Complexity of the Shapley Value for Regular Path Queries

graphs by enabling them to form queries that match arbitrarily long paths. An important
generalization of the class of RPQs is the class of Conjunctive Regular Path Queries (CRPQs)
that extend regular path queries to conjunctions of atoms, each being an RPQ that should
hold between two specified variables [7, 8].

Being simple and expressive, RPQs and CRPQs are an integral part of popular graph
query languages for graphs, such as GraphLog, Cypher, XPath, and SPARQL. Therefore,
they motivate and give rise to much research effort, including the study of some natural
computational problems and variations thereof [11, 22, 23, 26]: What is the complexity of
deciding whether an RPQ matches a path from a given vertex to another (what we refer
to as Boolean query evaluation)? Can we efficiently count and enumerate these paths? Is
a given CRPQ contained in another given CRPQ? The combined complexity of Boolean
query evaluation is in polynomial time for RPQs and NP-complete for CRPQs [4]. Data
complexity, however, is NLogspace-complete for both [3]. The containment problem for
RPQs is Pspace-complete, and for CRPQs, it is Expspace-hard [6, 11].

In this paper, we focus on the problem of quantifying the responsibility and contribution
of different components in the graph, namely edges and vertices, to an answer to the CRPQ
(and RPQ in particular). This problem has been studied in the context of queries on relational
databases, and our motivation here is the same as in the relational context: we wish to
provide the database user with an explanation of why (or what in the database led to that)
we got a specific answer; when many combinations of data items can lead to an answer, and
the lineage is too large or complex, we wish to quantify the contribution of individual items
in order to distinguish the more important from the less important to the answer [9].

How does one quantify the contribution of a database item to a query answer? In the
relational model, several definitions and frameworks have been proposed for measuring the
contribution of a tuple. For example, Meliou et al. [25] defined the responsibility of a tuple
t as, roughly, the inverse of the minimal number of tuples needed to be removed in order
to make t counterfactual (i.e., the query answer is determined by the existence of t); this
measure is an adaptation of earlier notions of formal causality by Halpern and Pearl [13].
Causal effect is another measure proposed by Salimi et al. [31]: if the database is probabilistic
and each tuple has independently the probability 1/2 of existence, how does the probability
of the answer change if we assume the existence or absence of t? Lastly, and most relevant
to our work, recent work has studied the adoption of the Shapley value as a responsibility
measure [9, 16,18,29].

The Shapley value is a formula for wealth distribution in a cooperative game [32]. In
databases, the conceptual application is straightforward: the tuples are the players who play
the game of answering the Boolean (or numerical) query; hence, the wealth function is the
result of the query [16]. The Shapley value has a plethora of applications, including profit
sharing between ISPs [21], influence measurement in social network analysis [28], determining
the most important genes for specific body functions [27], and identifying key players in
terrorist networks [34], to name a few. Closer to databases is a recent application to model
checking for measuring the influence of formula components [24]. As another example, in
machine learning, the SHAP score [19] has been used for measuring the contribution of
each feature to the prediction, and it is essentially the Shapley value with the features as
players. This value was also used for quantifying the responsibility that every tuple has on
the inconsistency of a knowledge base [14,39] and a database [18]. The Shapley value is often
intractable to calculate, and particularly, the execution cost might grow exponentially with
the number of players. Hence, past research has been investigating islands of tractability
and approximation algorithms.

M. Khalil and B. Kimelfeld 11:3

Contribution. We study the complexity of computing the Shapley value of edges and
vertices for CRPQs over graph databases. In the remainder of this section and throughout
the paper, we focus on edges (and discuss vertices in Section 6). Computing the Shapley
value of an edge e then boils down to answering the following question. If we eliminate all
edges and add them back one by one in uniformly random order, what is the probability that
e is a counterfactual cause (i.e., its inclusion is necessary and sufficient [25]) for the answer
at hand? As done in previous work in the context of relational databases [18,25], we view
the graph as consisting of two types of edges: endogenous edges and exogenous edges. The
endogenous edges are the ones that we consider for reasoning on responsibility, and they are
the players of the game. The exogenous edges constitute external knowledge that we take for
granted, and so, they are not players in the cooperative game (and not eliminated at the
beginning of the probabilistic process).

To be more precise, an instance of our problem involves a query q (e.g., an RPQ or
a CRPQ), an input graph G, an answer tuple t⃗ of vertices of G, and an edge e whose
contribution to t⃗ we seek to measure. We adopt the yardstick of data complexity [35] where
we consider the query q as fixed. Hence, each fixed query q is associated with a distinct
computational problem that takes as input G, t⃗, and e.

We first show that the exact computation of the Shapley value is almost always hard.
Specifically, it is sufficient for the CRPQ to have a non-redundant atom (i.e., a conjunct
associated with a regular language) with a word of length three or more for the computation
to be #P-hard (FP#P-complete). In addition, for RPQs (i.e., single-atom CRPQs), we
complete this hardness condition to a full dichotomy by showing that the Shapley value can
be computed in polynomial time if the language contains only words of length at most two.

Next, we study the complexity of approximation. In our context, we adopt a standard
yardstick of tractable approximation, namely FPRAS (Fully Polynomial-Time Approximation
Scheme). An approximation of the Shapley value of an edge to a CRPQ can be computed
via a straightforward Monte Carlo (average-over-samples) estimation of the probability that
we previously defined. This estimation guarantees an additive (or absolute) approximation.
However, we are also interested in a multiplicative (or relative) approximation.

We establish a dichotomy that classifies CRPQs into a class where there is a multiplic-
ative FPRAS and the complementing class where there cannot be any such FPRAS under
conventional complexity assumptions. Specifically, if the CRPQ contains an atom (non-
redundant atom) with an infinite regular language, then (any) multiplicative approximation
is intractable since it is already NP-complete to determine whether the Shapley value is
nonzero. In every other case (assuming no redundant atoms), an additive FPRAS can also be
used to obtain a multiplicative FPRAS, due to the gap property, previously established in the
relational model [18,29]: if the Shapley value is nonzero, then it is at least the reciprocal of
a polynomial. Note that this is contrasting the situation with relational conjunctive queries,
where there is always a multiplicative FPRAS [16]. Intuitively, this is true since, unlike the
case of conjunctive queries, in the case of RPQs and CRPQs we do not necessarily have any
fixed upper bound on the minimal number of tuples (edges) that need to be present for e to
become a counterfactual cause.

Moving on from edges to vertices, the complexity situation remains quite similar. In
particular, it is generally hard to compute the exact Shapley value of a vertex: it is sufficient
for the CRPQ to have a non-redundant atom that contains a word of length four or more for
the computation to be hard. For RPQs, we establish that the family of tractable queries for
edges is also tractable for vertices. Yet, for vertices, a gap remains and we do not complete a
full classification. For approximate evaluation, we establish the same dichotomy as for edges.

ICDT 2023

11:4 The Complexity of the Shapley Value for Regular Path Queries

Organization. The rest of the paper is organized as follows. We introduce some basic
terminology in Section 2. In Section 3, we formally define how the Shapley value is applied
in our setting for edges in graph databases. We study the complexity of computing exact
Shapley values for CRPQs in Section 4, and investigate approximations in Section 5. In
Section 6, we present the complexity results for the case when measuring the contribution of
vertices instead of edges. We conclude and discuss directions for future work in Section 7.
For lack of space, some of the proofs are omitted and can be found in the full version of the
paper [15].

2 Preliminaries

We begin by setting some terminology and notation that we use throughout the paper.

Graphs and Path Queries

We use Σ to denote a finite alphabet (i.e., set of symbols) that is used for labeling edges
of graphs. A word is a finite sequence of symbols from Σ. As usual, Σ∗ denotes the set of
all words. A language L is a (finite or infinite) subset of Σ∗. By a slight abuse of notation,
we may identify a language L with a representation of L such as a regular expression or a
finite-state automaton. A regular expression is defined as follows: ∅, ϵ, and σ ∈ Σ represent
the empty language, the empty word, and the symbol σ, respectively; and if r and s are
regular expressions, then (r | s) and (r · s) and (r∗) are also regular expressions, denoting
union, concatenation, and Kleene star, respectively. We sometimes omit parentheses and
dots when there is no risk of ambiguity (so we may write rs instead of (r · s), for instance).
The language L(r) that r accepts (recognizes) is defined as usual. We abbreviate by Σ∗ the
regular expression that accepts every word. A deterministic finite automaton (DFA) A is a
tuple (Q, Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → Q is
the transition function, q0 is the initial state, F is the set of accepting states. By δ∗(w) we
denote the state that the automaton reaches after reading w, starting from the initial state.
The automaton accepts a word w if δ∗(w) ∈ F . We again use L(A) to denote the language
that A recognizes. (Recall that the classes of regular expressions and DFAs coincide in their
expressive power.)

By a graph we mean an edge-labeled directed graph G = (V, E) where V is the finite
set of vertices and E ⊆ V × V is the set of edges (v, u), each with a label lbl(v, u). We
will consistently denote by n and m the number of vertices and edges, respectively; that
is, n = |V | and m = |E|. A path p from the vertex u to the vertex v in G is a sequence
p = (v0, v1), (v1, v2), . . . , (vk−1, vk) of edges in G such that u = v0 and v = vk. By |p| we
denote the length k of p, and by lbl(p) we denote the word lbl(v0, v1) · · · lbl(vk−1, vk). If
G = (V, E) is a graph and E′ ⊆ E is a set of edges, then we denote by G[E′] the subgraph
G′ = (V, E′) of G. In other words, G[E′] is obtained from G by removing every edge in
E \ E′.

A path query q has the form (x, L, y) where x and y are variables and L is a language.
When evaluated on a graph G, it returns the set q(G) of all pairs (s, t) such that s and t are
vertices of G and there exists a path p from s to t with lbl(p) ∈ L. An answer (s, t) is viewed
as an assignment of s and t to x and y, respectively; this will become important later when
we combine multiple path queries. For convenience, we may view q as a function that takes
G, s and t as input, where q[s, t](G) = 1 if (s, t) is an answer and q[s, t](G) = 0 otherwise.
As a special case, a regular path query (RPQ) is such that L is a regular language, defined
via a regular expression r or an automaton A. We sometimes use the shorthand L for the
query (x, L, y), or r in the case of a regular expression.

M. Khalil and B. Kimelfeld 11:5

v1

v2

v3

v4

v5

v6
a

a

a

a

b

b

b

b

c

Figure 1 The graph of our running example. In the paper, we denote the edge (vi, vj) as eij .

▶ Example 1. Figure 1 depicts the graph G over Σ = {a, b, c} for our running example. We
show a few examples of RPQs on G.

q1 = Σ∗. This query tests whether there is a path from s to t in G. For example, we
have that q1[v1, v2](G) = 1, and q1[v1, v6](G) = 1, since there are paths from v1 to both
v2 and v6. In contrast, q1[v3, v1](G) = 0 since there is no path from v3 to v1.
q2 = abc. This query tests whether there is a path from s to t in G that matches the word
abc. For example, we have that q2[v1, v6](G) = 1, as there is a path v1 → v3 → v5 → v6
that matches abc. But q2[v3, v5](G) = 0, as the only path from v3 to v5 consists of a
single edge labeled b.
q3 = ab∗. This query tests whether there is a path from s to t in G that matches regular
expression ab∗. We have q3[v1, v6](G) = 1 due to the path v1 → v2 → v4 → v6, or
alternatively, v1 → v2 → v6, that match ab∗. But we have q2[v3, v5](G) = 0, as the only
path from v3 to v5 consists of a single edge with label b, which is not a match for ab∗.

We will later use these queries to illustrate additional concepts in the paper. ⌟

Conjunctive Regular Path Queries

A conjunctive regular path query, CRPQ for short, is a conjunction of RPQs with possibly
shared variables. More precisely, a CRPQ q has the form

q[x1, . . . , xk] =
m∧

i=1
(yi, ri, zi) (1)

where each yi and zi is a variable from {x1, . . . , xk} and each ri is a regular expression. The
RPQ (yi, ri, zi) is also referred to as the ith atom of q and is denoted by qi. As before, when
evaluated on a graph G, we denote by q(G) the set of all of assignments (u1, . . . , uk) to
(x1, . . . , xk), such that all atoms are satisfied. We also denote the assignment (u1, . . . , uk) as
a function µ : {x1, . . . , xk} → {u1, . . . , uk} such that µ(xi) = ui for i = 1, . . . , k. We use a
numeric notation similarly to RPQs, that is, q[u1, . . . , uk](G) = 1 if (u1, . . . , uk) is an answer
and q[u1, . . . , uk](G) = 0 otherwise.

▶ Example 2. Let us look at the query q[x1, x2, x3] = (x1, a∗, x2) ∧ (x2, b∗, x3). When
evaluated on a graph, this query returns triplets (u1, u2, u3) such that there is a path from
u1 to u2 of edges labeled a, and from u2 to u3 of edges labeled b. In our running example
(Figure 1), we have that q[v1, v2, v6](G) = 1, as there is a path v1 → v2 that matches a∗, and
a path v2 → v4 → v6 that matches b∗. Yet, q[v1, v3, v6](G) = 0, since every match from v3
to v6 contains a label that is not b. ⌟

ICDT 2023

11:6 The Complexity of the Shapley Value for Regular Path Queries

An atom qj is redundant if its removal from q results in a query that is equivalent to q.
Formally, denote by q\j the CRPQ that is obtained from q by removing the jth atom.

q\j [x1, . . . , xk] =
m∧

i=1;i̸=j

(yi, ri, zi)

Then the jth atom is redundant if q ≡ q\j , that is, q(G) = q\j(G) for all graphs G.

▶ Example 3. Let us look at q[x1, x2, x3] = (x1, a, x2) ∧ (x2, b, x3) ∧ (x1, a∗b∗, x3). In this
query, the third atom is redundant according to our definition, as removing it does not
change the result set on any graph. Intuitively, if the first two queries return true then so
does the third, thus the third atom does not add any restriction to the conjunction. ⌟

We later refer to the following obvious (and standard) observation.

▶ Observation 4. Let q be a CRPQ. If the ith atom is non-redundant, then there exists a
graph G and assignment µ to (x1, . . . , xk) such that qj [µ(yj), µ(zj)](G) = 1 for j ̸= i and
qi[µ(yi), µ(zi)](G) = 0.

In the sequel, we say that q is without redundancy if every atom of q is non-redundant.
Note that every CRPQ q can be made one without redundancy (while preserving equivalence)
by repeatedly removing redundant atoms.

The Shapley Value

Let A be a finite set of players. A cooperative game is a function v : P (A) → R, where P (A)
is the power set of A (containing all subsets of A), such that v(∅) = 0. For S ⊆ A, the
value v(S) represents a value, such as wealth, jointly obtained by S when the players of S

cooperate. The Shapley value for the player a is defined to be:

Shapley(A, v, a) = 1
|A|!

∑
π∈ΠA

(v(πa ∪ {a}) − v(πa)). (2)

Here, ΠA is the set of all possible permutations over the players in A, and for each permutation
π we denote by πa the set of players that appear before a in the permutation. Alternatively,
the Shapley value can be written as follows:

Shapley(A, v, a) =
∑

B⊆A\{a}

|B|!(|A| − |B| − 1)!
|A|! (v(B ∪ {a}) − v(B)).

Intuitively, the Shapley value of a player a is the expected contribution of a to the value
v(B) where B is a set of players chosen by randomly (and uniformly) selecting players one by
one without replacement. The Shapley value is known to be unique up to some rationality
axioms that we omit here (c.f. [32]).

3 The Shapley Value of Edges

Throughout the paper, we focus on the Shapley value of edges of the input graph G. Later,
in Section 6, we also discuss the extension of our results to the Shapley value of vertices.

Given a CRPQ q, our goal is to quantify the contribution of edges in the input graph G

to an answer u⃗ for q. We adopt the convention that, for the sake of measuring contribution,
the database is viewed as consisting of two types of data items – we reason about the

M. Khalil and B. Kimelfeld 11:7

contribution of the endogenous items while we take for granted the existence of the exogenous
items (that serve as out-of-game background) [16,25,31]. Hence, in our setup, we view the
graph as consisting of two types of edges: endogenous edges and exogenous edges. For a
graph G = (V, E), we denote by En and Ex the sets of endogenous and exogenous edges,
respectively, and we assume that E is the disjoint union of En and Ex.

Our goal is to quantify the contribution of an edge e ∈ En to an answer u⃗ = (u1, . . . uk)
of the query q, that is, to the fact that q[u⃗](G) = 1. To this end, we view the situation as a
cooperative game where the players are the endogenous edges. The Shapley value of an edge
e ∈ En in this setting will be denoted by Shapley⟨q⟩(G, u⃗, e).

Shapley⟨q⟩(G, u⃗, e) def= Shapley(En, vq, e)

where the function Shapley is as defined in Equation (2) and vq is the numerical function
that takes as input a subset of the endogenous edges and is defined as follows:

vq(B) def= q[u⃗](G[B ∪ Ex]) − q[u⃗](G[Ex])

In particular, vq(∅) = 0. Put differently, we have the following.

Shapley⟨q⟩(G, u⃗, e) =∑
B⊆En\{e}

|B|!(|En| − |B| − 1)!
|En|!

(
q[u⃗](G[B ∪ Ex ∪ {e}]) − q[u⃗](G[B ∪ Ex])

)
(3)

For a CRPQ q, the computational problem CRPQShapley⟨q⟩ is that of computing the
Shapley value of a given edge:

Problem CRPQShapley⟨q⟩
Parameter: CRPQ q

Input: Graph G, vertex vector u⃗ = (u1, . . . , uk), endogenous edge e

Goal: Compute Shapley⟨q⟩(G, u⃗, e)

When q has only one atom, and is in fact an RPQ (x, r, y) with r being a regular
expression, we may replace q with r in the notation and write Shapley⟨r⟩(G, s, t, e) and
RPQShapley⟨r⟩ with the meaning of Shapley⟨q⟩(G, s, t, e) and RPQShapley⟨q⟩, respectively.

▶ Example 5. Considering the running example of Figure 1, assume that all edges are
endogenous. Let us first compute the contribution of the edges to the answer (v2, v6) to b∗.

The edge e26 changes q[v2, v6](G) from 0 to 1 if and only if it is selected first or second
among {e24, e26, e46}. This event happens with probability 2/3, so

Shapley⟨b∗⟩(G, v2, v6, e26) = 2/3 .

For e24 to increase the value, it should be selected before e26 and after e46, and this
happens with probability 1/6. Hence, Shapley⟨b∗⟩(G, v2, v6, e24) = 1/6.
Similarly to e24, Shapley⟨b∗⟩(G, v2, v6, e46) = 1/6.
Every other edge is irrelevant to the answer (v2, v6), and so, its Shapley value is zero.

Note that the sum of the Shapley values of all edges is 1, which is no coincidence, since in
general the Shapley value over all players sums up to the overall wealth of the entire set of
players [32]. Following are additional examples.

ICDT 2023

11:8 The Complexity of the Shapley Value for Regular Path Queries

Shapley⟨abc⟩(G, v1, v6, e). Any edge that is not on the only path that matches abc, namely
p : v1 → v3 → v5 → v6, will have the Shapley value of zero. For edges on the path p, the
computations are similar to each other and they all have the same Shapley value. For
one of them to change the query result, it needs to appear after both other edges in the
permutation of En. This happens in 9!

3 of the overall 9! permutations. So we have:

Shapley⟨abc⟩(G, v1, v6, e13) = Shapley⟨abc⟩(G, v1, v6, e35)

= Shapley⟨abc⟩(G, v1, v6, e56) = 1
3 .

If we assume that e13 is exogenous, then the other two edges will split the contribution
evenly. Then we get:

Shapley⟨abc⟩(G, v1, v6, e35) = Shapley⟨abc⟩(G, v1, v6, e56) = 1
2 .

Shapley⟨ab∗⟩(G, v1, v6, e). There are two paths that match the regular expression ab∗

(as we have seen in Example 1). Again, any edge that is not on any of these paths has
the Shapley value zero. But now, the contributions of the remaining edges is not equal
since, for instance, e12 is on both paths so we expect it to have higher contribution than
the others. For the edge e26 to change the query result, it needs to appear after edge
e12 but before at least one of e24 and e46. Permutations where this happens are either
permutations where e26 appears after e12 and one of e24 and e46 but before the other
one, and there are 2 ·

∑5
i=0(i + 2)!

(5
i

)
(8 − i − 2)! = 2

12 · 9! such permutations. This is also
possible in permutations where e26 appears after e12 but before both e24 and e46, and
there are

∑5
i=0(i + 1)!

(5
i

)
(8 − i − 1)! = 1

12 · 9! such permutations. There are an overall of
9! possible permutations, so,

Shapley⟨ab∗⟩(G, v1, v6, e26) = 1
4 .

For the two edges e24 and e46, the computations are similar to each other. For one of
them to change the query, it needs to appear after e12 and the other one, but before e26.
Similar to before, there are

∑5
i=0(i + 2)!

(5
i

)
(8 − i − 2)! = 1

12 · 9! permutations where this
happens, so,

Shapley⟨ab∗⟩(G, v1, v6, e24) = Shapley⟨ab∗⟩(G, v1, v6, e46) = 1
12 .

For the last edge e12, it needs to appear after e26 or after both e24, e46. Permutations
where this happens are either permutations where e12 appears second after e26, and these
account for 1

4 · 1
3 · 9! = 1

12 · 9! of all permutations, or permutations where e12 appears
third or forth, and these account for 1

2 · 9! of all permutations. So overall we get that

Shapley⟨ab∗⟩(G, v1, v6, e12) = 7
12 .

Note that, again,
∑

e∈En
Shapley⟨ab∗⟩(G, v1, v6, e) = 1, as expected. ⌟

4 The Complexity of Exact Computation

In this section, we study the complexity of CRPQShapley⟨q⟩, where the goal is to compute
the exact Shapley value of an edge. Note that the query q is fixed in the analysis, hence,
every q defines a separate computational problem CRPQShapley⟨q⟩. The following theorem
show that CRPQShapley⟨q⟩ is computationally intractable for almost every CRPQ q, except
for limited cases. We prove the theorem later, in Section 4.1.

M. Khalil and B. Kimelfeld 11:9

▶ Theorem 6 (Hardness). Let q be a CRPQ. If q has a non-redundant atom with a language
that contains a word of length three or more, then CRPQShapley⟨q⟩ is FP#P-complete.

Recall that FP#P is the class of functions computable in polynomial time with an oracle
to a problem in #P (e.g., counting the number of satisfying assignments of a propositional
formula). This class is considered intractable, and above the polynomial hierarchy (Toda’s
theorem [33]).

The question of whether the condition of Theorem 6 is necessary for hardness remains
open. Yet, we can show that it is, indeed, necessary, in the case of a single atom (RPQ):

▶ Theorem 7 (Tractability). Let q be an RPQ with the regular expression r. If every word in
L(r) is of length at most two, then RPQShapley⟨q⟩ is solvable in polynomial time.

Proof. We give a polynomial-time algorithm for computing RPQShapley⟨r⟩ where L = L(r)
consists of words of length at most two. We denote by M(G, k) the set of all subsets E′ ⊆ En
of size k such that G[Ex ∪ E′] contains a path of L from s to t. We have the following from
Equation (3):

RPQShapley⟨r⟩(G, s, t, e) =
m′−1∑
k=0

k!(m′ − k − 1)!
m′! |M(Ge, k)|

−
m′−1∑
k=0

k!(m′ − k − 1)!
m′! |M(G \ e, k)|.

Here, Ge is the same as G, except for e that is exogenous instead of endogenous, G \ e is
the graph G with the exclusion of e, and m′ = |En|. This shows that the computation of
RPQShapley⟨r⟩(G, s, t, e) reduces efficiently to computing |M(G, k)|, that is, counting the
subsets of En (of endogenous edges) of size k that, when added to Ex, connects s to t via a
path that matches a word in w ∈ L.

We assume that L does not contain the empty word. This is without loss of generality,
for the following reason. If L contains the empty word ϵ, then either s = t and e has the
Shapley value zero (since it is irrelevant), or s ̸= t and we can ignore the empty word of L.

We now show that |M(G, k)| can be computed in polynomial time when L(r) consists
of words of length at most two. First, let us observe that we can compute |M(G, k)| by
computing the complement set |M(G, k)| which is defined similarly but for subsets of length
k where there is no path in L:

|M(G, k)| =
(

m′

k

)
− |M(G, k)| .

So, it suffices to show how to compute |M(G, k)|.
For a subset of endogenous edges to be in M(G, k), it should not connect, with Ex, any

path from s to t matching w ∈ L (i.e., matching one of w0, . . . , wl). In other words, it should
not connect any path of length one matching some wi with |wi| = 1, or any path of length
two matching some wi with |wi| = 2. This partitions the set of endogenous edges into three
categories:

Permitted: Edges that are not part of any path that matches L.
Forbidden: Edges that connect s to t without needing any other endogenous edge, either
because they have a label that constitutes a word wi, or because they connect a path of
length two together with an exogenous edge.
On2Path: All other edges, that is, the edges that belong to pairs of endogenous edges
that are needed together in order to connect s to t through a word in L.

ICDT 2023

11:10 The Complexity of the Shapley Value for Regular Path Queries

Observe that following. First, the three sets Permitted, Forbidden and On2Path are pairwise
disjoint (by definition). Second, On2Path can be partitioned into |On2Path|/2 pairwise-
disjoint pairs, each constitutes a path with a word in L. (Note that our data model does not
allow for parallel edges.)

It follows that to construct a set of k edges in M(G, k), we can select i ≤ k edges from
Permitted, then k − i pairs from the |On2Path|/2 pairs, and then one edge from each pair.
Hence, we get:

|M(G, k)| =
k∑

i=0

(
|Permitted|

i

)
·
(|On2Path|

2
k − i

)
· 2k−i. (4)

Finally, observe that we can compute each of Permitted, Forbidden and On2Path in polynomial
time, and we can then compute Equation (4) in polynomial time. This concludes the proof. ◀

Hence, we get a full classification for RPQs:

▶ Corollary 8. Let q be an RPQ with the regular expression r. Assuming P ̸= NP, the
following are equivalent:
1. RPQShapley⟨q⟩ is solvable in polynomial time.
2. Every word in L(r) is of length at most two.

In the remainder of this section, we prove the hardness side (Theorem 6).

4.1 Proof of Hardness
Membership in FP#P is straightforward from the definition of the Shapley value in Equa-
tion (2). Indeed, Shapley⟨q⟩(G, u⃗, e) can be computed using an oracle to the problem of
counting the permutations over the edge set such that e changes the evaluation from zero
(false) to one (true). For the FP#P-hardness, we prove it in a sequence of reductions. We
begin with hardness for the special case where the language consists of a single three-letter
word. For that, we will use a result by Livshits et al. [17] on the computation of Shapley
values for facts (tuples) in relational databases. We use that to prove hardness for the general
case of a language with one or more words of length at least three, even when restricted to
simple graphs.

We first recall the result of Livshits et al. [17]. They considered relational databases D

where some of the facts are endogenous and the rest exogenous. As in our notation, the
corresponding subsets of D are denoted by Dn and Dx, respectively. For a Boolean query q

that maps every database into {0, 1}, they defined the Shapley value of a fact similarly to
the way we define the Shapley value of an edge: the endogenous facts are the players and
the query is the wealth function:

Shapley⟨q⟩(D, f) = Shapley(Dn, vdb, f)

where vdb(E) = q(E ∪ Dx) − q(Dx). They established a complete classification of the
class of conjunctive queries without self-joins into tractable and intractable queries for the
computation of the Shapley value. What is relevant to us is that the following conjunctive
query is FP#P-hard:

QRST() : ∃x, y[R(x) ∧ S(x, y) ∧ T (y)]

We define a special kind of graphs that will help us in some of the proofs. A graph
G = (V, E) is called a leveled graph if there exists a split of the vertex set into levels V0, . . . , Vk,
such that:

M. Khalil and B. Kimelfeld 11:11

R
a
b
c

S
a c
a d
b c
d c

T
a
c
d

(a) Input database D.

a1

b1

c1

d1

s0

a2

b2

c2

d2

s3

σ 1

σ
2

σ
3

(b) Reduction graph G.

Figure 2 An example for the construction in the reduction of the proof of Lemma 9.

1. The set of vertices V is the disjoint union of V0, . . . , Vk.
2. Every edge is from a vertex of some level Vi to a vertex of Vi+1.

From the hardness of the Shapley value for QRST, it is easy to prove the following.

▶ Lemma 9. Let σi ∈ Σ for i = 1, 2, 3. RPQShapley⟨σ1σ2σ3⟩ is FP#P-hard, even when
restricted to leveled graphs.

The proof (given in the long version of the paper) is via the reduction illustrated in
Figure 2. Next, we have the following generalization of Lemma 9.

▶ Lemma 10. Let r be a regular expression. If there exists a word in L(r) of length at least
three, then RPQShapley⟨r⟩ is FP#P-hard, even when restricted to leveled graphs.

The reduction from the problem of Lemma 9 to that of Lemma 10 is illustrated in Figure 3
(and explained in the full version). With Lemma 10, we can prove Theorem 6.

Proof of Theorem 6. We know that q has a non-redundant atom qi such that L(ri) contains
a word of length at least three. We reduce RPQShapley⟨ri⟩ on leveled graphs (Lemma 10) to
CRPQShapley⟨q⟩. Given an input leveled graph G, source vertex s, target vertex t and edge
e for RPQShapley⟨ri⟩, we construct an input instance G∗ for CRPQShapley⟨q⟩.

Since the ith atom is non-redundant, we can use Observation 4 and conclude that there
exists a graph Gi and assignment v⃗ to x⃗ such that all RPQ atoms return true except for the
ith atom; that is, we have that qj [sj , tj](Gi) = 1 for every j ≠ i and qi[sj , tj](Gi) = 0. Here,
sj and tj are the vertices assigned to the variables yj and zj , respectively, from Equation (1).

We assume that G and Gi are disjoint. We construct a new graph G∗ by adding G to Gi,
and merging s and t into si and ti, respectively. Hence, in G∗, the vertex si has all edges
that it has in Gi, in addition to the outgoing edges that s has in G. Similarly, in G∗, the

v1

v2

v3

v4

v5

v6

v7

v8

v9
a
a

a
b

d
b

b

c

b

c

e

c

(a) Input graph G.

v1

v2

v3

v4

v5

v6

v7

v8

v9 t′a
a

a

b

b

b

c

c

d e

(b) Graph G′ constructed in the reduction.

Figure 3 An example for the reduction in Lemma 10, for a regular expression that accepts the
word abcde, source vertex s = v1, target vertex t = v9.

ICDT 2023

11:12 The Complexity of the Shapley Value for Regular Path Queries

vertex ti has all of the edges that it has in Gi, in addition to the incoming edges that t has
in G. In G∗, we set all of the edges of Gi to be exogenous ones. Moreover, G∗ and G have
the same set of endogenous edges.

To complete the proof, observe that q[v⃗](G∗) is equal to qi[s, t](G). To see that, observe
that G∗ has a matching path for the jth atom for all j ̸= i (since Gi does). Recall also that
there are no paths from si to ti matching ri in Gi. Hence, from our construction of G∗ (and
in particular given that si and ti are not part of any cycle), we get that every path from si

to ti that matches ri should be fully contained in G. Hence, G∗ has a qi path from si to ti if
and only if G has a qi path from s to t.

Let Ex and En be the sets of exogenous and endogenous edges of G, respectively, and let
E∗

x be the set of exogenous edges of G∗. We can extend the above argument to conclude that

q[v⃗](G∗[E∗
x ∪ E′]) = qi[s, t](G[Ex ∪ E′])

for all subsets E′ of En, since every edge of Gi is exogenous in G∗. From that we can now
conclude that Shapley⟨ri⟩(G, s, t, e) = Shapley⟨q⟩(G∗, v⃗, e), as claimed. ◀

This completes the proof of the hardness side of Theorem 6.

5 Complexity of Approximation

We now study the complexity of approximating CRPQShapley⟨q⟩. We aim for a fully poly-
nomial randomized approximation scheme, or FPRAS for short. Formally, an FPRAS for
a numeric function f is a randomized algorithm A(x, ϵ, δ), where x is an input for f and
ϵ, δ ∈ (0, 1), such that A(x, ϵ, δ) returns an ϵ-approximation of f(x) with probability 1 − δ

(where the probability is over the randomness of A) in time polynomial in x, 1/ϵ and log(1/δ).
We distinguish between an additive FPRAS:

Pr [f(x) − ϵ ≤ A(x, ϵ, δ) ≤ f(x) + ϵ] ≥ 1 − δ

and a multiplicative FPRAS:

Pr
[

f(x)
1 + ϵ

≤ A(x, ϵ, δ) ≤ (1 + ϵ)f(x)
]

≥ 1 − δ.

5.1 Results
There is a simple Monte-Carlo algorithm that guarantees an additive approximation for the
Shapley value on any CRPQ, and we show that it also serves as a multiplicative FPRAS
in some cases. In this section, we establish a dichotomy in the complexity of multiplicative
approximation for the class of CRPQs. We note that here and later on, we sometimes give
results for general CRPQs, yet without redundancy. These results generalize to CRPQs
with redundant atoms by application to any CRPQ obtained by repeatedly eliminating
redundancy (as mentioned in Section 2).

▶ Theorem 11. Let q be a CRPQ without redundancy. If L(ri) is finite for every atom ri

of q, then CRPQShapley⟨q⟩ has a multiplicative FPRAS. Otherwise, CRPQShapley⟨q⟩ has no
multiplicative approximation (of any ratio) or else NP ⊆ BPP.

In the remainder of this section, we prove Theorem 11, starting with the hardness side
(Section 5.2) and moving on to the FPRAS algorithm (Section 5.3).

M. Khalil and B. Kimelfeld 11:13

A B

C E

Da
a b

a

c

c

(a) The DFA for regular expression a(a + b)∗c.

v1

v2

v3

v4

(b) Input graph G.

vA vB v′′
1

v′′
2

v′′
3

v′′
4 vE vD

a a b cb
a

b
a

b
a

b
a

b
a

(c) The graph G′ of the reduction for input instance (G, v1, v4, e).

Figure 4 An example for the construction in the reduction of the proof of Lemma 15.

5.2 Proof of Hardness
For the hardness, we use a direct consequence of the characterization of Fortune, Hopcroft
and Wyllie [12] of the subgraph homeomorphism problem:

▶ Proposition 12. It is NP-complete to determine, given a graph G, vertices s and t, and
edge e, whether e lies on any simple path from s to t.

Equipped with Proposition 12, we can now show the hardness for Σ∗ using the following
characterization of when the Shapley value of an edge is nonzero.

▶ Lemma 13. Let G be a graph where all edges are endogenous. Let s and t be two vertices
of G, and e an edge of G. Shapley⟨Σ∗⟩(G, s, t, e) > 0 if and only if e belongs to a simple
path from s to t.

Proof. Denote by q the RPQ (x, Σ∗, y). We handle separately each direction of the claim. If
Shapley⟨Σ∗⟩(G, s, t, e) > 0, then it follows from the definition of the Shapley value that there
exists a subset E′ of the edges such that q[s, t](G[E′]) = 0 and q[s, t](G[E′ ∪ {e}]) = 1. Let
G′ = G[E′ ∪ {e}]. Then G′ contains a simple path from s to t. If this simple path does not
contain e, then it is a simple path in G[E′], which contradicts the fact that q[s, t](G[E′]) = 0.
Conversely, suppose that e lies on a simple path P from s to t in G. If the random selection
of Shapley selects precisely all edges of P except for e, then the addition of e would change
the result from 0 to 1. Hence, the Shapley value is nonzero. ◀

Hence, from Proposition 12 and Lemma 13 we conclude the following corollary, which
proves the hardness part of Theorem 11 for the language Σ∗.

▶ Corollary 14. It is NP-complete to determine whether Shapley⟨Σ∗⟩(G, s, t, e) > 0, given
G, s, t and e, even if all edges of G are assumed to be endogenous.

Next, we generalize Corollary 14 from Σ∗ to any arbitrary infinite regular language r.

▶ Lemma 15. Let r be a regular expression. If L(r) is infinite, then it is NP-complete to
determine whether Shapley⟨r⟩(G, s, t, e) > 0.

ICDT 2023

11:14 The Complexity of the Shapley Value for Regular Path Queries

Proof sketch. It is straightforward to show that the problem is in NP, as any subset of
endogenous edges that adding e to it connects a matching path serves as a witness and
can be verified in polynomial time. We will prove NP-hardness by showing a reduction
from the problem of determining whether Shapley⟨Σ∗⟩(G, s, t, e) > 0 where all edges are
endogenous, and then apply Corollary 14. Given an input instance (G, s, t, e), we will show
how to construct an instance (G′, s′, t′, e′) for our problem so that Shapley⟨Σ∗⟩(G, s, t, e) > 0
if an only if Shapley⟨r⟩(G′, s′, t′, e′) > 0.

Since L(r) is infinite, we know that its corresponding DFA A has at least one cycle. We
find a path from an initial state to an accepting state that passes through a state s of A

that participates in a cycle. We will denote the path by: l : s0 → . . . → si → . . . → sk where
si = s.

We assumed s is a part of a cycle. Let us denote the labels along the cycle starting, from
s, by wo = σ0 . . . σc. The graph G′ is constructed from G so that every path from s′ to t′

matches r in the following way. The graph G′ consist of three subgraphs, as illustrated in
Figure 4.

A copy of the graph G where every edge is replaced with a fresh path of c edges with
labels matching wo. We denote the correspondent of each vertex v of G as v′′. Hence, s

and t become s′′ and t′′, respectively. All of the edges in this part are endogenous.
A copy of the path s0 → . . . → si, with the same labels as in the DFA A, where we
identify si with s′′. The edges of this part are all exogenous.
The path si → . . . → sk with the same labels as in the DFA A, there we now identify si

with t′′. The edges of this part are all exogenous.
We now define s′ to be the copy of s0, we define t′ to be the copy of sk, and we choose as e′

any edge along the path that replaces e.
From here it is easy to prove that e belongs to a simple path of G from s to t if and only

if e′ belongs to a simple path of G′ from s′ to t′, and from there we conclude similarly to
Lemma 13 that Shapley⟨Σ∗⟩(G, s, t, e) > 0 if and only if Shapley⟨r⟩(G′, s′, t′, e′) > 0. ◀

Finally, we extend Lemma 15 from RPQs to CRPQs similarly to the way we proved
Theorem 6.

▶ Lemma 16. Let q be a CRPQ without redundancy. If L(ri) is infinite for some atom ri

of q, then determining whether Shapley⟨q⟩(G, u⃗, e) > 0 is NP-complete.

This completes the proof of the hardness side of Theorem 11. Next, we will prove the
positive side.

5.3 Proof of Tractability
We now show that for every CRPQ where the hardness condition of Theorem 11 does not
hold, a multiplicative FPRAS exists. We start by showing that in this case, the gap property
(as defined by Livshits et al. [17]) holds: if the Shapley value is nonzero, then it must be at
least the reciprocal of a polynomial.

▶ Lemma 17. Let q be a fixed CRPQ without redundancy. If L(ri) is finite for every atom
ri of q, then there exists a polynomial p such that Shapley⟨q⟩(G, u⃗, e) is either zero or at
least 1/p(|G|).

Proof. If there is no subset E′ of En such that adding e to E′ ∪ Ex changes the value of
query q from false to true, then Shapley⟨q⟩(G, u⃗, e) = 0. Otherwise, let E′ be a minimal such
set. Then |E′| ≤ k1 + . . . + km, where each ki is the length of the longest word in L(ri); the

M. Khalil and B. Kimelfeld 11:15

language for the i-th atom in q, as at worst case, the paths match the longest word for each
RPQ. Since each L(ri) is finite, every ki is a finite constant, and so, k = k1 + . . . + km is a
constant.

Returning to the definition of the Shapley value (Equation (2)), the probability of selecting
a permutation π such that πe is exactly E′ \ {e} is

(|E| − 1)!(m′ − |E|)!
m′! ≥ (m′ − k)!

m′!

where m′ = |En|. Hence, we have that

Shapley⟨q⟩(G, u⃗, e) ≥ (m′ − k))!
m′! = 1

(m′ − k + 1) · . . . · m′ .

This completes the proof. ◀

Similarly to Livshits et al. [17], we can use the gap property to show that an additive
FPRAS can be turned into a multiplicative FPRAS.

▶ Lemma 18. Let q be a CRPQ without redundancy. If L(ri) is finite for every atom ri of
q, then CRPQShapley⟨q⟩ has both an additive and a multiplicative FPRAS.

Proof. Using the Chernoff-Hoeffding bound, we can get an additive FPRAS of the value
Shapley⟨q⟩(G, u⃗, e), by simply taking the ratio of successes over O(log(1/δ)/ϵ2) trials of the
following experiment:

Select a random permutation (e1, ..., em) over the set of endogenous edges En.
Suppose that e = ei, and let Ei−1 = {e1, ..., ei−1}. If q[u⃗](G[Ei−1 ∪ Ex ∪ {e}]) = 1 and
q[u⃗](G[Ei−1 ∪ Ex]) = 0, then report “success,” otherwise, report “failure.”

From Lemma 17 (the gap property), we conclude that in order to get a multiplicative
ϵ-approximation, it suffices to apply an additive ϵ′-approximation where 1/ϵ′ is polynomial
in the size of G and in 1/ϵ. ◀

5.4 Open Problem: Directed Acyclic Graphs
It is worth noting that the proof of hardness fails when the graph is acyclic, as it relies on
Proposition 12. The lemma states that it is NP-complete to determine whether a given graph
G has a simple path from a given source vertex s to a given target vertex t through a given
edge e. While this is true in the case of a general graph G, the problem is easily solvable
in polynomial time when the graph is acyclic, since every path is simple. This leaves open
the question of whether we can have a multiplicative FPRAS for the Shapley value even
for RPQs with an infinite language. We leave this question for future investigation. Note,
however, that for the exact computation there is no change even when restricted to DAGs,
since the reductions constructed DAGs.

6 Shapley Value of Vertices

In this section, we discuss the complexity of the Shapley value for vertices, rather than edges,
of the graph. Similarly to the case for edges, our goal is to quantify the contribution of
vertices in the input graph to an answer of a path query. So, now, the graph consists of two
types of vertices: endogenous vertices and exogenous vertices.

ICDT 2023

11:16 The Complexity of the Shapley Value for Regular Path Queries

For a graph G = (V, E), we denote by Vn and Vx the sets of endogenous and exogenous
vertices, respectively, and we assume that V is the disjoint union of Vn and Vx. If U is a set
of vertices, then G[U] denotes the subgraph of G that is induced by U ; hence, the vertex set
of G[U] is U and the edge set of G[U] consists of every edge of G with both endpoints in U .
We denote by Shapley⟨q⟩(G, u⃗, w) the Shapley value of a vertex w ∈ Vn, that is:

Shapley⟨q⟩(G, u⃗, w) def= Shapley(Vn, vv
q, w)

where the function Shapley is as defined in Equation (2) and vv
q is defined as follows:

vv
q(B) def= q[u⃗](G[B ∪ Vx]) − q[u⃗](G[Vx])

We denote by CRPQShapleyv⟨q⟩ and RPQShapleyv⟨r⟩ the computational problems that
correspond to the ones defined earlier for the Shapley values of edges. We now state the
results that we establish with some notes on the changes that should be made in the proofs.

6.1 Complexity of Exact Computation
We can show the following regarding the exact computation of the Shapley value of a graph
vertex.

▶ Theorem 19. The following hold for a CRPQ q.
1. If q has a non-redundant atom with a language that contains a word of length four or

more, then CRPQShapleyv⟨q⟩ is FP#P-complete.
2. If q is an RPQ with the regular expression r, and every word in L(r) is of length at most

two, then RPQShapleyv⟨q⟩ is solvable in polynomial time.

Note that we leave a gap in the classification of RPQs. Theorem 19 states that if there
exists a word of length four or more, then the problem is hard, and if all words are of length
at most two, then the problem is solvable in polynomial time. The case where there are
words of length three but not longer remains an open problem (as opposed to the case of
edges where we had a full dichotomy on RPQs due to Corollary 8).

The proof of the hardness part is almost the same as the proof of Theorem 6 for the case
of edges. We begin with hardness for the special case where the regular language (or any
language) consists of a single four-letter word (rather than three in the case of edges). For
that, we use the same result by Livshits et al. [16] on the computation of Shapley values
for facts in relational databases. We then continue with the same sequence of reductions as
done for edges to get the hardness for a general CRPQ. The proof of the tractability part is
also similar to the proof of Theorem 7.

6.2 Complexity of Approximation
For calculating the Shapley value approximately, we get the exact same dichotomy for vertices
as Theorem 11 for edges.

▶ Theorem 20. Let q be a CRPQ without redundancy. If L(ri) is finite for every atom ri of
q, then CRPQShapleyv⟨q⟩ has a multiplicative FPRAS. Otherwise, CRPQShapleyv⟨q⟩ has no
multiplicative approximation (of any ratio) or else NP ⊆ BPP.

The proof is also similar to that of Theorem 11. We establish an FPRAS through a
straightforward additive approximation and the gap property. For hardness, we know from
Fortune, Hopcroft and Wyllie [12] that it is NP-complete to determine whether a vertex

M. Khalil and B. Kimelfeld 11:17

v lies on a simple path from s to t in a given graph G, and from that we conclude that
deciding whether Shapley⟨Σ∗⟩(G, s, t, v) > 0 is also NP-complete. From there we continue
with a sequence of reductions that is similar to what we have for the case of edges.

6.3 Summary
We conclude that the complexity for both exact computation and approximation of the
Shapley value of vertices is very similar to the case of edges. It is generally hard to compute
exact values; it is sufficient for the CRPQ to have an atom that is non-redundant and contains
a word of length four or more for the computation to be hard, while for RPQs we identify
that the tractable family of queries for edges is also tractable for vertices. For approximation,
we have an identical dichotomy for the existence of a multiplicative FPRAS.

7 Concluding Remarks

This work continues the research of responsibility and contribution in databases. We presented
the graph-database perspective where the queries are (conjunctive) regular path queries,
and the responsibility measure is the Shapley value. We investigated the data complexity
of the Shapley value of edges in the graph. For the exact computation, we showed that it
is generally hard, while we also showed a specific family of CRPQs where the computation
can be done in polynomial time. This is not a full dichotomy for the class of CRPQs, but
we establish a dichotomy for the class of RPQs. It remains an open problem whether the
condition we have for hardness defines a full dichotomy on CRPQs. We have also studied the
complexity of computing an approximation of the Shapley value in the form of an FPRAS.
An additive FPRAS is easy to achieve using Monte-Carlo sampling, while a multiplicative
approximation is harder. We showed a family of CRPQs where the gap property holds, and
hence, an additive FPRAS can be transformed into a multiplicative one. These are the
CRPQs where every atom has a finite language. For the other CRPQs, we showed that it is
hard to obtain any multiplicative approximation (assuming no redundant atoms). Thus, we
achieved a dichotomy on CRPQs for the case of approximation. Finally, we showed that the
complexity picture is quite similar (up to a small gap) if we compute the Shapley value of
vertices rather than edges.

Several problems remain open. We still do not have a full coverage of all CRPQs for the
exact computation of Shapley values. In the case of vertices, we still have a gap already
for RPQs. In addition, the proof of the hardness of approximation in Section 5.2 is not
valid when the input graph is acyclic; this raises the question of whether there are better
opportunities of efficient approximations when the problem is restricted to acyclic graphs.
It is also interesting to understand the impact on complexity of adopting other semantics
for RPQ evaluation, such as simple paths and shortest paths [22]. Another direction is
investigating richer path languages, for example, allowing existentially quantified variables in
the query, or negated atoms.

References
1 Manish Kumar Anand, Shawn Bowers, and Bertram Ludäscher. Techniques for efficiently

querying scientific workflow provenance graphs. In EDBT, volume 426, pages 287–298. ACM,
2010. doi:10.1145/1739041.1739078.

2 Marcelo Arenas and Jorge Pérez. Querying semantic web data with SPARQL. In Maurizio
Lenzerini and Thomas Schwentick, editors, PODS, pages 305–316. ACM, 2011. doi:10.1145/
1989284.1989312.

ICDT 2023

https://doi.org/10.1145/1739041.1739078
https://doi.org/10.1145/1989284.1989312
https://doi.org/10.1145/1989284.1989312

11:18 The Complexity of the Shapley Value for Regular Path Queries

3 Pablo Barceló Baeza. Querying graph databases. In Richard Hull and Wenfei Fan, editors,
PODS, pages 175–188. ACM, 2013. doi:10.1145/2463664.2465216.

4 Pablo Barceló, Leonid Libkin, Anthony W Lin, and Peter T Wood. Expressive languages for
path queries over graph-structured data. ACM Transactions on Database Systems (TODS),
37(4):1–46, 2012.

5 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Rewriting
of regular expressions and regular path queries. In PODS, pages 194–204. ACM, 1999.
doi:10.1145/303976.303996.

6 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Containment
of conjunctive regular path queries with inverse. In KR, pages 176–185. Morgan Kaufmann,
2000.

7 Mariano P. Consens and Alberto O. Mendelzon. GraphLog: a visual formalism for real life
recursion. In PODS, pages 404–416. ACM, 1990. doi:10.1145/298514.298591.

8 Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query language
supporting recursion. In SIGMOD, pages 323–330. ACM, 1987. doi:10.1145/38713.38749.

9 Daniel Deutch, Nave Frost, Benny Kimelfeld, and Mikaël Monet. Computing the Shapley
value of facts in query answering. In SIGMOD, pages 1570–1583. ACM, 2022.

10 Wenfei Fan. Graph pattern matching revised for social network analysis. In ICDT, pages 8–21.
ACM, 2012. doi:10.1145/2274576.2274578.

11 Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query containment for conjunctive queries
with regular expressions. In Alberto O. Mendelzon and Jan Paredaens, editors, PODS, pages
139–148. ACM, 1998. doi:10.1145/275487.275503.

12 Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theor. Comput. Sci., 10:111–121, 1980. doi:10.1016/0304-3975(80)90009-2.

13 Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model approach:
Part 1: Causes. In UAI, pages 194–202, 2001.

14 Anthony Hunter and Sébastien Konieczny. On the measure of conflicts: Shapley inconsistency
values. Artif. Intell., 174(14):1007–1026, 2010.

15 Majd Khalil and Benny Kimelfeld. The complexity of the Shapley value for regular path
queries, 2022.

16 Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. Query games in
databases. SIGMOD Rec., 50(1):78–85, 2021.

17 Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. The Shapley value
of tuples in query answering. Log. Methods Comput. Sci., 17(3), 2021.

18 Ester Livshits and Benny Kimelfeld. The Shapley value of inconsistency measures for functional
dependencies. In ICDT, volume 186 of LIPIcs, pages 15:1–15:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICDT.2021.15.

19 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Advances in Neural Information Processing Systems 30, pages 4765–4774. Curran Associates,
Inc., 2017.

20 Artem Lysenko, Irina A. Roznovat, Mansoor Saqi, Alexander Mazein, Christopher J. Rawlings,
and Charles Auffray. Representing and querying disease networks using graph databases.
BioData Min., 9:23, 2016. doi:10.1186/s13040-016-0102-8.

21 Richard T. B. Ma, Dah-Ming Chiu, John Chi-Shing Lui, Vishal Misra, and Dan Rubenstein.
Internet economics: The use of Shapley value for ISP settlement. IEEE/ACM Trans. Netw.,
18(3):775–787, 2010. doi:10.1109/TNET.2010.2049205.

22 Wim Martens and Tina Trautner. Evaluation and enumeration problems for regular path
queries. In ICDT, volume 98 of LIPIcs, pages 19:1–19:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ICDT.2018.19.

23 Wim Martens and Tina Trautner. Dichotomies for evaluating simple regular path queries.
ACM Trans. Database Syst., 44(4):16:1–16:46, 2019. doi:10.1145/3331446.

https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1145/303976.303996
https://doi.org/10.1145/298514.298591
https://doi.org/10.1145/38713.38749
https://doi.org/10.1145/2274576.2274578
https://doi.org/10.1145/275487.275503
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.4230/LIPIcs.ICDT.2021.15
https://doi.org/10.1186/s13040-016-0102-8
https://doi.org/10.1109/TNET.2010.2049205
https://doi.org/10.4230/LIPIcs.ICDT.2018.19
https://doi.org/10.1145/3331446

M. Khalil and B. Kimelfeld 11:19

24 Corto Mascle, Christel Baier, Florian Funkev, Simon Jantsch, and Stefan Kiefer. Responsibility
and verification: Importance value in temporal logics. In 2021 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–14. IEEE, 2021.

25 Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu. The complexity
of causality and responsibility for query answers and non-answers. Proc. VLDB Endow., 4(1):34–
45, 2010.

26 Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in graph databases.
SIAM J. Comput., 24(6):1235–1258, 1995. doi:10.1137/S009753979122370X.

27 Stefano Moretti, Fioravante Patrone, and Stefano Bonassi. The class of microarray games and
the relevance index for genes. Top, 15(2):256–280, 2007.

28 Ramasuri Narayanam and Yadati Narahari. A Shapley value-based approach to discover
influential nodes in social networks. IEEE Trans Autom. Sci. Eng., 8(1):130–147, 2011.
doi:10.1109/TASE.2010.2052042.

29 Alon Reshef, Benny Kimelfeld, and Ester Livshits. The impact of negation on the complexity
of the Shapley value in conjunctive queries. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors,
PODS, pages 285–297. ACM, 2020. doi:10.1145/3375395.3387664.

30 Gorka Sadowski and Philip Rathle. Fraud detection: Discovering connections with graph
databases. White Paper-Neo Technology-Graphs are Everywhere, 13, 2014.

31 Babak Salimi, Leopoldo E. Bertossi, Dan Suciu, and Guy Van den Broeck. Quantifying causal
effects on query answering in databases. In TaPP. USENIX Association, 2016.

32 Lloyd S Shapley. A value for n-person games. In Harold W. Kuhn and Albert W. Tucker,
editors, Contributions to the Theory of Games II, pages 307–317. Princeton University Press,
Princeton, 1953.

33 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991.

34 Tjeerd van Campen, Herbert Hamers, Bart Husslage, and Roy Lindelauf. A new approximation
method for the Shapley value applied to the WTC 9/11 terrorist attack. Soc. Netw. Anal.
Min., 8(1):3:1–3:12, 2018. doi:10.1007/s13278-017-0480-z.

35 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In STOC,
pages 137–146. ACM, 1982. doi:10.1145/800070.802186.

36 Mihalis Yannakakis. Graph-theoretic methods in database theory. In PODS, pages 230–242,
1990. doi:10.1145/298514.298576.

37 Ningning Yi, Chunfang Li, Xin Feng, and Minyong Shi. Design and implementation of
movie recommender system based on graph database. In WISA, pages 132–135. IEEE, 2017.
doi:10.1109/WISA.2017.34.

38 Byoung-Ha Yoon, Seon-Kyu Kim, and Seon-Young Kim. Use of graph database for the
integration of heterogeneous biological data. Genomics & informatics, 15(1):19, 2017.

39 Bruno Yun, Srdjan Vesic, Madalina Croitoru, and Pierre Bisquert. Inconsistency measures for
repair semantics in OBDA. In IJCAI, pages 1977–1983. ijcai.org, 2018.

ICDT 2023

https://doi.org/10.1137/S009753979122370X
https://doi.org/10.1109/TASE.2010.2052042
https://doi.org/10.1145/3375395.3387664
https://doi.org/10.1007/s13278-017-0480-z
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/298514.298576
https://doi.org/10.1109/WISA.2017.34

How Do Centrality Measures Choose the Root of
Trees?
Cristian Riveros
Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile

Jorge Salas
Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile
University of Edinburgh, UK

Oskar Skibski
University of Warsaw, Poland

Abstract
Centrality measures are widely used to assign importance to graph-structured data. Recently,
understanding the principles of such measures has attracted a lot of attention. Given that measures
are diverse, this research has usually focused on classes of centrality measures. In this work, we
provide a different approach by focusing on classes of graphs instead of classes of measures to
understand the underlying principles among various measures. More precisely, we study the class
of trees. We observe that even in the case of trees, there is no consensus on which node should be
selected as the most central. To analyze the behavior of centrality measures on trees, we introduce
a property of tree rooting that states a measure selects one or two adjacent nodes as the most
important, and the importance decreases from them in all directions. This property is satisfied
by closeness centrality but violated by PageRank. We show that, for several centrality measures
that root trees, the comparison of adjacent nodes can be inferred by potential functions that assess
the quality of trees. We use these functions to give fundamental insights on rooting and derive a
characterization explaining why some measure root trees. Moreover, we provide an almost linear
time algorithm to compute the root of a graph by using potential functions. Finally, using a family
of potential functions, we show that many ways of tree rooting exist with desirable properties.

2012 ACM Subject Classification Information systems → Data management systems; Computing
methodologies → Network science; Networks → Network structure; Theory of computation → Data
structures and algorithms for data management

Keywords and phrases Databases, centrality measures, data centrality, graph theory, tree structures

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.12

Related Version Full Version: https://arxiv.org/abs/2112.13736

Funding C. Riveros and J. Salas were supported by ANID - Millennium Science Initiative Program -
Code ICN17_002. Jorge Salas and Oskar Skibski were supported by the Polish National Science
Centre Grant No. 2018/31/B/ST6/03201.

1 Introduction

Centrality measures are fundamental tools for network analysis. They are used in a plethora
of applications from various areas of science, such as finding people who are more likely to
spread a disease in the event of an epidemic [10] or highlighting cancer genes in proteomic
data [15]. In all these applications, people use centrality measures to assess graph data and
rank which nodes are the most relevant by only using the graph’s structure.

© Cristian Riveros, Jorge Salas, and Oskar Skibski;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2023.12
https://arxiv.org/abs/2112.13736
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 How Do Centrality Measures Choose the Root of Trees?

Database systems have also incorporated centrality measures to rank nodes in graph
data. The first significant use of a centrality measure in a data management problem is
by the Google search engine, which successfully introduced PageRank [22] for assessing
the importance of a website on the web. Indeed, today graph databases, like Neo4j [1] or
TigerGraph [2], natively support centrality algorithms for ranking nodes or analyzing the
graph structure. Furthermore, new applications for centrality measures have emerged over
knowledge graphs for entity linking [19] or semantic web search engines where ranking results
is a core task [14]. More generally, centrality measures play a central role in network science,
where they are one of the main algorithmic metrics for analyzing graphs [20].

Although more than 200 measures have been proposed in the literature today, it is less
clear how one can compare them. Precisely, these measures assess the position of a vertex in
the network based on various elements (e.g., degree, number of paths, eigenvector), which
makes it hard to compare their properties. Since people propose dozens of new measures
every year, choosing a measure for a specific application becomes more and more challenging.
In recent years, efforts at understanding and explaining differences between existing measures
have intensified, making the foundational aspects of centrality measures an active research
topic [5, 26, 24, 27]. Given the diversity of these measures, people have usually followed an
axiomatic approach by considering classes of measures like game-theoretical [27] or motif-
based [24] measures. Until now, no research has focused on graph classes to classify different
centrality measures.

This paper aims to understand how centrality measures operate on trees (i.e., acyclic
undirected graphs), as this is a crucial graph family where we can compare different centrality
measures and understand their underlying principles. Indeed, even in the case of trees,
centrality measures vary significantly as different measures could indicate other vertices as
the most central in the same tree. For example, consider a line graph: while the middle vertex
(or vertices) is ranked first according to most centrality measures, Google’s PageRank puts
the second and the second-to-last vertices at the top of the ranking. This simple example
shows that not only do different measures select different vertices, but even one measure
may select several vertices from different parts of the tree as the most important. Moreover,
although PageRank diverges, other centrality measures (e.g., closeness or all-subgraph)
coincide following the same underlying principles.

A natural question here is why we should start considering centrality measures over the
class of trees. We see several reasons for studying the principal aspects of centrality measures
over trees. First, undirected trees are arguably the simplest and non-trivial graph class
to study centrality measures. Indeed, trees have a more amenable structure than general
graphs, given that, among other properties, every edge is a cutting edge, and there is a
unique path between any two nodes. Second, every general result on centrality measures
should include trees, and it should answer similar questions to the one studied in this paper.
Thus, understanding centrality measures over trees could guide the study of other graph
families. Last, trees are a graph structure ubiquitous in computer science and databases.
Therefore, studying centrality measures over trees could be helpful for the application of
centrality measures in data management and other areas (see Section 8 for some extensions
and possible applications of centrality measures over trees).

What principal aspect of centrality measures can we study over the class of trees? In
this paper, we focus on understanding one of the main questions over trees: how centrality
measures choose the most central nodes in trees, why some measures define a single important
node (usually called the root), and why others do not. For answering these questions, the
main contributions are as follows:

C. Riveros, J. Salas, and O. Skibski 12:3

1. We introduce the tree rooting property which states that a measure selects one or two
adjacent vertices in a tree as the most important, and the importance decreases from
them in all directions. We found that closeness, eccentricity, and all-subgraphs centralities
(see Section 2) satisfy this rooting property but often rank different vertices at the top.
Instead, measures like degree and betweenness do not satisfy this property. We call the
vertex (or two vertices) ranked first the “root” and say that such measures root trees.

2. To understand what distinguishes measures that root trees we focus on the question:
how to choose which out of two adjacent vertices is more central? We observe that most
centrality measures, including all standard ones that root trees, answer this question
by comparing subtrees of both vertices. More precisely, we introduce a framework of
potential functions that assess the quality or “potential” of an arbitrary tree. Now, we
show that most centrality measures admit a potential function such that the vertex which
subtree has higher potential value is considered more central.

3. We show that if a centrality measure has a potential function, then it roots trees if, and
only if, the potential function is symmetric. This property means that the potential of
a tree is larger than the potential of any proper complete subtree. In particular, the
potential function of closeness, eccentricity, and all-subgraphs centrality are symmetric,
but the potential functions of degree and betweenness centralities are not; as a result, the
latter centralities do not root trees.

4. We use our framework of potential functions to understand better the class of measures
that root trees. More specifically, we show three applications of potential functions. Our
first application is to study efficient algorithms for computing a root when centrality
measures have potential functions and root trees. By exploiting symmetric potential
functions, we show that, given a tree T , we can compute the most central vertex in time
O(|T | log(|T |)) whenever one can calculate the potential function locally. Interestingly,
this general algorithm works independently of the centrality measures and only depends
on the potential function.

5. Our second application of potential functions is to understand desirable properties over
tree rooting measures. Although a centrality measure could root trees, it can behave
inconsistently. For instance, a rooting centrality measure could choose the root of a tree
T close to a leaf when the size of T is even and far from the leaves when the size of T

is odd. Therefore, we study when centrality measures consistently root trees through
their potential functions. We propose a monotonicity property that imposes additional
consistency conditions on how the root is selected and characterizes which potential
functions satisfy this property.

6. Our last application shows how to design and build new potential functions that consist-
ently root trees. Specifically, we present infinitely many constructive potential functions
that satisfy all properties discussed so far. In particular, the algorithm for finding the
root applies to any of them. We believe that this family of measures is interesting in its
own right and can be used in several data-driven scenarios.

Related work. Our work could be included into a broad literature that focuses on the
analysis of theoretical properties of centrality measures. The classic approach is to analyze
standard centrality measures with respect to simple desirable properties. Different properties
have been considered over the years [25, 21, 6, 5]. Most of them, however, are very simple
(e.g., invariance under automorphism) or not satisfied by most measures. Similarly, in our
work, we propose several properties specific for trees. Focusing on trees allows us to identify
meaningful properties shared by many measures based on completely different principles.

ICDT 2023

12:4 How Do Centrality Measures Choose the Root of Trees?

Another approach is to create a common framework for large classes of centrality measures.
In such frameworks, centrality measures are presented as a function of some underlying
structure of the graph. Hence, the emphasis is focused on the differences between these
functions and their implications for various measures defined under such framework. In
this spirit, classes of measures based on distances [12], nodal statistics [4], coalitional game
theory [27], subgraphs [24] and vitality functions [26] have been analyzed in the literature.
On the opposite, our framework of potential functions can be considered as an approach
focused on classes of graphs instead of classes of measures. Yet another approach, less
related to our work, is to focus on one or several similar measures and provide their full
axiomatic characterization. In this spirit, axiomatizations of PageRank [29], eigenvector [17],
beta-measure and degree [28] and many more have been developed in the literature.

There is also a line of research that studies methods for solely choosing one most central
vertex in a tree that does not necessarily come from the centrality analysis (see, e.g., [23] for
an overview). However, such methods coincide with the top vertices selected by centrality
measures that we consider in our work. In particular, the center of a tree coincides with
eccentricity, and the median, as well as the centroid, coincides with closeness centrality.

2 Preliminaries

Undirected graphs. In this paper, we consider finite undirected graphs of the form G = (V, E)
where V is a finite non-empty set and E ⊆ 2V such that |e| = 2 for all e ∈ E. For convenience,
given a graph G = (V, E) we use V (G) for indicating the set of vertices V and E(G) for the
set of edges E. We write NG(v) for the neighbourhood of v in G, namely, NG(v) ⊆ V (G)
such that u ∈ NG(v) if, and only if, {u, v} ∈ E(G). If this is the case, we say that u and v

are adjacent.
We say that a graph G′ = (V ′, E′) is a subgraph of G, denoted G′ ⊆ G, if V ′ ⊆ V

and E′ ⊆ E. Note that ⊆ forms a partial order between graphs. For a sequence of
graphs G1 = (V1, E1), . . . , Gm = (Vm, Em) we denote by ∪m

i=1Gi the graph (V, E) such that
V =

⋃m
i=1 Vi and E =

⋃m
i=1 Ei. Given a graph G and an edge e = {u, v}, we write G + e

to be the new graph G with the additional edge e, formally, V (G + e) = V (G) ∪ e and
E(G + e) = E(G) ∪ {e}.

From now on, fix an enumerable set V of vertices. We define the set of all graphs using
vertices from V as G. Further, we define the set VG as all pairs vertex-graph (v, G) such that
v ∈ V (G) and G ∈ G. In the sequel, for a pair (v, G) we assume that (v, G) ∈ VG, unless
stated otherwise. We say that graphs G1 and G2 are isomorphic, denoted by G1 ∼= G2, if there
exists an bijective function (isomorphism) f : V (G1)→ V (G2) such that {u, v} ∈ E(G1) if,
and only if, {f(u), f(v)} ∈ E(G2). We also say that (v1, G1) and (v2, G2) are isomorphic,
denoted by (v1, G1) ∼= (v2, G2), if there exists an isomorphism f between G1 and G2 and
f(v1) = v2. Note that ∼= is an equivalence relation over G and over VG.

A path in G is a sequence of vertices π = v0, . . . , vn such that {vi, vi+1} ∈ E for every
i < n, and we say that π is a path from v0 to vn. We say that π is simple if vi ≠ vj for
every 0 ≤ i < j < n. From now on, we usually assume that paths are simple unless stated
otherwise. We define the length of π as |π| = n. We agree that v0 is the trivial path of length
0 from v0 to itself. Given R, R′ ⊆ V (G), we say that π = v0, . . . , vn is a path from R to R′ if
v0 ∈ R, vn ∈ R′, and vi /∈ R∪R′ for every i ∈ [1, n− 1]. We say that a graph G is connected
if there exists a path between every pair of vertices.

C. Riveros, J. Salas, and O. Skibski 12:5

Centrality measures. A centrality measure, or just a measure, is any function C : VG → R
that assigns a score C(v, G) to v depending on its graph G. Here, we use the standard
assumption that, the higher the score C(v, G), the more important or “central” is v in G.
We also assume that every centrality measure is closed under isomorphism, namely, if
(v1, G1) ∼= (v2, G2) then C(v1, G1) = C(v2, G2), which is a standard assumption in the
literature [8, 25].

Next, we recall four centrality measures that we will regularly use as examples: degree,
closeness, eccentricity, and all-subgraphs centralities. During this work, we also mention
betweenness [11], decay [16], PageRank [22], and eigenvector [7] centralities. Given that we
do not use them directly, we refer the reader to the corresponding works for a definition.

Degree centrality. Degree centrality is probably the most straightforward measure. Basic-
ally, the bigger the neighborhood of a vertex (i.e., adjacent vertices), the more central it is in
the graph. Formally, we define degree centrality as follows: Degree(v, G) = |NG(v)|.

Closeness centrality. For every graph G and vertices v, u ∈ V (G) we define the distance
between v and u in G as dG(v, u) = |πv,u| where πv,u is a shortest path from v to u in
G. Then closeness centrality [25] is defined as: Closeness(v, G) = 1/

∑
u∈Kv(G) dG(v, u)

where Kv(G) is the connected component of G containing v. Closeness is usually called
a geometrical measure because it is based on the distance inside a graph. The intuition
behind closeness centrality is simple: the closer a vertex is to everyone in the component
(i.e.,

∑
u∈Kv(G) dG(v, u) is small) the more important it is.

Eccentricity centrality. Another important notion in graph theory is radius. In simple
words, we can define the center of a graph G as the vertex that minimizes the maximum
distance in G. Formally, v is the center of G if it minimizes maxu̸=v∈V (G) dG(v, u). Then,
the radius of G is defined as the maximum distance from the center. Now, eccentricity
measure [13] is precisely the one centrality that selects the center of a graph as the most
important vertex, defined as Eccentricity(v, G) = 1/ maxu∈V (G) dG(v, u).

All-subgraphs centrality. Given a graph G = (V, E) and a vertex v ∈ V , we denote by
A(v, G) the set of all connected subgraphs of G that contain v, formally, A(v, G) = {S ⊆
G | v ∈ V (S) and S is connected}. Then all-subgraphs centrality [24] of v in G is defined
as: AllSubgraphs(v, G) = log2 |A(v, G)|. All-subgraphs centrality was recently proposed
in [24], proving that it satisfies several desirable properties as a centrality measure. Intuitively,
it says that a vertex will be more relevant in a graph if it has more connected subgraphs
surrounding it.

Undirected Trees. This paper is about undirected trees (or just trees), so we use some
special notation for them. Specifically, we say that a graph T is a tree if it is connected and
for every u, v ∈ V (T) there exists a unique path that connects u with v in T . We usually
use T to denote a tree. Further, we say that v ∈ V (T) is a leaf of T if |NT (v)| = 1. If v is a
leaf and NT (v) = {u}, then we say that u is the parent of v. Note that trees are a special
class of undirected graphs, and all previous definitions apply. In particular, we can use and
apply centrality measures over trees.

We say that T ′ is a subtree of T if T ′ ⊆ T and T ′ is a tree. We also say that T ′ is a
complete subtree of T if T ′ ⊆ T and there is at most one vertex in V (T ′) connected to some
vertex in V (T) \ V (T ′), namely, |{v ∈ V (T ′) | ∃u ∈ V (T) \ V (T ′). {u, v} ∈ E(T)}| ≤ 1.

ICDT 2023

12:6 How Do Centrality Measures Choose the Root of Trees?

The following notation will be useful in the paper to decompose trees. Given a tree T

and two adjacent vertices u, v ∈ V (T), we denote by Tu,v the maximum subtree of T that
contains u and not v. For example, if T = , then T◦,• = and T•,◦ = .

Finally, we consider some special trees to give examples or show some properties of
centrality measures. For a vertex v we define Gv = ({v}, ∅), and for an edge e we define
Ge = (e, {e}), namely, the graphs with one isolated vertex v or one isolated edge e, respectively.
Similarly, for any n ≥ 1 we write Ln for the line with n vertices where V (Ln) = {0, . . . , n−1}
and E(Ln) = {{i, i + 1} | 0 ≤ i < n− 1}.

3 Tree rooting centrality measures

We start by giving a formal definition of when a centrality measure C roots trees. For this,
let C be a centrality measure. We define the set MaxC(T) to be the set of most central
vertices with respect to C in a tree T , namely, v ∈ MaxC(T) iff C(u, T) ≤ C(v, T) for
every u ∈ V (T).

▶ Definition 1. We say that a centrality measure C roots trees if for every tree T , the set of
most central vertices MaxC(T) consists of one vertex or two adjacent vertices. Moreover, for
every u /∈MaxC(T) if u0u1 . . . un is the unique path from MaxC(T) to u, then C(ui, T) >

C(ui+1, T) for every i ∈ [0, n− 1].

In the following, if a centrality measure roots trees, we also say that it satisfies the tree
rooting property (i.e., Definition 1). We can motivate this property as follows. We treat
vertices with the highest centrality as “roots”. For the first part of the definition, we assume
there is a single source of importance – one vertex or two adjacent vertices. We allow two
adjacent vertices to be the roots, as in some graphs, due to their symmetrical structure, it is
impossible to indicate one most central vertex. This is, for example, the case of a line with
an even number of vertices (e.g.,). In such a scenario the edge between both can
be considered the real root of the tree. For the second part, we assume that the centrality
should decrease from the root through branches. This restriction aligns with the intuition
that the closer a vertex is to the root, the more central it is.

We continue by giving examples of measures that root trees, and some others that do not.

▶ Example 2. Closeness, eccentricity, and all-subgraphs all root trees. It was already
noticed [18] that over trees, closeness and eccentricity define at most two maximum vertices,
and both are connected. On the other hand, it is more subtle to show that all-subgraphs
centrality roots trees. This fact, however, will follow from the framework developed in
Section 4. As an illustration, in Figure 1 we show how closeness, eccentricity, and all-
subgraphs behave over the same tree. One can verify that each measure declares one vertex
with the maximum centrality (this vertex is marked with a black star). Moreover, the
centrality decreases through the branches (the lower the centrality the whiter the color). It
is interesting that, although the three measures root trees, they declare different vertices as
the most central.

▶ Example 3. One can easily check that degree centrality does not root trees. Indeed, the
last tree at Figure 1 is an example where degree centrality declares two maximum vertices,
and they are not adjacent. Indeed, all measures presented in Section 2, except closeness,
eccentricity, and all-subgraphs, do not root trees. For all of them, the last tree at Figure 1 is
a counterexample where they violate the tree rooting property. At Figure 2, we show a table
that summarize which centrality measures considered in this paper root trees.

C. Riveros, J. Salas, and O. Skibski 12:7

Closeness Eccentricity AllSubgraphs Others

Figure 1 The first three trees exemplify how closeness, eccentricity, and all-subgraphs centralities
root trees. We mark the most central vertex with a black star. The colors show how the centrality
value decreases through the branches (i.e., whiter vertices are less central). The fourth tree is a
counter-example that shows why other centralities do not root trees.

An important consequence of assigning a root to a tree is that each vertex has a parent
(except for the root). Here, the unique path from the root to the vertex defines its parent.
Another possibility would be to use the centrality measure to find the neighbour with higher
centrality, and declare it as the parent. We capture this intuition in the following property.

▶ Definition 4. We say that a measure C satisfies the at-most-one-parent property if
for every tree T and v ∈ V (T) there exists at most one neighbour u ∈ NT (v) such
that C(v, T) ≤ C(u, T).

Clearly, if a centrality measure C roots trees, then it also satisfies at-most-one-parent.
The other direction is also true, providing an alternative characterization for tree rooting.

▶ Proposition 5. A centrality measure roots trees if, and only if, it satisfies the at-most-one-
parent property.

Notice that tree rooting is a global property over a tree but, instead, at-most-one-parent
is a local property of the neighbourhoods of a tree, which is easier to prove for a centrality
measure. Indeed, in the next section we use this alternative definition to prove our main
characterization for tree rooting.

In some trees the root is uniquely characterized solely by the tree rooting property. This
happens because every centrality must be closed under isomorphism which implies that
isomorphic vertices have the same centrality. For example, one can verify that for the line
Ln the roots must be the set {⌊n−1

2 ⌋, ⌈
n−1

2 ⌉}. Indeed, every vertex i ≤ n−1
2 is isomorphic

with the vertex n− 1− i in Ln. Then, if i is the root, then n− 1− i must be the root as well.
Given that vertices i and n− 1− i are not connected if i < n−1

2 , we get that every centrality
that roots trees must declare {⌊n−1

2 ⌋, ⌈
n−1

2 ⌉} as the root. This idea can be extended to all
symmetric trees: if T is a tree with a vertex ◦ that connects two isomorphic subtrees (i.e.,
T =), then ◦ must be the root of T . We generalize this property as follows.

▶ Definition 6. We say that a centrality measure C is symmetric over trees if for every tree
T , vertex v, and different neighbors u1, u2 ∈ NT (v) such that (u1, Tu1,v) ∼= (u2, Tu2,v), then
C(u1, T) < C(v, T) and C(u2, T) < C(v, T).

ICDT 2023

12:8 How Do Centrality Measures Choose the Root of Trees?

v

u1 u2

<
>

T ′

Tu1,v Tu2,v

Measures Can root? Potential function?
Closeness Yes Yes
Eccentricity Yes Yes
All-Subgraphs Yes Yes
Degree No Yes
Betweenness No Yes
Decay No Yes
PageRank No ?
EigenVector No ?

Figure 2 At the left, a graphic illustration of the symmetry property over a tree T . Subtrees
Tu1,v and Tu2,v are isomorphic, and subtree T ′ represents the rest of T hanging from v. At the right,
a table summarizes which centrality measures root trees and which one admits a potential function.

Figure 2 (left) is a graphical representation of the symmetry property. It generalizes
the previously discussed intuition by considering any pair of isomorphic subtrees in a (not
necessarily symmetric) tree. Interestingly, every centrality measure that roots trees must be
symmetric over trees.

▶ Proposition 7. If a centrality measure C roots trees, then C is symmetric over trees.

A symmetric centrality measure may not root trees. For example, a centrality measure
could root trees with non-trivial automorphisms but not root trees when there is none.
Despite this, symmetry property is crucial for finding a characterization for tree rooting, as
we will show in the next section.

4 Potential functions

What have in common closeness, eccentricity, and all-subgraphs centralities? What is the
fundamental property so they can root trees? A crucial ingredient for understanding the
connection between these measures is what we call a potential function for a centrality
measure.

▶ Definition 8. Given a centrality measure C, we say that f : VG → R is a potential function
for C if f is closed under isomorphism on VG and, for every tree T and every adjacent
vertices u, v ∈ V (T), it holds that C(u, T) ≤ C(v, T) if, and only if, f(u, Tu,v) ≤ f(v, Tv,u).

A potential function is a function that measures the “potential” of every rooted tree, i.e.,
a tree with one node selected and the assessment depends on the selection. Now, a centrality
measure admits some potential function if the comparison between two adjacent vertices is
determined by the potential of their corresponding subtrees. Interestingly, in the following
examples we show that several centrality measures admit a potential function.

▶ Example 9. Degree, closeness, eccentricity, all-subgraphs centralities have the following
potential functions:

fd(v, T) := |NT (v)| (degree)
fc(v, T) := |V (T)| (closeness)
fe(v, T) := maxu∈V (T) dT (v, u) (eccentricity)
fa(v, T) := |A(v, T)| (all-subgraphs)

C. Riveros, J. Salas, and O. Skibski 12:9

Let us verify that each function above is a potential function for its corresponding measure.
Take an arbitrary tree T and two adjacent vertices u and v. It is straightforward to check
that fd is a potential function for degree centrality. Indeed, if u has a smaller degree in its
subtree (i.e., without considering the common edge), then it also has a smaller centrality.

For closeness centrality, the potential function fc is simply the number of vertices in a
tree. To see this, note that vertex u has a distance smaller by one than v to all vertices
from Tu,v; analogously, vertex v has a distance smaller by one than u to all vertices from
Tv,u. As a result, out of both vertices, the one with the larger subtree has the smaller sum
of distances which results in the higher closeness centrality.

For eccentricity the potential function fe is the height of a tree, i.e., the distance to the
farthest vertex. This is because if subtree Tu,v is higher than Tv,u, then vertex u has smaller
distance to the farthest vertex in T which results in the higher eccentricity. Interestingly, fe
is an inverse of eccentricity.

Finally, for all-subgraphs centrality the potential function fa is the number of subgraphs
that contain vertex v. The reason is that we have |A(u, T)| = |A(u, Tu,v)| + |A(u, Tu,v)| ·
|A(v, Tv,u)| and, symmetrically, |A(v, T)| = |A(v, Tv,u)| + |A(u, Tu,v)| · |A(v, Tv,u)|. This
implies that if u has more subgraphs in Tu,v than v in Tv,u, then it also has higher all-
subgraphs centrality. Hence, as in the case of degree centrality, the potential function
coincides with the centrality itself.

One can also show that betweenness and decay centralities have a potential function.
As we will see later, there are centrality measures that do not have potential functions.
For the particular case of PageRank and EigenVector it is not clear whether they admit a
potential function. The table at Figure 2 (right) summarizes which centrality measures have
a potential function.

A potential function determines the centrality order between two adjacent vertices, but
it does not imply the relation between non-adjacent vertices. Although this information
is weaker than the centrality measure itself, it is exactly what we need to understand the
centrality measures that root trees. Precisely, which measures with potential functions root
trees? To answer this question, we first need to capture the symmetry property through the
lens of potential functions.

▶ Lemma 10. Let C be a centrality measure and f a potential function for C. Then C is
symmetric over trees if, and only if, for every tree T and every pair of adjacent vertices
u, v ∈ V (T), it holds that f(u, Tu,v) < f(v, T).

By the previous result, we will call potential functions with this property symmetric.
Next, we show that symmetric potential functions characterize the tree rooting property.

▶ Theorem 11. Let C be a centrality measure that admits a potential function f . Then C

roots trees if, and only if, f is symmetric.

▶ Example 12. Continuing with Example 9 we can check that the potential functions fc, fe,
and fa for closeness, eccentricity, and all-subgraphs, respectively, are symmetric. Indeed, for
all these functions a subtree always has less potential than the whole tree. For this reason,
fx(u, Tu,v) < fx(v, T) for x ∈ {c, e, a} since Tu,v is a subgraph of T . By Theorem 11, this
proves that closeness, eccentricity, and all-subgraphs root trees.

In turn, the potential functions of degree centrality (as well as betweenness and decay
centralities) are not symmetric and, therefore, do not root trees. For example, for degree
centrality we can take T = u v , and check that fd(u, Tu,v) > fd(v, T). Therefore, fd
is not symmetric.

ICDT 2023

12:10 How Do Centrality Measures Choose the Root of Trees?

We showed that all standard centrality measures that root trees can be defined through
potential functions. The natural question is: is it true for all measures that root trees? In
the following result, we show that this is not the case and there exists a measure that roots
a tree, but does not have a potential function.

▶ Proposition 13. There exists a centrality measure that roots trees but does not admit a
potential function.

Potential functions and Theorem 11 explain why some measures root trees and others do
not. In the following sections, we use this framework to further understand the tree rooting
centrality measures in terms of algorithms, consistency, and the design of new measures.

5 An algorithm to find the root

Even though not every tree rooting measure has a potential function, having one gives us
some essential properties that we can exploit. In particular, having a symmetric potential
function implies finding the root of any tree in O(n log(n))-time under some assumptions
on the efficiency to compute the potential function. Notice that the naive approach of
computing the centrality for each vertex separately and then choosing the one with the
highest centrality runs in quadratic time (i.e., by assuming that computing the centrality of a
single vertex takes linear time). Instead, the algorithm presented here runs in O(n log(n)) for
every centrality measure that admits a (locally-computable) symmetric potential function.

The main intuition behind this algorithm is based on the following property satisfied by
centrality measures with a symmetric potential function.

▶ Proposition 14. Let C be a centrality measure that has a symmetric potential function f .
Let T be any tree, w1, wn ∈ V (T), and w1w2...wn be the unique path connecting w1 to wn

in T . Whenever f(w1, Tw1,w2) ≤ f(wn, Twn,wn−1) then C(w1, T) ≤ C(w2, T).

In other words, Proposition 14 says that if the potential of the subtree hanging from w1
is less than the potential of the subtree hanging from wn, then a root should be closer to
the adjacent vertex of w1 that is towards the direction of wn. This result gives us a way to
traverse a tree, starting from the leaves and going up until we find the root. More specifically,
starting from the leaves, by Proposition 14 we can compare the potential of two opposite
complete subtrees. Then, vertices with higher potential in their subtree indicate the direction
of higher centrality. When we finally reach two connected vertices, the vertex with higher
(or equal) potential is a root.

Algorithm 1 implements the above intuition based on Proposition 14. It receives as input
a tree T and a symmetric potential function f , and outputs a root of T with respect to f . For
implementing Algorithm 1 we need two data structures, denoted by H and Q. The first data
structure H is a key-value map (i.e., a Hash-table), where a key can be any vertex v ∈ V (T)
and its value is a subset of NT (v). We denote the value of v (i.e., a key) in H by H[v]. By
some abuse of notation, when H[v] is a single vertex, we write u ← H[v] to retrieve and
store this vertex in u. The second data structure Q is a priority-Queue. For v ∈ V (T) and
p ∈ R we write Q.insert(v, p) to insert v in Q with priority p. We also write v ← Q.pull()
to remove the vertex with the lowest priority from Q, and store it in v. For both structures,
these operations can be implemented in O(log(n))-time where n is the number of inserted
objects [9].

Algorithm 1 starts by initializing Q as empty and H with all key-value pairs (v, NT (v))
(lines 2-3). Then, it runs over all leaves v of T and inserts it into Q with priority f(v, Gv)
where Gv is the tree with an isolated vertex v (lines 4-5). As we already mentioned, the

C. Riveros, J. Salas, and O. Skibski 12:11

Algorithm 1 Find a root given a tree.

Input: A non-trivial tree T and a symmetric potential function f .
Output: The most central vertex of T according to f .

1 Function Find-a-root(T, f):
2 Q← Empty-queue
3 H ← {(v, NT (v)) | v ∈ V (T)}
4 foreach v leaf of T do
5 Q.insert(v, f(v, Gv))
6 while Q.size() > 1
7 v ← Q.pull()
8 u← H[v]
9 H[u]← H[u] \ {v}

10 if |H[u]| = 1 then
11 w ← H[u]
12 Q.insert(u, f(u, Tu,w))
13 return Q.pull()

intuition is to start from all leaves v and use its potential (as a single vertex) for comparing
it with other vertices. Then we loop while the number of elements in Q is greater than 1.
Recall that any non-trivial tree has at least two leaves, and therefore the algorithm reaches
line 6 with Q.size() ≥ 2 for the first time. Instead, if T is trivial, we return the single vertex
directly in line 13.

We remove the vertex with the lowest priority from Q in each iteration and store it in v

(line 7). This step discards v as a possible root (by Proposition 14) and moves towards its
“parent” represented by u← H [v] (line 8). Given that we discarded v, we remove v as a child
of u, where H [u] contains the current children of u (line 9). Indeed, when |H [u]| = 1 (line 10)
this means that we have reached u, its parent is w ← H [u] (line 11) and its complete subtree
Tu,w hanging from u must be evaluated with f , and inserted in Q (line 12). An important
invariant during the while-loop is that any vertex v in Q satisfies |H[v]| = 1 (except at the
end of the last iteration). Conceptually, if H[v] = {w}, this invariant means that w is the
parent of v and we are using the potential of the subtree (v, Tv,w) for comparing v with
other vertices. Then when v is the vertex with the lowest priority on Q, it means that other
vertices beat it, and a root must be towards its parent.

Finally, when there is only one vertex left in Q, it beats all other vertices, and it should
be one of the roots. It is necessary to mention that if T has two roots, we could also output
the second root by slightly modifying the algorithm.

Regarding time complexity, the reader can check that the for- and while-loops take linear
time on |T |. Each operation over H and Q take at most log(|T |) steps, and overall it sum
up to O(|T | log(|T |)) if computing f takes constant time.

Of course, the previous assumption is not always true, given that f can be any symmetric
potential function. To solve this, we say that f is locally-computable if, for every T and
u ∈ V (T), f(u, T) can be computed in O(k)-time from the values of its k-neighbors, namely,
from f(u1, Tu1,v), . . . , f(uk, Tuk,v) where NT (u) = {u1, . . . , uk}. Note that by book-keeping
the values f(u1, Tu1,v), . . . , f(uk, Tuk,v) of the neighbors of u, we can compute f(u, Tu,w) (line
12) in O(|NT (u)|)-time. If we sum this extra time over all vertices, it only adds O(|T |)-steps
to the total running time of the algorithm.

ICDT 2023

12:12 How Do Centrality Measures Choose the Root of Trees?

▶ Proposition 15. Given a tree T and a symmetric potential function f , Algorithm 1 returns
a root of T with respect to f . Moreover, if f is locally-computable, the algorithms runs in
O(|T | · log(|T |))-time.

The reader can easily check that the potential functions of closeness, eccentricity, and
all-subgraphs are locally-computable (see also Section 7), and then Algorithm 1 can be used
for any of these measures to find the root of any tree in O(|T | · log(|T |)).

6 Consistent rooting

The tree rooting property fixes the “shape” of a centrality measure in every possible tree.
However, it does not impose any relation between roots in different trees. As a result, even
a small change (e.g., adding a leaf) may move the root arbitrarily since there might be no
relation between the roots in a tree and the altered tree. To give an example, a centrality
measure may be defined in one way for trees with odd number of vertices, but in a completely
different way for trees with even number of vertices.

To this end, we propose a notion of consistency. Consistency states that if we add a leaf
to the tree, then the root may move only in its direction.

▶ Definition 16. We say that a centrality measure C consistently roots trees if it roots
trees and for every tree T and vertices u, v ∈ V (T), w ̸∈ V (T) such that u ∈ MaxC(T) it
holds MaxC(T + {v, w}) ⊆ πu,w ∪MaxC(T), where πu,w is the path between u and w in
T + {v, w}.

We can verify that closeness, eccentricity, and all-subgraphs centralities all consistently
root trees.

Consistency is a property of measures that root trees. However, it can be also interpreted
using a natural property for arbitrary centrality measures that we call monotonicity. Mono-
tonicity states that if vertex v has a higher (or equal) centrality than its neighbour u in a
tree, then this fact will not change if we add a leaf on the side of vertex v.

▶ Definition 17. We say that a centrality measure C is monotonic if for every tree T , vertices
v, u, w ∈ T such that {v, u} ∈ E(T), w ∈ Tu,v and vertex w′ ̸∈ V (T) if C(v, T) < C(u, T),
then C(v, T + {w, w′}) < C(u, T + {w, w′}).

Monotonicity is in fact a general property satisfied by many centrality measures, including
all geometric centralities such as closeness and decay. The following result ties both concepts:
monotonicity and consistency of rooting.

▶ Proposition 18. Let C be a centrality measure that roots trees. Then C consistently roots
trees if, and only if, it is monotonic.

Let us turn our attention to the relation between tree rooting and potential functions.
If a centrality that roots trees admits a potential function, then it must be consistent to
some extent. However, as it turns out, it might not consistently root trees, as we show in the
following counterexample.

▶ Example 19. Consider the following ad-hoc centrality measure:

C(v, T) = Eccentricity(v, T)− (1/|T |2) ·Closeness(v, T).

Intuitively, if two vertices in a tree have different eccentricity, then their eccentricity differs
by more than 1/|T |2. Also, Closeness(v, T) ∈ (0, 1]. Hence, we have C(u, T) < C(v, T) if,
and only if, u has a smaller eccentricity than v or equal eccentricity, but higher closeness.

C. Riveros, J. Salas, and O. Skibski 12:13

It is easy to verify that the following potential function corresponds to C: f(v, T) =
h(v, T)− 1/|T |, where h(v, T) is the distance from v to the farthest vertex in T .

To show that consistency is violated consider trees and (vertices with the
highest centrality are marked with white color). Consistency states that in the second tree
the root should stay on the left-hand side which is not the case here.

To characterize which of the centrality measures with potential function root trees
consistently, we look at the restriction that monotonicity imposes on the potential function.

▶ Proposition 20. Let C be a centrality measure that admits a potential function f . Then C

is monotonic iff for every tree T , subtree T ′ of T , and v ∈ V (T ′) it holds f(v, T) ≥ f(v, T ′).

In particular, the potential function from Example 19 violates this condition, as adding
vertices to a tree without increasing its height decreases the value of the potential function.

Now we can summarize rooting results and consistency regarding potential functions as
one of our principal theorems.

▶ Theorem 21. Let C be a centrality measure that admits a potential function f . Then C

is monotonic and symmetric if, and only if, for every tree T , proper subtree T ′ of T and
vertices v ∈ V (T), u ∈ V (T ′) it holds f(v, T) ≥ f(u, T ′) and f(v, T) > f(u, T ′) if u ̸= v.

7 Families of potential functions

In this section, we apply the previous results by showing how to design potential functions
that consistently root trees. Specifically, using the following results, we can derive an infinite
family of potential functions. This family shows infinite ways to root trees with good
characteristics, namely, that are consistent and computable in O(n log(n)) time. In the
following, we recall some standard definitions of monoids, to then define potential functions
through them.

A monoid (over R) is a triple (M, ∗, 1) where M ⊆ R, ∗ is a binary operation over M, ∗ is
associative, and 1 ∈ M is the identity of ∗ (i.e., r ∗ 1 = 1 ∗ r = r). We further assume that
monoids are commutative, namely, ∗ is commutative. Examples of (commutative) monoids
are (R≥0, +, 0) and (R≥1,×, 1), where we use R≥c for all reals greater or equal than c. For
the sake of presentation, in the following we will usually refer the monoid

▶ Definition 22. Given a monoid (M, ∗, 1) and ℓ : M→ M, we define the potential function
f∗,ℓ recursively as follows:
1. For a vertex v, we define f∗,ℓ(v, Gv) = 1, where Gv is the tree with an isolated vertex v.
2. For a tree T and a leaf v ∈ V (T) hanging from its parent u ∈ V (T), we define f∗,ℓ(v, T) =

ℓ(f∗,ℓ(u, Tu,v)). In other words, we apply ℓ to the potential function of the subtree rooted
at u. We call ℓ the leaf-function of f∗,ℓ.

3. Given two trees T1 and T2 with V (T1) ∩ V (T2) = {v}, we define f∗,ℓ(v, T1 ∪ T2) =
f∗,ℓ(v, T1) ∗ f∗,ℓ(v, T2).

A potential function f is constructive if there exists a monoid ∗ and a leaf-function ℓ such
that f = f∗,ℓ.

Notice that f∗,ℓ(v, T) is uniquely determined by the three cases above. Specifically, suppose
that u1, . . . , uk ∈ NT (v) are the neighbors of v on T . Then we can decompose T by considering
all subtrees Tui,v + {ui, v} and compute f∗,ℓ(v, T) recursively:

f∗,ℓ(v, T) = ℓ
(
f∗,ℓ(u1, Tu1,v)

)
∗ . . . ∗ ℓ

(
f∗,ℓ(uk, Tuk,v)

)

ICDT 2023

12:14 How Do Centrality Measures Choose the Root of Trees?

until we reach a single vertex. Furthermore, f∗,ℓ is closed under isomorphism over VG given
that ∗ is associative and commutative. Thus, we conclude that f∗,ℓ is well-defined and could
work as a potential function. In addition, f∗,ℓ is locally-computable since f∗,ℓ(v, T) can be
computed from its k-neighbors.

▶ Example 23. All potential functions presented in Example 9 are constructive by considering
the following monoids and leaf-functions:

(R≥0, +, 0) ℓ(x) = 1 (degree)
(R≥1, a + b− 1, 1) ℓ(x) = x + 1 (closeness)
(R≥0, max, 0) ℓ(x) = x + 1 (eccentricity)
(R≥1,×, 1) ℓ(x) = x + 1 (all-subgraphs)

It is easy to check that each monoid and leaf-function defines the corresponding potential
function of the above measures.

One advantage of the previous definition is that it shows a way for constructing potential
functions. Moreover, we can study which properties are necessary over ∗ and ℓ to guarantee
that f∗,ℓ consistently root trees. Towards this goal, we recall some standard definitions for
monoids and functions. A function f is called monotonic if x ≤ y, implies f(x) ≤ f(y) for
every x, y. A monoid (M, ∗, 1) is called ordered if x ≤ y, implies x ∗ z ≤ y ∗ z for every
x, y, z ∈ M. Further, it is called positively ordered if in addition 1 ≤ x for every x ∈ M.

▶ Lemma 24. Let (M, ∗, 1) be a monoid and ℓ : M → M a leaf-function. The potential
function f∗,ℓ consistently roots trees whenever (1) x < ℓ(x) for every x, (2) ℓ is monotonic,
and (3) (M, ∗, 1) is positively ordered.

For example, the monoids and leaf-functions of closeness, eccentricity, and all-subgraphs
(see Example 23), satisfy properties (1) to (3) and, as we know, they consistently root trees.
On the other hand, degree’s leaf-function does not satisfy (1), and therefore, it does not root
trees.

Lemma 24 shows sufficient conditions over ∗ and ℓ to consistently root trees. To get
a necessary condition, we need to add some technical restrictions, and to slightly weaken
conditions (2) and (3). Towards this goal, let Range∗,ℓ be the range of f∗,ℓ. Define ∗̄ and
ℓ̄ to be the monoid (M, ∗, 1) and function ℓ restricted to Range∗,ℓ. For two values x and y,
we say that x is a subtree-value of y if there exist T and T ′ such that T is a subtree of T ′,
f∗,ℓ(u, T) = x, and f∗,ℓ(u, T ′) = y for some u ∈ V (T). Then we say that ℓ̄ is monotonic over
subtrees if x ≤ y and x is a subtree-value of y implies that ℓ̄(x) ≤ ℓ̄(y). Similarly, we say that
∗̄ is positively ordered over subtrees, if x ≤ y and x is a subtree-value of y, then x ∗ z ≤ y ∗ z

for every z ∈ Range∗,ℓ, and 1 ≤ x for every x ∈ Range∗,ℓ.

▶ Theorem 25. Let (M, ∗, 1) be a monoid and ℓ : M → M a leaf-function. The potential
function f∗,ℓ consistently roots trees if, and only if, (1) x < ℓ̄(x) for every x ∈ Range∗,ℓ, (2)
ℓ̄ is monotonic over subtrees, and (3) ∗̄ is positively ordered over subtrees.

Theorem 25 and, specifically, Lemma 24 give the ingredients to design potential functions
that consistently root trees and, further, we have an algorithm to find the root in O(n log(n)).
For instance, take a triple (a, b, c) ∈ R3. Then define the monoid (R≥c, ∗c, c) and leaf-function
ℓa,b such that: x∗cy := x·y

c and ℓa,b(x) := a·x+b. For example, if we consider a = b = c = 1,
we get the monoid and leaf-function for the potential function of all-subgraph centrality
(see Example 23). Interestingly, one can verify that, if a ≥ 1, b > 0 and c > 0, then ∗c is
a monoid. Moreover, ∗c and ℓa,b satisfy properties (1) to (3) of Lemma 24 and we get the
following result.

C. Riveros, J. Salas, and O. Skibski 12:15

▶ Proposition 26. For every (a, b, c) ∈ R3 with a ≥ 1, b > 0, and c > 0, the potential
function f∗c,ℓa,b

consistently root trees.

Finally, we want to know if we can get different roots for different values (a, b, c). In other
words, is it the case that for every different triples (a, b, c) and (a′, b′, c′) there exists a tree
T such that the root of T according to f∗c,ℓa,b

is different to one chosen by f∗c′ ,ℓa′,b′ ? The
next result shows that {f∗c,ℓa,b

| c ≥ 1, b > 0, c > 0} is indeed an infinity family of different
potential functions for tree rooting.

▶ Proposition 27. There exists an infinite set S ⊆ R3 such that for every (a, b, c), (a′, b′, c′) ∈
S, there exists a tree T where the roots of T according to f∗c,ℓa,b

are not the same as roots
of T according to f∗c′ ,ℓb′,c′ .

8 Discussion

We end the paper by discussing some extensions and applications.

Extensions to other classes of graphs. An obvious question is whether one can generalize
the know-how acquired on trees to other classes of graphs. We agree that further research
is needed to extend potential functions to new graph families. Nevertheless, we see some
exciting directions in which our work can be extended. In particular, the idea of potential
functions extends to arbitrary graphs by considering the endpoints of a bridge (i.e., a cut
edge) instead of adjacent vertices of a tree. More in detail, let G be a connected graph
and {u, v} be an edge such that Gu, Gv are two connected components of G− {u, v} that
contain u, v, respectively. We say that f : VG → R is a graph potential function for C if for
every such graph G it holds C(u, G) ≤ C(v, G) if, and only if, f(u, Gu) ≤ f(v, Gv). This
property generalizes (tree) potential functions, as every two adjacent nodes in a tree form a
bridge. As it turns out, all centrality measures listed on Figure 2 that have (tree) potential
functions (degree, closeness, betweenness, eccentricity, all-subgraphs, decay) have identical
graph potential functions. For example, Eccentricity(v, G) ≤ Eccentricity(u, G) if and
only if fe(v, Gv) ≤ fe(u, Gu) for fe defined in Example 9. Interestingly, some centrality
measures have identical potential functions on trees but different ones on general graphs (for
example, closeness and random-walk closeness centralities).

Applications. In this work, we focused on the foundational aspects of understanding
centrality measures over trees, and we left for future work the application in the context of
data management. Given the axiomatic approach of our work and given that tree structures
are ubiquitous in data management, we believe that potential functions and their implications
on rooting trees could find several exciting applications. In the following, we present some
possible applications of this work in data management scenarios.

In conjunctive query answering, the class of acyclic queries is of particular interest, given
that each query has a join tree that permits efficient evaluation in linear time on data
complexity [3]. For this, the so-called Yannakakis algorithm [30] performs a bottom-up
traversal of the join tree for filtering the tuples that will not be part of the output. In
particular, the different ways one can root the join tree gives rise to several individual
computational schedules to obtain the same results [3]. Here, choosing the root of a join tree
by using some specific potential function could lead to improving existing join evaluation
algorithms in practice. We leave for future work on how one can use this principle for query
evaluation in the presence of join trees.

ICDT 2023

12:16 How Do Centrality Measures Choose the Root of Trees?

Another possible application is in the context of tree-structured data, like XML or JSON
documents. Although this data is usually rooted, assessing the most crucial node using a
centrality measure can lead to a better understanding of the document’s structure. For
instance, given a tree-structured document, one could measure the difference between the
root provided by potential function and the original root and see how this difference affects
query evaluation, document representation, or other metrics.

Finally, in a broader sense, one could see centrality measures over graphs as an instance
of a general database problem: find the most central data object in the data model given
its underlying structure. The data model could be a relational database, an object-oriented
database, an RDF database, or even a tree-structure database. For all these cases, the
principle should be the same: the more relevant the data object is for its data model, the
more central it should be. The present work could be seen as the first step toward this
direction, namely, understanding data centrality in the case of trees. We leave for future
work on how to extend this line of research to other classes of graphs or data models.

References
1 Neo4j: Centrality. https://neo4j.com/docs/graph-data-science/current/algorithms/

centrality/.
2 Tigergraph: Centrality algorithms. https://docs.tigergraph.com/graph-ml/current/

centrality-algorithms/.
3 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases, volume 8.

Addison-Wesley Reading, 1995.
4 Francis Bloch, Matthew O. Jackson, and Pietro Tebaldi. Centrality measures in networks.

arXiv preprint, 2019. arXiv:1608.05845.
5 Paolo Boldi, Alessandro Luongo, and Sebastiano Vigna. Rank monotonicity in centrality

measures. Network Science, 5(4):529–550, 2017.
6 Paolo Boldi and Sebastiano Vigna. Axioms for centrality. Internet Mathematics, 10(3-4):222–

262, 2014.
7 Phillip Bonacich. Factoring and weighting approaches to status scores and clique identification.

Journal of mathematical sociology, 2(1):113–120, 1972.
8 Ulrik Brandes. Network analysis: methodological foundations, volume 3418. Springer Science

& Business Media, 2005.
9 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to

algorithms. MIT press, 2009.
10 Zoltán Dezső and Albert-László Barabási. Halting viruses in scale-free networks. Physical

Review E, 65:055103, 2002.
11 Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry, pages

35–41, 1977.
12 Manuj Garg. Axiomatic foundations of centrality in networks. Available at SSRN 1372441,

2009.
13 Per Hage and Frank Harary. Eccentricity and centrality in networks. Social networks, 17(1):57–

63, 1995.
14 Aidan Hogan, Andreas Harth, Jürgen Umbrich, Sheila Kinsella, Axel Polleres, and Stefan

Decker. Searching and browsing linked data with swse: The semantic web search engine.
Journal of web semantics, 9(4):365–401, 2011.

15 Gábor Iván and Vince Grolmusz. When the web meets the cell: using personalized PageRank
for analyzing protein interaction networks. Bioinformatics, 27(3):405–407, 2010.

16 Matthew O Jackson. Social and economic networks. Princeton university press, 2010.
17 Mitri Kitti. Axioms for centrality scoring with principal eigenvectors. Social Choice and

Welfare, 46(3):639–653, 2016.

https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/
https://docs.tigergraph.com/graph-ml/current/centrality-algorithms/
https://docs.tigergraph.com/graph-ml/current/centrality-algorithms/
http://arxiv.org/abs/1608.05845

C. Riveros, J. Salas, and O. Skibski 12:17

18 Dirk Koschützki, Katharina Anna Lehmann, Leon Peeters, Stefan Richter, Dagmar Tenfelde-
Podehl, and Oliver Zlotowski. Centrality indices. In Network analysis, pages 16–61. Springer,
2005.

19 Jose L Martinez-Rodriguez, Aidan Hogan, and Ivan Lopez-Arevalo. Information extraction
meets the semantic web: a survey. Semantic Web, 11(2):255–335, 2020.

20 Mark Newman. Networks. Oxford university press, 2018.
21 Juhani Nieminen. On the centrality in a directed graph. Social Science Research, 2(4):371–378,

1973.
22 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation

ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.
23 K Brooks. Reid. Centrality measures in trees. In Advances in Interdisciplinary Applied Discrete

Mathematics, pages 167–197. World Scientific, 2011.
24 Cristian Riveros and Jorge Salas. A family of centrality measures for graph data based on

subgraphs. In Carsten Lutz and Jean Christoph Jung, editors, ICDT, volume 155, pages
23:1–23:18, 2020.

25 Gert Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603, 1966.
26 Oskar Skibski. Vitality indices are equivalent to induced game-theoretic centralities. In

Zhi-Hua Zhou, editor, IJCAI, pages 398–404. International Joint Conferences on Artificial
Intelligence Organization, 2021.

27 Oskar Skibski, Tomasz P. Michalak, and Talal Rahwan. Axiomatic characterization of game-
theoretic centrality. Journal of Artificial Intelligence Research, 62:33–68, 2018.

28 René van den Brink and Robert P. Gilles. Measuring domination in directed networks. Social
Networks, 22(2):141–157, 2000.

29 Tomasz Wąs and Oskar Skibski. Axiomatization of the PageRank centrality. In IJCAI, pages
3898–3904. International Joint Conferences on Artificial Intelligence Organization, 2018.

30 Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, volume 81, pages
82–94, 1981.

ICDT 2023

Size Bounds and Algorithms for Conjunctive
Regular Path Queries
Tamara Cucumides
University of Antwerp, Belgium
Pontificia Universidad Católica de Chile, Santiago, Chile

Juan Reutter
Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile

Domagoj Vrgoč
University of Zagreb, Croatia
Pontificia Universidad Católica de Chile, Santiago, Chile

Abstract
Conjunctive regular path queries (CRPQs) are one of the core classes of queries over graph databases.
They are join intensive, inheriting their structure from the relational setting, but they also allow
arbitrary length paths to connect points that are to be joined. However, despite their popularity,
little is known about what are the best algorithms for processing CRPQs. We focus on worst-case
optimal algorithms, which are algorithms that run in time bounded by the worst-case output size of
queries, and have been recently deployed for simpler graph queries with very promising results. We
show that the famous bound on the number of query results by Atserias, Grohe and Marx can be
extended to CRPQs, but to obtain tight bounds one needs to work with slightly stronger cardinality
profiles. We also discuss what algorithms follow from our analysis. If one pays the cost for fully
materializing graph queries, then the techniques developed for conjunctive queries can be reused. If,
on the other hand, one imposes constraint on the working memory of algorithms, then worst-case
optimal algorithms must be adapted with care: the order of variables in which queries are processed
can have striking implications on the running time of queries.

2012 ACM Subject Classification Information systems → Query languages

Keywords and phrases graph databases, regular path queries, worst-case optimal algorithms

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.13

Funding This work is supported by: ANID – Millennium Science Initiative Program – Code
ICN17_002 and ANID Fondecyt Regular project number 1221799.

1 Introduction

Graph patterns form the basis of most query languages for graph databases [1]. Consequently,
there has been a lot of progress in terms of pattern query answering, either by porting
and optimizing relational techniques into a graph context [15, 11, 12], or by implementing
worst-case optimal algorithms over graphs, which run in time given by the AGM bound of
queries [14, 10, 2], or even with a mix of both approaches [8].

However, the main focus has been so far on simple graph patterns, or conjunctive
queries (CQs), which are matched to the queried database. But one of the key aspects that
differentiate graph and relational databases is the need for answering path queries, which
are usually integrated into graph patterns to form so called conjunctive regular path queries
(CRPQs). CRPQs form an important use case for graph patterns [1], but so far we know
little about algorithms that can compute answers of these queries.

© Tamara Cucumides, Juan Reutter, and Domagoj Vrgoč;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2023.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Size Bounds and Algorithms for Conjunctive Regular Path Queries

Consider for instance the CRPQ in Figure 1. We assume in this paper the standard
relational representation of graphs using one binary relation per edge label. Namely, each
edge label a results in a relation Ra containing all pairs (v, v′) connected by an a-labelled
edge in the graph. Then Q1 features a triple join, but one of the relations we are joining is
given by expression a+, which corresponds to the transitive closure of the relation Ra. How
should one compute this query? One approach is to first materialize the answers of all path
queries, after which we have a simple graph pattern or CQ over these materialized relations,
whose answers we already know how to compute [16, 13]. In our case, this means computing
the transitive closure R+

a of Ra, as a virtual relation, and then compute the (relational) triple
join R+

a (x, y) ∧Rb(y, z) ∧Rc(z, x), treating now a+ as if it was a standard relation. Is this
efficient? Let us assume for simplicity that the cardinality of Ra, Rb and Rc is N . Then, the
virtual relation R+

a may have up to N2 tuples. If we use a worst-case algorithm for the task
of computing the triple-join, we can get the answers in O(N2), which also encompass the
time taken to build the virtual relation R+

a for dealing with a+. As we shall see, the O(N2)
bound also corresponds to the maximum number of tuples that may be in the answer of this
query, so our algorithm can be dubbed worst-case optimal. In this case, the approach seems
plausible, at least in terms of worst-case asymptotic complexity.

x

yz

a+

Rb

Rc

Figure 1 Q1(x, y, z) ← a+(x, y) ∧Rb(y, z) ∧Rc(x, z).

On the other hand, our strategy of materializing transitive closure (or more generally,
any path query) can be quite costly, as R+

a may have up to N2 tuples itself, which need to
be stored in memory. Thus, it is natural to ask if there is any way of computing the answers
for this query in an optimal way, and in such a way that we do not pay the cost of fully
materializing all path queries. And perhaps more importantly, what happens with other
CRPQs? Do we have a worst-case optimal algorithm for every CRPQ? Does it necessarily
involve materializing all path queries beforehand?

In this paper we provide answers to these questions. We study bounds on the maximum
size of the answer of a CRPQ, given certain cardinality information about the graph. We
use these bounds to investigate optimal algorithms for CRPQs, either in full generality, or
with additional memory constraints. Our main contributions are as follows.

1. Regarding output bounds for CRPQs, we first observe that the bound obtained by
materializing RPQs and applying the standard AGM bound on the resulting
query is not tight. For example, consider the query Q2 in Figure 2 below:

x y za+ b+

Figure 2 Q2(x, y, z) ← a+(x, y) ∧ b+(y, z).

T. Cucumides, J. Reutter, and D. Vrgoč 13:3

If |Ra| = |Rb| = N then the answers to a+ and b+ may have up to N2 tuples. Thus,
applying the usual AGM bound over the CQ resulting from materializing both expressions into
relations gives an upper bound of O(N4). This is of course not tight: since |Ra| = |Rb| = N ,
the number of possible data values in any relation is also bounded by N , so the total number
of tuples in the answer is O(N3). One can show that this bound is actually tight.

2. We can obtain much more precise bounds for Q2 if we also take into account the cardinality
of the first and second attributes of both Ra and Rb. For example, if we assume that the
cardinality of the projection of Ra and Rb over the first or second attributes is bounded by
M , then the number of tuples in the output of Q2 is in O(M3). And we can generalize this
for every CRPQ: We provide bounds on the number of tuples in the answer of any
CRPQ, over any graph satisfying the same cardinalities of relations and each of
their attributes. Our upper bound is based on an extension of the linear program used to
show the AGM bound. Consider for example query Q3(x, y, z) ← a+(x, y)∧b+(y, z)∧Rc(x, z)
in Figure 3.

x

yz

a+

b+

Rc

Figure 3 Q3(x, y, z) ← a+(x, y) ∧ b+(y, z) ∧Rc(x, z).

Let Rs
a be the projection on the first attribute of Ra, Re

a the projection on the second
attribute (and analogously for Rb). Then the answers of Q3 over a given graph with relations
Ra, Rb, Rc are bounded by 2ρ∗ , where ρ∗ is the solution of the following program.

minimize uRc log |Rc|+ ua+

x log |Rs
a|+ua+

y log |Re
a|+ ub+

y log |Rs
b |+ ub+

z log |Re
b |

where uRc + ua+

x ≥ 1

uRc + ub+

z ≥ 1

ua+

y + ub+

y ≥ 1

uRc , ua+

x , ua+

y , ub+

y , ub+

z ≥ 0

(1)

This is a generalization of the AGM linear program [4], in which now we can also assign
weights to the starting and ending points of RPQs, which receive their own variables (ua+

x

and ua+

y for a+, ub+

y and ub+

z for b+). Assume that the cardinality of Rs
a, Re

a, Rs
b and Re

b is
M , and the cardinality of Rc is N , with N ≤M2. Then, an optimal solution for this query
is uRc = 1, ua+

y = ub+

y = 1
2 , and ua+

x = ub+

z = 0. Intuitively, this means assigning full weight
to the Rc(x, z) atom of the query, and evenly dividing the weights for vertex y. This makes
sense, because the answers of Q are always bounded by MN : for each tuple (u, v) in Rc

there are at most M nodes connected to u and v by means of the expressions a+ and b+.

3. Now that we know how to bound the answers of CRPQ, the next question is to look for
worst-case optimal algorithms for them: an algorithm for a query Q is worst-case optimal if,
on input graph G, the answers of Q over G are computed in time bounded by the maximum

ICDT 2023

13:4 Size Bounds and Algorithms for Conjunctive Regular Path Queries

number of tuples in the answer of Q over any graph with the same cardinalities of all the
relations as G. Unfortunately we show that, under usual complexity assumptions, there are
CRPQs for which no worst-case optimal algorithm exists.

4. Two strategies stand off when thinking about computing the answers of CRPQs. The
first we already mentioned: materialize every path query as a virtual relation, and then apply
a worst case optimal algorithm such as e.g. Leapfrog Trie-join [16]. For some queries, such
as the triangle query in Figure 3, this strategy appears to be as optimal as one can be, at
least in terms of computation time in the worst case. However, the memory requirements
are quite high, as materialized path queries can be of quadratic size in terms of the number
of nodes in the graph. On the other hand, one can immediately perform Leapfrog Trie-join
on the graph as if it was a relational database, and whenever one needs pairs of the form
(a, x) connected by a path query r, one computes it on demand, say by doing a Breadth
First Search (BFS) over the relation. Assuming we do not cache intermediate results, this
strategy has no significant memory requirements, but it may incur in chained searches on
the graph, and end up being slower than materialization. At a first glance, it would appear
that we have a strict time/memory tradeoff when computing this type of queries. But is
this the best we can do? As it turns out, by carefully planning how RPQs are instantiated
within worst case optimal algorithms, we provide an algorithm that can compute the
answers of many CRPQs under the same running time as an algorithm based on
full materialization of path queries, but requiring only linear memory, in terms
of the nodes of the graph.

2 Preliminaries

Graph databases. A graph database is usually defined in the theoretical literature as a
directed edge-labelled graph [5, 18]. More formally, if Σ is a finite alphabet of edge labels, a
graph database over Σ is a pair (V, E), where V is a finite set of nodes, and E ⊆ V ×Σ× V .
An alternative way of viewing a graph database is through its relational representation.
Namely, if Σ is a finite labelling alphabet, a graph database G = (V, E) over Σ can be given
as a relational database over the schema {Ra}a∈Σ of binary relations. Intuitively, Ra(v, v′)
holds if and only if (v, a, v′) ∈ E; that is, if there is an a-labelled edge between v and v′.
Throughout the paper we will often switch between these two representations. For a binary
relation Ra, with a ∈ Σ, we denote with Rs

a the projection of Ra onto its first attribute.
Similarly we define Re

a as the projection of of Ra onto the second attribute. In the remainder
of the paper we will often use the term graph when referring to a graph database.

Queries over graph databases. Path queries are usually given as regular expressions, under
the name of Regular Path Queries, or RPQs. An RPQ r selects, in a graph G, all pairs (u, v)
of nodes that are connected via edge labels forming a word in the language of r. We denote
this set of pairs as JrKG, see Table 1 for the definition. We assume RPQs are given both by
regular expressions or automata, and freely switch between these representations.

Conjunctive regular path queries (CRPQs) [1, 5], are simply conjunctions of path queries.
In order to exploit what is known about size bounds for relational CQs, we separate the
expressions in our CRPQ into two sets: (i) the expressions consisting of a single letter (which
are thus equivalent to an ordinary CQ); and (ii) regular expressions whose languages contain
more than a single letter. Therefore, we define a conjunctive regular path query over a graph
database to be given by an expression

Q(x) ←
ℓ∧

i=1
Rai

(yi, zi) ∧
k∧

i=ℓ+1
ri(yi, zi) (2)

T. Cucumides, J. Reutter, and D. Vrgoč 13:5

Table 1 Semantics of RPQs, for a ∈ Σ, and r, r1 and r2 arbitrary RPQs. The symbol ◦ denotes
the composition of binary relations.

JεKG = {(u, u) | u is a node id in G} JaKG = {(u, v) | (u, a, v) ∈ G}
Jr1 · r2KG = Jr1KG ◦ Jr2KG Jr1 + r2KG = Jr1KG ∪ Jr2KG

Jr+KG = JrKG ∪ Jr ◦ rKG ∪ Jr ◦ r ◦ rKG ∪ · · · Jr∗KG = JεKG ∪ Jr+KG

where ai ∈ Σ, ri is a regular expression whose language is not equal to a single one letter word
over Σ, and x = {x1, . . . , xn} ⊆ {y1, z1, . . . , yk, zk} is a set of output variables. A CRPQ
without such regular expressions is simply a conjuntive query (CQ). Further, a CRPQ is full
if every variable yi, zi is also mentioned in x̄, and it is ε-free if none of the expressions ri

admit ε in their language. The expression to the right of the arrow is the body of query Q.
The semantics of a CRPQ Q, over a graph G is given via homomorphisms [1]. Namely,

a mapping µ : {x1, . . . , xn} → V is an output of Q over G when µ can be extended to the
variables of Q in such a way that for each i ∈ {1, . . . ℓ} Rai

(µ(yi), µ(zi)) holds, and for each
i ∈ {ℓ + 1, . . . k}, (µ(yi), µ(zi)) ∈ JriKG. We denote the set of all outputs with Eval(Q, G). A
CRPQ Q is compatible with a graph G if the graph features all relations mentioned in Q.

Cardinality Profiles. For a given graph database G, we use rs to denote the number of
nodes in G that can participate as starting points for a path labelled by r in G: it corresponds
to the union of each Rs of each relation R that labels a transition out of the initial state
of the automaton for r. Likewise, re is the union of each Re of each relation that labels a
transition into a final state of the automaton for r.

In order to reason about bounds on graph databases, we always assume access to some
basic statistics about the size of relations in the graph. Formally, the cardinality profile of a
graph database G over Σ with respect to a query Q includes the following cardinalities:
|V | the total number of nodes;
For each atom Ra(y, z) in Q, the number |Ra| of a-labelled edges;
For each atom r(y, z) in Q, with r a regular expression, the number rs of starting points
and re of final points participating in r.

To avoid extra notation, we also assume that a graph database G contains, in addition to
the edge relation, every unary relation of the form rs or re. Notice one can always add these
unary relations in linear time.

The AGM bound. Atserias, Grohe and Marx [4] link the size bound of a relational join
query to the optimal solution to a given linear program. In graph terms, let Q(x1, . . . , xn) ←∧

Rai
(yi, zi) be a full conjunctive query without self-joins, i.e, in which each ai is different,

and let G be a graph database where the size of each Rai is Ni. Atserias et. al. [4] show
that an optimal bound is achieved by considering the following linear program:

minimize
n∑

i=1
uRai logNi

where
∑

i : x appears in atom Rai

uRai ≥ 1 for each variable x in Q

uRai ≥ 0 for i = 1, . . . , m

(3)

Let us denote by ρ∗(Q, D) the optimal value of
∑n

i=1 uRai log Ni. The AGM bound [4]
can then be stated as follows.

ICDT 2023

13:6 Size Bounds and Algorithms for Conjunctive Regular Path Queries

▶ Theorem 1 (AGM bound). Let Q be a full CQ without self joins, D a database instance
and ρ∗(Q, D) the optimal solution of the associated linear program (3). Then,

|Eval(Q, D)| ≤ 2ρ∗(Q,D).

Furthermore, there are arbitrary large instances D for which we have |Eval(Q, D)| = 2ρ∗(Q,D).

We remark that all the results in this paper refer to data complexity, and thus the size of
CRPQs is treated as a constant throughout our analysis.

3 Size bounds for CRPQs

Path queries provide an interesting challenge when studying size bounds. Every path query
is a relation in itself, but in the worst case, a query like a+(x, y) may end up connecting all
nodes in Rs

a with all nodes in Re
a, thus invoking a quadratic jump in terms of the size of the

potential nodes matching to x and to y. For this reason, tight output bounds must take into
account the number of nodes that can participate as the starting point and the ending point
of the expressions mentioned in the queries. We show how to construct a modified linear
program, extending that of [4], that we use to provide our size bounds.

3.1 Motivation: underlying flat CQs
To see the intuition for our linear program, let us come back to query Q3(x, y, z) in Figure 3,
and consider a graph G. In order to bound the size of Eval(Q3, G), we reason in terms of the
size of Ja+KG. In the worst possible case, we have that Ja+KG = Rs

a ×Re
a, that is, any node

from Re
a can be reached from any node from Rs

a. It is then easy to see that the answers in
the evaluation Eval(Q3, G) will always be contained in what we call the flat CQ

flat(Q3)(x, y, z) ← Rs
a(x) ∧Re

a(y) ∧Rs
b(y) ∧Re

b(z) ∧Rc(x, z),

in which every path query is replaced by the cross product of two unary relations, the possible
starting nodes and the possible ending nodes. In fact, assuming each of Rs

a, Re
a, Rs

b and Re
b

are unary relations in G, we have that |Eval(Q3, G)| ≤ |Eval(flat(Q3), G)|, and this holds for
any graph G compatible with Q. Now flat(Q3) is a full CQ without self-joins, and we know
how to bound its output [4], which immediately results in an upper bound for Q3.

Interestingly, the focus on flat conjunctive queries has another intuitive reading. Coming
back to query Q2 from Figure 2, its flat version is simply a cross product of unary relations

Q2(x, y, z) ← Rs
a(x) ∧Re

a(y) ∧Rs
b(y) ∧Re

b(z).

For a graph G in which all of Rs
a, Re

a, Rs
b and Re

b have N nodes, we verify that |Eval(Q, G)| ≤
N3. This cubic bound is, in a sense, the most crude upper bound one could get for a
conjunctive query: it is simply the cross product of every vertex matching for x, y and z. It
just happens that when the labels joining x and y, and y and z are path queries, this crude
bound ends up being realistic.

But is it tight? We can show it is, and our size bounds end up enjoying several good
properties proved before for full join queries [4] or conjunctive queries [9]. Moving from this
simple example to arbitrary CRPQs, however, is not that easy, and we proceed in several
steps. In section 3.2 we start with a fragment of CRPQs for which the proof is simpler,
and the bounds much more elegant. This fragment corresponds to full CRPQs, without
self-joins or any repetition of labels between atoms, and whose RPQs are defined by ε-free

T. Cucumides, J. Reutter, and D. Vrgoč 13:7

expressions that admit at least one word of length 2. We call this fragment Simple CRPQs,
and the reason for starting with this fragment is that we can define the general upper and
lower bounds exactly in the same way they were defined for simple CQs by Atserias et al. in
their seminal paper[4]. We then extend our results to arbitrary CRPQs defined by ε-free
expressions, with the only caveat that our lower bound is now up to a constant that depends
on the query. We finish with CRPQs that may use expressions including ε, such as a∗, which
is one of the most common path query occurring in practice [6]. We deal with them by
separating into ε and ε-free parts, which we can then treat independently.

3.2 Simple CRPQs
To state our first result, we provide a formal definition of the aforementioned simple fragment.
A simple CRPQ is a full CRPQ of the form Q(x) ←

∧ℓ
i=1 Rai

(yi, zi) ∧
∧k

i=ℓ+1 ri(yi, zi)
with the following properties:

Each relation Rai
appears only once in Q (no self joins);

All regular expressions ri are ε-free and they contain a word of length at least 2;
If r and r′ are two different regular expressions in Q, then the set of all labels in the first
or last position of any word in the language of r is disjoint to that of r′.

As we hinted in the introduction, the idea is to extend the linear program of AGM with
one vertex variable for each endpoint of every atom r(x, y) in the query, which are then
constrained in the same fashion as edge variables. Alternatively, one can directly construct
the program for the corresponding flat query: it happens to be exactly the same program.

▶ Theorem 2 (Bound for simple CRPQs). Assume that the query Q(x) ←
∧ℓ

i=1 Rai
(yi, zi)∧∧k

i=ℓ+1 ri(yi, zi) is a simple CRPQ. Then for any graph G we have that

|Eval(Q, G))| ≤ 2ρ∗(Q,G)

where ρ∗(Q, G) is the optimal solution of the following linear program:

minimize
ℓ∑

i=1
uRai log |Rai

| +
k∑

i=ℓ+1
(uri

yi
log |rs

i |+ uri
zi

log |re
i |)

where
∑

i:x=yi∨i:x=zi

uRai +
∑

i:x=yi

uri
yi

+
∑

i:x=zi

uri
zi
≥ 1 for x ∈ x

uRai ≥ 0 for i ∈ [1, ℓ]
uri

yi
, uri

zi
≥ 0 for i ∈ [ℓ + 1, k]

(4)

Furthermore there are arbitrarily large instances for which

|Eval(Q, G))| ≥ 2ρ∗(Q,G).

The upper bound. The upper bound can be obtained using flat CQs. Let Q(x) be a simple
CRPQ. Its underlying flat query flat(Q) is the conjunctive query defined as:

flat(Q)(x) ←
ℓ∧

i=1
Rai(yi, zi) ∧

k∧
i=ℓ+1

rs
i (yi) ∧ re

i (zi)

Recall we assume for simplicity that each rs and re is an unary predicate already present
in G. The following is now easy to check:

ICDT 2023

13:8 Size Bounds and Algorithms for Conjunctive Regular Path Queries

▶ Lemma 3. Eval(Q, G) ⊆ Eval(flat(Q), G), with Q a simple CRPQ.

Since the linear programs of both flat(Q) (as in [4]) and Q (as in the statement of Theorem 2)
coincide, and 2ρ∗(flat(Q),G) is an upper bound for Eval(flat(Q), G), this immediately proves
the upper bound of Theorem 2.

The lower bound. We will prove the lower bound by constructing an instance out of the
dual program for Q. Let us first illustrate the tightness of the bound via the means of an
example. Consider again query Q3(x, y, z) ← a+(x, y), b+(y, z), Rc(x, z).

The linear program for this query is as seen in (1) and the corresponding dual is:

maximize: vx + vy + vz

subject to: vx + vz ≤ log |Rc|
vx ≤ log |(a+)s| vy ≤ log |(a+)e|
vy ≤ log |(b+)s| vz ≤ log |(b+)e|

vx, vy, vz ≥ 0

Consider an optimal solution x for the primal and (for duality) a solution to the dual
(vx, vy, vz) such that ρ∗(Q, D) = vx + vy + vz. Now we want to build an instance G such
that Eval(Q, G) = 2ρ∗(Q,G) with |(a+)s| = 2vx , |(a+)e| = 2vy , |Rs

b | = 2vy , |(b+)e| = 2vz and
|Rc| = 2vx+vz . The instance is defined as follows,

We have a special vertex ⋆ and 3 sets of vertices: |Vx| = 2vx , |Vy| = 2vy , |Vz| = 2vz such
that Vx ∩ Vy ∩ Vz = {⋆}
Add edges (x, c, z) for every pair of nodes (x, z) ∈ Vx × Vz

Add edges (x, a, ⋆) for every x ∈ Vx and edges (⋆, a, y) for y ∈ Vy

Finally, add edges (y, b, ⋆) for y ∈ Vy and (⋆, b, z) for z ∈ Vz.
By the dual restrictions, we can check that the cardinalities are equal or smaller than we
wanted (if they’re smaller we can add random edges as this can only increase the number
of tuples of Eval(Q, G))). Also we can check that |Eval(Q, G))| = 2vx+vy+vz since we
have all tuples (x, y, z) with x ∈ Vx, y ∈ Vy and z ∈ Vz in the result. We conclude that
|Eval(Q, G))| = 2ρ∗(Q,G).

Now we formalize this construction for any simple CRPQ:

Proof of Theorem 2, lower bound. As before, we use the dual program of equation (4)

maximize:
∑
x∈x

vx

subject to: vyi + vzi ≤ log |Rai |, i = 1, . . . , ℓ

vyi
≤ log |rs

i |, i = ℓ + 1, . . . , k

vzi
≤ log |re

i |, i = ℓ + 1, . . . , k

vx ≥ 0, x ∈ x

Consider an instance with cardinalities |Rai
| = Ni for i ∈ [1, ℓ], |rs

j | = Ns
j and |re

j | = Ne
j for

j ∈ [ℓ + 1, k]. By duality, for any solution u to the primal and v for the dual, we have that

ℓ∑
i=1

uRai log |Rai
|+

k∑
i=ℓ+1

(uri
yi

log |rs
i |+ uri

zi
log |re

i |) ≥
∑
x∈x

vx,

T. Cucumides, J. Reutter, and D. Vrgoč 13:9

with equality when the solutions are optimal. Let us assume that all Ni, Ns
i and Ne

i are of
the form 2Li for some Li ∈ N so the optimal solution of both the primal and dual are rational.
Let v be the dual solution and write each vx as px/q. Then p is an optimal solution to the
linear program with cardinalities Nq

i . Now we present a graph database G with |Ri| = Nq
i ,

|rs
i | = (Ns

i)q and |re
i | = (Ne

i)q such that |Eval(Q, G)| ≥ 2ρ∗(Q,G).

The vertices of G is the union of sets Vx = {1, . . . , 2vx} for each x ∈ x. Also consider a
vertex ⋆ that is part of every Vx.
For every atom Rai

(yi, zi) in Q, add to G one edge (u, ai, v) for every pair (u, v) in
Vyi
× Vzi

.
For every atom ri(yi, zi) in Q, choose an arbitrary word πi = ai1 . . . aiN

of length at least
2 in the language of ri and

Add to G the edges (u, ai1 , ⋆) for each u ∈ Vyi
.

Add to G edges (⋆, aij ⋆) for every j ∈ [2, N − 1].
Add to G the edges (⋆, aiN

, v) for each v ∈ Vzi .

From the construction we verify that:

|Rai
| = 2vyi

+vzi ≤ 2q log Ni = Nq
i ∀i ∈ [1, ℓ]

|rs
i | = 2vyi ≤ 2q log Ns

i = (Ns
i)q ∀i ∈ [ℓ + 1, k]

|re
i | = 2vzi ≤ 2q log Ne

i = (Ne
i)q ∀i ∈ [ℓ + 1, k]

Further, we also verify that Eval(Q, G) contains all tuples t ∈ Vx1 × · · · × Vxn
. Now we

add random edges and vertices such that |Ri| = Nq
i , |rs

i | = (Ns
i)q and |re

i | = (Ne
i)q. We now

have a graph G with the desired cardinality profile for which:

|Eval(Q, G)| ≥
l∏

i=1
|Rai |u

Rai

m∏
i=l+1

|rs
i |u

ri
yi · |re

i |u
ri
zi = 2

∑
x∈x

vx ◀

As in Atserias et al., we also show that the instances satisfying the lower bound can be
constructed with a certain degree of regularity, in which all cardinalities are equal.

▶ Corollary 4. Given a simple CRPQ Q, we can build an arbitrarily large instance G such
that |Eval(Q, G))| ≥ 2ρ∗(Q,G) with |Rai | = |rs

j | = |re
j | for every relation i and j such that

uRai > 0, u
rj
yj > 0 and u

rj
zj > 0.

Unfortunately, not every combination of cardinalities of relations and vertices can be
shown to produce tight bounds. However, as in [4], we can show the following: Let Q be a
simple CRPQ and G a graph. Then there exists a graph G′ with the same cardinalities as G

in all vertices and relations mentioned in Q, such that Eval(Q, G′)| ≥ 2ρ∗(Q,G)−n, where n is
the number of attributes of Q. As for CQs, this is essentially the best we can get.

3.3 Bound for arbitrary ε-free CRPQs
Gottlob et al. study how to go from relational join queries to CQs [9], and the same techniques
can be used for obtaining size bounds for ε-free CRPQs, even if they feature projections,
repetition of variables, or expressions allowing only words of size 1. Bounds remain tight,
except this time they are tight up to a factor that does depend on the query (but not the
data) in a polynomial way. We first show how to handle arbitrary full CRPQs that are ε-free
(and not just the simple ones), and then move to CRPQs that project out some variables.

ICDT 2023

13:10 Size Bounds and Algorithms for Conjunctive Regular Path Queries

From full to simple CRPQs. We first show that for a full CRPQ Q that is also ε-free, and a
graph database G compatible with Q, we can construct a simple CRPQ Q′, and an instance
G′ compatible with Q′ such that Eval(Q, G) = Eval(Q′, G′). The translation from Q to Q′

has to deal with repeated labels/relations, and also with expressions that accept only words
of length 1. For this, we first, replace every appearance of a relation Ra or label a in any
atom of Q with a fresh relation or label not used elsewhere in the query. Next, replace any
atom of the form ri(yi, zi) where ri = (a1|a2| . . . |ak) (i.e. an expression accepting only words
of size 1), with an atom Rri(yi, zi), where Rri is a fresh relation. Translation from a graph
G compatible with Q, to a graph G′ compatible with Q′ is constructed by assigning every
copy of Ra (introduced in the construction of Q′) the same tuples as Ra, and by assigning to
Rr, for an expression r = (a1|a2| . . . |ak), the tuples in the union of all Ra1 , . . . , Rak

. Other
relations are the same as in G. We call (Q′, G′) the simplified version of (Q, G)

▶ Proposition 5 (full CRPQs). Consider a full CRPQ of form (2) in which every ri is ε-free.
For this query we have that |Eval(Q, G)| = |Eval(Q′, G′)| ≤ 2ρ∗(Q′,G′), where Q′ and G′ the
simplified version of Q and G. Furthermore, one can construct arbitrarily large instances G

such that |Eval(Q, G)|2p(|Q|) ≥ 2ρ∗(Q′,G′) where p(|Q|) is a polynomial that depends exclusively
on Q.

Bounds for projections of full, ε-free CRPQs. Consider a (non-full) ε-free CRPQ of the
form

P (x0) ← Q(x), (5)

with x0 ⊊ x, and where Q is full and ε-free. From our previous result, we know that
Eval(Q, G) is always bounded by 2ρ∗(Q′,G′), where Q′ and G′ constructed as above. As in [9],
we consider a relaxation of the linear program for Q′, in which we only keep those restrictions
that refer to variables of Q (and Q′) that are in x0. Formally, we denote by 2ρ∗

x0
(Q′,G′) the

optimal solution of a modified linear program for Q′ and G′, where in the restrictions of (4)
we only consider those referring to x0. We then have:

▶ Proposition 6 (Queries with projections [9]). Given an CRPQ P of the form (5) then for
every graph database instance G we have that |Eval(P, G)| ≤ 2ρ∗

x0
(Q′,G′). Moreover, there

are arbitrarily large instances G such that |Eval(P, G)|2p(|Q|) ≥ 2ρ∗
x0

(Q′,G′), where p(|P |) is a
polynomial that depends exclusively on P .

3.4 Dealing with ε

As we have mentioned, the evaluation of the expression ε over a graph G = (V, E) contains
the diagonal D = {(v, v) | v ∈ V }. Thus, the evaluation of expressions containing ε, such as
a∗, are somehow the union of two different sets of results. On one hand there is the ε-free
part, that we know how to deal with, and on the other there is ε, which behaves more like a
relation, albeit drawing pairs only from the diagonal D.

The expression ε. Consider the triangle query Q4(x, y, z) ← Ra(x, y) ∧Rb(y, z) ∧ ε(x, z),
featuring two edge labels and the regular expression ε. One can check that Q4 is equivalent
to Ra(x, y) ∧Rb(y, z) ∧ εs(x) ∧ εe(z) ∧ x = z. What we have done is to produce an analogue
of the flat version of CRPQs, and we use the equalities to force the flat part to map only to
the diagonal. We further transform this query by noting that εs = εe = V , and chasing away
the equality, obtain the query Ra(x, y) ∧Rb(y, x) ∧ V (x), which always produces the same

T. Cucumides, J. Reutter, and D. Vrgoč 13:11

number of tuples as Q4. Hence, dealing with epsilon involves (1) transforming every atom
ε(x, y) into two unary atoms V (x), V (y) (to be interpreted as V), plus the corresponding
equality x = y, and (2) chasing away such equalities. It is not difficult to see that both of
these operations do not alter the size of the outputs of queries; the transformation always
yields an equivalent query, save for the case when the arity of the query is reduced when
chasing the equalities.

Formally, assume that Q is a CRPQ, and let Q\ε be the query in which each atom ε(x, y)
is replaced for the construct V (x) ∧ V (y) ∧ x = y. Assuming V is interpreted as the set of
vertices in every graph G = (V, E), we have:

▶ Lemma 7. For every CRPQ Q and graph G, Eval(Q, G) = Eval(Q\ε, G)

Further, let Q be a CRPQ with equalities, i.e, additional atoms of the form x = y, where
both x and y appear in a non-equality atom in Q. Let chase(Q) be CRPQ resulting by
repeatedly replacing variable y for variable x for each atom x = y in the query. We have:

▶ Lemma 8. For every CRPQ Q and graph G, |Eval(Q, G)| = |Eval(chase(Q), G)|

In order to formally state the bound for queries with ε, we use again query Q′ and graph
G′ constructed in the previous subsection, as well as the solution 2ρ∗

x0
(Q′,G′) for the modified

linear program for Q′ and G′.

▶ Proposition 9. Let P (x0) be a CRPQ in which every regular expression is either ε, or
is ε-free, and G a graph, and assume that the body of chase(P \ε) is of the form Q(x), with
x0 ⊆ x. Then for every graph database instance G we have that |Eval(P, G)| ≤ 2ρ∗

x0
(Q′,G′).

Moreover, there are arbitrarily large instances G such that |Eval(P, G)|2p(|P |) ≥ 2ρ∗
x0

(Q′,G′),
where p(|P |) is a polynomial that depends exclusively on P .

Arbitrary RPQs. Arbitrary RPQs such as a∗ are not so easy to deal with, as they represent,
somehow, the union of the diagonal database and an ε-free CRPQ. Consequently, we will
look into splitting CRPQs into parts with ε and parts without it. For a given CRPQ
Q, let rℓ1 , . . . , rℓp

be the RPQs in Q that accept ε. We define the family of split queries
Q[S], for S ⊆ {ℓ1, . . . , ℓp}, as follows. For each rℓ, ℓ ∈ {ℓ1, . . . , ℓp}, find a decomposition
rℓ = ε + r̂ℓ, where r̂ℓ is ε-free. Then atom rℓ(yℓ, zℓ) is replaced by r̂ℓ(yℓ, zℓ), if ℓ ∈ S, or by
Kℓ(yℓ) ∧Kℓ(zℓ) ∧ yℓ = zℓ, where Kℓ is a fresh relation symbol, if ℓ /∈ S.

Now augment any graph G to make it compatible with any Q[S] by adding relation
Kℓ = {a | a /∈ r̂s

ℓ ∩ r̂e
ℓ} for each ℓ ∈ {ℓ1, . . . , ℓp}. It is not too difficult to prove that

|Eval(Q, G)| ≤
∑

S⊆{ℓ1,...,ℓp} |Eval(flat(Q[S]), G)|, and we can further turn this property into
an output bound for queries1.

▶ Proposition 10. Let Q be a CRPQ. For any graph G we have that |Eval(Q, G)| ≤∑
S⊆{ℓ1,...,ℓp} 2ρ̂∗(Q[S],G), where Q[S] are queries split from Q, and 2ρ̂∗(Q[S],G) is the size

output bound shown for Q[S], in Proposition 9. Moreover, there are arbitrarily large graphs
for which this bound is tight.

One important caveat of this result is that the instances showing that the bound is tight
work by constructing graphs G in which, for every expression rℓ = ε + r̂ℓ, we verify that
JεKG ⊆ Jr̂ℓKG.

1 For CRPQs with equalities, flat(Q) is defined just as before, all equalities are maintained.

ICDT 2023

13:12 Size Bounds and Algorithms for Conjunctive Regular Path Queries

4 WCO algorithms for CRPQs

In this section we deal with algorithms for computing CRPQs. Ideally, one would expect
an algorithm that runs in the worst-case optimal bound from Theorem 2 (and subsequent
generalizations). We call such an algorithm worst-case optimal, or wco algorithm for short.
Unfortunately, as we review below, bounds from Casel and Schmid [7] directly imply that
such algorithms do not exist under usual complexity assumptions. In the light of this,
we establish a baseline which amounts to first computing all the answers to the regular
expressions mentioned in our query, materializing them, and running a classical wco algorithm
(e.g. GenericJoin [13]) on these materialized relations. We show that a modification of the
GenericJoin algorithm of [13] can approach the optimal performance of our baseline for
many CRPQs. As is usual in algorithms for relational/graph queries, we will assume all our
queries to be full.

4.1 WCO algorithms for CRPQs may not exist
Casel and Schmid show lower bounds for the problem of evaluating a single RPQ [7].
Specifically, for a graph G = (V, E), and a (regular path) query Q(x, y) ← r(x, y), they
prove that any algorithm capable of evaluating Q over G in time O(|V |ωf(|Q|)) can also be
used to solve the Boolean Matrix Multiplication (BMM) problem: given two square matrices
A and B of size n, compute the product matrix A×B, in time O(nω). In particular, this
means that a quadratic algorithm for computing path queries does not exist unless the BMM
hypothesis is false, and if we accept the weaker combinatorial BMM hypothesis [17], then no
subcubic algorithm exists for computing Q. Since the answers to Q are clearly bounded by
|V |2, then we cannot hope for a worst-case optimal algorithm in this case.

A natural question is what happens with CRPQs that mix both path queries and
relations in their edges. Perhaps the relations help soften the underlying complexity of the
problem? Unfortunately, this is not the case. To see this, consider query Q(x, y, z) ←
Ra(x, y) ∧ Sb(y, z) ∧ r(x, z), where r is any regular expression. Given a graph G in which
|Ra| = |Sb| = n, our results tell us that the answer of Q over G contains at most O(n2) tuples,
and thus a worst-case algorithm must evaluate Q in time O(n2). But this algorithm can then
be used to compute the answers for r over a graph G = (VG, EG), where VG contains at least
n nodes v1, . . . , vn. For this, we construct a graph database G′ = (VG ∪ {1}, EG′), where
Ra = {(vi, 1) | 1 ≤ i ≤ n}, Sb = {(1, vi) | 1 ≤ i ≤ n} and where the rest of the relations are
as in G. Then a tuple (vi, 1, vj) is in Eval(Q, G′) if and only if (vi, vj) is an answer to r on G.

▶ Proposition 11. An algorithm capable of computing the answers of every simple CRPQ Q

over a graph G in time O(2ρ∗(Q,G)) refutes the BMM hypothesis.

Having ruled out the possibility of worst-case optimal algorithms, let us review what can
we do with existing techniques.

As our baseline, we establish a rather naive algorithm, called FullMaterialization,
which evaluates a CRPQ Q over a graph database G as follows:
1. Compute the answer of each RPQ r appearing in Q over G.
2. Materialize all of these binary relations and add them to G.
3. Use a (relational) wco algorithm (e.g. GenericJoin [13]) to compute the query answer.
In the final step, each RPQ is now simply treated as a relation that we have previously
computed. This algorithm runs in time bounded by the time to compute the RPQs from
Q, and the AGM bound of the query. However, the algorithm may require memory that is
quadratic in terms of the nodes in the graph, to be able to store the results of RPQs.

T. Cucumides, J. Reutter, and D. Vrgoč 13:13

While reasonable, this algorithm has practical issues: the quadratic memory footprint
may be too big to store in memory, and we may be performing useless computations because
most pairs in the answers of RPQs may not even match to the remainder of patterns. Memory
usage may be alleviated by clever usage of compact data structures, as in e.g. [3], but we
take a different approach.

In what follows, we impose that algorithms may only use O(|V |) memory, for G = (V, E).
Since Proposition 11 rules out strict wco algorithms, our goal is to devise algorithms that
are capable of achieving the running time of FullMaterialization, but using just linear
memory (in data complexity). To analyse the running time of the algorithm, we first introduce
some notation. For a CRPQ Q and a graph database G, with AGM(Q, G) we denote the
bound for maximal size of Eval(Q, G′), over all graphs G′ that have the same cardinality
profiles as G (this includes both the cardinalities of all the relations, as well as the projections
on starting and ending points of these). The time complexity of FullMaterialization for
a query Q, over a graph G = (V, E), is bounded by O(|V |3 + AGM(Q, G)), where the cubic
factor accounts to materializing all the RPQs in Q.

4.2 GenericJoin for CRPQs
In order to avoid materializing relations which are potentially quadratic in the size of the
graph, we can utilize a simple idea: compute RPQs on-demand, the first time such an
answer is needed. For this, we will adapt the (relational) wco algorithm GenericJoin
of [13], so that it processes regular relations as needed. As we will see, this approach gives
us good running time even when the memory is constrained, and can actually run under the
FullMaterialization time bounds for a broad class of queries. For CRPQs, however, the
order of variables we work with has striking implications on the efficiency of the algorithm.

If Q(x) ←
∧ℓ

i=1 Rai
(yi, zi) ∧

∧k
i=ℓ+1 ri(yi, zi) is a full CRPQ, and G a graph database,

then Algorithm 1 defines GenericJoinCRPQ(Q, G), a generalization of the GenericJoin
wco algorithm from the relational setting to graphs and (full) CRPQs. Similarly as in [13],
we assume an order on the variables of Q, and start to recursively strip one variable at a
time. For a selected variable, we compute all the nodes that can be bound to this variable
(line 5). Then we iterate over these nodes one by one, compute RPQs as needed, adding
them to the database (lines 9–11 and 12–14), and proceed recursively (line 15). For the base
case when we have only one variable, we simply complete the missing values (line 4).

Analysis. So how does this algorithm compare to FullMaterialization? Well, this is
heavily dependent on the CRPQ we are processing. As an example, consider again the triangle
query with two RPQs, Q3(x, y, z) ← a+(x, y)∧b+(y, z)∧Rc(x, z) as in Figure 3, and consider
a graph G in which |Rc| = N and all starting and ending points of RPQs a+ and b+ have
cardinality M . Here FullMaterialization runs in time O(M3 + MN), but with quadratic
memory (the first part of the sum is for computing answers of RPQs, the second part is the
max number of outputs of the query). On the other hand, GenericJoinCRPQ achieves the
same bound, but using only linear memory. To see this, let us assume the first chosen variable
is y. As per line 5, we first iterate over all possible vertices v in L = b+s ∩ a+e. For each
such value, we compute sets a+[v] = {v′ | (v′, v) ∈ Ja+KG} and b+[v] = {v′ | (v, v′) ∈ Jb+KG},
storing these in memory and adding them to Ĝ (here Ĝ is the augmented graph storing these
relations). We then process the query Q̂(x, v, z) ← a+[v](x) ∧ b+[v](z) ∧Rc(x, z) over the
augmented graph Ĝ. This query does not feature regular expressions, so we can compute
its answers using GenericJoin(Q̂, Ĝ) from [13]. Further, the AGM bound for Q̂(x, v, z)
is N , so the algorithm computes the answers in O(N). Thus, the total running time is in

ICDT 2023

13:14 Size Bounds and Algorithms for Conjunctive Regular Path Queries

Algorithm 1 GenericJoinCRPQ(Q, G).

1: ▷ Q May have unary relations of the form r[v], from previous recursive iterations.
2: A← ∅
3: if |x| = 1 then
4: return Eval(Q, G)
5: Pick a variable x ∈ x ▷ We compute into L nodes that can potentially map to x

6:

L←
⋂

R(x,z)∈Q

Rs
⋂

R(y,x)∈Q

Re
⋂

r(x,z)∈Q

rs
⋂

r(y,x)∈Q

re
⋂

r[v](x)∈Q

r[v]

7: for v ∈ L do
8: Q̂← Q[x/v], Ĝ← G ▷ We instantiate x to v in Q̂

9: for each atom r(v, z) ∈ Q̂ do ▷ Compute answers to r(v, z), store them in r[v](z)
10: Ĝ← G ∪ r[v], with r[v] = {v′ | (v, v′) ∈ JrKG}
11: replace r(v, z) for r[v](z) in Q̂

12: for each atom r(y, v) ∈ Q̂ do ▷ Compute answers to r(y, v), store them in r[v](y)
13: Ĝ← G ∪ r[v], with r[v] = {v′ | (v′, v) ∈ JrKG}
14: replace r(y, v) for r[v](y) in Q̂

15: A[v]← GenericJoinCRPQ(Q̂, Ĝ)
16: A← A ∪ {v} ×A[v]
17: return A

O(|L| · (M2 + N)) = O(M · (M2 + N)). Again, the first part of the sum is for computing the
answers of the path queries, the second part for evaluating Q̂. Importantly, this uses linear
memory, as we refresh a+[v] and b+[v] after each new value in L.

So far good news, we managed to avoid quadratic memory at virtually no cost. Unfortu-
nately, we cannot avoid it for all queries. Let us consider the triangle query but now with
three RPQs: Q(x, y, z) ← a+(x, y)∧ b+(y, z)∧ c+(x, z). The cardinalities of all starting and
endpoints will be N and let us assume that the first chosen variable is y so the computation
goes as in the example above, except that Q̂(x, v, z) ← a+[v](x)∧b+[v](z)∧c+(x, z) will still
have one more RPQ to compute and therefore the running time will be in O(N · (N2 + N3)).
It is easy to see that all possible orders for this query will result in the same algorithm: for
this query we cannot avoid having to nest at least the computation of two RPQs.

In the best case, thus, GenericJoinCRPQ does run in the sought after FullMate-
rialization time bounds. But for certain queries and orderings, the algorithm resorts to
computing each RPQ on demand, which implies a much slower O(AGM(Q, G) · |V |2) bound.

Queries for which GenericJoinCRPQ is efficient. As we have seen, the problem in our
algorithm is that nesting the evaluation of RPQs is often too costly, and sends us above the
FullMaterialization bound. As it turns out, we can characterize the types of queries
for which the nesting can be avoided, and introduce a version of GenericJoinCRPQ that
takes advantage of this structure.

For this, we will require the query Q is such that its RPQ components form a bipartite
graph. More formally, assume that we have a full CRPQ Q(x) ←

∧ℓ
i=1 Rai(yi, zi) ∧∧k

i=ℓ+1 ri(yi, zi). We will say that Q is RPQ-bipartite, if the graph Gr(Q) = (Vr, Er), with
Vr =

⋃k
i=ℓ+1{yi, zi}, and Er = {(yi, zi) | i = ℓ + 1, . . . , k}, is bipartite. We call the graph

T. Cucumides, J. Reutter, and D. Vrgoč 13:15

Algorithm 2 GenericJoinCRPQ-Bipartite(Q, G, x1).

1: A← ∅
2: if |x| = 1 then
3: return Eval(Q, G)
4: L← GenericJoin(Qx1 , G)
5: for tx1 ∈ L do
6: for i ∈ [ℓ + 1, k] do
7: if yi ∈ x1 then ▷ processing ri(yi, zi)
8: ri[v]← {v′ | (v, v′) ∈ JriKG}
9: Replace ri(yi, zi) in Q̂ for ri[v](zi)

10: else ▷ bipartite implies zi ∈ x1
11: ri[v]← {v′ | (v′, v) ∈ JriKG}
12: Replace ri(yi, zi) in Q̂ for ri[v](yi)
13: Ĝ← G ∪ ri[v]
14: A[tx1]← GenericJoin(Q̂, Ĝ)
15: A← A ∪ {tx1} ×A[tx1]
16: return A

Gr(Q) the RPQ-graph of Q. Assume that Q is RPQ-bipartite and let x1, x − x1 be a
bipartiton of the RPQ-graph of Q. Then evaluating Q over a graph database G can be done
via Algorithm 2, which generalizes GenericJoinCRPQ so that it takes the advantage of
the bipartite structure of Q. Here for a CRPQ Q, and a set of variables x1, with Qx1 we
denote the CRPQ Q restricted to conjuncts using only the variables in x1. Notice that, given
that x1 partitions the RPQ-graph of Q, the query Qx1 contains only relations and no RPQs.

Algorithm GenericJoinCRPQ-Bipartite generalizes Algorithm 1 by taking the first
partition of vertices to be a partition that forms a bipartition in the RPQ-graph of the query.
This allows us to instantiate the starting vertices from which all the RPQs in Q will be
computed. Intuitively, the existence of a bipartition in the RPQ-graph of the query allows us
to divide the query into two subqueries with no RPQs and by this avoid having to compute
nested RPQs.

In order to show that the algorithm is correct and to analyse its running time, we
decompose the algorithm in three parts:
1. First, we compute the tuples tx1 in the answer of Qx1 using the relational GenericJoin

(line 4).
2. For every tuple tx1 we compute all the associated regular expressions (lines 5–13).
3. We compute the rest of the join (involving the variables in x − x1 with the relational

GenericJoin (line 14).
In the worst case, we must perform AGM(Qx1 , Gx1) computations of every regular expression
ri. Therefore, the total cost is in O(AGM(Qx1 , Gx1) × |V |2) (the |V |2 being the cost of
computing the RPQs). Next, we also need to evaluate the remaining (conjunctive) query
over variables x− x1. This takes time in O(AGM(Qx−x1 , Gx−x1)). We obtain the following.

▶ Theorem 12. Let Q(x) be a CRPQ such that its RPQ-graph is bipartite, and let x′, x′′ be an
RPQ-bipartition, with |x′| ≤ |x′′|. Then the running time of GenericJoinCRPQ-Bipartite
over Q and a graph G = (V, E) is

AGM(Qx′ , G) · |V |2 + AGM(Qx′′ , G).

ICDT 2023

13:16 Size Bounds and Algorithms for Conjunctive Regular Path Queries

In order to reach the running time of FullMaterialization we need the query to be
even further restricted. In particular, if the bipartition is such that one side contains a single
variable, then the algorithm is equivalent to fixing a vertex in this variable, computing all
the RPQs in Q from this vertex (by the property of bipartition, no other vertex exists), and
then joining the rest using GenericJoin. This gives us the following.

▶ Corollary 13. When the RPQ-graph of a CRPQ Q is bipartite and it admits a partition x′,
x′′ with min{|x′|, |x′′|} = 1, the running time of GenericJoinCRPQ-Bipartite is equal to
FullMaterialization.

Hence, for these types of CRPQs we can achieve running time of FullMaterialization
using only linear memory. It is not difficult to show that GenericJoinCRPQ-Bipartite
does not run under the FullMaterialization bound when queries are not of this specific
shape. In general, we conjecture that this bound (under memory constraints) is not attainable
when graphs are not RPQ-bipartite; solving this problem opens up an interesting line of
work into space-time tradeoffs for computing the answers of a CRPQ.

5 Conclusions and future work

Our paper provides techniques for understanding size bounds of CRPQs, and makes use of
these techniques to inform better algorithms for evaluating CRPQs. Our work also opens
up several lines of work regarding CRPQs, size bounds and algorithms. A first important
problem is to verify that GenericJoinCRPQ-Bipartite works well in practice, and enjoys
as big success as standard worst-case optimal algorithms in graph databases. Of course,
moving beyond RPQ-bipartite queries would require either new algorithms, or proving that
the bounds offered by GenericJoinCRPQ cannot be improved. Further, there are several
questions regarding tight bounds for complex classes of queries. In particular, our bounds
for CRPQs with ε or RPQs accepting ε are only shown for very structured graphs where all
relations share the same vertices, and it would be good to show that the bound remains to
hold under arbitrary cardinalities.

References
1 Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj

Vrgoc. Foundations of Modern Query Languages for Graph Databases. ACM Comput. Surv.,
50(5):68:1–68:40, 2017.

2 Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-Ledesma, and
Adrián Soto. Worst-case optimal graph joins in almost no space. In Guoliang Li, Zhanhuai Li,
Stratos Idreos, and Divesh Srivastava, editors, SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20-25, 2021, pages 102–114. ACM, 2021.

3 Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, and Javiel Rojas-Ledesma. Time-and
space-efficient regular path queries on graphs. arXiv preprint, 2021. arXiv:2111.04556.

4 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational
joins. SIAM J. Comput., 42(4):1737–1767, 2013.

5 Pablo Barceló Baeza. Querying graph databases. In Proceedings of the 32nd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013, New York,
NY, USA – June 22–27, 2013, pages 175–188, 2013.

6 Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study of large SPARQL
query logs. VLDB J., 29(2-3):655–679, 2020.

7 Katrin Casel and Markus L. Schmid. Fine-grained complexity of regular path queries. In
24th International Conference on Database Theory, ICDT 2021, March 23-26, 2021, Nicosia,
Cyprus, pages 19:1–19:20, 2021.

http://arxiv.org/abs/2111.04556

T. Cucumides, J. Reutter, and D. Vrgoč 13:17

8 Michael J. Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann.
Adopting worst-case optimal joins in relational database systems. Proc. VLDB Endow.,
13(11):1891–1904, 2020.

9 Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. Size and treewidth
bounds for conjunctive queries. J. ACM, 59(3):16:1–16:35, 2012.

10 Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrián Soto. A worst-case optimal join
algorithm for SPARQL. In The Semantic Web – ISWC 2019 – 18th International Semantic
Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part I, pages
258–275, 2019.

11 Thomas Neumann and Gerhard Weikum. Rdf-3x: a risc-style engine for rdf. Proceedings of
the VLDB Endowment, 1(1):647–659, 2008.

12 Thomas Neumann and Gerhard Weikum. The rdf-3x engine for scalable management of rdf
data. The VLDB Journal, 19(1):91–113, 2010.

13 Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new developments in the
theory of join algorithms. SIGMOD Rec., 42(4):5–16, 2013.

14 Dung Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q Ngo, Christopher
Ré, and Atri Rudra. Join processing for graph patterns: An old dog with new tricks. In
Proceedings of the GRADES’15, pages 1–8. ACM, 2015.

15 Jena Team. TDB Documentation, 2021. URL: https://jena.apache.org/documentation/
tdb/.

16 Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Nicole
Schweikardt, Vassilis Christophides, and Vincent Leroy, editors, Proc. 17th International
Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014, pages 96–106.
OpenProceedings.org, 2014.

17 Virginia Vassilevska Williams and R Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. Journal of the ACM (JACM), 65(5):1–38, 2018.

18 Peter T. Wood. Query languages for graph databases. SIGMOD Rec., 41(1):50–60, 2012.

ICDT 2023

https://jena.apache.org/documentation/tdb/
https://jena.apache.org/documentation/tdb/

Uniform Reliability for Unbounded
Homomorphism-Closed Graph Queries
Antoine Amarilli # Ñ

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Abstract
We study the uniform query reliability problem, which asks, for a fixed Boolean query Q, given
an instance I, how many subinstances of I satisfy Q. Equivalently, this is a restricted case of
Boolean query evaluation on tuple-independent probabilistic databases where all facts must have
probability 1/2. We focus on graph signatures, and on queries closed under homomorphisms. We
show that for any such query that is unbounded, i.e., not equivalent to a union of conjunctive queries,
the uniform reliability problem is #P-hard. This recaptures the hardness, e.g., of s-t connectedness,
which counts how many subgraphs of an input graph have a path between a source and a sink.

This new hardness result on uniform reliability strengthens our earlier hardness result on
probabilistic query evaluation for unbounded homomorphism-closed queries [2]. Indeed, our earlier
proof crucially used facts with probability 1, so it did not apply to the unweighted case. The new
proof presented in this paper avoids this; it uses our recent hardness result on uniform reliability for
non-hierarchical conjunctive queries without self-joins [3], along with new techniques.

2012 ACM Subject Classification Theory of computation → Database query processing and opti-
mization (theory)

Keywords and phrases Uniform reliability, #P-hardness, probabilistic databases

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.14

Related Version Full Version: https://arxiv.org/abs/2209.11177 [1]

Funding Partially supported by the ANR project ANR-18-CE23-0003-02 (“CQFD”).

Acknowledgements I am grateful to Mikaël Monet, Charles Paperman, and Martin Retaux for
helpful discussions about this research. Thanks to the reviewers for their helpful feedback.

1 Introduction

A long line of research [14] has investigated how to extend relational databases with probability
values. The most common probabilistic model, called tuple-independent databases (TID),
annotates each fact of the input database with an independent probability of existence.
The probabilistic query evaluation (PQE) problem then asks for the probability that a fixed
Boolean query is true in the resulting product distribution on possible worlds. The PQE
problem has been historically studied for conjunctive queries (CQs) and unions of conjunctive
queries (UCQs). This study led to the dichotomy result of Dalvi and Suciu [5], which
identifies a class of safe UCQs for which the problem can be solved in PTIME:

▶ Theorem 1.1 ([5]). Let Q be a UCQ. Consider the PQE problem for Q which asks, given
a TID I, to compute the probability that Q holds on I. This problem is in PTIME if Q is
safe, and #P-hard otherwise.

This result has been extended in several ways, to apply to some queries featuring
negation [6], disequality (̸=) joins [10], or inequality (<) joins [11]. More recently, two new
directions have been explored. First, our work with Ceylan [2] extended the study from UCQs
to the broader class of homomorphism-closed queries. This class captures recursive queries
such as regular path queries (RPQs) or Datalog (without inequalities or negation). In [2], we

© Antoine Amarilli;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antoine.amarilli@telecom-paris.fr
https://a3nm.net/
https://orcid.org/0000-0002-7977-4441
https://doi.org/10.4230/LIPIcs.ICDT.2023.14
https://arxiv.org/abs/2209.11177
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

focused on homomorphism-closed queries that were unbounded, i.e., not equivalent to a UCQ.
We showed that PQE is #P-hard for any such query, though for technical reasons the result
only applies to graphs, i.e., arity-two signatures. This extended the above dichotomy to the
full class of homomorphism-closed queries (on arity-two signatures).

Second, the dichotomy has been extended from PQE to restricted problems which do not
allow arbitrary probabilities on the TID. Kenig and Suciu [8] have shown that the dichotomy
of [5] still held for the so-called generalized model counting problem, where the allowed
probabilities on tuples are only 0 (the tuple is missing), 1/2, or 1; this is in contrast with the
original proof of the dichotomy, which uses arbitrary probabilities. Our result in [2] already
held for the generalized model counting problem. What is more, for a subclass of the unsafe
queries, they showed that hardness still held for the model counting problem, where the
probabilities are either 0 or 1/2. Independently, with Kimelfeld [3], we have shown hardness
of the same problem for the incomparable class of non-hierarchical CQs without self-joins.
Rather than model counting, we called this the uniform reliability (UR) problem, following
the terminology in the work of Grädel, Gurevich, and Hirsch [7].

In our opinion, this uniform reliability problem is interesting even outside of the context
of probabilistic databases: we simply ask, for a fixed query Q, given a database instance I,
how many subinstances of I satisfy Q. The UR problem also relates to computing the causal
effect and Shapley values in databases [13, 9, 3]. What is more, UR for homomorphism-closed
queries captures existing counting problems on graphs, such as st-connectedness [15] which
asks how many subgraphs of an input graph contain a path between a source and a sink.

The ultimate goal of these two lines of work would be to classify the complexity of uniform
reliability, across all homomorphism-closed queries. Specifically, one can conjecture:

▶ Conjecture 1.2. Let Q be a homomorphism-closed query on an arbitrary signature. The
uniform reliability problem for Q is in PTIME if Q is a safe UCQ, and #P-hard otherwise.

To establish this, there are three obstacles to overcome. First, in the case where Q is a
UCQ, one would need to establish the hardness of UR for all unsafe UCQs, extending the
work of Kenig and Suciu [8]. Second, when Q is unbounded, one would need to adapt the
methods of [2] to apply to UR rather than PQE. Third, the methods of [2] would need to be
extended from graph signatures to arbitrary arity signatures.

Result statement. In this paper, we address the second difficulty and show the following,
which extends the main result of [2] from PQE to UR, and brings us closer to Conjecture 1.2:

▶ Theorem 1.3 (Main result). Let Q be an unbounded homomorphism-closed query on an
arity-two signature. The uniform reliability problem for Q is #P-hard.

The proof of this result has the same high-level structure as in [2], but there are significant
new technical challenges to overcome. In particular, we now reduce from different problems,
whose hardness rely (among other things) on the hardness of uniform reliability for the
query R(x), S(x, y), T (y), shown in [3]. The impossibility to assign a probability of 1 to facts
also makes reductions much more challenging: intuitively, as all facts can now be missing,
there is no longer a clear connection between the possible worlds of the source problem and
the possible worlds of the database built in the reduction. We use multiple tools to work
around this, for instance a saturation technique that creates a large but polynomial number
of copies of some facts and argues that their absence is sufficiently unlikely to be negligible.
As saturation cannot apply to unary facts, we also need to identify so-called critical models,
a more elaborate variant of a notion in [2], minimizing carefully-chosen weight criteria.

A. Amarilli 14:3

We give a high-level structure of the proof below as it is presented in the rest of the
paper, and comment in more detail on how the techniques relate to our earlier work [2].

Paper structure. We give preliminaries and the formal definition of UR in Section 2, along
with the two problems from which we reduce: one problem on bipartite graphs from [3], and
one variant of a connectivity problem of [15]. We show that they are #P-hard in [1].

We then review notions from [2] in Section 3: the dissociation operation on instances, and
the notion of a tight edge, which makes the query false when we apply dissociation to it. We
invoke a result from [2] showing that tight edges always exist for unbounded queries. This is
the only place where we use the unboundedness of the query, and is unfortunately the only
result from [2] that can be used as-is. Some other notions are reused and extended from [2]
but they are always re-defined and re-proved in a self-contained way in the present paper.

We then present in Section 4 the notion of a critical model, as a model of the query
which is subinstance-minimal and features a tight edge which is minimal by optimizing three
successive quantities: weight, extra weight, and lexicographic weight. The notion of weight is
from [2], the two other notions relate to side weight from [2] but significantly extend it. We
show in this section that a query having a model with a tight edge also has a critical model.

We then move on to the hardness proof. As in [2], there are two cases: a non-iterable
case where we reduce from the problem on bipartite graphs, and an iterable case where we
reduce from the connectivity problem. In Section 5, we formally define the notion of iteration
(essentially identical to the notion in [2]) and show hardness when there is a non-iterable
critical model. The coding used in the reduction extends that of [2] with the saturation
technique of creating a large number of copies of some elements. There are many new
technical challenges, e.g., proving that a polynomial number of copies suffices to make the
absence of the facts sufficiently unlikely, and justifying that all the other facts are “necessary”
for a query match, using in particular subinstance-minimality and the notion of extra weight.

Last, in Section 6, we show hardness in the case where all critical models are iterable. We
first show that such models can be repeatedly iterated, and that the measure of extra weight
must be zero in this case, allowing us to focus on the more precise criterion of lexicographic
weight. Then we define the coding, which is similar to [2] up to technical modifications. The
reduction does not use saturation but argues that all facts are “necessary” using the notion
of lexicographic weight and a new explosion structure.

We then conclude in Section 7. The complete proofs are given in the full version [1].

2 Preliminaries and Problem Statement

Instances. We consider an arity-two relational signature σ consisting of relations with an
associated arity, where the maximal arity of the signature is assumed to be 2. A σ-instance
(or just instance) is a set of facts, i.e., expressions of the form R(a, b) where a and b are
constants and R ∈ σ. We assume without loss of generality that all relations in σ are
binary, i.e., have arity two. Indeed, if there are unary relations U , we can simply code them
with a binary relation U ′, replacing facts U(a) by U ′(a, a) in instances, and modifying the
query to interpret U ′(a, a) as U(a) and to ignore facts U ′(a, b) with a ≠ b: this is similar to
Theorem 8.4 of [2]. Accordingly, we call a fact R(a, b) unary if a = b, otherwise it is binary.

The domain dom(I) of an instance I is the set of constants occurring in I. A homomor-
phism from I to an instance I ′ is a function h : dom(I) → dom(I ′) such that, for each fact
R(a, b) of I, the fact R(h(a), h(b)) is in I ′. We say that I ′ is a subinstance of I, written
I ′ ⊆ I, if I ′ is a subset of the facts of I; we then have dom(I ′) ⊆ dom(I).

ICDT 2023

14:4 Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

Queries. A query Q over σ is a Boolean function over σ-instances which we always assume
to be homomorphism-closed, i.e., if Q returns true on I and I has a homomorphism to an
instance I ′ then Q also returns true on I ′. When Q returns true on I we call I a model of Q,
or say that I satisfies Q (written I |= Q); otherwise I violates Q. Any homomorphism-closed
query Q is monotone, i.e., if I satisfies Q and I ⊆ I ′ then I ′ satisfies Q. A subinstance-minimal
model of Q is a model I of Q such that no strict subinstance of I satisfies Q.

We focus on unbounded queries, i.e., queries having an infinite number of subinstance-
minimal models. Examples of well-studied homomorphism-closed query languages include
conjunctive queries (CQs), unions of CQs (UCQs), regular path queries (RPQs), and Datalog
without inequalities or negations. The queries defined by Datalog or RPQs are unbounded
unless they are equivalent to a UCQ (i.e., non-recursive Datalog); more generally a query is
either unbounded or equivalent to a UCQ.

UR and PQE problems. In this paper, we study uniform reliability (UR). The problem
UR(Q) for a fixed query Q is the following: we are given as input an instance I, and we
must return how many subinstances of I satisfy Q, i.e., the number |{I ′ ⊆ I | I ′ |= Q}|.
Note that we have no general upper bound on the complexity of this problem, as we allow
queries to be arbitrarily complex or even undecidable to evaluate, e.g., “there is a path
R(x1), S(x1, x2), . . . , S(xn−1, xn), T (xn) where n is the index of a Turing machine that halts”.

We will sometimes consider the generalization of UR called probabilistic query evaluation
(PQE). The PQE(Q) problem for a fixed query Q asks, given an instance I and a probability
distribution π : I → [0, 1] mapping each fact of I to a rational in [0, 1], to determine the total
probability of the subinstances of I satisfying Q, when each fact F ∈ I is drawn independently
from the others with the probability π(F). Formally, we must compute:∑

I′⊆I s.t. I′|=Q

∏
F ∈I′

π(F) ×
∏

F ′∈I\I′

(1 − π(F)).

The UR problem is a special case of PQE where the function π maps all facts to 1/2, up
to renormalization, i.e., multiplying by 2|I|. We will sometimes abusively talk about UR as
the problem of computing that probability, because this probabilistic phrasing makes it more
convenient, e.g., to reason about conditional probabilities, or about negligible probabilities.

Hard problems. The goal of this paper is to show Theorem 1.3. We will establish
#P-hardness using polynomial-time Turing reductions [4] (see [2] for details). Specifically,
we reduce from one of two #P-hard problems, depending on the query. In [2], we reduce
from the problems #PP2DNF and U-ST-CON (undirected source-to-target connectivity),
which are shown to be #P-hard in [12]. In this paper, given our focus on UR, we reduce
from variants of these problems: the λ, µ, ν-variable-clause-variable probabilistic #PP2DNF
problem and the ϕ, η-vertex-edge probabilistic U-ST-CON problem. We first define the first
problem:

▶ Definition 2.1. Let 0 < λ, ν < 1 and 0 < µ ≤ 1 be fixed probabilities. The λ, µ, ν-variable-
clause-variable probabilistic #PP2DNF problem (or for brevity λ, µ, ν-#PP2DNF) is the
following: given a bipartite graph (U ∪ V, E) with E ⊆ U × V , we ask for the probability that
we keep an edge and its two incident vertices, where vertices of U have probability λ to be
kept, edges of E have probability µ to be kept, and vertices of V have probability ν to be kept,
all these choices being independent. Formally, we must compute:∑

(U ′,E′,V ′)⊆U×E×V
E′∩(U ′×V ′)̸=∅

λ|U |′
× (1 − λ)|U |−|U |′

× µ|E|′
× (1 − µ)|E|−|E|′

× ν|V |′
× (1 − ν)|V |−|V |′

A. Amarilli 14:5

The name #PP2DNF is because of the link to positive partitioned 2-DNF formulas, which
we do not need here. We can show that λ, µ, ν-#PP2DNF is #P-hard, by adapting the proof
in [3] which shows the hardness of uniform reliability for the query R(x), S(x, y), T (y):

▶ Proposition 2.2 ([3]). For any fixed 0 < λ, ν < 1 and 0 < µ ≤ 1, the problem λ, µ, ν-
#PP2DNF is #P-hard.

We now define the second problem:

▶ Definition 2.3. Let 0 < ϕ ≤ 1 and 0 < η < 1 be fixed probabilities. The ϕ, η-vertex-edge-
probabilistic U-ST-CON problem (or for brevity ϕ, η-U-ST-CON) is the following: given an
undirected graph G = (V, E) and source and sink vertices r, s ∈ V with r ̸= s, we ask for the
probability that we keep a subset of edges and vertices containing a path that connects r and s

(in particular keeping r and s), where vertices have probability ϕ to be kept and edges have
probability η to be kept, all these choices being independent. Formally, we must compute:∑

V ′⊆V,E′⊆E
r and s connected in (V ′, E′

|V ′)

ϕ|V |′
× (1 − ϕ)|V |−|V |′

× η|E|′
× (1 − η)|E|−|E|′

This intuitively combines features of the undirected source-to-target edge-connectedness
and node-connectedness problems of [15]. With standard techniques and some effort, we can
show that ϕ, η-U-ST-CON is #P-hard (see the full version [1]):

▶ Proposition 2.4. For any fixed 0 < ϕ ≤ 1 and 0 < η < 1, the problem ϕ, η-U-ST-CON is
#P-hard.

3 Basic Techniques: Dissociation, Tight Edges

Having presented the hard problems, we now recall the notion of edges and how we copy
them, and the dissociation operation introduced in [2]. We also present tight edges and
re-state the result of [2] showing that unbounded queries have models with tight edges.

Edges and copies. An edge e in an instance I is an ordered pair (u, v) of distinct elements
of dom(I) such that there is at least one fact of I using both u and v, i.e., of the form R(u, v)
or R(v, u), hence non-unary. The covering facts of e in I is the non-empty set of these facts.
Note that (u, v) is an edge iff (v, u) is, and they have the same covering facts.

We call e = (u, v) a non-leaf edge if I contains facts using u but not v (called left-incident
facts) and facts using v but not u (called right-incident facts). An example is shown in
Figure 1a (with no unary facts). The left-incident and right-incident facts are called together
the incident facts; note that they may include unary facts.

In this paper we will often modify instances I by copying an edge e = (u, v) of I to some
other ordered pair (u′, v′) of elements. This means that we modify I to add, for each covering
fact F of e, the fact obtained by replacing u by u′ and v by v′. Note that, if u′ and v′ are both
fresh, or if u′ = u and v′ is fresh or v′ = v and u′ is fresh, then the result of this process has
a homomorphism back to I. Clearly, copying (u, v) on (u′, v′) is equivalent to copying (v, u)
on (v′, u′) (but different from copying, say, (u, v) on (v′, u′)). Note that copying an edge does
not copy its incident facts, though our constructions will often separately copy some of them.

▶ Example 3.1. In the instance I = {R(a), S(a, b), S′(b, a), T (b)}, copying (a, b) on (a, b′)
for a fresh element b′ means adding the facts S(a, b′), S′(b′, a).

ICDT 2023

14:6 Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

u v

t1

t2

w1

w2

(a) A non-leaf edge e with
incident facts.

u
u′

v
v′

t1

t2

w1

w2

(b) The dissociation of e.

u v

t1

t2

w1

w2

g1 g2 g3

x1 x2 x3 x4

(c) An edge and various kinds of incident facts.
See Example 4.10.

Figure 1 Examples of Section 3 and 4.

Dissociation. One basic operation on instances is dissociation, which replaces one edge by
two copies connected to each endpoint:

▶ Definition 3.2. Let I be an instance and e = (u, v) be a non-leaf edge of I. The dissociation
of e in I is obtained by modifying I to add two fresh elements u′ and v′, copying e to (u′, v)
and to (u, v′), and then removing the covering facts of e.

The process is illustrated in Figures 1a and 1b. Note the following immediate observation:

▷ Claim 3.3. The dissociation of an edge in I has a homomorphism back to I.

Tight edges. We can then define a tight edge as one whose dissociation breaks the query:

▶ Definition 3.4. A non-leaf edge (u, v) in an instance I is tight for the query Q if I

satisfies Q but the dissociation of (u, v) in I does not.

We use a result of [2] which shows that unbounded queries must have a model with a
tight edge. This is the only point where we use the unboundedness of the query.

▶ Theorem 3.5 (Theorem 6.6 in [2]). Any unbounded query has a model with a tight edge.

We give a proof sketch for completeness (see [2] for the proof):

Proof sketch. As the query Q is unbounded, it has infinitely many minimal models: let I

be a sufficiently large one. Iteratively dissociate the non-leaf edges of I until none remain
(this always terminates), and let I ′ be the result. If I ′ violates Q, then some dissociation
broke Q, i.e., was applied to a tight edge in a model of Q. Otherwise, I ′ has no non-leaf
edges and satisfies Q. We can then show thanks to the simple structure of I ′ that it has a
constant-sized subset that satisfies Q, and deduce that Q already holds on a constant-sized
subinstance of I. As I is large, this contradicts the minimality of I. ◀

Thus, in the sequel, we fix the query Q and assume that it has a model with a tight edge.
Note that some bounded queries may also have a tight edge, e.g., the prototypical unsafe
CQ R(x), S(x, y), T (y); our results in this paper thus also apply to some bounded queries.

4 Minimality and Critical Models

In this section, we refine the notion of a tight edge to impose minimality criteria and get
to the notion of critical models. We define three successive minimality criteria, which we
present intuitively here before formalizing them in the rest of this section. The first is called
weight and counts the covering facts; the critical weight Θ is the minimal weight of a tight
edge. Having defined Θ, we restrict our attention to clean tight edges e, whose incident
facts do not include so-called garbage facts, i.e., strict subsets of the covering facts of e. The
second criterion is extra weight and counts the incident facts that are not isomorphic to

A. Amarilli 14:7

the covering facts; the critical extra weight Ξ is the minimal extra weight of a tight edge
of weight Θ. The third criterion is lexicographic weight and counts the other left-incident
and right-incident facts, ordered lexicographically: the critical lexicographic weight Λ is the
minimal lexicographic weight of a tight edge of weight Θ and extra weight Ξ.

We then define a critical model as a subinstance-minimal model with a clean tight edge
that optimizes these three weights in order, and show that such models exist.

Weight. The weight was defined in [2], but unlike in [2] we do not count unary facts:

▶ Definition 4.1. The weight of an edge e = (u, v) in an instance I is the number of covering
facts of e (it is necessarily greater than 0).

▶ Example 4.2. The weight of (a, b) in I = {R(b), T (b, c), S(b, a), S′(b, a), U(a, b)} is 3.

The minimal weight of a tight edge across all models is an intrinsic characteristic of Q,
called the critical weight:

▶ Definition 4.3. The critical weight of the query Q, written Θ ≥ 1, is the minimum, across
all models I of Q and tight edges e of I, of the weight of e in I.

The point of the critical weight is that edges with weight less than Θ can never be tight:

▷ Claim 4.4. Let I be a model of Q and e = (u, v) be a non-leaf edge of I. If the weight
of e is less than Θ, then the dissociation of e in I is also a model of Q.

▶ Example 4.5. The bounded CQ Q′ : R(x), S(x, y), S′(x, y), T (y) has critical weight 2, as
witnessed by the model I ′ = {R(a), S(a, b), S′(a, b), T (b)} with a tight non-leaf edge (a, b) of
weight 2 and the inexistence of a model with a tight non-leaf edge of weight 1.

As Q′ has critical weight 2, in any model I of Q′, if we have an edge e = (u, v) with only
one covering fact using both u and v, we know that dissociating e cannot make Q′ false.

Having defined Θ, to simplify further definitions, we introduce the notion of a clean edge
as one that does not have incident facts achieving strict subsets of its covering facts:

▶ Definition 4.6. Let I be an instance, let e = (u, v) be an edge of I, and let C ⊆ I be the
covering facts of e. For any edge (u, t), if its covering facts are isomorphic to a strict subset
of C when renaming t to v, then we call these left-incident facts left garbage facts. Likewise,
the right garbage facts are the right-incident facts that are covering facts of edges (w, v) that
are isomorphic to a strict subset of C when renaming w to u.

We call e clean if it has no left or right garbage facts (called collectively garbage facts).

▶ Example 4.7. In the instance I = {S(a, b′), U(a), S(a, b), S′(b, a), T (c, b), S(c, b), S′(d, b),
S′(b, e), S(f, b)}, the left garbage facts of the edge (a, b) are {S(a, b′)} on the edge (a, b′), and
the right garbage facts are {S′(b, e)} on the edge (e, b) and {S(f, b)} on the edge (f, b). Note
that there are no garbage facts on the edge (b, c), because the covering facts {T (c, b), S(c, b)}
of this edge are not isomorphic to a strict subset of the covering facts of (a, b). Further note
that there are no garbage facts on the edge (d, b), because the covering facts {S′(d, b)} are
not isomorphic to a strict subset of the covering facts of (a, b) when renaming d to a.

We will always be able to ensure that tight edges with critical weight are clean, justifying
that we restrict our attention to clean tight edges in the sequel:

▷ Claim 4.8. If Q has a model with a tight edge, then it has a model with a clean tight
edge of weight Θ.

ICDT 2023

14:8 Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

Proof sketch. We find a model with a tight edge of weight Θ by definition of Θ. Then, any
edges with garbage facts have weight < Θ, so they can be dissociated using Claim 4.4 and
homomorphically merged to e. At the end of this process, e is clean and is still tight. ◁

Extra weight. We further restrict tight edges e by limiting their number of incident facts,
similarly to the notion of side weight in [2]. However, in this paper, we additionally partition
the incident facts between so-called extra facts and copy facts. Intuitively, our reductions
will use codings that introduce copies of the edge e, and the extra facts are those that can
be “distinguished” from incident copies of e added in codings; by contrast copy facts are
non-unary facts in edges that are isomorphic copies of e and therefore “indistinguishable”.

We want to minimize the number of extra facts, to intuitively ensure that they are all
“necessary”, in the sense that a copy of e missing an incident extra fact can be dissociated.
Let us formally define the extra facts: among the non-garbage incident facts, they are those
that are part of a so-called triangle (i.e., involve an element occurring both in a left-incident
in a right-incident fact), those which are unary, or those which are a covering fact of an edge
whose covering facts are not isomorphic to the covering facts of e.

▶ Definition 4.9. Let I be an instance with an edge e = (u, v), and let C ⊆ I be the covering
facts of e. An element w ∈ dom(I) forms a triangle with e if both (u, w) and (v, w) are edges.

Let (u′, v′) be some edge of I. We call (u′, v′) a copy of (u, v) if the covering facts
of (u′, v′) are isomorphic to C by the isomorphism mapping u′ to u and v′ to v.

We partition the non-garbage left-incident facts of (u, v) between:
The left copy facts, i.e., the binary facts involving u and an element v′ such that (u, v′) is
a copy of (u, v) and v′ does not form a triangle with e: we call v′ a left copy element of e.
The left extra facts, which comprise all other non-garbage left-incident facts, namely:

The unary facts on u.
The non-garbage binary facts involving u and some element x such that:
∗ the element x forms a triangle with e; or
∗ the covering facts of the edge (u, x) are not isomorphic to C.

We partition the non-garbage right-incident facts into right extra facts and right copy facts
with right copy elements in a similar way. Note that, as we prohibit triangles, the left copy
elements and right copy elements are disjoint. We talk of the copy elements, copy facts, extra
facts of e to denote both the left and right kinds.

▶ Example 4.10. Consider the instance of Figure 1c and the edge e = (u, v). The covering
facts C of e are represented as an orange edge, and the other orange edges represent edges
which are copies of e. The left and right copy elements are respectively t1 and t2 and w1 and
w2. The dashed orange edges represent edges whose covering facts are a strict subset of C,
i.e., they are garbage facts. The extra facts include unary facts (not pictured), facts with x1
(the black edge (u, x1) represents non-garbage facts not isomorphic to C), and facts with x2,
x3, and x4 (which form triangles).

Note that garbage facts are neither extra facts nor copy facts, and are ignored in the
definition above except in that they may help form triangles. This does not matter: thanks to
Claim 4.8, garbage facts will only appear in intermediate steps of some proofs. We can now
define the critical extra weight as the minimal extra weight of a tight edge with weight Θ:

▶ Definition 4.11. The critical extra weight of Q, written Ξ ≥ 0, is the minimum across all
models I of Q and tight edges e of I of weight Θ, of the number of extra facts of e in I.

A. Amarilli 14:9

▶ Example 4.12. Continuing Example 4.5, the query Q′ had critical extra weight 2, as wit-
nessed by I ′. The query Q′′ : R(x), S(x, y), S(x′, y), S(x′, y′), T (y′), has critical weight 1 and
critical extra weight 0, as witnessed by the model I ′′ = {R(a), S(a, b), S(a′, b), S(a′, b′), T (b′)}
where the edge (a′, b) is tight and has weight 1 and extra weight 0.

Again, the definition of critical extra weight clearly ensures:

▷ Claim 4.13. Let I be a model of Q and e = (u, v) be a non-leaf edge. If e has weight Θ
and extra weight < Ξ, then the dissociation of e in I is also a model of Q.

Lexicographic weight. We then impose a third minimality requirement on tight edges e,
which is needed in Section 6 (but unused in Section 5). The intuition is that we want to
limit the number of copy elements. Specifically, we minimize first the number τ of left copy
elements, then the number ω of right copy elements, hence the name lexicographic weight.
This is why, when choosing a tight edge, we also choose an orientation (i.e., choosing (u, v)
as a tight edge is different from choosing (v, u)):

▶ Definition 4.14. Let I be an instance with an edge e = (u, v). Let τ be the number of left
copy elements and ω be the number of right copy elements of e. The lexicographic weight of e

is the ordered pair (τ, ω). We order these ordered pairs lexicographically, i.e., (τ, ω) < (τ ′, ω′)
with τ, τ ′, ω, ω′ ∈ N iff τ < τ ′ or τ = τ ′ and ω < ω′.

The critical lexicographic weight Λ of Q is the minimum, over all models I of Q and all
tight edges of e with weight Θ and extra weight Ξ, of the lexicographic weight of e.

Note that minimizing the lexicographic weight does not always minimize the total number
of copy facts1, e.g., (1, 3) < (2, 1) but 1 + 3 > 2 + 1. However, it is always the case that
removing a copy fact of an edge e causes the lexicographic weight of e to decrease (and
does not cause the extra weight to increase, as the remaining covering facts of the edge are
garbage facts).

Again, we have:

▷ Claim 4.15. Let I be a model of Q and e = (u, v) be a non-leaf edge with weight Θ, extra
weight Ξ, and lexicographic weight < Λ. Then, the dissociation of e in I is also a model of Q.

Critical models. We now define critical models (significantly refining the so-called minimal
tight patterns of [2]). A critical model I is intuitively a model of Q with a clean tight edge e

that achieves the minimum of our three weight criteria, and where we additionally impose
that I is subinstance-minimal. For convenience we also specify a choice of incident facts in
the critical model, but this choice is arbitrary, i.e., we can pick any pair of a left-incident
fact and right-incident fact.

▶ Definition 4.16. A critical model (I, e, FL, FR) is a model I of Q which is subinstance-
minimal, a clean tight edge e of I having weight Θ, extra weight Ξ, and lexicographic weight Λ,
and a left-incident fact FL ∈ I and a right-incident fact FR ∈ I of e.

We can now claim that critical models exist:

▶ Proposition 4.17. If a query Q has a model with a tight edge, then it has a critical model.

1 Minimizing the total number of copy facts, or minimizing along the componentwise partial order on
N × N, would suffice almost everywhere in the proof except in part of Section 6.

ICDT 2023

14:10 Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

u v

x1

x2

x3

t1

t2

w1

w2

(a) Example critical model M .

u v′

u′ v

x1

x2

x3

t1

t2

w1

w2

(b) Iteration of M .

u1 v1

u2 v2

x1
x2

x3

t1,1t1,2t1,3

t2,1t2,2t2,3

w1,1w1,2w1,3

w2,1w2,2w2,3

(c) 3-saturated coding IG,3 in M of
G = ({1, 2}, {(1, 1), (1, 2), (2, 2)}).

Figure 2 Examples of Section 5 and illustration of the notation.

Proof sketch. The existence of models with tight edges achieving the critical weights is
by definition, cleanliness can be imposed by the process used to prove Claim 4.8, and
subinstance-minimality can easily be imposed by picking some minimal subset of facts of the
model that satisfy the query. ◀

5 Hardness with a Non-Iterable Critical Model

Having defined critical models, we now start our hardness proof. As in [2], we will distinguish
two cases, based on whether we can break Q with an iteration process on a critical model.

▶ Definition 5.1. Let M = (I, e, FL, FR) be a critical model, let e = (u, v), and let C be the
covering facts of e. Let A and B be the set of the left-incident and right-incident facts of e

in I, respectively. The iteration of M is obtained by modifying I in the following way:
Add fresh elements u′ and v′, copy e on (u, v′), (u′, v′), (u′, v), and remove the facts of C.
Create a copy of the facts of A \ {FL} where we replace u by u′.
Create a copy of the facts of B \ {FR} where we replace v by v′.

▶ Example 5.2. Consider the critical model in Figure 2a, with edge (u, v) and where FL
and FR are binary facts respectively using u and x1 and v and x3. Its iteration is shown in
Figure 2b, with dashed edges representing edges where FL and FR are missing.

A non-iterable critical model M is one whose iteration no longer satisfies the query;
otherwise M is iterable. In this section, we show hardness when there is a non-iterable critical
model:

▶ Proposition 5.3. Assume that Q has a non-iterable critical model. Then the uniform
reliability problem for Q is #P-hard.

We prove this result in the rest of this section.

Fixing notation. Fix the critical model M = (I, e, FL, FR) and let e = (u, v) be the tight
clean edge. We must introduce some notation to talk about the incident facts of e in I, which
is summarized in Figure 2a. As e is clean, we know that its incident facts are either extra
facts or copy facts – there are no garbage facts.

Let C ⊆ I be the covering facts of e in I (in orange on the picture), with |C| = Θ.
Let X = {x1, . . . , xk} be the elements different from u and v with which one of u or v has a
(non-unary) extra fact or has one of the two facts FL and FR. Note that some of the elements
in X may have facts with both u and v (i.e., triangles), like x2 in the picture. We may have
k = 0, specifically when FL and FR are unary facts and any other extra facts are unary.

A. Amarilli 14:11

Further let T = {t1, . . . , tτ } be the left copy elements of e not in X, and let W =
{w1, . . . , wω} be the right copy elements of e not in X, with T and W disjoint (because copy
elements cannot form triangles). We exclude elements of X because, if FL (resp., FR) is
a copy fact, then X contains exactly one left copy element (resp., exactly one right copy
element)2. Also note that we may have τ = ω = 0, i.e., if there are no copy facts except
possibly those of the edges of FL and of FR.

To recapitulate, the incident facts of e in I only involve elements from X ⊔ T ⊔ W .
Specifically, they are the unary facts on u, the unary facts on v, the non-unary extra facts
(which involve one of {u, v} and one element of X), the facts FL and FR which respectively
involve u and v and (if they are non unary) one element of X, and the other left and right
copy facts forming isomorphic copies of e as edges (u, tj) with 1 ≤ j ≤ τ and (wi, v) with
1 ≤ i ≤ ω. Notice again how, if FL or FR are copy facts, then these notations handle them
as extra facts along with any other covering facts of their edge. Note that our description
of the incident facts of e does not describe the facts that may exist between elements of
X ⊔ T ⊔ W , and indeed these may be arbitrary (some are pictured in Figure 2a).

Coding bipartite graphs. We will reduce from our variant of #PP2DNF (Definition 2.1) by
using M to code a bipartite graph G = (U ⊔ V, E). Intuitively, we will create one copy ui

of u for each vertex i of U , one copy vj of v for each vertex j of V , and copy the edge e on
(ui, vj) for each edge (i, j) of E. The reason why we distinguish X and T and W is because
we will handle them differently. For the incident facts of e that are unary or involve elements
of X, we will create one single copy of them for each ui and each vj . Indeed, we will show
that edges (ui, vj) that are missing one such incident fact can be dissociated (if an extra fact
is missing, using Claim 4.13) or mapped in a specific way in the iteration (if one of FL or FR
is a copy fact and we are missing one of the covering facts of their edge). For the (copy) facts
involving T ⊔ W , we will copy them (using the fact that they are binary) by creating a large
number q of copies of T ⊔ W . This saturation process will in fact create a large number of
copies of all facts involving some element of T ⊔ W , which we call the saturated facts.

Let us accordingly define the saturated coding of a bipartite graph in M :

▶ Definition 5.4. Let G = (U ⊔ V, E) be a non-empty bipartite graph, and assume without
loss of generality that U = {1, . . . , n} and V = {1, . . . , m}.

Let q > 0 be some integer. The q-saturated coding of G in M , written IG,q, is the
instance defined by modifying I in the following way:

For all 1 ≤ p ≤ q, create fresh elements Tp = {t1,p, . . . , tτ,p} and Wp = {w1,p, . . . , wω,p}.
Identify tj = tj,1 for 1 ≤ j ≤ τ and wi = wi,1 for 1 ≤ i ≤ ω.
Letting Φ be the set of the saturated facts, for each 1 ≤ p ≤ q, create a copy of Φ where
each element tj is replaced by tj,p and each element wi is replaced by wi,p.
Create elements u1, . . . , un and v1, . . . , vn, where we identify u = u1 and v = v1.
Create a copy of all incident facts of e for all ui and vj . Formally, let A and B be the set
of the left-incident and right-incident facts of e in the current model (i.e., involving the
tj,p and wi,p): note that A (resp., B) contains in particular FL (resp., FR) and any unary
facts on u (resp., on v). For each 1 ≤ i ≤ n, create a copy of the facts of A replacing u

by ui, and for each 1 ≤ j ≤ m create a copy of the facts of B replacing v by vj.
Copy e (i.e., C) on (ui, vj) for each (i, j) ∈ E, and remove the facts of C if (u1, v1) /∈ E.

2 Because of this, in general (τ, ω) may be less than the critical lexicographic weight Λ.

ICDT 2023

14:12 Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

The saturated coding process is illustrated in Figure 2c. Note that the process is in
polynomial time if the value q is polynomial in the size |G| of the input bipartite graph.

Understanding the coding. Letting G = (U ⊔ V, E) be a non-empty bipartite graph and
writing U = {1, . . . , n} and V = {1, . . . , m}, we study the coding IG,q to relate subsets
of IG,q to subsets of U × E × V . For this, we partition the facts of IG,q in five kinds (see
Figure 2c):

The base facts (pictured in black), which are the facts that do not involve any of the
elements u1, . . . , un, v1, . . . , vm or any element of

⊔
1≤p≤q Tp ⊔ Wp (but they may involve

elements of X). These facts are precisely the facts of I that do not involve the elements u

or v or any element of T ⊔ W , and they are unchanged in the coding.
The saturated facts (in purple), i.e., the facts involving some element of Tp ⊔ Wp for
some 1 ≤ p ≤ q. These facts exist in q copies, and some (corresponding to facts of I

between u or v and an element of T ⊔ W) have been further copied n times (if they
involve u) or m times (if they involve v).
The non-saturated left-incident facts (in blue) of each vertex i ∈ U , which are the facts
which involve ui and do not involve the Tp ⊔ Wp, i.e., are unary or involve an element
of X. These facts include in particular one copy of FL.
The non-saturated right-incident facts (in green) of each vertex j ∈ V , that involve vj and
not the Tp ⊔ Wp, i.e., are unary or involve an element of X; they include one copy of FR.
The copy of e (in orange) for each edge (i, j) ∈ E, which is on the edge (ui, vj) of IG,q.

The last three kinds are what we are interested in for the reduction, but the first two
kinds need to be dealt with. We will show that the base facts must all be present to satisfy
the query, and that each edge has some copy of the saturated facts with high probability.

Base facts. We say that a subinstance of IG,q is well-formed if all base facts are present, and
ill-formed if at least one is missing. The following is easy to see by subinstance-minimality
of I:

▶ Proposition 5.5. The ill-formed subinstances do not satisfy the query.

Hence, the number of subinstances of GI,q satisfying the query is the number of well-formed
subinstances that do. Thus, in the sequel, we only consider well-formed subinstances.

Saturated facts. For the saturated facts, we will intuitively define valid subinstances where,
for each ordered pair of vertices (i, j) ∈ U × V , considering the copies ui and vj of u and v,
there is a complete copy of the saturated facts that are “relevant” to them. More precisely,
looking back at the original instance I, and considering the facts of I involving an element
of T ⊔ W , there are of two types. The first type are the facts that do not involve u or v, i.e.,
they only involve elements of T ⊔ W and possibly of dom(I) \ {u, v}. Each such fact has been
copied q times in IG,q, and the copy numbered 1 ≤ p ≤ q uses one or two elements of Tp ⊔Wp.
The second type are the facts involving u or v in I (they cannot involve both). These facts
have been copied n × q or m × q times in IG,q, each copy using one element of Tp ⊔ Wp for
some 1 ≤ p ≤ q and one ui for some 1 ≤ i ≤ n or one vj for some 1 ≤ j ≤ m. What we
require of a valid subinstance J ⊆ IG,q is that, for each pair of vertices (i, j) ∈ U × V , we
have in J some copy 1 ≤ p ≤ q containing all facts of the first type and all facts of the second
type involving ui and vj :

A. Amarilli 14:13

▶ Definition 5.6. We partition the saturated facts of IG,q in q copies: formally, the p-th
saturated copy for 1 ≤ p ≤ q is the subset of the saturated facts of IG,q that involve some
element of Tp ⊔ Wp. A saturation index for IG,q is a function ι : U × V → {1, . . . , q}.

For J ⊆ IG,q, we say that J is valid for ι if, for each (i, j) ∈ U × V , letting p := ι(i, j),
considering the facts of the p-th saturated copy, J contains all such facts that are:

of the first type, i.e., J contains all facts of IG,q that involve some element of Tp ⊔ Wp

and do not involve any elements of {ui′ | 1 ≤ i′ ≤ n} ⊔ {vj′ | 1 ≤ j′ ≤ m};
of the second type and involve ui or vj , i.e., J contains all facts of IG,q that involve some
element of Tp ⊔ Wp and involve either ui or vj.

We call J valid if there is a saturation index for which it is valid; otherwise J is invalid.

Note that, for each choice of ordered pair (i, j) ∈ U × V , the required facts can be found
in a different saturated copy ι(i, j), i.e., we do not require that there is a p such that J

contains all facts of the p-th saturated copy. Indeed this stronger requirement would be too
hard to ensure: intuitively, the number of facts required for each (i, j) is constant (it only
depends on I), but the number of facts in the p-th saturated copy depends on G (it is linear
in |U | × |V |).

We now show that we can pick a number q of copies which is polynomial in the input G,
but makes it very unlikely that a random subinstance is invalid. Thanks to this, we do not
need to know which ones of the invalid subinstances satisfy Q. Indeed, the proportion of
subinstances of IG,q that satisfy Q will be the proportion of valid subinstances that do, up
to an error which is much less than the probability of any valid subinstance and can be
eliminated by rounding:

▶ Lemma 5.7. There is a polynomial PM depending on the critical model M such that, for
any non-empty bipartite graph G = (U ⊔ V, E), letting χ := |U | + |V | + |E| be the size of G

and defining q := PM (χ), the proportion of subinstances of IG,q that are invalid is strictly
less than 2−(χ|I|+1).

Thanks to this, we focus on the well-formed subinstances J where we keep some subset of
the saturated facts making J valid. We now fix q to the value of Lemma 5.7, and build IG,q

in polynomial time in the input bipartite graph G (with the critical model M being fixed).

Good and bad subinstances. Let us now study the status of the last three kinds of facts:

▶ Definition 5.8. Let J ⊆ IG,q. For 1 ≤ i ≤ n (resp., 1 ≤ j ≤ m), the vertex i ∈ U (resp.,
j ∈ V) is complete in J if all its non-saturated left-incident facts (resp., non-saturated right-
incident facts) are present in J , and incomplete otherwise. The edge (i, j) ∈ E is complete
in J if all covering facts of (ui, vj) in IG,q are present in J , and incomplete otherwise. We
call J good if there is an edge (i, j) ∈ E with (i, j), i, and j complete, and bad otherwise.

We now claim that, among the well-formed valid subinstances, the good ones satisfy the
query, and the bad ones do not. This is easy to see for good subinstances:

▶ Proposition 5.9. For any good valid well-formed subinstance J ⊆ IG,q, there is a homo-
morphism from I to J .

Proof sketch. As J is well-formed all base facts are present, and J is valid for some saturation
index ι. Let (i, j) ∈ E be an edge witnessing that J is good. The homomorphism maps
T ⊔ W to Tι(i,j) ⊔ Wι(i,j), maps u to ui and v to vj , and is the identity otherwise. ◀

For bad subinstances, we show with much more effort that they do not satisfy the query:

ICDT 2023

14:14 Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

u v
t
t1
t2

w1
w2
w

u1 v1

u2 v2

u3 v3

u4 v4

t

t1

t2

w1

w2

w

(a) Example critical model M
(top), 4-step iteration (bottom).

ur

uar

urs

ua

uas

us

var,r

vrs,r

var,a

vrs,s

vas,a

vas,s

v

t

t1

t2

w1

w2

w

(b) The coding IG of a graph G in M :
G = ({a, r, s}, {{r, s}, {a, r}, {a, s}}).

u

vu′
v′t

t1
t2

w1
w2
w

u v′

u1
u2

u′ v

t

t1

t2

w1

w2

w

(c) Fine dissociation (top)
and explosion (bottom) of M .

Figure 3 Examples of Section 6 and illustration of the notation.

▶ Proposition 5.10. Any bad subinstance J ⊆ IG,q does not satisfy the query.

Proof sketch. It suffices to study the case with no saturation, i.e., q = 1. We dissociate
incomplete edges with Claim 4.4, and dissociate complete edges missing at least one incident
extra fact with Claim 4.13, which does not break Q. Then we show how to map this
homomorphically to the iteration I ′ of M , by mapping complete vertices to u and v in the
dissociation, and mapping the vertices which are missing facts of the edges of FL or FR
to u′ and v′ respectively (after dissociating these edges if FL or FR are copy facts). This
contradicts the assumption that M was non-iterable, i.e., that I ′ violates Q. ◀

This establishes that the status of Q on a valid well-formed subinstance J depends on
whether J is good or bad, i.e., depends on which of the last three kinds of facts were kept
in J . Now, the subsets of these facts are clearly in correspondence with the subsets of
U × E × V for the λ, µ, ν-#PP2DNF problem (see Definition 2.1), for some choice of constant
probabilities λ, µ, ν. Further, a subset of U × E × V is counted in λ, µ, ν-#PP2DNF if and
only if the corresponding subset of the last three kinds of facts yields a good subinstance.
As the ill-formed subinstances are easy to count, and the invalid ones are negligible, we can
conclude the reduction and establish Proposition 5.3. The complete proof is given in [1].

6 Hardness when all Critical Models are Iterable

In this last section, we show hardness in the case where all critical models are iterable:

▶ Proposition 6.1. Assume that Q has a critical model and that all critical models of Q are
iterable. Then the uniform reliability problem for Q is #P-hard.

A first observation is that, in this case, we have Ξ = 0, by contraposition of the following:

▷ Claim 6.2. If the critical extra weight is > 0, then Q has a non-iterable critical model.

Proof sketch. Take a critical model M = (I, e, FL, FR) with e = (u, v) and one of FL, FR an
extra fact. The edge (u′, v′) in the iteration of M has weight Θ and extra weight < Ξ, so we
can dissociate it without breaking Q and merge the two resulting copies. This yields the
so-called fine dissociation (illustrated in Figure 3c, and formally defined in the full version of
this paper [1]), which violates Q. ◁

Hence, in the rest of the section, we assume Ξ = 0, and fix an iterable critical model
M = (I, e, FL, FR). All incident facts of e = (u, v) in I are copy facts, so we let t, t1, . . . , tτ−1
be the left copy elements and w, w1, . . . , wω−1 be the right copy elements, where t and w are

A. Amarilli 14:15

the elements that occur in FL and FR respectively (the choice of FL and FR from now on
only matters in that it distinguishes two copy elements t and w). The lexicographic weight
of e in I is thus Λ = (τ, ω) with τ, ω ≥ 1. We let C be the covering facts of e in I. See
Figure 3a.

n-step iteration. Let us now define the n-step iteration of M . It is related to iteration
in [2], but specialized to the case where Ξ = 0, i.e., all incident facts are copy facts.

▶ Definition 6.3. For n > 0, the n-step iteration of M is obtained by modifying I:
Create elements u1, . . . , un and v1, . . . , vn, where we identify u and u1 and vn and v.
For all 1 ≤ i, j ≤ n, copy e on (ui, tj′) and (wi′ , vj) for all 1 ≤ j′ < τ and 1 ≤ i′ < ω.
For all 1 ≤ i ≤ n, copy e on (ui, vi) for all 1 ≤ i ≤ n and on (ui+1, vi) for all 1 ≤ i < n.
Remove the facts of C, except in the trivial case where n = 1.

The iteration is illustrated in Figure 3a. Note that the 1-step iteration is exactly I.
Further, the 2-step iteration resembles the iteration in Section 5, but omits some incomplete
copies of (u, t) and (w, v) (i.e., the dashed edges in Figure 2b): as t and w are copy elements
these facts would be garbage facts so the difference is inessential.

We now show that, if the iteration process of Section 5 cannot break Q on any critical
model, then Q must also be satisfied in the n-step iteration of any critical model M for any
n > 0. This proposition summarizes how we use the hypothesis that all critical models are
iterable:

▶ Proposition 6.4. Let Q be a query that has a critical model. Assume that all critical
models for Q are iterable. Then Ξ = 0 and, for any critical model M of Q, for any n > 0,
the n-iteration of M satisfies Q; further it is a subinstance-minimal model of Q.

Proof sketch. Intuitively, the n-step iteration can be achieved by repeatedly performing the
iteration from Section 5. A tedious point in the proof is to show that subinstance-minimality
is preserved throughout this process. ◀

Coding. We explain how to code an undirected graph to reduce from ϕ, η-U-ST-CON for
some 0 < ϕ ≤ 1 and 0 < η < 1 (see Definition 2.3): this time no saturation is needed.
Proposition 6.4 will then intuitively show that some paths in the coding make Q true.

▶ Definition 6.5. Let G = (V, E) be an undirected graph with source r and sink s, with r ̸= s.
The coding IG of G in M is the instance defined by modifying I in the following way:

For all a ∈ V , create a fresh element ua, and copy (u, tj′) on (ua, tj′) for all 1 ≤ j′ < τ .
We identify u to ur, so ur also occurs in another copy of e, namely the edge (ur, t).
For each edge π = {a, b} ∈ E, create fresh elements uπ, vπ,a, vπ,b, copy (u, tj′) on (uπ, tj′)
for all 1 ≤ j′ < τ , copy (wi′ , v) on (wi′ , vπ,β) for all 1 ≤ i′ < ω and β ∈ {a, b}, and
copy (u, v) on (ua, vπ,a), (uπ, vπ,a), (uπ, vπ,b), and (ub, vπ,b).
Copy (u, v) on (us, v), and then remove the facts of C.

An example is given in Figure 3b, shortening the vertex names for readability. The coding
IG can clearly be built in polynomial time in G. We partition the facts of IG in four kinds:

The base facts (not pictured), i.e., the facts involving no element of {ua | a ∈ V } ∪ {vπ,β |
π ∈ E, β ∈ π} ∪ {v}.
The supplementary base facts (in black), i.e., the covering facts of (ur, t) and (ur, tj′) for
1 ≤ j′ < τ , and the covering facts of (us, v) and (w, v) and (wi′ , v) for 1 ≤ i′ < ω.

ICDT 2023

14:16 Uniform Reliability for Unbounded Homomorphism-Closed Graph Queries

The vertex facts (in purple) of each vertex a ∈ V \ {r}, i.e., the covering facts of (ua, tj′)
for 1 ≤ j′ < τ .
The edge facts (in orange) of each edge π = {a, b} of E, i.e., all covering facts and incident
facts of (uπ, vπ,a) and (uπ, vπ,b), including the covering facts of (ua, vπ,a) and (ub, vπ,b).

Similarly to Section 5, the base facts of IG are precisely the facts of I that do not involve u

or v. A subinstance J ⊆ IG is well-formed if it contains all base facts and supplementary
base facts, and ill-formed otherwise. We can then use subinstance-minimality to show:

▷ Claim 6.6. The ill-formed subinstances do not satisfy the query.

Now, consider a well-formed subinstance J ⊆ IG. A vertex a ∈ V is complete in J if
all vertex facts of a are present, and incomplete otherwise; and an edge π ∈ E is complete
in J if all its edge facts of π are present, and incomplete otherwise. A complete path in J

is a path connecting r and s in G such that all traversed edges and vertices are complete
in J (except r, for which completeness was not defined). We say that J is good if it has
a complete path, and bad otherwise. We can easily see that good subinstances satisfy the
query, because they contain an iterate of M and we can use Proposition 6.4:

▷ Claim 6.7. For any good well-formed subinstance J ⊆ IG, there is a homomorphism from
the (2n + 1)-step iteration of M to J , where n is the length of a complete path in J .

It is again far more challenging to show the other claim:

▷ Claim 6.8. Any bad subinstance J ⊆ IG does not satisfy the query.

Proof sketch. We dissociate all copies of e that are missing a fact or are of the form (uβ , vπ,β)
and are missing an incident fact with some element wi′ . Then, we map the result by a
homomorphism h to a structure called the explosion (illustrated in Figure 3c and formally
defined in the full version of this paper [1]), which intuitively reflects all maximal strict
subsets of the {t1, . . . , tτ−1}, and violates Q (by considering the lexicographic weight of its
edges). We define h along the cut of G defined by considering the vertices reachable from r

via a complete path. ◁

We then show hardness by reducing from ϕ, η-U-ST-CON for well-chosen constant proba-
bilities ϕ and η (up to assuming that the source vertex r is always kept) and thus conclude
the reduction, establishing Proposition 6.1. Together with Proposition 5.3, as Q has a critical
model by Proposition 4.17 and Theorem 3.5, we have shown our main result (Theorem 1.3).

7 Conclusion

We have proved the intractability of uniform reliability for unbounded homomorphism-closed
queries on arity-two signatures. We have not investigated the related problem of weighted
uniform reliability [3], which is the restricted case of probabilistic query evaluation where we
impose that all facts of the input TID must have some fixed probability different from 1/2.
We expect that our hardness result should extend to this problem when the fixed probability
is the same across all relations (and is different from 0 and 1). It seems more challenging to
understand the setting where the fixed probability can depend on the relation, in particular if
we can require some relations to be be deterministic, i.e., only have tuples with probability 1.
In this setting, some unbounded homomorphism-closed queries would become tractable (e.g.,
Datalog queries that involve only the deterministic relations), and it is not clear what one
can hope to show.

A. Amarilli 14:17

Coming back to the problem of (non-weighted) uniform reliability, an ambitious direction
for future work would be to extend our intractability result towards Conjecture 1.2. The
two remaining obstacles are the case of unbounded queries on arbitrary signatures, which
we intend to study in future work; and the case of bounded queries, i.e., UCQs, where the
general case is left open by Kenig and Suciu [8].

Other natural extensions include the study of queries satisfying weaker requirements than
closure under homomorphisms; or other notions of possible worlds, e.g., induced subinstances;
or other notions of intractability, e.g., the inexistence of lineages in tractable circuit classes
from knowledge compilation. Another broad question is whether the techniques developed
here have any connection to other areas of research, e.g., constraint satisfaction problems
(CSPs).

References
1 Antoine Amarilli. Uniform reliability for unbounded homomorphism-closed graph queries. Full

version with proofs, 2023. arXiv:2209.11177.
2 Antoine Amarilli and İsmail İlkan Ceylan. The dichotomy of evaluating homomorphism-closed

queries on probabilistic graphs. LMCS, 2021. arXiv:1910.02048, doi:10.46298/lmcs-18(1:
2)2022.

3 Antoine Amarilli and Benny Kimelfeld. Uniform reliability of self-join-free conjunctive queries.
LMCS, 18(4), 2022. arXiv:1908.07093, doi:10.46298/lmcs-18(4:3)2022.

4 Stephen A. Cook. The complexity of theorem-proving procedures. In Proc. STOC, 1971. URL:
https://www.cs.toronto.edu/~sacook/homepage/1971.pdf.

5 Nilesh N. Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of con-
junctive queries. Journal of the ACM, 59(6):30, 2012. URL: https://homes.cs.washington.
edu/~suciu/jacm-dichotomy.pdf.

6 Robert Fink and Dan Olteanu. Dichotomies for queries with negation in probabilistic
databases. TODS, 41(1), 2016. URL: http://www.cs.ox.ac.uk/people/Dan.Olteanu/
papers/fo-tods16.pdf.

7 Erich Grädel, Yuri Gurevich, and Colin Hirsch. The complexity of query reliabil-
ity. In Proc. PODS, 1998. URL: https://www.researchgate.net/profile/Yuri_
Gurevich2/publication/2900852_The_Complexity_of_Query_Reliability/links/
0c96053321102376cd000000/The-Complexity-of-Query-Reliability.pdf.

8 Batya Kenig and Dan Suciu. A dichotomy for the generalized model counting problem for
unions of conjunctive queries. In Proc. PODS, 2021. arXiv:2008.00896.

9 Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. The Shapley value
of tuples in query answering. In Proc. ICDT, volume 155, 2020. doi:10.4230/LIPIcs.ICDT.
2020.20.

10 Dan Olteanu and Jiewen Huang. Using OBDDs for efficient query evaluation on probabilistic
databases. In Proc. SUM, volume 5291, 2008. URL: https://www.cs.ox.ac.uk/people/dan.
olteanu/papers/oh-sum08.pdf.

11 Dan Olteanu and Jiewen Huang. Secondary-storage confidence computation for conjunctive
queries with inequalities. In Proc. SIGMOD, 2009. URL: https://www.cs.ox.ac.uk/people/
dan.olteanu/papers/oh-sigmod09.pdf.

12 J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM Journal on Computing, 12(4), 1983.

13 Babak Salimi, Leopoldo E. Bertossi, Dan Suciu, and Guy Van den Broeck. Quantifying causal
effects on query answering in databases. In TAPP, 2016. arXiv:1603.02705.

14 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

15 Leslie Gabriel Valiant. The complexity of computing the permanent. TCS, 8(2):189–201, 1979.
doi:10.1016/0304-3975(79)90044-6.

ICDT 2023

http://arxiv.org/abs/2209.11177
http://arxiv.org/abs/1910.02048
https://doi.org/10.46298/lmcs-18(1:2)2022
https://doi.org/10.46298/lmcs-18(1:2)2022
http://arxiv.org/abs/1908.07093
https://doi.org/10.46298/lmcs-18(4:3)2022
https://www.cs.toronto.edu/~sacook/homepage/1971.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
https://www.researchgate.net/profile/Yuri_Gurevich2/publication/2900852_The_Complexity_of_Query_Reliability/links/0c96053321102376cd000000/The-Complexity-of-Query-Reliability.pdf
https://www.researchgate.net/profile/Yuri_Gurevich2/publication/2900852_The_Complexity_of_Query_Reliability/links/0c96053321102376cd000000/The-Complexity-of-Query-Reliability.pdf
https://www.researchgate.net/profile/Yuri_Gurevich2/publication/2900852_The_Complexity_of_Query_Reliability/links/0c96053321102376cd000000/The-Complexity-of-Query-Reliability.pdf
http://arxiv.org/abs/2008.00896
https://doi.org/10.4230/LIPIcs.ICDT.2020.20
https://doi.org/10.4230/LIPIcs.ICDT.2020.20
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
http://arxiv.org/abs/1603.02705
https://doi.org/10.1016/0304-3975(79)90044-6

Approximation and Semantic Tree-Width of
Conjunctive Regular Path Queries
Diego Figueira # Ñ

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France

Rémi Morvan # Ñ

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France

Abstract
We show that the problem of whether a query is equivalent to a query of tree-width k is decidable,
for the class of Unions of Conjunctive Regular Path Queries with two-way navigation (UC2RPQs).
A previous result by Barceló, Romero, and Vardi [5] has shown decidability for the case k = 1, and
here we show that decidability in fact holds for any arbitrary k > 1. The algorithm is in 2ExpSpace,
but for the restricted but practically relevant case where all regular expressions of the query are of
the form a∗ or (a1 + · · · + an) we show that the complexity of the problem drops to Πp

2.
We also investigate the related problem of approximating a UC2RPQ by queries of small

tree-width. We exhibit an algorithm which, for any fixed number k, builds the maximal under-
approximation of tree-width k of a UC2RPQ. The maximal under-approximation of tree-width k of
a query q is a query q′ of tree-width k which is contained in q in a maximal and unique way, that is,
such that for every query q′′ of tree-width k, if q′′ is contained in q then q′′ is also contained in q′.

2012 ACM Subject Classification Information systems → Query languages for non-relational engines;
Theory of computation → Parameterized complexity and exact algorithms; Theory of computation
→ Database query processing and optimization (theory)

Keywords and phrases graph databases, conjunctive regular path queries, semantic optimization,
tree-width, containment, approximation

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.15

Related Version Full Version: https://arxiv.org/abs/2212.01679

� This pdf contains internal links: clicking on a notion leads to its definition.1

1 Introduction

Graph databases are abstracted as edge-labeled directed graphs G = ⟨V (G), E(G)⟩, where
nodes of V (G) represent entities and labeled edges E(G) ⊆ V (G) × A × V (G) represent
relations between these entities, with A being a fixed finite alphabet. For instance, Figure 1
depicts a graph database, whose nodes are authors and papers, on the alphabet A =
{wrote, advised}. Edges x

wrote−−−→ y indicate that the person x wrote the paper y, while
edges x

advised−−−−−→ y indicate that person x was the Ph.D. advisor of person y.
Being a subclass of relational databases, graph databases can be queried by the predom-

inant query language of conjunctive queries, a.k.a. CQs, which consists of the closure under
projection of conjunctions of atoms of the form x

a−→ y for some letter a ∈ A. For instance,
the conjunctive query

γ1(x, y) = x
wrote−−−→ z ∧ y

wrote−−−→ z

1 This result was achieved by using the knowledge package and its companion tool knowledge-clustering.

© Diego Figueira and Rémi Morvan;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 15; pp. 15:1–15:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diego.figueira@cnrs.fr
https://www.labri.fr/perso/dfigueir/
https://orcid.org/0000-0003-0114-2257
mailto:remi.morvan@u-bordeaux.fr
https://www.morvan.xyz/
https://orcid.org/0000-0002-1418-3405
https://doi.org/10.4230/LIPIcs.ICDT.2023.15
https://arxiv.org/abs/2212.01679
https://ctan.org/pkg/knowledge
https://github.com/remimorvan/knowledge-clustering
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Approximation & Semantic Tree-Width of CRPQs

author1 author2 author3 author4 author5

paper1 paper2 paper3

wrote wrote wrote wrote wrote wrote

advised advised

Figure 1 A graph database with eight nodes and eight edges on a two-letter alphabet.

returns, when evaluated on the graph database G defined in Figure 1, all pairs of nodes (u, v)
such that u is a co-author of v. Each variable not appearing in the left-hand side of the
definition of a conjunctive query (in this example, z) is existentially quantified. Note that
every CQ can be seen as a graph database, where each atom is an edge; hence, we sometimes
use graph database terminology for CQs.

The expressive power of CQs is somewhat limited, since CQs cannot express, for example,
transitive closure. Since the ability to navigate paths is of importance in many graph database
scenarios, most modern graph query languages support, as a central querying mechanism,
conjunctive regular path queries, or CRPQs for short. CRPQs are defined analogously to
conjunctive queries, except that their atoms are now of the form x

L−→ y where L is an
arbitrary regular language over the alphabet A. For instance the evaluation of the CRPQ
γ2(x, y) = x

wrote−−−→ z ∧ z′ wrote−−−→ z ∧ y
(advised)∗

−−−−−−→ z′ on G yields every pair of persons (u, v)
such that u is a co-author of a “scientific descendant” of v.

Formally, a CRPQ γ is defined as a tuple z̄ = (z1, . . . , zn) of output variables2 together
with a conjunction of atoms of the form

∧m
j=1 xj

Lj−−→ yj , where each Lj is a regular language.
The set of all variables occurring in γ, namely3 {z1, . . . , zn}∪{x1, y1, . . . , xm, ym}, is denoted
by vars(γ). Given a database G, we say that (u1, . . . , un) satisfies γ on G if there is a
mapping f : vars(γ)→ V (G) such that ui = f(zi) for all 1 ⩽ i ⩽ n, and for each 1 ⩽ j ⩽ m,
there exists a path from f(xi) to f(yi) in G, labelled by a word from Li (if the path is empty,
the labelled word is ε). The evaluation of γ on G is then the set of all tuples that satisfy γ.
For example, (author2, author5) satisfies γ2 on the graph database G of Figure 1 via the
function that maps x to author2, y to author5, z to paper2, and z′ to author3.

The language of CRPQ can be extended to navigate edges in both directions. Consider the
database G± obtained from G by adding, for every edge x

a−→ y in G, an extra edge y
a−

−−→ x.
We obtain a graph database on the alphabet A± = A ∪̇A− where A− = {a− | a ∈ A}.
We then define the syntax of a CRPQ with two-way navigation, or C2RPQ, as a CRPQ
on the alphabet A±. Its evaluation is defined as the evaluation of the CRPQ on G±. For
instance, the evaluation of the C2RPQ γ3(x, y) = x

(wrote·wrote−)∗

−−−−−−−−−−→ y on the graph database
of Figure 1 returns all pairs of individuals linked by a chain of co-authorship. It includes
(author1, author3) or (author1, author1) but not (author1, author4). If a query has no output
variables we call it Boolean, and its evaluation can either be the set {()}, in which case we say
that G satisfies the query, or the empty set {}. For example, G satisfies γ4() = x

wrote−−−→ y

if, and only if, the database contains one author together with the paper they wrote. We
denote the set of atoms of a C2RPQ γ by Atoms(γ), and by ∥γ∥ we denote its number of
atoms, i.e., |Atoms(γ)|.

2 For technical reasons (see the definition of expansion) we allow for a variable to appear multiple times.
3 We neither assume disjointness nor inclusion between {z1, . . . , zn} and {x1, y1, . . . , xm, ym}

D. Figueira and R. Morvan 15:3

Finally, a union of CQs (UCQs) [resp. union of CRPQs (UCRPQs), resp. union of
C2RPQs (UC2RPQs)] is defined as a finite set of CQs [resp. CRPQs, resp. C2RPQs], whose
tuples of output variables have all the same arity. The evaluation of a union is defined as the
union of its evaluations, for instance:

Γ5 = γ1
5(x, y)∨γ2

5(x, y) where γ1
5(x, y) = x

wrote−−−→ y and γ2
5(x, y) = x

advised←−−−−− z∧z
wrote−−−→ y

evaluates to the set of pairs (x, y) such that y is a paper written by either x or their advisor.
Infinitary unions are defined analogously, except that we allow for potentially infinite unions.

For a more detailed introduction to CRPQs, we refer the reader to [10]. For a more
general introduction to different query languages for graph databases – including CRPQs –
see [6], and for a more practical approach, see [1].

Given two UC2RPQ Γ and Γ′, we say that Γ is contained in Γ′, denoted by Γ ⫅ Γ′ if
for every graph database G, for every tuple ū of G, if ū satisfies Γ on G, then so does Γ′.
The containment problem for UC2RPQs is the problem of, given two UC2RPQs Γ and Γ′,
to decide if Γ ⫅ Γ′. When Γ is contained in Γ′ and vice versa, we say that Γ and Γ′ are
semantically equivalent, denoted by Γ ≡ Γ′. The evaluation problem for UC2RPQ is the
problem of, given a C2RPQ γ, a graph database G and a tuple ū of elements of G, whether
ū satisfies γ on G.

Queries of small tree-width
It is known that the evaluation problem for UC2RPQ is NP-complete, just as for conjunctive
queries [9]. However, queries whose underlying structure looks like a tree – formally, queries
of bounded tree-width – can be evaluated in polynomial time.

Tree-width is a measure of how much a graph differs from a tree, introduced by Arnborg
and Proskurowski [2]. Formally, a tree decomposition of a C2RPQ γ is a pair (T, v) where T

is a tree and v : V (T)→ ℘(vars(γ)) is a function that associates to each node of T , called
bag, a set of variables of γ. When x ∈ v(b) we shall say that the bag b ∈ V (T) contains the
variable x. Further, it must satisfy the following three properties:

each variable x of γ is contained in at least one bag of T ;
for each atom x

L−→ y of γ, there is at least one bag of T that contains both x and y; and
for each variable x of γ, the set of bags of T containing x is a connected subset of V (T).

The width of (T, v) is the maximum of |v(b)| − 1 when b ranges over V (T). The tree-width of
γ is the minimum of the width of all tree decompositions of γ. We denote by Twk the set of
all C2RPQ of tree-width at most k. The tree-width of a UC2RPQ is simply the maximum
of the tree-width of its C2RPQs. An example of tree decomposition of width 2 is given in
Figure 3 on Page 12. For a gentle introduction to tree-width, see [14, §3.6].

▶ Proposition 1.1 (Folklore, see e.g. [15, Theorem IV.3]). For each k ⩾ 1, the evaluation
problem for UC2RPQs of tree-width at most k is in polynomial time.

In practice, graph databases tend to be huge and often changing, while queries are in
comparison very small. This motivates the following question, given some natural k ⩾ 1:

Given a UC2RPQ Γ, is it equivalent to a UC2RPQ Γ′ of tree-width at most k?
That is, does it have semantic tree-width at most k?

This problem is called the semantic tree-width k problem. Should it be decidable in a
constructive way – that is, decidable, and if the answer is positive, we can compute a
witnessing Γ′ from Γ – , then one could, once and for all, compute Γ′ from Γ and, whenever
one wants to evaluate Γ on a database, evaluate Γ′ instead.

ICDT 2023

15:4 Approximation & Semantic Tree-Width of CRPQs

▶ Example 1.2. Consider the following CRPQs, where x̄ = (x0, x1, y, z):

x0 x1 x0 x1 x0 x1

γ(x̄) =̂ y δ(x̄) =̂ y δ′(x̄) =̂ y

z z z

a

c

a(bb)+

a

ab(bb)∗

a

c

a(bb)∗

a a

c

a

ab(bb)∗b+ b(bb)∗ (bb)+

The underlying graph of γ(x̄) being the directed 4-clique, γ(x̄) has tree-width 3. We claim
that γ(x̄) is equivalent to the UCRPQ δ(x̄) ∨ δ′(x̄), and hence has semantic tree-width 2.

Indeed, given a graph database satisfying γ(x̄) via some mapping µ, it suffices to make
a case disjunction on whether the number of b-labelled atoms in the path from µ(y) to
µ(z) is even or odd. In the first case, the atom x0

a(bb)+

−−−−→ z becomes redundant since we
can deduce the existence of such a path from the conjunction x

a−→ y
(bb)+

−−−→ z, and hence
the database satisfies δ(x̄) via µ. Symmetrically, in the second case, the atom x1

b(bb)∗

−−−−→ z

becomes redundant, and the database satisfies δ′(x̄) via µ. Thus, γ(x̄) is contained, and hence
equivalent (the other containment being trivial), to the UCRPQ δ(x̄) ∨ δ′(x̄) of tree-width 2.

For conjunctive queries, the semantic tree-width k problem can be effectively decided
quite easily – in fact, CQs enjoy the effective existence of unique minimal queries [9, Theorem
12] which happen to also minimize the tree-width. For CRPQs and UC2RPQs, the question
is far more challenging, and it has only been solved for the case k = 1 by Barceló, Romero,
and Vardi [5, Theorem 6.1]. We solve the problem for every other k > 1, left open in [5, §7]
[15, §VI-(3)]:

▶ Theorem 1.3. For each k ⩾ 1, the semantic tree-width k problem is decidable. Moreover,
it lies in 2ExpSpace and is ExpSpace-hard.

Amusingly, our proof for k > 1 cannot be stretched to capture the case k = 1: the two
approaches seem to be intrinsically incompatible.
▶ Remark 1.4. To simplify proofs, we assume that all the regular languages are described
via non-deterministic finite automata (NFA) instead of regular expressions, which does not
affect any of our complexity bounds. However, for readability all our examples will be given
in terms of regular expressions.

Moreover, we also show that for any class L of regular languages over A± satisfying some
mild hypothesis (“closure under sublanguages”), if Γ ∈ UC2RPQ(L) has semantic tree-width
k > 1, then Γ is equivalent to a UC2RPQ(L) of tree-width at most k, where UC2RPQ(L)
denotes the class of all UC2RPQs whose atoms are all labelled by languages from L. In
other words, if a query can be defined with labels in L, and if this query is equivalent to
a query of small tree-width, then it is also equivalent to a query of small tree-width with
labels in L.

For a NFA A and two states q, q′ thereof, we denote by A[q, q′] the sublanguage of A
recognized when considering q as initial state and {q′} as set of final states. We say that L

is closed under sublanguages if (i) it contains every language of the form {a}, where a ∈ A is
any (positive) letter such that either a or a− occur in a word of a language of L, and (ii) for
every language L ∈ L there exists a NFA AL such that every sublanguage AL[q, q′] distinct
from ∅ and {ε} belongs to L.

To the best of our knowledge, all classes of regular expressions that have been considered
in the realm of regular path queries (see, e.g., [11, §1]) are closed under sublanguages. In
particular, this is the case for the class

{
{a1 + . . . + an} | a1, . . . , an ∈ A

}
∪

{
a∗ | a ∈ A

}
,

which will be our focus of study in Section 6. Moreover, even if some class L is not closed

D. Figueira and R. Morvan 15:5

under sublanguages, such as for example {(aa)∗}, then it is contained is a class closed under
sublanguages – {a, a(aa)∗, (aa)∗} in this example – , whose size4 is polynomial in the size of
the original class. See the full version for more examples.

▶ Theorem 1.5. Assume that L is closed under sublanguages. For any query Γ ∈
UC2RPQ(L) and k > 1, the following are equivalent:
1. Γ is equivalent to an infinitary union of conjunctive queries of tree-width at most k;
2. Γ has semantic tree-width at most k;
3. Γ is equivalent to a UC2RPQ(L) of tree-width at most k.

The implications (3)⇒ (2)⇒ (1) immediately follow from the definition of the semantic
tree-width. On the other hand, the implications (1) ⇒ (2) and (2) ⇒ (3) are surprising,
since they are both trivially false when k = 1. We defer the proof of this claim to Section 2
(see Remark 2.5) as we first need a few tools to manipulate CRPQs.

The proofs of both Theorems 1.3 and 1.5 rely on our key lemma (Lemma 3.8), which
states essentially that every UC2RPQ has a computable “maximal under approximation” by
a UC2RPQ of tree-width k. Formally, the key lemma has the following corollary:

▶ Corollary 3.9. For each k > 1 and for each class L closed under sublanguages, for each
query Γ ∈ UC2RPQ(L), there exists Γ′ ∈ UC2RPQ(L) of tree-width k such that Γ′ ⫅ Γ,
and for every ∆ ∈ UC2RPQ, if ∆ has tree-width k and ∆ ⫅ Γ, then ∆ ⫅ Γ′. Moreover, Γ′

is computable from Γ in ExpSpace.

The proof of our key lemma spans over Sections 3–5: in Section 3, we introduce necessary
notions to formally state it, and deduce Theorems 1.3 and 1.5 from it; in Section 4 we
introduce the central notion of tagged tree decompositions of C2RPQs homomorphisms, and
building on it, we finally describe the constructions used to prove the key lemma in Section 5.

Finally, in Section 6, given the high complexity of semantic tree-width k problem, we
focus on the case of CRPQs using some simple regular expressions (SRE), and show that the
complexity of this problem is much lower:

▶ Theorem 6.1. For k > 1, the semantic tree-width k problem for UCRPQ(SRE) is in Πp
2.

A discussion on differences with Barceló, Romero and Vardi’s contributions and open
questions are left for Section 7.

2 Homomorphisms, refinements, and expansions

Before attacking the statement of our key lemma in Section 3, we first give a few elementary
definitions on C2RPQs in this section. A homomorphism f from a C2RPQ γ(x1, . . . , xm)
to a C2RPQ γ′(y1, . . . , ym) is a mapping from vars(γ) to vars(γ′) such that f(x) L−→ f(y)
is an atom of γ′ for every atom x

L−→ y of γ, and further f(xi) = yi for every i. Such a
homomorphism h is strong onto if for every atom x′ L−→ y′ of γ′ there is an atom x

L−→ y of γ

such that f(x) = x′ and f(y) = y′. We write γ
hom−−→ γ′ if there is a homomorphism from γ to

γ′, and γ
hom−−→−→ γ′ if there is a strong onto homomorphism. It is easy to see that if γ

hom−−→ γ′

then γ′ ⫅ γ, and in the case where γ, γ′ are CQs this is an “if and only if” [9, Lemma 13].

4 Defined as the sum of the number of states of the minimal automaton of the languages of L.

ICDT 2023

https://arxiv.org/abs/2212.01679

15:6 Approximation & Semantic Tree-Width of CRPQs

Some intuitions on maximal under-approximations. Given a conjunctive query γ, the
union of all conjunctive queries that are contained in γ is semantically equivalent to the
union

∨
{γ′ | γ hom−−→−→ γ′}. Naturally, this statement borders on the trivial since γ′ belongs

to this union. It becomes interesting when we add a restriction: given a class C of CQs (to
which γ may not belong) closed under subqueries, then

∨
{γ′ ∈ C | γ hom−−→−→ γ′} is the maximal

under-approximation5 of γ by finite unions of conjunctive queries of C6. As a consequence,
we deduce that for each k ⩾ 1, the maximal under-approximation of a CQ by a finite union
of CQs of tree-width at most k is computable, and hence we can effectively decide if some
CQ is equivalent to a query of tree-width at most k. For more details on approximations of
CQs, see [3].

Unfortunately, these results cannot be straightforwardly extended to conjunctive regular
path queries: intuitively, taking homomorphic images can be understood as “simplifying” the
query (we reduce its number of variables, but this may make the query strictly contained in
the original one). This is because CRPQs have an implicit quantification of variables: for
instance, the CQ γ(x, y) = x

a−→ z
b−→ y can be rewritten as the CRPQ γ′(x, y) = x

ab−→ y.
Coming back to our previous Example 1.2, another way of seeing that δ(x̄) ⫅ γ(x̄) is by
observing that we can obtain δ(x̄) as the result of the following two operations:

in γ(x̄), replace the atom x1
ab(bb)∗

−−−−→ z with x1
a−→ t

b(bb)∗

−−−−→ z, where t is a fresh
existentially quantified variable;
identify variables t with y.7

The last operation consists in taking homomorphic images, and the first one amounts to
making explicit an implicit quantification. We formalize the first operation by introducing
the notion of “refinement” which we will later use, in Section 3, to introduce the notion of
maximal under-approximations for CRPQs. We will come back this example once all these
notions will have been formally defined (cf. Example 3.4).

Refinements. An atom m-refinement of a C2RPQ atom γ(x, y) = x
L−→ y where L is given

by the NFA AL is any C2RPQ of the form

ρ(x, y) = x
L1−−→ t1

L2−−→ . . .
Ln−1−−−→ tn−1

Ln−−→ y (1)

where 1 ⩽ n ⩽ m, t1, . . . , tn−1 are fresh (existentially quantified) variables, and L1, . . . , Ln

are such that there exists a sequence (q0, . . . , qn) of states of AL such that q0 is initial, qn is
final, and for each i, Li is either of the form (i) AL[qi, qi+1], or (ii) {a} if the letter a ∈ A
belongs to AL[qi, qi+1], or (iii) {a−1} if a−1 ∈ A− belongs to A[qi, qi+1]. Additionally, if
ε ∈ L, the equality atom “x = y” is also an atom m-refinement (see the full version for more
details on these), Thus, an atom m-refinement can be either of the form (1) or “x = y”. By
convention, t

a−

−−→ t′ is a shorthand for t′ a−→ t. As a consequence, the underlying graph of
an atom m-refinement of the form (1) is not necessarily a directed path. By definition, note
that L1 · · ·Ln ⊆ L and hence ρ ⫅ γ for any atom m-refinement ρ of γ. An atom refinement
is an atom m-refinement for some m.

5 A formalization of what “maximal under-approximation” means is given in Remark 3.2.
6 The proof is straightforward: by definition, this union is finite (a finite CQ has only finitely many

homomorphic images), and is contained in γ. Moreover, if γ′ ∈ C is contained in γ, then there exists a
homomorphism f : γ → γ′. Then γ

hom−−→−→ f(γ) and f(γ) ∈ C since it is a subquery of γ′ ∈ C and C is
closed under subqueries. We conclude by noting that γ′ is contained in f(γ).

7 We actually obtain two atoms from y to z: one label by b+ and one by b(bb)∗, but since b(bb)∗ ⊆ b+ we
can discard the b+ atom preserving the query semantics.

https://arxiv.org/abs/2212.01679

D. Figueira and R. Morvan 15:7

▶ Definition 2.1. Given an atom refinement ρ = x
L1−−→ t1

L2−−→ . . .
Ln−1−−−→ tn−1

Ln−−→ y of
γ = x

L−→ y as in (1), define a contraction of ρ between ti and tj, where 0 ⩽ i, j ⩽ n and
j > i + 1, is any C2RPQ of the form:

ρ′ = x
L1−−→ t1

L2−−→ . . .
Li−→ ti

K−→ tj
Lj+1−−−→ . . .

Ln−1−−−→ tn−1
Ln−−→ y

such that K = A[qi, qj]. Then every contraction ρ′ of ρ is a refinement of γ, and ρ ⫅ ρ′ ⫅ γ.
Informally, we will abuse the notation and write [Li · · ·Lj] to denote the language K – even
if this language does not only depend on Li · · ·Lj.

▶ Example 2.2. Let γ(x, y) = x
(aa−)∗

−−−−→ y be a C2RPQ atom, where (aa−)∗ is implicitly
represented by its minimal automaton. Then ρ(x, y) is a refinement of refinement length
seven of γ(x, y) and ρ′(x, y) is a contraction of ρ(x, y), where:

ρ(x, y) = x
a−→ t1

(a−a)∗

−−−−→ t2
(a−a)∗

−−−−→ t3
a←− t4

(aa−)∗

−−−−→ t5
(aa−)∗a−−−−−→ t6

a←− y,

ρ′(x, y) = x
a−→ t1

(a−a)∗a−

−−−−−−→ t4
(aa−)∗

−−−−→ y.

On the other hand, ρ′′(x, y) = x
a−→ t1

a←− y is not a contraction of ρ(x, y).

An m-refinement of a C2RPQ γ(x̄) =
∧

i xi
Li−→ yi is any query resulting from: 1)

replacing every atom by one of its m-refinements, and 2) should some m-refinements be
equality atoms, collapsing equal variables and getting rid of equalities, in a rather standard
way – more details are given in the full version. A refinement is an m-refinement for some
m. Note that any atom m-refinements is, by definition, also an atom m′-refinements when
m < m′: as a consequence, in the refinement of a C2RPQ the atom refinements need not
have the same length. For instance, both ρ(x, x) = x

c−→ x and ρ′(x, y) = x
a−→ t1

a−→ y
c←− y

are refinements of γ(x, y) = x
a∗

−→ y
c←− x. For a given C2RPQ γ, let Ref⩽m(γ) be the set of

all m-refinements of γ, and Ref(γ) be the set of all its refinements. Given a refinement ρ(x̄)
of γ(x̄), its refinement length is the least integer m such that ρ(x̄) ∈ Ref⩽m(γ). Note that
if the automaton representing a language L has more than one final state, for instance the
minimal automaton for L = a+ + b+, then x

L−→ y is not a refinement of itself. However, it
will always be equivalent to a union of refinements: in this example, x

a++b+

−−−−→ y is equivalent
to the union of x

a+

−−→ y and x
b+

−→ y, which are both refinements of the original C2RPQ.

Expansions. Remember that a C2RPQ whose languages are {a} or {a−} for a ∈ A is in effect
a CQ. The expansions of a C2RPQ γ is the set Exp(γ) of all CQs which are refinements of γ.
In other words, an expansion of γ is any CQ obtained from γ by replacing each atom x

L−→ y

by a path x
w−→ y for some word w ∈ L. For instance, ξ(x, y) = x

a−→ t1
a←− t2

a−→ t3
a←− y

is an expansion of ρ(x, y) = x
(aa−)∗

−−−−→ y.
Any C2RPQ is equivalent to the infinitary union of its expansions. In light of this, the

semantics for UC2RPQ can be rephrased as follows. Given a UC2RPQ Γ and a graph
database G, the evaluation of Γ over G, denoted by Γ(G), is the set of tuples v̄ of nodes for
which there is ξ ∈ Exp(Γ) such that ξ

hom−−→ (G, v̄). Similarly, containment of UC2RPQs can
also be characterized in terms of expansions:

▶ Proposition 2.3 (Folklore, see e.g. [12, Proposition 3.2] or [8, Theorem 2]). Let Γ1 and Γ2
be UC2RPQs. Then the following are equivalent

Γ1 ⊆ Γ2;
for every ξ1 ∈ Exp(Γ1), ξ1 ⫅ Γ2;
for every ξ1 ∈ Exp(Γ1) there is ξ2 ∈ Exp(Γ2) such that ξ2

hom−−→ ξ1.

ICDT 2023

https://arxiv.org/abs/2212.01679

15:8 Approximation & Semantic Tree-Width of CRPQs

x x′

γ(x, z) =̂ y

z z′

L1 (ab)∗

L2 a∗

a∗ c

t̃2 t̃1 x′

ρ(x, x) =̂ x y

t1 z′

(ab)∗ b (ab)∗a

L1

L2 a

a

c

Figure 2 On the left-hand side, a CRPQ γ of tree-width 2. On the right-hand side, a refinement
ρ of γ, whose refinement length is three, which is also of tree-width 2.

Hence, every expansion of γ is also a refinement of γ. Moreover, if ρ is a refinement of γ,
then ρ ⫅ γ, and γ is semantically equivalent to the infinitary union of all its refinements,
and to the infinitary union of all its expansions.

Our approach to proving Theorems 1.3 and 1.5 and the key lemma heavily rely on
refinements. One crucial property that these objects satisfy is that they preserve tree-width
k, unless k = 1. This is the main reason why our approach cannot capture the case k = 1,
solved by Barceló, Romero and Vardi [5].

▷ Fact 2.4. Let k > 1 and let γ be a C2RPQ of tree-width at most k. Then any refinement
of γ has tree-width at most k.

This fact is illustrated on a example in Figure 2.

Proof sketch. The underlying graph of a refinement of γ is obtained from the underlying
graph of γ by either contracting some edges (when dealing with equality atoms), or by
replacing a single edge by a path of edges (where the non-extremal nodes are new nodes).
Both operations preserve the property “having tree-width at most k” when k > 1. Details
are given in the full version. ◁

For k = 1, the property fails: for instance the CRPQ γ(x) = x
a∗

−→ x has tree-width at
most 1 (in fact it has tree-width 0), but its refinement ρ(x) = x

a∗

−→ t1
a∗

−→ t2
a∗

−→ x has
tree-width two.

Before introducing maximal under-approximations, we can now show that the statement
of Theorem 1.5 is indeed false for k = 1.

▶ Remark 2.5. (1) ̸⇒ (2) when k = 1: consider the CRPQ γ(x, y) = x
a∗

−→ y ∧ y
b−→ x of

tree-width 1, and hence of semantic tree-width 1, and observe that it is not equivalent to any
infinitary union of conjunctive queries of tree-width 1 – this can be proven by considering,
for example, the expansion x

a−→ z
a−→ y ∧ y

b−→ x of γ(x, y) and applying Proposition 2.3.
(2) ̸⇒ (3) when k = 1: By [5, Proposition 6.4] the CRPQ of semantic tree-width 1

γ(x) =̂ x
a←− z

a−→ y ∧ x
b−→ y ≡ x

ba−a−−−→ x is not equivalent to any UCRPQ of tree-width 1.
Hence, the implication is false when L is the class of regular languages over A± that do not
use any letter of the form a−.

3 Maximal under-approximations of bounded tree-width

In this section, we state our key technical result, Lemma 3.8. Essentially, we follow the same
structure as Theorem 1.5: given a C2RPQ γ and an integer k > 1, we start by consider its
maximal under-approximation by infinitary unions of conjunctive queries of tree-width k

(Definition 3.1), and then show that this query can in fact be expressed as a UC2RPQ of
tree-width k whose atoms are obtained by taking sublanguages from γ (Lemma 3.8).

For the definitions of this section, let us fix any class C of C2RPQ queries.

https://arxiv.org/abs/2212.01679

D. Figueira and R. Morvan 15:9

▶ Definition 3.1 (Maximal under-approximation). Let γ be a C2RPQ. The maximal under-
approximation of γ by infinitary unions of C-queries, is AppC(γ) =̂ {α ∈ C | α ⫅ γ}.

For intuition, we refer the reader to paragraph “An intuition on maximal under-
approximations” at the beginning of Section 2.
▶ Remark 3.2. Observe that AppC(γ) is an infinitary union of C-queries, that AppC(γ) ⫅ γ,
and that for every infinitary union of C-queries ∆, if ∆ ⫅ γ, then ∆ ⫅ AppC(γ) (i.e., it is
the unique maximal under-approximation). Similarly, the maximal under-approximation of a
UC2RPQ is simply the union of the maximal under-approximations of the C2RPQs thereof.

Unfortunately, the fact that a query α is part of this union, α ∈ AppC(γ), does not
yield any useful information on the shape of α – we merely know that α ⫅ γ. The rest of
this subsection is dedicated to introducing another infinitary union of C-queries, namely
App⋆

C(γ) ⊆ AppC(γ), in which queries α ∈ App⋆
C(γ) come together with a witness – a

homomorphism – of their containment in γ.

▶ Definition 3.3. The maximal under-approximation of γ by infinitary unions of
homomorphically-smaller C-queries is

App⋆
C(γ) =̂ {α ∈ C | ∃ρ ∈ Ref(γ), ∃f : ρ

hom−−→−→ α}. (2)

For instance, let C be the class of all CRPQs and let γ(x, y) =̂ x
a∗

−→ y
a−→ z

a∗

−→
x ∧ y

a∗

−→ x be the CRPQ which asks for all pairs of nodes that belong to the same non-
empty cycle of a’s8. Then γ′(x, y) = x

a∗

−→ y
a−→ z

a∗

−→ x is an element of App⋆
C(γ) since

there is a strong onto homomorphism from the refinement

ρ(x, y) =
(
x

a∗

−→ y
a−→ z

a∗

−→ x ∧ y
a−→ z′ a∗

−→ x
)
∈ Ref(γ(x, y))

to γ′(x, y), mapping z and z′ to z.

▶ Example 3.4 (Example 1.2, cont’d). Both δ(x̄) and δ′(x̄) are semantically equivalent
to queries in App⋆

Tw2
(γ(x̄)). Indeed, starting from γ(x̄), we can refine x0

a(bb)+

−−−−→ z into
x1

a−→ t
(bb)+

−−−→ z. Denote by ρ(x̄) the query obtained. Then merge variables t and y: this
new query δ′

app(x̄) is equivalent to δ′(x̄).

x0 x1 x0 x1 x0 x1

ρ(x̄) =̂ t y δ′
app(x̄) =̂ y δ′(x̄) =̂ y

z z z

a

c

a a

ab(bb)∗

a

c

a

ab(bb)∗

a

c

a

ab(bb)∗
(bb)+ b+ b+(bb)+ (bb)+

Clearly, App⋆
C(γ) – whose queries are informally called approximations – is included, and

thus semantically contained, in AppC(γ), since ρ ⫅ γ and α ⫅ ρ in (2). In fact, under some
assumptions on C, the converse containment also holds.

▶ Observation 3.5. If C is closed under expansions, then for any C2RPQ γ, we have
AppC(γ) ≡ App⋆

C(γ).

Proof. This follows immediately from Proposition 2.3 – note that in the definition of App⋆
C(γ)

we work with strong onto homomorphisms, but we can always restrict homomorphisms to
their image to make them strong onto, without changing the expressiveness of the query. ◀

8 There exists CRPQs with fewer variables that expresses the same property, but this is irrelevant here.

ICDT 2023

15:10 Approximation & Semantic Tree-Width of CRPQs

Observe then, by Fact 2.4, that the class Twk of all C2RPQs of tree-width at most k is
closed under refinements and hence under expansions, provided that k is greater or equal
to 2. As an immediate consequence, we have:

▶ Corollary 3.6. For k ⩾ 2, for all C2RPQ γ, AppTwk
(γ) ≡ App⋆

Twk
(γ).

▶ Example 3.7 (Counter-example for k = 1). Consider the followings queries:

z z′

γ(x, y) =̂ and δ(x, y) =̂ x y.

x y

(ba)∗

b

(ab)+

c
(ab)+a

c

We claim that AppTw1(γ) ̸⫅ App⋆
Tw1

(γ) since δ(x, y) ∈ AppTw1(γ) but δ(x, y) ̸⫅ App⋆
Tw1

(γ).
Details are given in the full version.

By definition, App⋆
Twk

(γ) is an infinitary union of C2RPQs. We show that, in fact,
App⋆

Twk
(γ) is always equivalent to a finite union of C2RPQs. This is done by bounding the

length of the refinements occurring in the definition of App⋆
Twk

(γ). For a natural m, let
App⋆,⩽m

C (Γ) =̂ {α ∈ C | ∃ρ ∈ Ref⩽m(γ), ∃f : ρ
hom−−→−→ α}. Our main technical lemma is then

the following:

▶ Lemma 3.8 (Key lemma). For k ⩾ 1 and C2RPQ γ, we have AppTwk
(γ) ≡ App⋆,⩽ℓ

Twk
(γ),

where ℓ = Θ(∥γ∥2 · (k + 1)∥γ∥+1).

▶ Corollary 3.9. For each k > 1 and for each class L closed under sublanguages, for each
query Γ ∈ UC2RPQ(L), there exists Γ′ ∈ UC2RPQ(L) of tree-width k such that Γ′ ⫅ Γ,
and for every ∆ ∈ UC2RPQ, if ∆ has tree-width k and ∆ ⫅ Γ, then ∆ ⫅ Γ′. Moreover, Γ′

is computable from Γ in ExpSpace.

Using Lemma 3.8 as a black box – which will be proven in Section 5 – , we can now give
a proof of Theorems 1.3 and 1.5. The upper bound of Theorem 1.3 follows directly from
Corollary 3.9: to test whether a query Γ is of semantic tree-width k, it suffices to test the
containment Γ ⫅ Γ′, where Γ′ is the maximal under-approximation given by Corollary 3.9.
The containment problem being in ExpSpace [12, 8], we obtain:

▶ Lemma 3.10. For k ⩾ 1, the semantic tree-width k problem for UC2RPQ is in 2ExpSpace.

An ExpSpace lower bound follows by a straightforward adaptation from the ExpSpace
lower bound for the case k = 1 [5, Proposition 6.2].

▶ Lemma 3.11. The semantic tree-width k problem is ExpSpace-hard, even if restricted to
Boolean CRPQs.

We can now rely on the equivalence AppTwk
(γ) ≡ App⋆,⩽ℓ

Twk
(γ) to prove Theorem 1.5.

Proof of Theorem 1.5. The implications (3)⇒ (2)⇒ (1) are straightforward: they follow
directly from Fact 2.4. For (1) ⇒ (3), note that (1) implies that Γ ≡ AppTwk

(Γ), and by
Lemma 3.8, AppTwk

(Γ) ≡ ∆ =̂
∨

γ∈Γ App⋆,⩽ℓγ
Twk

(γ), so Γ is equivalent to the latter. Since
queries of ∆ are obtained as homomorphic images of refinements of Γ, all of which are labelled
by sublanguages of L, and since L is closed under sublanguages, it follows that hence Γ is
equivalent to a UC2RPQ(L) of tree-width k. ◀

https://arxiv.org/abs/2212.01679

D. Figueira and R. Morvan 15:11

We are left with the proof of Lemma 3.8, which will take the next two sections. Since
AppTwk

(γ) ≡ App⋆
Twk

(γ) by Corollary 3.6 and since App⋆,⩽ℓ
Twk

(γ) is a subset of AppTwk
(γ),

we only need to show that App⋆
Twk

(γ) ⫅ App⋆,⩽ℓ
Twk

(γ). Formally, this means that for all
α ∈ Twk, if there exists ρ ∈ Ref(γ) and f : ρ

hom−−→−→ α, then there exists α′ ∈ Twk such that
α ⫅ α′ and there exists ρ′ ∈ Ref⩽ℓ(γ) and f ′ : ρ′ hom−−→−→ α′. We prove this by “massaging” the
homomorphism f : ρ

hom−−→−→ α, by looking where each atom refinement of γ is sent on α relative
to a “well-behaved” tree decomposition of α of width k. Next, we introduce the notion of
tagged tree decomposition to have a precise handle on this information.

4 Intermezzo: tagged tree decompositions

▶ Definition 4.1. Let f : ρ→ α be a homomorphism between two C2RPQs. A tagged tree
decomposition of f is a triple (T, v, t) where (T, v) is a tree decomposition of α, and t is a
mapping t : Atoms(γ)→ V (T), called tagging, such that v(t(e)) contains both f(x) and f(y)
for each atom e = x

λ−→ y ∈ Atoms(γ).

In other words, t gives, for each atom of γ, a witnessing bag that contains it, in the sense
that it contains the image by f of the atom source and target. By definition, given a tree
decomposition (T, v) of α and a homomorphism f : ρ→ α, there is always one way (usually
many) of extending (T, v) into a tagged tree decomposition of f .

▷ Fact 4.2. Let (T, v, t) be a tagged tree decomposition of some homomorphism f : ρ→ α.
Let T ′ be the smallest connected subset of T induced by the image of t. Then (T ′, v|T ′ , t) is
still a tagged tree decomposition of f , whose width is at most the width of (T, v, t).

We extend the notion of tagging to paths: a formal definition can be found in the full
version, and the notion is illustrated in Figure 3. In the context of a (nice) tagged tree
decomposition (T, v, t) of f : ρ

hom−−→ α, given a path π of ρ, say x0
λ1−→ x1

λ2−→ · · · λn−−→ xn

(in blue in Figure 3a), the path induced by π, denoted t[π], is informally defined as the
following “path” in T × α, seen as a sequence of pairs from V (T)× vars(α):

it starts with the bag t(x0
λ1−→ x1) of T and the variable f(x0) of α; and it continues

with (t(x0
λ1−→ x1), f(x1)) (corresponding to the first blue edge in b1 of Figure 3a);

it then follows the shortest path in T (unique, since it is a tree) that goes to the
bag t(x1

λ2−→ x2), while staying in f(x1) in α (in Figure 3a, it follows the blue path:
(b2, x2), (b3, x2)) and it traverses the atom x1

λ2−→ x2 (i.e., we go to (b3, x3));
it continues in the same way for all other atoms of the path, ending up with the bag
t(xn−1

λn−−→ xn) and the variable f(xn) of α.
By construction, note that the constructed sequence (bi, zi)i is such that zi ∈ v(bi). Moreover,
given a bag b of T and a variable z of α, we say that t[π] leaves b at z when z = zi and
b = bi for some i, and either bi+1 is undefined, or distinct from b. For example, in Figure 3a,
τ [π] leaves b1 at x1 and leaves b2 at x1 and at x4. We say that an induced path is cyclic if it
contains three positions i < j < i′ such that i and i′ contain the same bag but j contains a
different bag (the one in Figure 3a is cyclic because it passes twice by the bag b2).

For technical reasons – the proof of Claim 5.2 – , we need to use the classical notion of nice
tree decomposition (see e.g. [13, Definition 13.1.4, page 149]), which is a tree decomposition
(T, v) such that any bag b that is not a leaf either: 1) has exactly two children b1, b2 such
that v(b1) = v(b) = v(b2), or 2) has exactly one child b′, and v(b′) is obtained from v(b) by
either adding a single vertex, or by removing a single vertex. A C2RPQ has tree-width k

if and only if it has a nice tree decomposition of width at most k [13, Lemma 13.1.2, page
149]. In the context of a nice tree decomposition of width k, a full bag is any bag of size

ICDT 2023

https://arxiv.org/abs/2212.01679
https://arxiv.org/abs/2212.01679

15:12 Approximation & Semantic Tree-Width of CRPQs

<latexit sha1_base64="Pjlj4759DGhRaaxIuowVNWZxP+4=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdgpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AJomSGw==</latexit>x0

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="BZY3NpUNwwL9qWhKoEi7DyA3xSE=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJVMBGJRbGIuhFaqPKcZ3WquNEtoOooj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJ3ljQcqFYvEvR7G1AtxT7CAEayNdffYOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjJOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFsuVo5hqjwcwCGcgAsXUIEbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ACsVkh4=</latexit>x3

<latexit sha1_base64="i1nrgrBDE36g4HauVtl4pBxYZn0=">AAAB6nicbZDLSgMxFIZPvNZ6q7p0EyyKqzIjRd1ZcOOyor1AO5RMmmlDM5khyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs7xY8G1cZxvtLS8srq2ntvIb25t7+wW9vbrOkoUZTUaiUg1faKZ4JLVDDeCNWPFSOgL1vAH11neeGBK80jem2HMvJD0JA84JcZad4+dcqdQdErORHgR3BkUrz7Hmd6qncJXuxvRJGTSUEG0brlObLyUKMOpYKN8O9EsJnRAeqxlUZKQaS+djDrCx9bp4iBS9kmDJ+7vjpSEWg9D31aGxPT1fJaZ/2WtxASXXsplnBgm6fSjIBHYRDjbG3e5YtSIoQVCFbezYtonilBjr5O3R3DnV16E+lnJPS+Vb8vFyglMlYNDOIJTcOECKnADVagBhR48wQu8IoGe0Ri9T0uX0KznAP4IffwALJmSHw==</latexit>x4

<latexit sha1_base64="U7e5I/5jvk5WIgWt74DuHQl6Pi0=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJKpeNSiyMRdCL1EaV4zqtVceJbAdRRX0EFgZQYeUleA023gan7QAtv2Tp0/+fI59z/JgzpR3n28otLa+sruXXCxubW9s79u5eXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4DrLGw9UKhaJez2MqRfinmABI1gb6+6xc9axi07JmQgtgjuD4tXnONNbtWN/tbsRSUIqNOFYqZbrxNpLsdSMcDoqtBNFY0wGuEdbBgUOqfLSyagjdGScLgoiaZ7QaOL+7khxqNQw9E1liHVfzWeZ+V/WSnRw6aVMxImmgkw/ChKOdISyvVGXSUo0HxrARDIzKyJ9LDHR5joFcwR3fuVFqJ+W3PNS+bZcrBzDVHk4gEM4ARcuoAI3UIUaEOjBE7zAq8WtZ2tsvU9Lc9asZx/+yPr4AS4dkiA=</latexit>x5

<latexit sha1_base64="gLxQ5WH/Z8ulThy9XYfic7EOFTw=">AAAB7HicbZDLSgMxFIbP1Futt6pLN8GiuCozUtSNWHDjsoK9QDuUTJppQzPJkGSEMvQZ3Liwilvfwddw59uYabvQ1h8CH/9/DjnnBDFn2rjut5NbWV1b38hvFra2d3b3ivsHDS0TRWidSC5VK8CaciZo3TDDaStWFEcBp81geJvlzUeqNJPiwYxi6ke4L1jICDbWqnfUQF53iyW37E6FlsGbQ+nmc5LptdYtfnV6kiQRFYZwrHXbc2Pjp1gZRjgdFzqJpjEmQ9ynbYsCR1T76XTYMTqxTg+FUtknDJq6vztSHGk9igJbGWEz0ItZZv6XtRMTXvkpE3FiqCCzj8KEIyNRtjnqMUWJ4SMLmChmZ0VkgBUmxt6nYI/gLa68DI3zsndRrtxXStVTmCkPR3AMZ+DBJVThDmpQBwIMnuAFJo5wnp03531WmnPmPYfwR87HD78Mkwo=</latexit>⇢ =

<latexit sha1_base64="Pjlj4759DGhRaaxIuowVNWZxP+4=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdgpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AJomSGw==</latexit>x0

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="BZY3NpUNwwL9qWhKoEi7DyA3xSE=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJVMBGJRbGIuhFaqPKcZ3WquNEtoOooj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJ3ljQcqFYvEvR7G1AtxT7CAEayNdffYOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjJOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFsuVo5hqjwcwCGcgAsXUIEbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ACsVkh4=</latexit>x3

<latexit sha1_base64="i1nrgrBDE36g4HauVtl4pBxYZn0=">AAAB6nicbZDLSgMxFIZPvNZ6q7p0EyyKqzIjRd1ZcOOyor1AO5RMmmlDM5khyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs7xY8G1cZxvtLS8srq2ntvIb25t7+wW9vbrOkoUZTUaiUg1faKZ4JLVDDeCNWPFSOgL1vAH11neeGBK80jem2HMvJD0JA84JcZad4+dcqdQdErORHgR3BkUrz7Hmd6qncJXuxvRJGTSUEG0brlObLyUKMOpYKN8O9EsJnRAeqxlUZKQaS+djDrCx9bp4iBS9kmDJ+7vjpSEWg9D31aGxPT1fJaZ/2WtxASXXsplnBgm6fSjIBHYRDjbG3e5YtSIoQVCFbezYtonilBjr5O3R3DnV16E+lnJPS+Vb8vFyglMlYNDOIJTcOECKnADVagBhR48wQu8IoGe0Ri9T0uX0KznAP4IffwALJmSHw==</latexit>x4

<latexit sha1_base64="U7e5I/5jvk5WIgWt74DuHQl6Pi0=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJKpeNSiyMRdCL1EaV4zqtVceJbAdRRX0EFgZQYeUleA023gan7QAtv2Tp0/+fI59z/JgzpR3n28otLa+sruXXCxubW9s79u5eXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4DrLGw9UKhaJez2MqRfinmABI1gb6+6xc9axi07JmQgtgjuD4tXnONNbtWN/tbsRSUIqNOFYqZbrxNpLsdSMcDoqtBNFY0wGuEdbBgUOqfLSyagjdGScLgoiaZ7QaOL+7khxqNQw9E1liHVfzWeZ+V/WSnRw6aVMxImmgkw/ChKOdISyvVGXSUo0HxrARDIzKyJ9LDHR5joFcwR3fuVFqJ+W3PNS+bZcrBzDVHk4gEM4ARcuoAI3UIUaEOjBE7zAq8WtZ2tsvU9Lc9asZx/+yPr4AS4dkiA=</latexit>x5
<latexit sha1_base64="12bgtH8Bg5B197kGm6H83mVYt2A=">AAAB6nicbZDLSgMxFIbP1Futt6pLN8GiuCozUtSdBTcuK9oLtEPJpJk2NJMMSUYoQx/BjQuluvUlfA13vo2Ztgtt/SHw8f/nkHNOEHOmjet+O7mV1bX1jfxmYWt7Z3evuH/Q0DJRhNaJ5FK1AqwpZ4LWDTOctmJFcRRw2gyGN1nefKRKMykezCimfoT7goWMYGOt+6DrdYslt+xOhZbBm0Pp+nOS6a3WLX51epIkERWGcKx123Nj46dYGUY4HRc6iaYxJkPcp22LAkdU++l01DE6sU4PhVLZJwyaur87UhxpPYoCWxlhM9CLWWb+l7UTE175KRNxYqggs4/ChCMjUbY36jFFieEjC5goZmdFZIAVJsZep2CP4C2uvAyN87J3Ua7cVUrVU5gpD0dwDGfgwSVU4RZqUAcCfXiCF3h1uPPsTJz3WWnOmfccwh85Hz8GiZIG</latexit>

b1

<latexit sha1_base64="Pjlj4759DGhRaaxIuowVNWZxP+4=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdgpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AJomSGw==</latexit>x0

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="BZY3NpUNwwL9qWhKoEi7DyA3xSE=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJVMBGJRbGIuhFaqPKcZ3WquNEtoOooj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJ3ljQcqFYvEvR7G1AtxT7CAEayNdffYOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjJOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFsuVo5hqjwcwCGcgAsXUIEbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ACsVkh4=</latexit>x3

<latexit sha1_base64="i1nrgrBDE36g4HauVtl4pBxYZn0=">AAAB6nicbZDLSgMxFIZPvNZ6q7p0EyyKqzIjRd1ZcOOyor1AO5RMmmlDM5khyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs7xY8G1cZxvtLS8srq2ntvIb25t7+wW9vbrOkoUZTUaiUg1faKZ4JLVDDeCNWPFSOgL1vAH11neeGBK80jem2HMvJD0JA84JcZad4+dcqdQdErORHgR3BkUrz7Hmd6qncJXuxvRJGTSUEG0brlObLyUKMOpYKN8O9EsJnRAeqxlUZKQaS+djDrCx9bp4iBS9kmDJ+7vjpSEWg9D31aGxPT1fJaZ/2WtxASXXsplnBgm6fSjIBHYRDjbG3e5YtSIoQVCFbezYtonilBjr5O3R3DnV16E+lnJPS+Vb8vFyglMlYNDOIJTcOECKnADVagBhR48wQu8IoGe0Ri9T0uX0KznAP4IffwALJmSHw==</latexit>x4

<latexit sha1_base64="U7e5I/5jvk5WIgWt74DuHQl6Pi0=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJKpeNSiyMRdCL1EaV4zqtVceJbAdRRX0EFgZQYeUleA023gan7QAtv2Tp0/+fI59z/JgzpR3n28otLa+sruXXCxubW9s79u5eXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4DrLGw9UKhaJez2MqRfinmABI1gb6+6xc9axi07JmQgtgjuD4tXnONNbtWN/tbsRSUIqNOFYqZbrxNpLsdSMcDoqtBNFY0wGuEdbBgUOqfLSyagjdGScLgoiaZ7QaOL+7khxqNQw9E1liHVfzWeZ+V/WSnRw6aVMxImmgkw/ChKOdISyvVGXSUo0HxrARDIzKyJ9LDHR5joFcwR3fuVFqJ+W3PNS+bZcrBzDVHk4gEM4ARcuoAI3UIUaEOjBE7zAq8WtZ2tsvU9Lc9asZx/+yPr4AS4dkiA=</latexit>x5

<latexit sha1_base64="Pjlj4759DGhRaaxIuowVNWZxP+4=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdgpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AJomSGw==</latexit>x0

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="BZY3NpUNwwL9qWhKoEi7DyA3xSE=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJVMBGJRbGIuhFaqPKcZ3WquNEtoOooj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJ3ljQcqFYvEvR7G1AtxT7CAEayNdffYOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjJOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFsuVo5hqjwcwCGcgAsXUIEbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ACsVkh4=</latexit>x3

<latexit sha1_base64="i1nrgrBDE36g4HauVtl4pBxYZn0=">AAAB6nicbZDLSgMxFIZPvNZ6q7p0EyyKqzIjRd1ZcOOyor1AO5RMmmlDM5khyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs7xY8G1cZxvtLS8srq2ntvIb25t7+wW9vbrOkoUZTUaiUg1faKZ4JLVDDeCNWPFSOgL1vAH11neeGBK80jem2HMvJD0JA84JcZad4+dcqdQdErORHgR3BkUrz7Hmd6qncJXuxvRJGTSUEG0brlObLyUKMOpYKN8O9EsJnRAeqxlUZKQaS+djDrCx9bp4iBS9kmDJ+7vjpSEWg9D31aGxPT1fJaZ/2WtxASXXsplnBgm6fSjIBHYRDjbG3e5YtSIoQVCFbezYtonilBjr5O3R3DnV16E+lnJPS+Vb8vFyglMlYNDOIJTcOECKnADVagBhR48wQu8IoGe0Ri9T0uX0KznAP4IffwALJmSHw==</latexit>x4

<latexit sha1_base64="U7e5I/5jvk5WIgWt74DuHQl6Pi0=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJKpeNSiyMRdCL1EaV4zqtVceJbAdRRX0EFgZQYeUleA023gan7QAtv2Tp0/+fI59z/JgzpR3n28otLa+sruXXCxubW9s79u5eXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4DrLGw9UKhaJez2MqRfinmABI1gb6+6xc9axi07JmQgtgjuD4tXnONNbtWN/tbsRSUIqNOFYqZbrxNpLsdSMcDoqtBNFY0wGuEdbBgUOqfLSyagjdGScLgoiaZ7QaOL+7khxqNQw9E1liHVfzWeZ+V/WSnRw6aVMxImmgkw/ChKOdISyvVGXSUo0HxrARDIzKyJ9LDHR5joFcwR3fuVFqJ+W3PNS+bZcrBzDVHk4gEM4ARcuoAI3UIUaEOjBE7zAq8WtZ2tsvU9Lc9asZx/+yPr4AS4dkiA=</latexit>x5

<latexit sha1_base64="Pjlj4759DGhRaaxIuowVNWZxP+4=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdgpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AJomSGw==</latexit>x0

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="BZY3NpUNwwL9qWhKoEi7DyA3xSE=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJVMBGJRbGIuhFaqPKcZ3WquNEtoOooj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJ3ljQcqFYvEvR7G1AtxT7CAEayNdffYOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjJOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFsuVo5hqjwcwCGcgAsXUIEbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ACsVkh4=</latexit>x3

<latexit sha1_base64="i1nrgrBDE36g4HauVtl4pBxYZn0=">AAAB6nicbZDLSgMxFIZPvNZ6q7p0EyyKqzIjRd1ZcOOyor1AO5RMmmlDM5khyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs7xY8G1cZxvtLS8srq2ntvIb25t7+wW9vbrOkoUZTUaiUg1faKZ4JLVDDeCNWPFSOgL1vAH11neeGBK80jem2HMvJD0JA84JcZad4+dcqdQdErORHgR3BkUrz7Hmd6qncJXuxvRJGTSUEG0brlObLyUKMOpYKN8O9EsJnRAeqxlUZKQaS+djDrCx9bp4iBS9kmDJ+7vjpSEWg9D31aGxPT1fJaZ/2WtxASXXsplnBgm6fSjIBHYRDjbG3e5YtSIoQVCFbezYtonilBjr5O3R3DnV16E+lnJPS+Vb8vFyglMlYNDOIJTcOECKnADVagBhR48wQu8IoGe0Ri9T0uX0KznAP4IffwALJmSHw==</latexit>x4

<latexit sha1_base64="U7e5I/5jvk5WIgWt74DuHQl6Pi0=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJKpeNSiyMRdCL1EaV4zqtVceJbAdRRX0EFgZQYeUleA023gan7QAtv2Tp0/+fI59z/JgzpR3n28otLa+sruXXCxubW9s79u5eXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4DrLGw9UKhaJez2MqRfinmABI1gb6+6xc9axi07JmQgtgjuD4tXnONNbtWN/tbsRSUIqNOFYqZbrxNpLsdSMcDoqtBNFY0wGuEdbBgUOqfLSyagjdGScLgoiaZ7QaOL+7khxqNQw9E1liHVfzWeZ+V/WSnRw6aVMxImmgkw/ChKOdISyvVGXSUo0HxrARDIzKyJ9LDHR5joFcwR3fuVFqJ+W3PNS+bZcrBzDVHk4gEM4ARcuoAI3UIUaEOjBE7zAq8WtZ2tsvU9Lc9asZx/+yPr4AS4dkiA=</latexit>x5

<latexit sha1_base64="OJq4h6qYiu/1D3t7EFAkuyOOQdQ=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2WmFHVnwY3LivYC7VAyaaYNzSRDkhHK0Edw40Kpbn0JX8Odb2Om7UJbfwh8/P855JwTxJxp47rfzsrq2vrGZm4rv72zu7dfODhsaJkoQutEcqlaAdaUM0HrhhlOW7GiOAo4bQbDmyxvPlKlmRQPZhRTP8J9wUJGsLHWfdAtdwtFt+ROhZbBm0Px+nOS6a3WLXx1epIkERWGcKx123Nj46dYGUY4Hec7iaYxJkPcp22LAkdU++l01DE6tU4PhVLZJwyaur87UhxpPYoCWxlhM9CLWWb+l7UTE175KRNxYqggs4/ChCMjUbY36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAyNcsm7KFXuKsXqGcyUg2M4gXPw4BKqcAs1qAOBPjzBC7w63Hl2Js77rHTFmfccwR85Hz8IDZIH</latexit>

b2
<latexit sha1_base64="g9x/er79OCzthRhk47GCcei3B0Q=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGi7qz4MZlRXuBdiiZNNOGJpkhyQhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XdZQoQmsk4pFqBlhTziStGWY4bcaKYhFw2ggGN1neeKRKs0g+mGFMfYF7koWMYGOt+6Bz3ikU3ZI7EVoEbwbF689xprdqp/DV7kYkEVQawrHWLc+NjZ9iZRjhdJRvJ5rGmAxwj7YsSiyo9tPJqCN0bJ0uCiNlnzRo4v7uSLHQeigCWymw6ev5LDP/y1qJCa/8lMk4MVSS6UdhwpGJULY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3USrflYuVE5gqB4dwBKfgwSVU4BaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4ACZGSCA==</latexit>

b3

<latexit sha1_base64="i3wtW0iCO5onvmHhurbMwj378u8=">AAAB6nicbZDLSgMxFIbP1Futt6pLN8GiuCozUtSdBTcuK9oLtEPJpJk2NJMMSUYoQx/BjQuluvUlfA13vo2Ztgtt/SHw8f/nkHNOEHOmjet+O7mV1bX1jfxmYWt7Z3evuH/Q0DJRhNaJ5FK1AqwpZ4LWDTOctmJFcRRw2gyGN1nefKRKMykezCimfoT7goWMYGOt+6Bb6RZLbtmdCi2DN4fS9eck01utW/zq9CRJIioM4VjrtufGxk+xMoxwOi50Ek1jTIa4T9sWBY6o9tPpqGN0Yp0eCqWyTxg0dX93pDjSehQFtjLCZqAXs8z8L2snJrzyUybixFBBZh+FCUdGomxv1GOKEsNHFjBRzM6KyAArTIy9TsEewVtceRka52Xvoly5q5SqpzBTHo7gGM7Ag0uowi3UoA4E+vAEL/DqcOfZmTjvs9KcM+85hD9yPn4ACxWSCQ==</latexit>

b4

<latexit sha1_base64="Pjlj4759DGhRaaxIuowVNWZxP+4=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdgpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AJomSGw==</latexit>x0

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="BZY3NpUNwwL9qWhKoEi7DyA3xSE=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJVMBGJRbGIuhFaqPKcZ3WquNEtoOooj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJ3ljQcqFYvEvR7G1AtxT7CAEayNdffYOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjJOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFsuVo5hqjwcwCGcgAsXUIEbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ACsVkh4=</latexit>x3

<latexit sha1_base64="i1nrgrBDE36g4HauVtl4pBxYZn0=">AAAB6nicbZDLSgMxFIZPvNZ6q7p0EyyKqzIjRd1ZcOOyor1AO5RMmmlDM5khyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs7xY8G1cZxvtLS8srq2ntvIb25t7+wW9vbrOkoUZTUaiUg1faKZ4JLVDDeCNWPFSOgL1vAH11neeGBK80jem2HMvJD0JA84JcZad4+dcqdQdErORHgR3BkUrz7Hmd6qncJXuxvRJGTSUEG0brlObLyUKMOpYKN8O9EsJnRAeqxlUZKQaS+djDrCx9bp4iBS9kmDJ+7vjpSEWg9D31aGxPT1fJaZ/2WtxASXXsplnBgm6fSjIBHYRDjbG3e5YtSIoQVCFbezYtonilBjr5O3R3DnV16E+lnJPS+Vb8vFyglMlYNDOIJTcOECKnADVagBhR48wQu8IoGe0Ri9T0uX0KznAP4IffwALJmSHw==</latexit>x4
<latexit sha1_base64="KRNBKgds8v+0JyLqBtflRqehOhI=">AAAB9XicbVDLSgNBEJyNrxhfUY9eFoPiKexKUG8GvHiMYB6QrGF2tjcZMvtgplcNS/5DBQ+KePXsb3jzb5xNctDEgoaiqpvuLjcWXKFlfRu5hcWl5ZX8amFtfWNzq7i901BRIhnUWSQi2XKpAsFDqCNHAa1YAg1cAU13cJH5zVuQikfhNQ5jcALaC7nPGUUt3XQQ7jHloZcwUKNusWSVrTHMeWJPSen88zHDU61b/Op4EUsCCJEJqlTbtmJ0UiqRMwGjQidREFM2oD1oaxrSAJSTjq8emQda8Uw/krpCNMfq74mUBkoNA1d3BhT7atbLxP+8doL+maOfihOEkE0W+YkwMTKzCEyPS2AohppQJrm+1WR9KilDHVRBh2DPvjxPGsdl+6RcuaqUqodkgjzZI/vkiNjklFTJJamROmFEkgfyQl6NO+PZeDPeJ605YzqzS/7A+PgBckuXhg==</latexit>

induces

<latexit sha1_base64="8WUFAY1U6crkKur0dgMNaMMnZXs=">AAACiHichZFNS8MwGMfT6nTWt6pHL8WhCMJot+r05NCLxwnuBbZS0ixzYWlTklQcpR9EL34Ov4Y3v43ptoNuBf8Q+PN7XpI8TxBTIqRtf2v62nppY7O8ZWzv7O7tmweHHcESjnAbMcp4L4ACUxLhtiSS4l7MMQwDirvB5D6Pd18wF4RFT3IaYy+EzxEZEQSlQr75kaaB72QDNGZM4PTVt7PMWGbOgtUKWP0fVitg9YJ+RczNMt+s2FV7JmvVOAtTuf18y/Xe8s2vwZChJMSRRBQK0XfsWHop5JIgijNjkAgcQzSBz7ivbARDLLx0NsjMOlVkaI0YVyeS1oz+rkhhKMQ0DFRmCOVYLMdyWBTrJ3J07aUkihOJIzS/aJRQSzIr34o1JBwjSafKQMSJequFxpBDJNXuDDUEZ/nLq6ZTqzpXVffRrTTPwFxlcAxOwDlwQAM0wQNogTZAWkm70FztUjd0W2/oN/NUXVvUHIE/0u9+AGZpzLQ=</latexit>✓
b1
x0

◆✓
b1
x1

◆✓
b2
x1

◆✓
b3
x1

◆✓
b3
x2

◆✓
b3
x3

◆✓
b2
x3

◆✓
b2
x4

◆
<latexit sha1_base64="ZNNHHKKrekcxbL4caQvOzsg2/jQ=">AAAB+HicbVC7SgNBFJ31GeMjUUubwaBYhV0JamfAxjJCXpAsYXZyNxky+2DmrhiXfIjaWChia+dv2Pk3Th6FJh4YOJxzL/fM8WIpNNr2t7W0vLK6tp7ZyG5ube/k8rt7dR0likONRzJSTY9pkCKEGgqU0IwVsMCT0PAGV2O/cQtKiyis4jAGN2C9UPiCMzRSJ59rI9xhWu0DjRn2R518wS7aE9BF4sxI4fLzYYzHSif/1e5GPAkgRC6Z1i3HjtFNmULBJYyy7URDzPiA9aBlaMgC0G46CT6iR0bpUj9S5oVIJ+rvjZQFWg8Dz0wGJp2e98bif14rQf/CTUUYJwghnx7yE0kxouMWaFco4CiHhjCuhMlKeZ8pxtF0lTUlOPNfXiT106JzVizdlArlYzJFhhyQQ3JCHHJOyuSaVEiNcJKQJ/JCXq1769l6s96no0vWbGef/IH18QMXPZfE</latexit>

The path

<latexit sha1_base64="pq04MCUmwJajH3J1XoV93Rfikno=">AAACBHicbZC7SgNBFIZnvcZ4W7VMMxiUCCHsSlAbMWBjGSE3SEKYncwmQ2YvzJwNhiWFje+gL2BjoYiFjQ9h59s4uQia+MPAx3/O4cz5nVBwBZb1ZSwsLi2vrCbWkusbm1vb5s5uRQWRpKxMAxHImkMUE9xnZeAgWC2UjHiOYFWndzmqV/tMKh74JRiErOmRjs9dTgloq2WmMqVsA9gNOG7cH2bxD8Pw6Lxlpq2cNRaeB3sK6Yv3+5Eeii3zs9EOaOQxH6ggStVtK4RmTCRwKtgw2YgUCwntkQ6ra/SJx1QzHh8xxAfaaWM3kPr5gMfu74mYeEoNPEd3egS6arY2Mv+r1SNwz5ox98MImE8ni9xIYAjwKBHc5pJREAMNhEqu/4ppl0hCQeeW1CHYsyfPQ+U4Z5/k8tf5dOEQTZRAKbSPMshGp6iArlARlRFFt+gRPaMX4854Ml6Nt0nrgjGd2UN/ZHx8Azk6nDs=</latexit>

(T,v, t) =

<latexit sha1_base64="zjhjWOxjVL3oB/gTGIomyoHWgjw=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgUV8OMBHVnwI3LBMwDkiH0dGqSNj0PunuEEPIFblwoEpf+hb/hzr+xJ8lCEy80HO6toqvKTwRX2nG+rZXVtfWNzdxWfntnd2+/cHBYV3EqGdZYLGLZ9KlCwSOsaa4FNhOJNPQFNvzBbZY3HlEqHkf3epigF9JexAPOqDZW1e4Uio7tTEWWwZ1D8eZzkum90il8tbsxS0OMNBNUqZbrJNobUak5EzjOt1OFCWUD2sOWwYiGqLzRdNAxOTVOlwSxNC/SZOr+7hjRUKlh6JvKkOq+Wswy87+slerg2hvxKEk1Rmz2UZAKomOSbU26XCLTYmiAMsnNrIT1qaRMm9vkzRHcxZWXoX5hu5d2qVoqls9gphwcwwmcgwtXUIY7qEANGCA8wQu8Wg/Ws/VmTWalK9a85wj+yPr4AZJukS4=</latexit>.

<latexit sha1_base64="sKtqiTZMhDUnq3j086HNACYdy/c=">AAAB6nicdZDLSgMxFIbP1Futt6pLN6FFcFVmSqntyoIbFy4q2gu0Q8mkmTY0kxmSjFCGPoIbF0p160v4Gu58GzOtgor+EPj4/3PIOceLOFPatt+tzMrq2vpGdjO3tb2zu5ffP2irMJaEtkjIQ9n1sKKcCdrSTHPajSTFgcdpx5ucp3nnlkrFQnGjpxF1AzwSzGcEa2NdXw6cQb5ol2yjahWl4NRsx0C9XiuX68hZRLZdPHudp3pqDvJv/WFI4oAKTThWqufYkXYTLDUjnM5y/VjRCJMJHtGeQYEDqtxkMeoMHRtniPxQmic0WrjfOxIcKDUNPFMZYD1Wv7PU/CvrxdqvuQkTUaypIMuP/JgjHaJ0bzRkkhLNpwYwkczMisgYS0y0uU7OHOFrU/Q/tMslp1qqXFWKjQIslYUjKMAJOHAKDbiAJrSAwAju4AEeLW7dW3PreVmasT57DuGHrJcPOxaSKQ==</latexit>

L1

<latexit sha1_base64="ts2re28lZDiduVByWSGbUKVd4Dw=">AAAB6nicdZDLSgMxFIbP1Futt6pLN6FFcFUypdR2ZcGNCxcV7QXaoWTSTBuauZBkhDL0Edy4UKpbX8LXcOfbmGkVVPSHwMf/n0POOW4kuNIYv1uZldW19Y3sZm5re2d3L79/0FZhLClr0VCEsusSxQQPWEtzLVg3koz4rmAdd3Ke5p1bJhUPgxs9jZjjk1HAPU6JNtb15aA8yBdxCRtVqygFu4ZtA/V6rVyuI3sRYVw8e52nemoO8m/9YUhjnwWaCqJUz8aRdhIiNaeCzXL9WLGI0AkZsZ7BgPhMOcli1Bk6Ns4QeaE0L9Bo4X7vSIiv1NR3TaVP9Fj9zlLzr6wXa6/mJDyIYs0CuvzIiwXSIUr3RkMuGdViaoBQyc2siI6JJFSb6+TMEb42Rf9Du1yyq6XKVaXYKMBSWTiCApyADafQgAtoQgsojOAOHuDREta9Nbeel6UZ67PnEH7IevkAPJqSKg==</latexit>

L2

<latexit sha1_base64="NQjedJ0YdZxR+kI7Mh/hVL20YvA=">AAAB6nicdZDLSgMxFIbPeK31VnXpJrQIrkqmltquLLhx4aKivUA7lEyaaUMzF5KMUIY+ghsXSnXrS/ga7nwbM62Civ4Q+Pj/c8g5x40EVxrjd2tpeWV1bT2zkd3c2t7Zze3tt1QYS8qaNBSh7LhEMcED1tRcC9aJJCO+K1jbHZ+nefuWScXD4EZPIub4ZBhwj1OijXV92T/p5wq4iI0qFZSCXcW2gVqtWirVkD2PMC6cvc5SPTX6ubfeIKSxzwJNBVGqa+NIOwmRmlPBptlerFhE6JgMWddgQHymnGQ+6hQdGWeAvFCaF2g0d793JMRXauK7ptIneqR+Z6n5V9aNtVd1Eh5EsWYBXXzkxQLpEKV7owGXjGoxMUCo5GZWREdEEqrNdbLmCF+bov+hVSralWL5qlyo52GhDBxCHo7BhlOowwU0oAkUhnAHD/BoCevemlnPi9Il67PnAH7IevkAPh6SKw==</latexit>

L3

<latexit sha1_base64="1Z7D/edeqo3hXwPwtcTq6aJa4Gk=">AAAB6nicdZDLSgMxFIbP1Futt6pLN6FFcFVmSqntyoIbFy4q2gu0Q8mkmTY0kxmSjFCGPoIbF0p160v4Gu58GzOtgor+EPj4/3PIOceLOFPatt+tzMrq2vpGdjO3tb2zu5ffP2irMJaEtkjIQ9n1sKKcCdrSTHPajSTFgcdpx5ucp3nnlkrFQnGjpxF1AzwSzGcEa2NdXw4qg3zRLtlG1SpKwanZjoF6vVYu15GziGy7ePY6T/XUHOTf+sOQxAEVmnCsVM+xI+0mWGpGOJ3l+rGiESYTPKI9gwIHVLnJYtQZOjbOEPmhNE9otHC/dyQ4UGoaeKYywHqsfmep+VfWi7VfcxMmolhTQZYf+TFHOkTp3mjIJCWaTw1gIpmZFZExlphoc52cOcLXpuh/aJdLTrVUuaoUGwVYKgtHUIATcOAUGnABTWgBgRHcwQM8Wty6t+bW87I0Y332HMIPWS8fP6KSLA==</latexit>

L4

<latexit sha1_base64="Pjlj4759DGhRaaxIuowVNWZxP+4=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdgpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AJomSGw==</latexit>x0

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="BZY3NpUNwwL9qWhKoEi7DyA3xSE=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJVMBGJRbGIuhFaqPKcZ3WquNEtoOooj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJ3ljQcqFYvEvR7G1AtxT7CAEayNdffYOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjJOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFsuVo5hqjwcwCGcgAsXUIEbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ACsVkh4=</latexit>x3

<latexit sha1_base64="i1nrgrBDE36g4HauVtl4pBxYZn0=">AAAB6nicbZDLSgMxFIZPvNZ6q7p0EyyKqzIjRd1ZcOOyor1AO5RMmmlDM5khyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs7xY8G1cZxvtLS8srq2ntvIb25t7+wW9vbrOkoUZTUaiUg1faKZ4JLVDDeCNWPFSOgL1vAH11neeGBK80jem2HMvJD0JA84JcZad4+dcqdQdErORHgR3BkUrz7Hmd6qncJXuxvRJGTSUEG0brlObLyUKMOpYKN8O9EsJnRAeqxlUZKQaS+djDrCx9bp4iBS9kmDJ+7vjpSEWg9D31aGxPT1fJaZ/2WtxASXXsplnBgm6fSjIBHYRDjbG3e5YtSIoQVCFbezYtonilBjr5O3R3DnV16E+lnJPS+Vb8vFyglMlYNDOIJTcOECKnADVagBhR48wQu8IoGe0Ri9T0uX0KznAP4IffwALJmSHw==</latexit>x4

<latexit sha1_base64="U7e5I/5jvk5WIgWt74DuHQl6Pi0=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJKpeNSiyMRdCL1EaV4zqtVceJbAdRRX0EFgZQYeUleA023gan7QAtv2Tp0/+fI59z/JgzpR3n28otLa+sruXXCxubW9s79u5eXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4DrLGw9UKhaJez2MqRfinmABI1gb6+6xc9axi07JmQgtgjuD4tXnONNbtWN/tbsRSUIqNOFYqZbrxNpLsdSMcDoqtBNFY0wGuEdbBgUOqfLSyagjdGScLgoiaZ7QaOL+7khxqNQw9E1liHVfzWeZ+V/WSnRw6aVMxImmgkw/ChKOdISyvVGXSUo0HxrARDIzKyJ9LDHR5joFcwR3fuVFqJ+W3PNS+bZcrBzDVHk4gEM4ARcuoAI3UIUaEOjBE7zAq8WtZ2tsvU9Lc9asZx/+yPr4AS4dkiA=</latexit>x5

<latexit sha1_base64="sKtqiTZMhDUnq3j086HNACYdy/c=">AAAB6nicdZDLSgMxFIbP1Futt6pLN6FFcFVmSqntyoIbFy4q2gu0Q8mkmTY0kxmSjFCGPoIbF0p160v4Gu58GzOtgor+EPj4/3PIOceLOFPatt+tzMrq2vpGdjO3tb2zu5ffP2irMJaEtkjIQ9n1sKKcCdrSTHPajSTFgcdpx5ucp3nnlkrFQnGjpxF1AzwSzGcEa2NdXw6cQb5ol2yjahWl4NRsx0C9XiuX68hZRLZdPHudp3pqDvJv/WFI4oAKTThWqufYkXYTLDUjnM5y/VjRCJMJHtGeQYEDqtxkMeoMHRtniPxQmic0WrjfOxIcKDUNPFMZYD1Wv7PU/CvrxdqvuQkTUaypIMuP/JgjHaJ0bzRkkhLNpwYwkczMisgYS0y0uU7OHOFrU/Q/tMslp1qqXFWKjQIslYUjKMAJOHAKDbiAJrSAwAju4AEeLW7dW3PreVmasT57DuGHrJcPOxaSKQ==</latexit>

L1

<latexit sha1_base64="rhiOvuhEPo1Cd3RASSukNzgDanM=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8HiZVVmpKgbseDGZQV7gXYomTTTxmaSIckIpfQd3LhoEbc+g6/hzrcx03ahrT8EPv7/HHLOCWLOtHHdbyezsrq2vpHdzG1t7+zu5fcPalomitAqkVyqRoA15UzQqmGG00asKI4CTutB/y7N689UaSbFoxnE1I9wV7CQEWysVWupnjy7aecLbtGdCi2DN4fC7ec41aTSzn+1OpIkERWGcKx103Nj4w+xMoxwOsq1Ek1jTPq4S5sWBY6o9ofTaUfoxDodFEplnzBo6v7uGOJI60EU2MoIm55ezFLzv6yZmPDaHzIRJ4YKMvsoTDgyEqWrow5TlBg+sICJYnZWRHpYYWLsgXL2CN7iystQuyh6l8XSQ6lQPoWZsnAEx3AOHlxBGe6hAlUg8AQvMIaJI51X5815n5VmnHnPIfyR8/EDIO+TOw==</latexit>

⇢0 =

<latexit sha1_base64="W3qsQzwacT1NslwrcIfyFzZ5Nqg=">AAACBnicdZDLSsNAFIYnXmu9RV2KMLQIrkpSS21XFty46KKCvUAawmQyaYdOLsxMhBK6cuMr6Bu4caGIuPMZ3Pk2TlqFKvrDwMf/n8OZc9yYUSEN40NbWFxaXlnNreXXNza3tvWd3Y6IEo5JG0cs4j0XCcJoSNqSSkZ6MScocBnpuqOzLO9eES5oFF7KcUzsAA1C6lOMpLIc/cBqOmWY9rEXyQlsOsdzXLEdvWiUDKVqFWZg1gxTQb1eK5fr0JxGhlE8fb3NdNdy9Pe+F+EkIKHEDAlhmUYs7RRxSTEjk3w/ESRGeIQGxFIYooAIO52uMYGHyvGgH3H1Qgmn7nxHigIhxoGrKgMkh+J3lpl/ZVYi/Zqd0jBOJAnxbJCfMCgjmN0EepQTLNlYAcKcqr9CPEQcYakul1dH+N4U/g+dcsmslioXlWKjAGbKgX1QAEfABCegAc5BC7QBBtfgHjyCJ+1Ge9CetZdZ6YL21bMHfkh7+wSOTZxQ</latexit>

[L2·L3·L4]

<latexit sha1_base64="Pjlj4759DGhRaaxIuowVNWZxP+4=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdgpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AJomSGw==</latexit>x0

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="BZY3NpUNwwL9qWhKoEi7DyA3xSE=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJVMBGJRbGIuhFaqPKcZ3WquNEtoOooj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJ3ljQcqFYvEvR7G1AtxT7CAEayNdffYOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjJOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFsuVo5hqjwcwCGcgAsXUIEbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ACsVkh4=</latexit>x3

<latexit sha1_base64="i1nrgrBDE36g4HauVtl4pBxYZn0=">AAAB6nicbZDLSgMxFIZPvNZ6q7p0EyyKqzIjRd1ZcOOyor1AO5RMmmlDM5khyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs7xY8G1cZxvtLS8srq2ntvIb25t7+wW9vbrOkoUZTUaiUg1faKZ4JLVDDeCNWPFSOgL1vAH11neeGBK80jem2HMvJD0JA84JcZad4+dcqdQdErORHgR3BkUrz7Hmd6qncJXuxvRJGTSUEG0brlObLyUKMOpYKN8O9EsJnRAeqxlUZKQaS+djDrCx9bp4iBS9kmDJ+7vjpSEWg9D31aGxPT1fJaZ/2WtxASXXsplnBgm6fSjIBHYRDjbG3e5YtSIoQVCFbezYtonilBjr5O3R3DnV16E+lnJPS+Vb8vFyglMlYNDOIJTcOECKnADVagBhR48wQu8IoGe0Ri9T0uX0KznAP4IffwALJmSHw==</latexit>x4

<latexit sha1_base64="U7e5I/5jvk5WIgWt74DuHQl6Pi0=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJKpeNSiyMRdCL1EaV4zqtVceJbAdRRX0EFgZQYeUleA023gan7QAtv2Tp0/+fI59z/JgzpR3n28otLa+sruXXCxubW9s79u5eXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4DrLGw9UKhaJez2MqRfinmABI1gb6+6xc9axi07JmQgtgjuD4tXnONNbtWN/tbsRSUIqNOFYqZbrxNpLsdSMcDoqtBNFY0wGuEdbBgUOqfLSyagjdGScLgoiaZ7QaOL+7khxqNQw9E1liHVfzWeZ+V/WSnRw6aVMxImmgkw/ChKOdISyvVGXSUo0HxrARDIzKyJ9LDHR5joFcwR3fuVFqJ+W3PNS+bZcrBzDVHk4gEM4ARcuoAI3UIUaEOjBE7zAq8WtZ2tsvU9Lc9asZx/+yPr4AS4dkiA=</latexit>x5
<latexit sha1_base64="12bgtH8Bg5B197kGm6H83mVYt2A=">AAAB6nicbZDLSgMxFIbP1Futt6pLN8GiuCozUtSdBTcuK9oLtEPJpJk2NJMMSUYoQx/BjQuluvUlfA13vo2Ztgtt/SHw8f/nkHNOEHOmjet+O7mV1bX1jfxmYWt7Z3evuH/Q0DJRhNaJ5FK1AqwpZ4LWDTOctmJFcRRw2gyGN1nefKRKMykezCimfoT7goWMYGOt+6DrdYslt+xOhZbBm0Pp+nOS6a3WLX51epIkERWGcKx123Nj46dYGUY4HRc6iaYxJkPcp22LAkdU++l01DE6sU4PhVLZJwyaur87UhxpPYoCWxlhM9CLWWb+l7UTE175KRNxYqggs4/ChCMjUbY36jFFieEjC5goZmdFZIAVJsZep2CP4C2uvAyN87J3Ua7cVUrVU5gpD0dwDGfgwSVU4RZqUAcCfXiCF3h1uPPsTJz3WWnOmfccwh85Hz8GiZIG</latexit>

b1

<latexit sha1_base64="Pjlj4759DGhRaaxIuowVNWZxP+4=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdgpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AJomSGw==</latexit>x0

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="BZY3NpUNwwL9qWhKoEi7DyA3xSE=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJVMBGJRbGIuhFaqPKcZ3WquNEtoOooj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJ3ljQcqFYvEvR7G1AtxT7CAEayNdffYOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjJOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFsuVo5hqjwcwCGcgAsXUIEbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ACsVkh4=</latexit>x3

<latexit sha1_base64="i1nrgrBDE36g4HauVtl4pBxYZn0=">AAAB6nicbZDLSgMxFIZPvNZ6q7p0EyyKqzIjRd1ZcOOyor1AO5RMmmlDM5khyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs7xY8G1cZxvtLS8srq2ntvIb25t7+wW9vbrOkoUZTUaiUg1faKZ4JLVDDeCNWPFSOgL1vAH11neeGBK80jem2HMvJD0JA84JcZad4+dcqdQdErORHgR3BkUrz7Hmd6qncJXuxvRJGTSUEG0brlObLyUKMOpYKN8O9EsJnRAeqxlUZKQaS+djDrCx9bp4iBS9kmDJ+7vjpSEWg9D31aGxPT1fJaZ/2WtxASXXsplnBgm6fSjIBHYRDjbG3e5YtSIoQVCFbezYtonilBjr5O3R3DnV16E+lnJPS+Vb8vFyglMlYNDOIJTcOECKnADVagBhR48wQu8IoGe0Ri9T0uX0KznAP4IffwALJmSHw==</latexit>x4

<latexit sha1_base64="U7e5I/5jvk5WIgWt74DuHQl6Pi0=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJKpeNSiyMRdCL1EaV4zqtVceJbAdRRX0EFgZQYeUleA023gan7QAtv2Tp0/+fI59z/JgzpR3n28otLa+sruXXCxubW9s79u5eXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4DrLGw9UKhaJez2MqRfinmABI1gb6+6xc9axi07JmQgtgjuD4tXnONNbtWN/tbsRSUIqNOFYqZbrxNpLsdSMcDoqtBNFY0wGuEdbBgUOqfLSyagjdGScLgoiaZ7QaOL+7khxqNQw9E1liHVfzWeZ+V/WSnRw6aVMxImmgkw/ChKOdISyvVGXSUo0HxrARDIzKyJ9LDHR5joFcwR3fuVFqJ+W3PNS+bZcrBzDVHk4gEM4ARcuoAI3UIUaEOjBE7zAq8WtZ2tsvU9Lc9asZx/+yPr4AS4dkiA=</latexit>x5

<latexit sha1_base64="Pjlj4759DGhRaaxIuowVNWZxP+4=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdgpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AJomSGw==</latexit>x0

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="BZY3NpUNwwL9qWhKoEi7DyA3xSE=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJVMBGJRbGIuhFaqPKcZ3WquNEtoOooj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJ3ljQcqFYvEvR7G1AtxT7CAEayNdffYOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjJOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFsuVo5hqjwcwCGcgAsXUIEbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ACsVkh4=</latexit>x3

<latexit sha1_base64="i1nrgrBDE36g4HauVtl4pBxYZn0=">AAAB6nicbZDLSgMxFIZPvNZ6q7p0EyyKqzIjRd1ZcOOyor1AO5RMmmlDM5khyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs7xY8G1cZxvtLS8srq2ntvIb25t7+wW9vbrOkoUZTUaiUg1faKZ4JLVDDeCNWPFSOgL1vAH11neeGBK80jem2HMvJD0JA84JcZad4+dcqdQdErORHgR3BkUrz7Hmd6qncJXuxvRJGTSUEG0brlObLyUKMOpYKN8O9EsJnRAeqxlUZKQaS+djDrCx9bp4iBS9kmDJ+7vjpSEWg9D31aGxPT1fJaZ/2WtxASXXsplnBgm6fSjIBHYRDjbG3e5YtSIoQVCFbezYtonilBjr5O3R3DnV16E+lnJPS+Vb8vFyglMlYNDOIJTcOECKnADVagBhR48wQu8IoGe0Ri9T0uX0KznAP4IffwALJmSHw==</latexit>x4

<latexit sha1_base64="U7e5I/5jvk5WIgWt74DuHQl6Pi0=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJKpeNSiyMRdCL1EaV4zqtVceJbAdRRX0EFgZQYeUleA023gan7QAtv2Tp0/+fI59z/JgzpR3n28otLa+sruXXCxubW9s79u5eXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4DrLGw9UKhaJez2MqRfinmABI1gb6+6xc9axi07JmQgtgjuD4tXnONNbtWN/tbsRSUIqNOFYqZbrxNpLsdSMcDoqtBNFY0wGuEdbBgUOqfLSyagjdGScLgoiaZ7QaOL+7khxqNQw9E1liHVfzWeZ+V/WSnRw6aVMxImmgkw/ChKOdISyvVGXSUo0HxrARDIzKyJ9LDHR5joFcwR3fuVFqJ+W3PNS+bZcrBzDVHk4gEM4ARcuoAI3UIUaEOjBE7zAq8WtZ2tsvU9Lc9asZx/+yPr4AS4dkiA=</latexit>x5

<latexit sha1_base64="Pjlj4759DGhRaaxIuowVNWZxP+4=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdgpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AJomSGw==</latexit>x0

x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="BZY3NpUNwwL9qWhKoEi7DyA3xSE=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJVMBGJRbGIuhFaqPKcZ3WquNEtoOooj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJ3ljQcqFYvEvR7G1AtxT7CAEayNdffYOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjJOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFsuVo5hqjwcwCGcgAsXUIEbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ACsVkh4=</latexit>x3

<latexit sha1_base64="i1nrgrBDE36g4HauVtl4pBxYZn0=">AAAB6nicbZDLSgMxFIZPvNZ6q7p0EyyKqzIjRd1ZcOOyor1AO5RMmmlDM5khyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs7xY8G1cZxvtLS8srq2ntvIb25t7+wW9vbrOkoUZTUaiUg1faKZ4JLVDDeCNWPFSOgL1vAH11neeGBK80jem2HMvJD0JA84JcZad4+dcqdQdErORHgR3BkUrz7Hmd6qncJXuxvRJGTSUEG0brlObLyUKMOpYKN8O9EsJnRAeqxlUZKQaS+djDrCx9bp4iBS9kmDJ+7vjpSEWg9D31aGxPT1fJaZ/2WtxASXXsplnBgm6fSjIBHYRDjbG3e5YtSIoQVCFbezYtonilBjr5O3R3DnV16E+lnJPS+Vb8vFyglMlYNDOIJTcOECKnADVagBhR48wQu8IoGe0Ri9T0uX0KznAP4IffwALJmSHw==</latexit>x4

<latexit sha1_base64="U7e5I/5jvk5WIgWt74DuHQl6Pi0=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaICMVUJKpeNSiyMRdCL1EaV4zqtVceJbAdRRX0EFgZQYeUleA023gan7QAtv2Tp0/+fI59z/JgzpR3n28otLa+sruXXCxubW9s79u5eXUWJJLRGIh7Jpo8V5UzQmmaa02YsKQ59Thv+4DrLGw9UKhaJez2MqRfinmABI1gb6+6xc9axi07JmQgtgjuD4tXnONNbtWN/tbsRSUIqNOFYqZbrxNpLsdSMcDoqtBNFY0wGuEdbBgUOqfLSyagjdGScLgoiaZ7QaOL+7khxqNQw9E1liHVfzWeZ+V/WSnRw6aVMxImmgkw/ChKOdISyvVGXSUo0HxrARDIzKyJ9LDHR5joFcwR3fuVFqJ+W3PNS+bZcrBzDVHk4gEM4ARcuoAI3UIUaEOjBE7zAq8WtZ2tsvU9Lc9asZx/+yPr4AS4dkiA=</latexit>x5

<latexit sha1_base64="OJq4h6qYiu/1D3t7EFAkuyOOQdQ=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2WmFHVnwY3LivYC7VAyaaYNzSRDkhHK0Edw40Kpbn0JX8Odb2Om7UJbfwh8/P855JwTxJxp47rfzsrq2vrGZm4rv72zu7dfODhsaJkoQutEcqlaAdaUM0HrhhlOW7GiOAo4bQbDmyxvPlKlmRQPZhRTP8J9wUJGsLHWfdAtdwtFt+ROhZbBm0Px+nOS6a3WLXx1epIkERWGcKx123Nj46dYGUY4Hec7iaYxJkPcp22LAkdU++l01DE6tU4PhVLZJwyaur87UhxpPYoCWxlhM9CLWWb+l7UTE175KRNxYqggs4/ChCMjUbY36jFFieEjC5goZmdFZIAVJsZeJ2+P4C2uvAyNcsm7KFXuKsXqGcyUg2M4gXPw4BKqcAs1qAOBPjzBC7w63Hl2Js77rHTFmfccwR85Hz8IDZIH</latexit>

b2
<latexit sha1_base64="g9x/er79OCzthRhk47GCcei3B0Q=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGi7qz4MZlRXuBdiiZNNOGJpkhyQhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XdZQoQmsk4pFqBlhTziStGWY4bcaKYhFw2ggGN1neeKRKs0g+mGFMfYF7koWMYGOt+6Bz3ikU3ZI7EVoEbwbF689xprdqp/DV7kYkEVQawrHWLc+NjZ9iZRjhdJRvJ5rGmAxwj7YsSiyo9tPJqCN0bJ0uCiNlnzRo4v7uSLHQeigCWymw6ev5LDP/y1qJCa/8lMk4MVSS6UdhwpGJULY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3USrflYuVE5gqB4dwBKfgwSVU4BaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4ACZGSCA==</latexit>

b3

<latexit sha1_base64="i3wtW0iCO5onvmHhurbMwj378u8=">AAAB6nicbZDLSgMxFIbP1Futt6pLN8GiuCozUtSdBTcuK9oLtEPJpJk2NJMMSUYoQx/BjQuluvUlfA13vo2Ztgtt/SHw8f/nkHNOEHOmjet+O7mV1bX1jfxmYWt7Z3evuH/Q0DJRhNaJ5FK1AqwpZ4LWDTOctmJFcRRw2gyGN1nefKRKMykezCimfoT7goWMYGOt+6Bb6RZLbtmdCi2DN4fS9eck01utW/zq9CRJIioM4VjrtufGxk+xMoxwOi50Ek1jTIa4T9sWBY6o9tPpqGN0Yp0eCqWyTxg0dX93pDjSehQFtjLCZqAXs8z8L2snJrzyUybixFBBZh+FCUdGomxv1GOKEsNHFjBRzM6KyAArTIy9TsEewVtceRka52Xvoly5q5SqpzBTHo7gGM7Ag0uowi3UoA4E+vAEL/DqcOfZmTjvs9KcM+85hD9yPn4ACxWSCQ==</latexit>

b4

<latexit sha1_base64="Pjlj4759DGhRaaxIuowVNWZxP+4=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdgpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AJomSGw==</latexit>x0

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1
<latexit sha1_base64="i1nrgrBDE36g4HauVtl4pBxYZn0=">AAAB6nicbZDLSgMxFIZPvNZ6q7p0EyyKqzIjRd1ZcOOyor1AO5RMmmlDM5khyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs7xY8G1cZxvtLS8srq2ntvIb25t7+wW9vbrOkoUZTUaiUg1faKZ4JLVDDeCNWPFSOgL1vAH11neeGBK80jem2HMvJD0JA84JcZad4+dcqdQdErORHgR3BkUrz7Hmd6qncJXuxvRJGTSUEG0brlObLyUKMOpYKN8O9EsJnRAeqxlUZKQaS+djDrCx9bp4iBS9kmDJ+7vjpSEWg9D31aGxPT1fJaZ/2WtxASXXsplnBgm6fSjIBHYRDjbG3e5YtSIoQVCFbezYtonilBjr5O3R3DnV16E+lnJPS+Vb8vFyglMlYNDOIJTcOECKnADVagBhR48wQu8IoGe0Ri9T0uX0KznAP4IffwALJmSHw==</latexit>x4

<latexit sha1_base64="sKtqiTZMhDUnq3j086HNACYdy/c=">AAAB6nicdZDLSgMxFIbP1Futt6pLN6FFcFVmSqntyoIbFy4q2gu0Q8mkmTY0kxmSjFCGPoIbF0p160v4Gu58GzOtgor+EPj4/3PIOceLOFPatt+tzMrq2vpGdjO3tb2zu5ffP2irMJaEtkjIQ9n1sKKcCdrSTHPajSTFgcdpx5ucp3nnlkrFQnGjpxF1AzwSzGcEa2NdXw6cQb5ol2yjahWl4NRsx0C9XiuX68hZRLZdPHudp3pqDvJv/WFI4oAKTThWqufYkXYTLDUjnM5y/VjRCJMJHtGeQYEDqtxkMeoMHRtniPxQmic0WrjfOxIcKDUNPFMZYD1Wv7PU/CvrxdqvuQkTUaypIMuP/JgjHaJ0bzRkkhLNpwYwkczMisgYS0y0uU7OHOFrU/Q/tMslp1qqXFWKjQIslYUjKMAJOHAKDbiAJrSAwAju4AEeLW7dW3PreVmasT57DuGHrJcPOxaSKQ==</latexit>

L1

<latexit sha1_base64="W3qsQzwacT1NslwrcIfyFzZ5Nqg=">AAACBnicdZDLSsNAFIYnXmu9RV2KMLQIrkpSS21XFty46KKCvUAawmQyaYdOLsxMhBK6cuMr6Bu4caGIuPMZ3Pk2TlqFKvrDwMf/n8OZc9yYUSEN40NbWFxaXlnNreXXNza3tvWd3Y6IEo5JG0cs4j0XCcJoSNqSSkZ6MScocBnpuqOzLO9eES5oFF7KcUzsAA1C6lOMpLIc/cBqOmWY9rEXyQlsOsdzXLEdvWiUDKVqFWZg1gxTQb1eK5fr0JxGhlE8fb3NdNdy9Pe+F+EkIKHEDAlhmUYs7RRxSTEjk3w/ESRGeIQGxFIYooAIO52uMYGHyvGgH3H1Qgmn7nxHigIhxoGrKgMkh+J3lpl/ZVYi/Zqd0jBOJAnxbJCfMCgjmN0EepQTLNlYAcKcqr9CPEQcYakul1dH+N4U/g+dcsmslioXlWKjAGbKgX1QAEfABCegAc5BC7QBBtfgHjyCJ+1Ge9CetZdZ6YL21bMHfkh7+wSOTZxQ</latexit>

[L2·L3·L4]

<latexit sha1_base64="KRNBKgds8v+0JyLqBtflRqehOhI=">AAAB9XicbVDLSgNBEJyNrxhfUY9eFoPiKexKUG8GvHiMYB6QrGF2tjcZMvtgplcNS/5DBQ+KePXsb3jzb5xNctDEgoaiqpvuLjcWXKFlfRu5hcWl5ZX8amFtfWNzq7i901BRIhnUWSQi2XKpAsFDqCNHAa1YAg1cAU13cJH5zVuQikfhNQ5jcALaC7nPGUUt3XQQ7jHloZcwUKNusWSVrTHMeWJPSen88zHDU61b/Op4EUsCCJEJqlTbtmJ0UiqRMwGjQidREFM2oD1oaxrSAJSTjq8emQda8Uw/krpCNMfq74mUBkoNA1d3BhT7atbLxP+8doL+maOfihOEkE0W+YkwMTKzCEyPS2AohppQJrm+1WR9KilDHVRBh2DPvjxPGsdl+6RcuaqUqodkgjzZI/vkiNjklFTJJamROmFEkgfyQl6NO+PZeDPeJ605YzqzS/7A+PgBckuXhg==</latexit>

induces
<latexit sha1_base64="ZNNHHKKrekcxbL4caQvOzsg2/jQ=">AAAB+HicbVC7SgNBFJ31GeMjUUubwaBYhV0JamfAxjJCXpAsYXZyNxky+2DmrhiXfIjaWChia+dv2Pk3Th6FJh4YOJxzL/fM8WIpNNr2t7W0vLK6tp7ZyG5ube/k8rt7dR0likONRzJSTY9pkCKEGgqU0IwVsMCT0PAGV2O/cQtKiyis4jAGN2C9UPiCMzRSJ59rI9xhWu0DjRn2R518wS7aE9BF4sxI4fLzYYzHSif/1e5GPAkgRC6Z1i3HjtFNmULBJYyy7URDzPiA9aBlaMgC0G46CT6iR0bpUj9S5oVIJ+rvjZQFWg8Dz0wGJp2e98bif14rQf/CTUUYJwghnx7yE0kxouMWaFco4CiHhjCuhMlKeZ8pxtF0lTUlOPNfXiT106JzVizdlArlYzJFhhyQQ3JCHHJOyuSaVEiNcJKQJ/JCXq1769l6s96no0vWbGef/IH18QMXPZfE</latexit>

The path <latexit sha1_base64="zjhjWOxjVL3oB/gTGIomyoHWgjw=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgUV8OMBHVnwI3LBMwDkiH0dGqSNj0PunuEEPIFblwoEpf+hb/hzr+xJ8lCEy80HO6toqvKTwRX2nG+rZXVtfWNzdxWfntnd2+/cHBYV3EqGdZYLGLZ9KlCwSOsaa4FNhOJNPQFNvzBbZY3HlEqHkf3epigF9JexAPOqDZW1e4Uio7tTEWWwZ1D8eZzkum90il8tbsxS0OMNBNUqZbrJNobUak5EzjOt1OFCWUD2sOWwYiGqLzRdNAxOTVOlwSxNC/SZOr+7hjRUKlh6JvKkOq+Wswy87+slerg2hvxKEk1Rmz2UZAKomOSbU26XCLTYmiAMsnNrIT1qaRMm9vkzRHcxZWXoX5hu5d2qVoqls9gphwcwwmcgwtXUIY7qEANGCA8wQu8Wg/Ws/VmTWalK9a85wj+yPr4AZJukS4=</latexit>.

<latexit sha1_base64="R+LAs9iSkm8HVl1Frg8RRSrXTgU=">AAACOHichZDLSsNAFIYnXmu8RV26CRahq5KUou4suHFnBXuBNoTJdNIOncyEmYlYQh5E38OFPoY7ceNCEbc+gZO2C20Ffxj4+c45nDl/EFMileM8GwuLS8srq4U1c31jc2vb2tltSp4IhBuIUy7aAZSYEoYbiiiK27HAMAoobgXDs7zeusZCEs6u1CjGXgT7jIQEQaWRb12kaeC7WRcNOJc4vfGdLDNnmTtllX9YNct8q+iUnbHseeNOTfH04TbXXd23nro9jpIIM4UolLLjOrHyUigUQRRnZjeROIZoCPu4oy2DEZZeOj48sw816dkhF/oxZY/pz4kURlKOokB3RlAN5Gwth3/VOokKT7yUsDhRmKHJojChtuJ2nqLdIwIjRUfaQCSI/quNBlBApHTWpg7BnT153jQrZfeoXL2sFmslMFEB7IMDUAIuOAY1cA7qoAEQuAcv4A28G4/Gq/FhfE5aF4zpzB74JePrGwo5s10=</latexit>✓
b1
x0

◆✓
b1
x1

◆✓
b2
x1

◆✓
b2
x4

◆

<latexit sha1_base64="lIca1+nVe1q6JtYHXXbTIkuGypY=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm6FFcFWSUtSdBTcuXFS0F2hDmUwn7dDJJMxMhBL6CG5cKNWtL+FruPNtnDRdaOsPAx//fw5zzvEizpS27W8rt7a+sbmV3y7s7O7tHxQPj1oqjCWhTRLyUHY8rChngjY105x2Iklx4HHa9sbXad5+pFKxUDzoSUTdAA8F8xnB2lj3t/1qv1i2K/ZcaBWcBZSvPmep3hr94ldvEJI4oEITjpXqOnak3QRLzQin00IvVjTCZIyHtGtQ4IAqN5mPOkWnxhkgP5TmCY3m7u+OBAdKTQLPVAZYj9Rylpr/Zd1Y+5duwkQUaypI9pEfc6RDlO6NBkxSovnEACaSmVkRGWGJiTbXKZgjOMsrr0KrWnHOK7W7Wrlegkx5OIESnIEDF1CHG2hAEwgM4Qle4NXi1rM1s96z0py16DmGP7I+fgDlRpHt</latexit>

L2

<latexit sha1_base64="Hg3fFnK0Qs/p0vlL2PYtjeB2tiw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm6FFcFUSLerOghsXLiraC7ShTKaTduhkEmYmQgl9BDculOrWl/A13Pk2TtoutPWHgY//P4c55/gxZ0o7zreVW1ldW9/Ibxa2tnd29+z9g4aKEklonUQ8ki0fK8qZoHXNNKetWFIc+pw2/eF1ljcfqVQsEg96FFMvxH3BAkawNtb9bfesa5ecsjMVWgZ3DqWrz0mmt1rX/ur0IpKEVGjCsVJt14m1l2KpGeF0XOgkisaYDHGftg0KHFLlpdNRx+jYOD0URNI8odHU/d2R4lCpUeibyhDrgVrMMvO/rJ3o4NJLmYgTTQWZfRQkHOkIZXujHpOUaD4ygIlkZlZEBlhios11CuYI7uLKy9A4Lbvn5cpdpVQtwkx5OIIinIALF1CFG6hBHQj04Qle4NXi1rM1sd5npTlr3nMIf2R9/ADmypHu</latexit>

L3

<latexit sha1_base64="1ZIs+/BAS2GUmAuZI4GulNSwpJI=">AAAB6nicbZDLSgMxFIbP1Futt6pLN8EiuCozUtSdBTcuXFS0F2iHkkkzbWgmGZKMUIY+ghsXSnXrS/ga7nwbM20X2vpD4OP/zyHnnCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKFlogitE8mlagVYU84ErRtmOG3FiuIo4LQZDK+zvPlIlWZSPJhRTP0I9wULGcHGWve33Uq3WHLL7lRoGbw5lK4+J5neat3iV6cnSRJRYQjHWrc9NzZ+ipVhhNNxoZNoGmMyxH3atihwRLWfTkcdoxPr9FAolX3CoKn7uyPFkdajKLCVETYDvZhl5n9ZOzHhpZ8yESeGCjL7KEw4MhJle6MeU5QYPrKAiWJ2VkQGWGFi7HUK9gje4srL0Dgre+flyl2lVD2GmfJwBMdwCh5cQBVuoAZ1INCHJ3iBV4c7z87EeZ+V5px5zyH8kfPxA+hOke8=</latexit>

L4

<latexit sha1_base64="rG+/Na2ZH5A5kNhJufpcDNbcFPI=">AAACIXicjVBNS8NAEN3Ur1q/oh69BIviqSRStDcLXjxWsB/QhrLZTNqlm03Y3Qgl1P+hBy/+Cu9ePCjSm/hn3LQ9aOvBBwOP92aYmefFjEpl259Gbml5ZXUtv17Y2Nza3jF39xoySgSBOolYJFoelsAoh7qiikErFoBDj0HTG1xmfvMWhKQRv1HDGNwQ9zgNKMFKS12z0km4D8ITmEB693+MumbRLtkTWIvEmZHixfN9hoda1xx3/IgkIXBFGJay7dixclMsFCUMRoVOIiHGZIB70NaU4xCkm04+HFlHWvGtIBK6uLIm6s+JFIdSDkNPd4ZY9eW8l4l/ee1EBRU3pTxOFHAyXRQkzFKRlcVl+VQAUWyoCSaC6lst0sc6LaVDLegQnPmXF0njtOSclcrX5WL1GE2RRwfoEJ0gB52jKrpCNVRHBD2iF/SG3o0n49X4MMbT1pwxm9lHv2B8fQPbAK3w</latexit>|
{z

}

<latexit sha1_base64="rG+/Na2ZH5A5kNhJufpcDNbcFPI=">AAACIXicjVBNS8NAEN3Ur1q/oh69BIviqSRStDcLXjxWsB/QhrLZTNqlm03Y3Qgl1P+hBy/+Cu9ePCjSm/hn3LQ9aOvBBwOP92aYmefFjEpl259Gbml5ZXUtv17Y2Nza3jF39xoySgSBOolYJFoelsAoh7qiikErFoBDj0HTG1xmfvMWhKQRv1HDGNwQ9zgNKMFKS12z0km4D8ITmEB693+MumbRLtkTWIvEmZHixfN9hoda1xx3/IgkIXBFGJay7dixclMsFCUMRoVOIiHGZIB70NaU4xCkm04+HFlHWvGtIBK6uLIm6s+JFIdSDkNPd4ZY9eW8l4l/ee1EBRU3pTxOFHAyXRQkzFKRlcVl+VQAUWyoCSaC6lst0sc6LaVDLegQnPmXF0njtOSclcrX5WL1GE2RRwfoEJ0gB52jKrpCNVRHBD2iF/SG3o0n49X4MMbT1pwxm9lHv2B8fQPbAK3w</latexit>|
{z

}

<latexit sha1_base64="s3Dn+NKAipRm5tMeK2mKUiN1Y8o=">AAAB6XicbZDLSgMxFIbPeK31VnXpJliEuikzUtSdBTcuq9gLtEPJpJk2NJMMSUYoQ9/AjQtFu/UpfA13vo2Ztgtt/SHw8f/nkHNOEHOmjet+Oyura+sbm7mt/PbO7t5+4eCwoWWiCK0TyaVqBVhTzgStG2Y4bcWK4ijgtBkMb7K8+UiVZlI8mFFM/Qj3BQsZwcZa9/isWyi6ZXcqtAzeHIrXn++ZJrVu4avTkySJqDCEY63bnhsbP8XKMMLpON9JNI0xGeI+bVsUOKLaT6eTjtGpdXoolMo+YdDU/d2R4kjrURTYygibgV7MMvO/rJ2Y8MpPmYgTQwWZfRQmHBmJsrVRjylKDB9ZwEQxOysiA6wwMfY4eXsEb3HlZWicl72LcuWuUqyWYKYcHMMJlMCDS6jCLdSgDgRCeIIXeHWGzrPz5kxmpSvOvOcI/sj5+AFDzJGW</latexit>

a)

<latexit sha1_base64="YYI/hKDzabEbC2Z6H9j/IS2ssTw=">AAAB6XicbZDLSgMxFIbPeK31VnXpJliEuikzUtSdBTcuq9gLtEPJpJk2NJMMSUYoQ9/AjQtFu/UpfA13vo2Ztgtt/SHw8f/nkHNOEHOmjet+Oyura+sbm7mt/PbO7t5+4eCwoWWiCK0TyaVqBVhTzgStG2Y4bcWK4ijgtBkMb7K8+UiVZlI8mFFM/Qj3BQsZwcZa98FZt1B0y+5UaBm8ORSvP98zTWrdwlenJ0kSUWEIx1q3PTc2foqVYYTTcb6TaBpjMsR92rYocES1n04nHaNT6/RQKJV9wqCp+7sjxZHWoyiwlRE2A72YZeZ/WTsx4ZWfMhEnhgoy+yhMODISZWujHlOUGD6ygIlidlZEBlhhYuxx8vYI3uLKy9A4L3sX5cpdpVgtwUw5OIYTKIEHl1CFW6hBHQiE8AQv8OoMnWfnzZnMSlecec8R/JHz8QNFUZGX</latexit>

b)

<latexit sha1_base64="sKtqiTZMhDUnq3j086HNACYdy/c=">AAAB6nicdZDLSgMxFIbP1Futt6pLN6FFcFVmSqntyoIbFy4q2gu0Q8mkmTY0kxmSjFCGPoIbF0p160v4Gu58GzOtgor+EPj4/3PIOceLOFPatt+tzMrq2vpGdjO3tb2zu5ffP2irMJaEtkjIQ9n1sKKcCdrSTHPajSTFgcdpx5ucp3nnlkrFQnGjpxF1AzwSzGcEa2NdXw6cQb5ol2yjahWl4NRsx0C9XiuX68hZRLZdPHudp3pqDvJv/WFI4oAKTThWqufYkXYTLDUjnM5y/VjRCJMJHtGeQYEDqtxkMeoMHRtniPxQmic0WrjfOxIcKDUNPFMZYD1Wv7PU/CvrxdqvuQkTUaypIMuP/JgjHaJ0bzRkkhLNpwYwkczMisgYS0y0uU7OHOFrU/Q/tMslp1qqXFWKjQIslYUjKMAJOHAKDbiAJrSAwAju4AEeLW7dW3PreVmasT57DuGHrJcPOxaSKQ==</latexit>

L1

<latexit sha1_base64="ts2re28lZDiduVByWSGbUKVd4Dw=">AAAB6nicdZDLSgMxFIbP1Futt6pLN6FFcFUypdR2ZcGNCxcV7QXaoWTSTBuauZBkhDL0Edy4UKpbX8LXcOfbmGkVVPSHwMf/n0POOW4kuNIYv1uZldW19Y3sZm5re2d3L79/0FZhLClr0VCEsusSxQQPWEtzLVg3koz4rmAdd3Ke5p1bJhUPgxs9jZjjk1HAPU6JNtb15aA8yBdxCRtVqygFu4ZtA/V6rVyuI3sRYVw8e52nemoO8m/9YUhjnwWaCqJUz8aRdhIiNaeCzXL9WLGI0AkZsZ7BgPhMOcli1Bk6Ns4QeaE0L9Bo4X7vSIiv1NR3TaVP9Fj9zlLzr6wXa6/mJDyIYs0CuvzIiwXSIUr3RkMuGdViaoBQyc2siI6JJFSb6+TMEb42Rf9Du1yyq6XKVaXYKMBSWTiCApyADafQgAtoQgsojOAOHuDREta9Nbeel6UZ67PnEH7IevkAPJqSKg==</latexit>

L2

<latexit sha1_base64="NQjedJ0YdZxR+kI7Mh/hVL20YvA=">AAAB6nicdZDLSgMxFIbPeK31VnXpJrQIrkqmltquLLhx4aKivUA7lEyaaUMzF5KMUIY+ghsXSnXrS/ga7nwbM62Civ4Q+Pj/c8g5x40EVxrjd2tpeWV1bT2zkd3c2t7Zze3tt1QYS8qaNBSh7LhEMcED1tRcC9aJJCO+K1jbHZ+nefuWScXD4EZPIub4ZBhwj1OijXV92T/p5wq4iI0qFZSCXcW2gVqtWirVkD2PMC6cvc5SPTX6ubfeIKSxzwJNBVGqa+NIOwmRmlPBptlerFhE6JgMWddgQHymnGQ+6hQdGWeAvFCaF2g0d793JMRXauK7ptIneqR+Z6n5V9aNtVd1Eh5EsWYBXXzkxQLpEKV7owGXjGoxMUCo5GZWREdEEqrNdbLmCF+bov+hVSralWL5qlyo52GhDBxCHo7BhlOowwU0oAkUhnAHD/BoCevemlnPi9Il67PnAH7IevkAPh6SKw==</latexit>

L3

<latexit sha1_base64="1Z7D/edeqo3hXwPwtcTq6aJa4Gk=">AAAB6nicdZDLSgMxFIbP1Futt6pLN6FFcFVmSqntyoIbFy4q2gu0Q8mkmTY0kxmSjFCGPoIbF0p160v4Gu58GzOtgor+EPj4/3PIOceLOFPatt+tzMrq2vpGdjO3tb2zu5ffP2irMJaEtkjIQ9n1sKKcCdrSTHPajSTFgcdpx5ucp3nnlkrFQnGjpxF1AzwSzGcEa2NdXw4qg3zRLtlG1SpKwanZjoF6vVYu15GziGy7ePY6T/XUHOTf+sOQxAEVmnCsVM+xI+0mWGpGOJ3l+rGiESYTPKI9gwIHVLnJYtQZOjbOEPmhNE9otHC/dyQ4UGoaeKYywHqsfmep+VfWi7VfcxMmolhTQZYf+TFHOkTp3mjIJCWaTw1gIpmZFZExlphoc52cOcLXpuh/aJdLTrVUuaoUGwVYKgtHUIATcOAUGnABTWgBgRHcwQM8Wty6t+bW87I0Y332HMIPWS8fP6KSLA==</latexit>

L4

<latexit sha1_base64="BD0eBLOivX5UWrJtJUezDEt98TM=">AAACBXicbZDLSgMxFIYz9VbrrepSF8GiVihlRoq6EQtuXFboDdpSMmmmDc1cSM4Uy9CNG59Bn8CNC0UEV76DO9/G9CJo6w+Bj/+cw8n57UBwBab5ZcTm5hcWl+LLiZXVtfWN5OZWWfmhpKxEfeHLqk0UE9xjJeAgWDWQjLi2YBW7ezmsV3pMKu57RegHrOGStscdTgloq5ncTRczdWA3YDtRb5DBPwyDw6PzZjJlZs2R8CxYE0hdvN8P9VBoJj/rLZ+GLvOACqJUzTIDaEREAqeCDRL1ULGA0C5ps5pGj7hMNaLRFQO8r50Wdnypnwd45P6eiIirVN+1dadLoKOma0Pzv1otBOesEXEvCIF5dLzICQUGHw8jwS0uGQXR10Co5PqvmHaIJBR0cAkdgjV98iyUj7PWSTZ3nUvlD9BYcbSD9lAaWegU5dEVKqASougWPaJn9GLcGU/Gq/E2bo0Zk5lt9EfGxzeje5xs</latexit>

(T,v, t0) =

<latexit sha1_base64="kC5vFIH9rrkkhBJVX8umGYTGZHM=">AAACFnicdVBNSyNBEO3xe+NXXI97aQyCHgyTGEz2tIKXPUbYqJCEUNNTkzR2zwzdNWIc8iv24u4/ycWDy7JX2dv+m+0kCir6oODxXhVV9YJUSUu+/8+bm19YXFpe+VBYXVvf2CxufTyzSWYEtkSiEnMRgEUlY2yRJIUXqUHQgcLz4PJk4p9fobEyib/RMMWuhn4sIymAnNQrHnQIrynfI+j3MeRAibYcDPKpHkQ56nQAVt5gONof9Yolv1z93PAPG3xGavUnUuWVsj9F6cv4xwQ/m73i306YiExjTEKBte2Kn1I3B0NSKBwVOpnFFMQl9LHtaAwabTefvjXiu04JeZQYVzHxqfp8Igdt7VAHrlMDDexrbyK+5bUzihrdXMZpRhiL2aIoU5wSPsmIh9KgIDV0BISR7lYuBmBAkEuy4EJ4+pS/T86q5cpRuXZaKx3vsBlW2Ce2w/ZYhdXZMfvKmqzFBPvOxuye/fJuvTvvt/dn1jrnPc5ssxfwHv4D07yk1w==</latexit>

(tagged atoms are emphasized)

Figure 3 a) Non-acyclic path induced by some path in ρ (left-hand side), in a tagged tree
decomposition (right-hand side) of f : ρ

hom−−→ α in the case where α = ρ and f is the identity
homomorphism idρ : ρ

hom−−→ ρ.
b) Suppose that the path in ρ is the image of an atom refinement of γ. Then the cycle in the induced
path can be avoided by adding an atom x1

[L2·L3·L4]−−−−−−−→ x4 to ρ, obtaining the path of ρ′, whose
induced path is acyclic.

k + 1. Note that any non-branching path – i.e. a path whose non-extremal bags have degree
2 – in a nice tree decomposition with n bags must have at least ⌊n/2⌋ bags which are not
full. Finally, we define a nice tagged tree decomposition of f : ρ → α to be a tagged tree
decomposition of f that is also a nice tree decomposition of α.

5 Proof of the key lemma

We can now start to describe the constructions used to prove Lemma 3.8. We call a trio to a
triple (α, ρ, f) such that α ∈ Twk, ρ ∈ Ref(γ) and f is a strong onto homomorphism from γ

to α. For clarity, we will denote such a trio by simply “f : ρ
hom−−→−→ α”. Using this terminology,

in order to prove Lemma 3.8, we must show that for every trio f : ρ
hom−−→−→ α, there exists

another trio f ′ : ρ′ hom−−→−→ α′ such that α ⫅ α′ and ρ′ ∈ Ref⩽ℓ(γ). Our first construction, which
will ultimately allow us to bound the size of atom refinements, shows that we can assume
w.l.o.g. that they induce acyclic paths in a nice tagged tree decomposition of f .

▷ Claim 5.1. For any trio f : ρ
hom−−→−→ α, there exists a trio f ′ : ρ′ hom−−→−→ α′ and a nice tagged

tree decomposition (T ′, v′, t′) of width at most k of f ′ such that α ⫅ α′, ∥ρ′∥ ⩽ ∥ρ∥ and
every atom refinement of ρ′ induces an acyclic path in the tree T ′, in which case we say that
(T ′, v′, t′) is locally acyclic .

The construction behind Claim 5.1 is quite simple, and is described and proven in
Section 5, and illustrated in Figure 3.

D. Figueira and R. Morvan 15:13

Informal proof of Claim 5.1. Start with a trio f : ρ
hom−−→−→ α, and let (T, v, t) be a nice tagged

tree decomposition of f . Consider an atom refinement π =̂ z0
L1−−→ z1

L2−−→ · · · Ln−−→ zn in ρ

of some atom x
L−→ y (with z0 =̂ x and zn =̂ y), and assume that it induces a cyclic path in

T , as in Figure 3a. It means that some variables zi and zj are mapped by f to the same bag
of T , somewhere along the path induced by π. It suffices then to contract ρ by replacing
the atoms zi

Li+1−−−→ · · · Lj−−→ zj by a single atom zi
[Li+1···Lj]−−−−−−−→ zj (in Figure 3, zi = x1 and

zj = x4). We thus obtain a new refinement ρ′ of γ. Then define α′ be simply adding an
atom f(zi)

Li+1···Lj−−−−−−→ f(zj), see Figure 3b. The definitions of f ′ and (T ′, v′, t′) are then
straightforward – potentially, α′ should be restricted to the image of f ′ : ρ′ → α′ so that f ′

is still strong onto. Crucially, α ⫅ α′, and α′ still has tree-width at most k since we picked
f(zi) and f(zj) so that they belonged to the same bag of T . ◁

Ultimately, Claim 5.1 will allow us to give a bound on the number of leaves of a nice tagged
tree decomposition of a trio. The following claim – which is significantly more technical than
the foregoing – will give us a bound on the height of a decomposition.

▷ Claim 5.2. Let f : ρ
hom−−→−→ α be a trio and (T, v, t) be a locally acyclic nice tagged tree

decomposition of width at most k of f . Then there is a trio f ′ : ρ′ hom−−→−→ α′ and a nice tagged
tree decomposition (T ′, v′, t′) of width at most k of f ′ such that:

α ⫅ α′,
(T ′, v′, t′) is locally acyclic w.r.t. f ′, and
the size of the longest non-branching path in T is at most Θ(∥γ∥ · (k + 1)∥γ∥+1).
To prove Claim 5.2, we will try to find, in a long non-branching path, some kind of

shortcut. The piece of information that is relevant to finding this shortcut is what we call
the profile of a bag.

▶ Definition 5.3. Given a trio f : ρ
hom−−→−→ α and a nice tagged tree decomposition (T, v, t) of

f , for each bag b of T , we say that:
b is “atomic” if there is at least one atom e ∈ t−1(b) and at least one variable x of e such
that x ∈ vars(γ), i.e., the atom e is not in the “middle” part of an atom refinement;
otherwise, when b is non-atomic, we assign to each variable z ∈ v(b) ⊆ V (α) a type

typez =̂
{

x
L−→ y atom of γ

∣∣ the path induced by the atom refinement
of x

L−→ y in ρ leaves b at z
}

;

then the profile of b is the multiset of the types of z where z ranges over v(b).

The rest of the proof consists in two parts: first, we show that if two non-atomic bags
b and b′ occurring in some non-branching path of T have the same profile, then we can
essentially replace the path between b and b′ by a path of constant length (Subclaim 5.4):
while this construction is quite elementary, it motivates the intricate definition of the profile
of a bag; then, we show that in every non-branching path, if it is sufficiently long, then we
can find b and b′ satisfying the aforementioned property: this part simply relies on a basic
combinatorial argument (see the full version for details).

▷ Subclaim 5.4. Suppose there are two bags b and b′ such that: (i) they contain at most k

nodes (i.e., not full bags), (ii) they have the same profile, (iii) there is a non-branching path
in T between these bags, and (iv) no bags of the path between b and b′ (both included) are
atomic. Then, there exists a trio f ′ : ρ′ hom−−→−→ α′ and a nice tagged tree decomposition of f ′ of
width at most k that can be obtained by replacing the non-branching path between b and b′

in the nice tagged tree-decomposition of f : ρ
hom−−→−→ α by another non-branching path of at

most 2k + 1 bags, such that α ⫅ α′.

ICDT 2023

https://arxiv.org/abs/2212.01679

15:14 Approximation & Semantic Tree-Width of CRPQs

.

. . .
...

. . .
...

. . .
...

. . .
...

.

<latexit sha1_base64="dkHV0UIuTjo/T1o/mjE5ryNWIM4=">AAAB+HicbVDLSgNBEJz1GeMjqx69LAbFU9iVoOLFgBePEcwDkiXMTnqTIbMPZnrFuORD1IsHRbx68ze8+TfOJjloYkFDUdVNd5cXC67Qtr+NhcWl5ZXV3Fp+fWNzq2Bu79RVlEgGNRaJSDY9qkDwEGrIUUAzlkADT0DDG1xmfuMWpOJReIPDGNyA9kLuc0ZRSx2z0Ea4wzSWkc8FnI86ZtEu2WNY88SZkuLF50OGx2rH/Gp3I5YEECITVKmWY8foplQiZwJG+XaiIKZsQHvQ0jSkASg3HR8+sg600rX8SOoK0RqrvydSGig1DDzdGVDsq1kvE//zWgn6Z27KwzhBCNlkkZ8ICyMrS8HqcgkMxVATyiTXt1qsTyVlqLPK6xCc2ZfnSf245JyUytflYuWQTJAje2SfHBGHnJIKuSJVUiOMJOSJvJBX4954Nt6M90nrgjGd2SV/YHz8AHYqmAE=</latexit>

profile:
<latexit sha1_base64="ZoQZ0QJ3WLymdz5tLdHa4XYvzT8=">AAACFHicbVDLSgMxFM34rPVVdekmWhRBKTNS1J0FNy4r2Cp0SsmktxrMPEjuCGWY/oMbQX9EBBeKuHXhzr8xM+3C1wnhHs49l+QeL5JCo21/WmPjE5NT04WZ4uzc/MJiaWm5qcNYcWjwUIbq3GMapAiggQIlnEcKmO9JOPOujrL+2TUoLcLgFPsRtH12EYie4AyN1Cltu4m7Zk5C3WSwM3DTnYzkBfwI+xqQumluSTulsl2xc9C/xBmR8uHjXYb7eqf04XZDHvsQIJdM65ZjR9hOmELBJaRFN9YQMX7FLqBlaMB80O0kXyqlG0bp0l6ozA2Q5ur3iYT5Wvd9zzh9hpf6dy8T/+u1YuwdtBMRRDFCwIcP9WJJMaRZQrQrFHCUfUMYV8L8lfJLphhHk2PRhOD8Xvkvae5WnL1K9aRarm2SIQpklayTLeKQfVIjx6ROGoSTG/JAnsmLdWs9Wa/W29A6Zo1mVsgPWO9f3/mh3g==</latexit>

{{{ , }, { }, ;}}
<latexit sha1_base64="fEWIgI1s23lu7buYqUXbzILylYg=">AAACCXicbZC7TsMwFIadcivlFmBkMVQghqpKUAVsVGJhLBK9SE1UOa7bWnWcyHaQqigdWXgCeAYWBhCw8gZsvA1O2gFafsvSp/+cI/v8XsioVJb1beQWFpeWV/KrhbX1jc0tc3unIYNIYFLHAQtEy0OSMMpJXVHFSCsUBPkeI01veJnWm7dESBrwGzUKieujPqc9ipHSVseETuzs6xNrGJfGTlJKwUmgk2R+0jGLVtnKBOfBnkLx4v0h1WOtY3453QBHPuEKMyRl27ZC5cZIKIoZSQpOJEmI8BD1SVsjRz6RbpxtksBD7XRhLxD6cgUz9/dEjHwpR76nO32kBnK2lpr/1dqR6p27MeVhpAjHk4d6EYMqgGkssEsFwYqNNCAsqP4rxAMkEFY6vIIOwZ5deR4aJ2X7tFy5rhSrR2CiPNgDB+AY2OAMVMEVqIE6wOAOPIEX8GrcG8/Gm/Exac0Z05ld8EfG5w9wJJ1N</latexit>

{{{ , }, { }}}
<latexit sha1_base64="fEWIgI1s23lu7buYqUXbzILylYg=">AAACCXicbZC7TsMwFIadcivlFmBkMVQghqpKUAVsVGJhLBK9SE1UOa7bWnWcyHaQqigdWXgCeAYWBhCw8gZsvA1O2gFafsvSp/+cI/v8XsioVJb1beQWFpeWV/KrhbX1jc0tc3unIYNIYFLHAQtEy0OSMMpJXVHFSCsUBPkeI01veJnWm7dESBrwGzUKieujPqc9ipHSVseETuzs6xNrGJfGTlJKwUmgk2R+0jGLVtnKBOfBnkLx4v0h1WOtY3453QBHPuEKMyRl27ZC5cZIKIoZSQpOJEmI8BD1SVsjRz6RbpxtksBD7XRhLxD6cgUz9/dEjHwpR76nO32kBnK2lpr/1dqR6p27MeVhpAjHk4d6EYMqgGkssEsFwYqNNCAsqP4rxAMkEFY6vIIOwZ5deR4aJ2X7tFy5rhSrR2CiPNgDB+AY2OAMVMEVqIE6wOAOPIEX8GrcG8/Gm/Exac0Z05ld8EfG5w9wJJ1N</latexit>

{{{ , }, { }}}
<latexit sha1_base64="+y70g4wIzHDle/kXPJ2fpa+UyLg=">AAACGnicbVDJSgNBEO2Je9yiHr20BsVDCDMi6s2AF48RzAKZEHo6laRJz0J3jRCG8TdE8Uc8ePGgiDfx4t/YWQ5xeUXD470qqut5kRQabfvLyszMzs0vLC5ll1dW19ZzG5tVHcaKQ4WHMlR1j2mQIoAKCpRQjxQw35NQ8/rnQ792DUqLMLjCQQRNn3UD0RGcoZFaOcdN3B1TCXWTm4IpNy1QF/wIBxpwilI3HTWmrVzeLtoj0L/EmZD82ePdEPflVu7DbYc89iFALpnWDceOsJkwhYJLSLNurCFivM+60DA0YD7oZjI6LaV7RmnTTqjMC5CO1OmJhPlaD3zPdPoMe/q3NxT/8xoxdk6biQiiGCHg40WdWFIM6TAn2hYKOMqBIYwrYf5KeY8pxtGkmTUhOL9P/kuqh0XnuHh0eZQv7ZMxFsk22SUHxCEnpEQuSJlUCCe35Im8kFfrwXq23qz3cWvGmsxskR+wPr8BqW6kbQ==</latexit>

{{{ , , }, ;, ;}}. . .

.

<latexit sha1_base64="vZWD9q+ej7fzB9ZlnMctzsLN4aY=">AAAB6nicbZC7SgNBFIbPxluMt6ilzZAgWIVdCWpnwMYyorlAsoTZyWwyZHZ2mYsQljyCjYUSbX0JX8POt3E2SaGJPwx8/P85zDknSDhT2nW/ndza+sbmVn67sLO7t39QPDxqqthIQhsk5rFsB1hRzgRtaKY5bSeS4ijgtBWMbrK89UilYrF40OOE+hEeCBYygrW17k3P6xXLbsWdCa2Ct4Dy9ec001u9V/zq9mNiIio04Vipjucm2k+x1IxwOil0jaIJJiM8oB2LAkdU+els1Ak6tU4fhbG0T2g0c393pDhSahwFtjLCeqiWs8z8L+sYHV75KROJ0VSQ+Ueh4UjHKNsb9ZmkRPOxBUwks7MiMsQSE22vU7BH8JZXXoXmecW7qFTvquVaCebKwwmU4Aw8uIQa3EIdGkBgAE/wAq8Od56dqfM+L805i55j+CPn4wciR5IV</latexit>

u1

<latexit sha1_base64="/crEaQk64tL2Gts4imDyYRvhdbA=">AAAB6nicbZC7TgJBFIbP4g3xhlraTCAmVmSXELWTxMYSo4AJbMjsMAsTZmc3czEhGx7BxkKDtr6Er2Hn2zgLFAr+ySRf/v+czDknSDhT2nW/ndza+sbmVn67sLO7t39QPDxqqdhIQpsk5rF8CLCinAna1Exz+pBIiqOA03Ywus7y9iOVisXiXo8T6kd4IFjICNbWujO9aq9YdivuTGgVvAWUrz6nmd4aveJXtx8TE1GhCcdKdTw30X6KpWaE00mhaxRNMBnhAe1YFDiiyk9no07QqXX6KIylfUKjmfu7I8WRUuMosJUR1kO1nGXmf1nH6PDST5lIjKaCzD8KDUc6RtneqM8kJZqPLWAimZ0VkSGWmGh7nYI9gre88iq0qhXvvFK7rZXrJZgrDydQgjPw4ALqcAMNaAKBATzBC7w63Hl2ps77vDTnLHqO4Y+cjx8jy5IW</latexit>

u2
<latexit sha1_base64="VFnEMyAz7fXIGc/rkA5RZEUXZl0=">AAAB63icbZDLSgMxFIbPeK31VnXpJrSIrspMKerOghuXFewF2qFk0kwbmmSGJCOUoa/gxoVa3PoQvoY738ZM24W2/hD4+P9zyDkniDnTxnW/nbX1jc2t7dxOfndv/+CwcHTc1FGiCG2QiEeqHWBNOZO0YZjhtB0rikXAaSsY3WZ565EqzSL5YMYx9QUeSBYygk1mJee9Sq9QcsvuTGgVvAWUbj7fMk3rvcJXtx+RRFBpCMdadzw3Nn6KlWGE00m+m2gaYzLCA9qxKLGg2k9ns07QmXX6KIyUfdKgmfu7I8VC67EIbKXAZqiXs8z8L+skJrz2UybjxFBJ5h+FCUcmQtniqM8UJYaPLWCimJ0VkSFWmBh7nrw9gre88io0K2Xvsly9r5ZqRZgrB6dQhAvw4ApqcAd1aACBITzBC7w6wnl2ps77vHTNWfScwB85Hz+EkpJH</latexit>

u0
2

<latexit sha1_base64="igos4JksFCMboM5MTuyG0rf2D6U=">AAAB63icbZDLSgMxFIbP1Futt6pLN6FFdFVmpKg7C25cVrAXaIeSSTNtaJIZkoxQhr6CGxdqcetD+BrufBszbRfa+kPg4//PIeecIOZMG9f9dnJr6xubW/ntws7u3v5B8fCoqaNEEdogEY9UO8CaciZpwzDDaTtWFIuA01Ywus3y1iNVmkXywYxj6gs8kCxkBJvMSs56Xq9YdivuTGgVvAWUbz7fMk3rveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxKLGg2k9ns07QqXX6KIyUfdKgmfu7I8VC67EIbKXAZqiXs8z8L+skJrz2UybjxFBJ5h+FCUcmQtniqM8UJYaPLWCimJ0VkSFWmBh7noI9gre88io0LyreZaV6Xy3XSjBXHk6gBOfgwRXU4A7q0AACQ3iCF3h1hPPsTJ33eWnOWfQcwx85Hz+DDpJG</latexit>

u0
1

<latexit sha1_base64="vZWD9q+ej7fzB9ZlnMctzsLN4aY=">AAAB6nicbZC7SgNBFIbPxluMt6ilzZAgWIVdCWpnwMYyorlAsoTZyWwyZHZ2mYsQljyCjYUSbX0JX8POt3E2SaGJPwx8/P85zDknSDhT2nW/ndza+sbmVn67sLO7t39QPDxqqthIQhsk5rFsB1hRzgRtaKY5bSeS4ijgtBWMbrK89UilYrF40OOE+hEeCBYygrW17k3P6xXLbsWdCa2Ct4Dy9ec001u9V/zq9mNiIio04Vipjucm2k+x1IxwOil0jaIJJiM8oB2LAkdU+els1Ak6tU4fhbG0T2g0c393pDhSahwFtjLCeqiWs8z8L+sYHV75KROJ0VSQ+Ueh4UjHKNsb9ZmkRPOxBUwks7MiMsQSE22vU7BH8JZXXoXmecW7qFTvquVaCebKwwmU4Aw8uIQa3EIdGkBgAE/wAq8Od56dqfM+L805i55j+CPn4wciR5IV</latexit>

u1

<latexit sha1_base64="/crEaQk64tL2Gts4imDyYRvhdbA=">AAAB6nicbZC7TgJBFIbP4g3xhlraTCAmVmSXELWTxMYSo4AJbMjsMAsTZmc3czEhGx7BxkKDtr6Er2Hn2zgLFAr+ySRf/v+czDknSDhT2nW/ndza+sbmVn67sLO7t39QPDxqqdhIQpsk5rF8CLCinAna1Exz+pBIiqOA03Ywus7y9iOVisXiXo8T6kd4IFjICNbWujO9aq9YdivuTGgVvAWUrz6nmd4aveJXtx8TE1GhCcdKdTw30X6KpWaE00mhaxRNMBnhAe1YFDiiyk9no07QqXX6KIylfUKjmfu7I8WRUuMosJUR1kO1nGXmf1nH6PDST5lIjKaCzD8KDUc6RtneqM8kJZqPLWAimZ0VkSGWmGh7nYI9gre88iq0qhXvvFK7rZXrJZgrDydQgjPw4ALqcAMNaAKBATzBC7w63Hl2ps77vDTnLHqO4Y+cjx8jy5IW</latexit>

u2
<latexit sha1_base64="VFnEMyAz7fXIGc/rkA5RZEUXZl0=">AAAB63icbZDLSgMxFIbPeK31VnXpJrSIrspMKerOghuXFewF2qFk0kwbmmSGJCOUoa/gxoVa3PoQvoY738ZM24W2/hD4+P9zyDkniDnTxnW/nbX1jc2t7dxOfndv/+CwcHTc1FGiCG2QiEeqHWBNOZO0YZjhtB0rikXAaSsY3WZ565EqzSL5YMYx9QUeSBYygk1mJee9Sq9QcsvuTGgVvAWUbj7fMk3rvcJXtx+RRFBpCMdadzw3Nn6KlWGE00m+m2gaYzLCA9qxKLGg2k9ns07QmXX6KIyUfdKgmfu7I8VC67EIbKXAZqiXs8z8L+skJrz2UybjxFBJ5h+FCUcmQtniqM8UJYaPLWCimJ0VkSFWmBh7nrw9gre88io0K2Xvsly9r5ZqRZgrB6dQhAvw4ApqcAd1aACBITzBC7w6wnl2ps77vHTNWfScwB85Hz+EkpJH</latexit>

u0
2

<latexit sha1_base64="igos4JksFCMboM5MTuyG0rf2D6U=">AAAB63icbZDLSgMxFIbP1Futt6pLN6FFdFVmpKg7C25cVrAXaIeSSTNtaJIZkoxQhr6CGxdqcetD+BrufBszbRfa+kPg4//PIeecIOZMG9f9dnJr6xubW/ntws7u3v5B8fCoqaNEEdogEY9UO8CaciZpwzDDaTtWFIuA01Ywus3y1iNVmkXywYxj6gs8kCxkBJvMSs56Xq9YdivuTGgVvAWUbz7fMk3rveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxKLGg2k9ns07QqXX6KIyUfdKgmfu7I8VC67EIbKXAZqiXs8z8L+skJrz2UybjxFBJ5h+FCUcmQtniqM8UJYaPLWCimJ0VkSFWmBh7noI9gre88io0LyreZaV6Xy3XSjBXHk6gBOfgwRXU4A7q0AACQ3iCF3h1hPPsTJ33eWnOWfQcwx85Hz+DDpJG</latexit>

u0
1

<latexit sha1_base64="R+AnmmdhzWDABzzB8vzx2mpoqvc=">AAAB6nicdZDLTgIxFIbP4A3xhrp000BMXE1mBgRcSeLGhQuMAiYwIZ1SoKFzSdsxIRMewY0LDbr1JXwNd76NHdBEjf5Jkz/ff056zvEizqSyrHcjs7S8srqWXc9tbG5t7+R391oyjAWhTRLyUNx4WFLOAtpUTHF6EwmKfY/Ttjc+S/P2LRWShcG1mkTU9fEwYANGsNLo6qJn9/JFyzypVZxjB1mmZVWdUiU1TrXslJCtSari6ess1VOjl3/r9kMS+zRQhGMpO7YVKTfBQjHC6TTXjSWNMBnjIe1oG2CfSjeZjzpFh5r00SAU+gUKzen3jgT7Uk58T1f6WI3k7yyFf2WdWA1qbsKCKFY0IIuPBjFHKkTp3qjPBCWKT7TBRDA9KyIjLDBR+jo5fYSvTdH/puWYdsUsX5aL9QIslIUDKMAR2FCFOpxDA5pAYAh38ACPBjfujZnxvCjNGJ89+/BDxssHRrqSMA==</latexit>

L1
<latexit sha1_base64="Fpr1Zuvfvgl6II147FyjLUy7bs0=">AAAB6nicdZDLTgIxFIbP4A3xhrp000BMXE1mBgRcSeLGhQuMAiYwIZ1SoKFzSdsxIRMewY0LDbr1JXwNd76NHdBEjf5Jkz/ff056zvEizqSyrHcjs7S8srqWXc9tbG5t7+R391oyjAWhTRLyUNx4WFLOAtpUTHF6EwmKfY/Ttjc+S/P2LRWShcG1mkTU9fEwYANGsNLo6qLn9PJFyzypVZxjB1mmZVWdUiU1TrXslJCtSari6ess1VOjl3/r9kMS+zRQhGMpO7YVKTfBQjHC6TTXjSWNMBnjIe1oG2CfSjeZjzpFh5r00SAU+gUKzen3jgT7Uk58T1f6WI3k7yyFf2WdWA1qbsKCKFY0IIuPBjFHKkTp3qjPBCWKT7TBRDA9KyIjLDBR+jo5fYSvTdH/puWYdsUsX5aL9QIslIUDKMAR2FCFOpxDA5pAYAh38ACPBjfujZnxvCjNGJ89+/BDxssHSD6SMQ==</latexit>

L2
<latexit sha1_base64="SfvkW81OZHUStR8LPXD+9RFnUUc=">AAAB7nicdZDLSgMxFIbP1Futt6pLN7FFcFUypdR2ZcGN4KaCvUA7lEyaaUMzF5KMUIY+hBvBirj1FXwNd76NmVZBRX8IfPz/OeSc40aCK43xu5VZWV1b38hu5ra2d3b38vsHbRXGkrIWDUUouy5RTPCAtTTXgnUjyYjvCtZxJxdp3rllUvEwuNHTiDk+GQXc45RoY3WuBkn/2J4N8kVcwkbVKkrBrmHbQL1eK5fryF5EGBfPXx9SzZuD/Ft/GNLYZ4GmgijVs3GknYRIzalgs1w/ViwidEJGrGcwID5TTrIYd4ZOjDNEXijNCzRauN87EuIrNfVdU+kTPVa/s9T8K+vF2qs5CQ+iWLOALj/yYoF0iNLd0ZBLRrWYGiBUcjMromMiCdXmQjlzhK9N0f/QLpfsaqlyXSk2CrBUFo6gAKdgwxk04BKa0AIKE7iDOTxakXVvPVnPy9KM9dlzCD9kvXwACNiTxQ==</latexit>

K1

<latexit sha1_base64="Q7SoaXNc/PG/G8Hkbhl9YDIC5Q8=">AAAB7nicdZDLSgMxFIbP1Futt6pLN7FFcFVmSqntyoIbwU0Fe4F2KJk004ZmMkOSEcrQh3AjWBG3voKv4c63MdMqqOgPgY//P4ecc7yIM6Vt+93KrKyurW9kN3Nb2zu7e/n9g7YKY0loi4Q8lF0PK8qZoC3NNKfdSFIceJx2vMlFmnduqVQsFDd6GlE3wCPBfEawNlbnapD0j8uzQb5ol2yjahWl4NRsx0C9XiuX68hZRLZdPH99SDVvDvJv/WFI4oAKTThWqufYkXYTLDUjnM5y/VjRCJMJHtGeQYEDqtxkMe4MnRhniPxQmic0WrjfOxIcKDUNPFMZYD1Wv7PU/CvrxdqvuQkTUaypIMuP/JgjHaJ0dzRkkhLNpwYwkczMisgYS0y0uVDOHOFrU/Q/tMslp1qqXFeKjQIslYUjKMApOHAGDbiEJrSAwATuYA6PVmTdW0/W87I0Y332HMIPWS8fCl2Txg==</latexit>

K2<latexit sha1_base64="wx3vEHeV9wpqoKwxoQO9bt3/soI=">AAAB7nicdZDLSgMxFIbP1Futt6pLN7FFcFVmSqntyoIbwU0Fe4F2KJk004ZmMkOSEcrQh3AjWBG3voKv4c63MdMqqOgPgY//P4ecc7yIM6Vt+93KrKyurW9kN3Nb2zu7e/n9g7YKY0loi4Q8lF0PK8qZoC3NNKfdSFIceJx2vMlFmnduqVQsFDd6GlE3wCPBfEawNlbnapD0j8VskC/aJduoWkUpODXbMVCv18rlOnIWkW0Xz18fUs2bg/xbfxiSOKBCE46V6jl2pN0ES80Ip7NcP1Y0wmSCR7RnUOCAKjdZjDtDJ8YZIj+U5gmNFu73jgQHSk0Dz1QGWI/V7yw1/8p6sfZrbsJEFGsqyPIjP+ZIhyjdHQ2ZpETzqQFMJDOzIjLGEhNtLpQzR/jaFP0P7XLJqZYq15ViowBLZeEICnAKDpxBAy6hCS0gMIE7mMOjFVn31pP1vCzNWJ89h/BD1ssHZYmUAg==</latexit>
Kn

<latexit sha1_base64="R+AnmmdhzWDABzzB8vzx2mpoqvc=">AAAB6nicdZDLTgIxFIbP4A3xhrp000BMXE1mBgRcSeLGhQuMAiYwIZ1SoKFzSdsxIRMewY0LDbr1JXwNd76NHdBEjf5Jkz/ff056zvEizqSyrHcjs7S8srqWXc9tbG5t7+R391oyjAWhTRLyUNx4WFLOAtpUTHF6EwmKfY/Ttjc+S/P2LRWShcG1mkTU9fEwYANGsNLo6qJn9/JFyzypVZxjB1mmZVWdUiU1TrXslJCtSari6ess1VOjl3/r9kMS+zRQhGMpO7YVKTfBQjHC6TTXjSWNMBnjIe1oG2CfSjeZjzpFh5r00SAU+gUKzen3jgT7Uk58T1f6WI3k7yyFf2WdWA1qbsKCKFY0IIuPBjFHKkTp3qjPBCWKT7TBRDA9KyIjLDBR+jo5fYSvTdH/puWYdsUsX5aL9QIslIUDKMAR2FCFOpxDA5pAYAh38ACPBjfujZnxvCjNGJ89+/BDxssHRrqSMA==</latexit>

L1
<latexit sha1_base64="Fpr1Zuvfvgl6II147FyjLUy7bs0=">AAAB6nicdZDLTgIxFIbP4A3xhrp000BMXE1mBgRcSeLGhQuMAiYwIZ1SoKFzSdsxIRMewY0LDbr1JXwNd76NHdBEjf5Jkz/ff056zvEizqSyrHcjs7S8srqWXc9tbG5t7+R391oyjAWhTRLyUNx4WFLOAtpUTHF6EwmKfY/Ttjc+S/P2LRWShcG1mkTU9fEwYANGsNLo6qLn9PJFyzypVZxjB1mmZVWdUiU1TrXslJCtSari6ess1VOjl3/r9kMS+zRQhGMpO7YVKTfBQjHC6TTXjSWNMBnjIe1oG2CfSjeZjzpFh5r00SAU+gUKzen3jgT7Uk58T1f6WI3k7yyFf2WdWA1qbsKCKFY0IIuPBjFHKkTp3qjPBCWKT7TBRDA9KyIjLDBR+jo5fYSvTdH/puWYdsUsX5aL9QIslIUDKMAR2FCFOpxDA5pAYAh38ACPBjfujZnxvCjNGJ89+/BDxssHSD6SMQ==</latexit>

L2
<latexit sha1_base64="SfvkW81OZHUStR8LPXD+9RFnUUc=">AAAB7nicdZDLSgMxFIbP1Futt6pLN7FFcFUypdR2ZcGN4KaCvUA7lEyaaUMzF5KMUIY+hBvBirj1FXwNd76NmVZBRX8IfPz/OeSc40aCK43xu5VZWV1b38hu5ra2d3b38vsHbRXGkrIWDUUouy5RTPCAtTTXgnUjyYjvCtZxJxdp3rllUvEwuNHTiDk+GQXc45RoY3WuBkn/2J4N8kVcwkbVKkrBrmHbQL1eK5fryF5EGBfPXx9SzZuD/Ft/GNLYZ4GmgijVs3GknYRIzalgs1w/ViwidEJGrGcwID5TTrIYd4ZOjDNEXijNCzRauN87EuIrNfVdU+kTPVa/s9T8K+vF2qs5CQ+iWLOALj/yYoF0iNLd0ZBLRrWYGiBUcjMromMiCdXmQjlzhK9N0f/QLpfsaqlyXSk2CrBUFo6gAKdgwxk04BKa0AIKE7iDOTxakXVvPVnPy9KM9dlzCD9kvXwACNiTxQ==</latexit>

K1

<latexit sha1_base64="Q7SoaXNc/PG/G8Hkbhl9YDIC5Q8=">AAAB7nicdZDLSgMxFIbP1Futt6pLN7FFcFVmSqntyoIbwU0Fe4F2KJk004ZmMkOSEcrQh3AjWBG3voKv4c63MdMqqOgPgY//P4ecc7yIM6Vt+93KrKyurW9kN3Nb2zu7e/n9g7YKY0loi4Q8lF0PK8qZoC3NNKfdSFIceJx2vMlFmnduqVQsFDd6GlE3wCPBfEawNlbnapD0j8uzQb5ol2yjahWl4NRsx0C9XiuX68hZRLZdPH99SDVvDvJv/WFI4oAKTThWqufYkXYTLDUjnM5y/VjRCJMJHtGeQYEDqtxkMe4MnRhniPxQmic0WrjfOxIcKDUNPFMZYD1Wv7PU/CvrxdqvuQkTUaypIMuP/JgjHaJ0dzRkkhLNpwYwkczMisgYS0y0uVDOHOFrU/Q/tMslp1qqXFeKjQIslYUjKMApOHAGDbiEJrSAwATuYA6PVmTdW0/W87I0Y332HMIPWS8fCl2Txg==</latexit>

K2<latexit sha1_base64="wx3vEHeV9wpqoKwxoQO9bt3/soI=">AAAB7nicdZDLSgMxFIbP1Futt6pLN7FFcFVmSqntyoIbwU0Fe4F2KJk004ZmMkOSEcrQh3AjWBG3voKv4c63MdMqqOgPgY//P4ecc7yIM6Vt+93KrKyurW9kN3Nb2zu7e/n9g7YKY0loi4Q8lF0PK8qZoC3NNKfdSFIceJx2vMlFmnduqVQsFDd6GlE3wCPBfEawNlbnapD0j8VskC/aJduoWkUpODXbMVCv18rlOnIWkW0Xz18fUs2bg/xbfxiSOKBCE46V6jl2pN0ES80Ip7NcP1Y0wmSCR7RnUOCAKjdZjDtDJ8YZIj+U5gmNFu73jgQHSk0Dz1QGWI/V7yw1/8p6sfZrbsJEFGsqyPIjP+ZIhyjdHQ2ZpETzqQFMJDOzIjLGEhNtLpQzR/jaFP0P7XLJqZYq15ViowBLZeEICnAKDpxBAy6hCS0gMIE7mMOjFVn31pP1vCzNWJ89h/BD1ssHZYmUAg==</latexit>
Kn

<latexit sha1_base64="fF3bT4oOYMa6mpKYjyqg4CAXmVo=">AAAB+XicdVDLSgMxFM3UV62vUZduQovgasjUtrYrC26kqwr2Ae0wZNK0Dc08SDKFMvRDFDcuFHHryt9w59+YaRVU9EDgcM493JvjRZxJhdC7kVlZXVvfyG7mtrZ3dvfM/YO2DGNBaIuEPBRdD0vKWUBbiilOu5Gg2Pc47XiTi9TvTKmQLAyu1Syijo9HARsygpWWXNPsNVwb9gehkh5suNxxzQKyUKVcQzWIrDKyqwuCUKVaPIW2JikK5683KW6brvmm0yT2aaAIx1L2bBQpJ8FCMcLpPNePJY0wmeAR7WkaYJ9KJ1lcPofHWhnAYSj0CxRcqN8TCfalnPmenvSxGsvfXir+5fViNaw6CQuiWNGALBcNYw5VCNMa4IAJShSfaYKJYPpWSMZYYKJ0WTldwtdP4f+kXbTsilW6KhXqebBEFhyBPDgBNjgDdXAJmqAFCJiCO/AAHo3EuDeejOflaMb4zByCHzBePgCf3Jdp</latexit>

[J1 · · · Jl]

<latexit sha1_base64="3vYvcJs6DCrhnmCxBSYZRghC/to=">AAAB+XicdVDLSsNAFJ3UV62vqEs3Q4vgKiRpbevKghsXXVSwD2hDmEwn7dDJg5lJoYR+iOLGhSJuXfkb7vwbJ62Cih4YOJxzD/fO8WJGhTTNdy23srq2vpHfLGxt7+zu6fsHHRElHJM2jljEex4ShNGQtCWVjPRiTlDgMdL1JheZ350SLmgUXstZTJwAjULqU4ykklxd7zfdMhwMIyk82HQDx9VLpnFWr9qnNjQN06zZ5WpG7FrFLkNLKRlK5683GW5brv6m0jgJSCgxQ0L0LTOWToq4pJiReWGQCBIjPEEj0lc0RAERTrq4fA6PlTKEfsTVCyVcqN8TKQqEmAWemgyQHIvfXib+5fUT6dedlIZxIkmIl4v8hEEZwawGOKScYMlmiiDMqboV4jHiCEtVVkGV8PVT+D/p2IZVNSpXlVKjCJbIgyNQBCfAAjXQAJegBdoAgym4Aw/gUUu1e+1Je16O5rTPzCH4Ae3lA6apl20=</latexit>

[L3 · · ·Lm]

<latexit sha1_base64="7MlxwMvVHid2bgI5QKwsL2gqdkY=">AAAB/XicdVDLSgMxFM34rPU1PnZuQovgxjJTS21XFtwI3VSwD5gOQyZN29BMZkgyQh2K36ErNy4UcSv+hjv/xkyroKIHLhzOuTe59/gRo1JZ1rsxN7+wuLScWcmurq1vbJpb2y0ZxgKTJg5ZKDo+koRRTpqKKkY6kSAo8Blp+6PT1G9fEiFpyC/UOCJugAac9ilGSkueuevUvSPY7YVK+rDuJfzQnriembcKlka5DFNiVyxbk2q1UixWoT21LCt/8nqT4rbhmW/6BRwHhCvMkJSObUXKTZBQFDMyyXZjSSKER2hAHE05Coh0k+n2E7ivlR7sh0IXV3Cqfp9IUCDlOPB1Z4DUUP72UvEvz4lVv+ImlEexIhzPPurHDKoQplHAHhUEKzbWBGFB9a4QD5FAWOnAsjqEr0vh/6RVLNjlQum8lK/lwAwZsAdy4ADY4BjUwBlogCbA4ArcgQfwaFwb98aT8TxrnTM+Z3bADxgvH0wFmOM=</latexit>

[K3 · · ·Kn�1]

<latexit sha1_base64="BuU5K9j64kp8V0sZ9yUikeRQItc=">AAAB+3icdVDLSgMxFM3UV62vsS7dhBbBjWWmltquLLgRuqlgH9AOQyZN29BMZkgyYhnmQ3ThxoUibl34G+78GzOtgooeuHA4597k3uOFjEplWe9GZml5ZXUtu57b2Nza3jF38x0ZRAKTNg5YIHoekoRRTtqKKkZ6oSDI9xjpetOz1O9eESFpwC/VLCSOj8acjihGSkuumW+6x3AwDJT0YNON+ZGduGbRKlka1SpMiV2zbE3q9Vq5XIf23LKs4unrTYrblmu+6Qdw5BOuMENS9m0rVE6MhKKYkSQ3iCQJEZ6iMelrypFPpBPPd0/ggVaGcBQIXVzBufp9Ika+lDPf050+UhP520vFv7x+pEY1J6Y8jBThePHRKGJQBTANAg6pIFixmSYIC6p3hXiCBMJKx5XTIXxdCv8nnXLJrpYqF5ViowAWyIJ9UACHwAYnoAHOQQu0AQbX4A48gEcjMe6NJ+N50ZoxPmf2wA8YLx/d95gX</latexit>

K
3 · · ·K

n�1

<latexit sha1_base64="ilmdlhX9U+D8zOoAHDylK1k3/v4=">AAAB+XicdVDLSsNAFJ3UV62vqEs3Q4vgKiRpbevKghsXXVSwD2hDmEwn7dDJg5lJoYR+iOLGhSJuXfkb7vwbJ62Cih4YOJxzD/fO8WJGhTTNdy23srq2vpHfLGxt7+zu6fsHHRElHJM2jljEex4ShNGQtCWVjPRiTlDgMdL1JheZ350SLmgUXstZTJwAjULqU4ykklxdb7plOBhGUniw6abB3NVLpnFWr9qnNjQN06zZ5WpG7FrFLkNLKRlK5683GW5brv6m4jgJSCgxQ0L0LTOWToq4pJiReWGQCBIjPEEj0lc0RAERTrq4fA6PlTKEfsTVCyVcqN8TKQqEmAWemgyQHIvfXib+5fUT6dedlIZxIkmIl4v8hEEZwawGOKScYMlmiiDMqboV4jHiCEtVVkGV8PVT+D/p2IZVNSpXlVKjCJbIgyNQBCfAAjXQAJegBdoAgym4Aw/gUUu1e+1Je16O5rTPzCH4Ae3lAweal60=</latexit>

L
3 · · ·L

m

<latexit sha1_base64="Gxah9rcKM0liPGxU+NgpOY3r6FU=">AAAB9XicdVDLSgMxFM34rPVVdekmtAiuhkxta7uy4Ea6qmAf0I5DJs20oZkHSUYpQ/9DBReKuHXtb7jzb8y0Cip6IHA45x7uzXEjzqRC6N1YWFxaXlnNrGXXNza3tnM7u20ZxoLQFgl5KLoulpSzgLYUU5x2I0Gx73Laccenqd+5okKyMLhQk4jaPh4GzGMEKy1dNhwL9gehki5sONzJFZCJKuUaqkFklpFVnRGEKtXiEbQ0SVE4eb1Ncdd0cm86TGKfBopwLGXPQpGyEywUI5xOs/1Y0giTMR7SnqYB9qm0k9nVU3iglQH0QqFfoOBM/Z5IsC/lxHf1pI/VSP72UvEvrxcrr2onLIhiRQMyX+TFHKoQphXAAROUKD7RBBPB9K2QjLDAROmisrqEr5/C/0m7aFoVs3ReKtTzYI4M2Ad5cAgscAzq4Aw0QQsQIMANeACPxrVxbzwZz/PRBeMzswd+wHj5AL0Qlmw=</latexit>

J1 · · · Jl

...

<latexit sha1_base64="qsN1rtxG6N98LbLCiYD9mjwejXo=">AAACKXiclVDLSsNAFJ34rPUVdelmsCiuSiJF3Vlw47KCfUAbymRy0w6dTMLMRCih/od+gBu/wH9wo6CoW3/E6WOhrRsPXDiccy/33uMnnCntOB/W3PzC4tJybiW/ura+sWlvbddUnEoKVRrzWDZ8ooAzAVXNNIdGIoFEPoe63zsf+vVrkIrF4kr3E/Ai0hEsZJRoI7XtcisVAUhfEgrZzf8xaNsFp+iMgGeJOyGFs8fbIe4qbfulFcQ0jUBoyolSTddJtJcRqRnlMMi3UgUJoT3SgaahgkSgvGz06QDvGyXAYSxNCY1H6s+JjERK9SPfdEZEd9W0NxT/8pqpDk+9jIkk1SDoeFGYcqxjPIwNB0wC1bxvCKGSmVsx7RKTmjbh5k0I7vTLs6R2VHSPi6XLUqF8gMbIoV20hw6Ri05QGV2gCqoiiu7RE3pFb9aD9Wy9W5/j1jlrMrODfsH6+gbhkLIw</latexit>| {z } <latexit sha1_base64="a/IZVGYqWSf2hjcXKL7XIFPdE3s=">AAACLXicnVDLSsNAFJ3UV62vqEs3waK4KokUdWdBFy4r2Ae0oUwmN+3QySTMTIQS6n/oJ7hx7V+I4KIibv0NJ20X2rrywIXDOfdy7z1ezKhUtj0ycguLS8sr+dXC2vrG5pa5vVOXUSII1EjEItH0sARGOdQUVQyasQAcegwaXv8i8xu3ICSN+I0axOCGuMtpQAlWWuqYl+2E+yA8gQmkd//DsGMW7ZI9hjVPnCkpnj/fZ3iodszXth+RJASuCMNSthw7Vm6KhaKEwbDQTiTEmPRxF1qachyCdNPxt0PrQCu+FURCF1fWWP05keJQykHo6c4Qq56c9TLxL6+VqODMTSmPEwWcTBYFCbNUZGXRWT4VQBQbaIKJoPpWi/SwTk7pgAs6BGf25XlSPy45J6XydblYOUQT5NEe2kdHyEGnqIKuUBXVEEGP6AWN0LvxZLwZH8bnpDVnTGd20S8YX9/w2LRQ</latexit>| {z }
<latexit sha1_base64="wvKkem6g1HG+MR/rXkTnwCRWouc=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAorsqMFHVnwY3LCvYC7VDOpJk2NpMMSUYoQ9/BjYsWcesz+BrufBszbRfa+kPg4//PIeecIOZMG9f9dnJr6xubW/ntws7u3v5B8fCooWWiCK0TyaVqBaApZ4LWDTOctmJFIQo4bQbDuyxvPlOlmRSPZhRTP4K+YCEjYKzV6ACPB9AtltyyOxNeBW8BpdvPSaZprVv86vQkSSIqDOGgddtzY+OnoAwjnI4LnUTTGMgQ+rRtUUBEtZ/Oph3jM+v0cCiVfcLgmfu7I4VI61EU2MoIzEAvZ5n5X9ZOTHjjp0zEiaGCzD8KE46NxNnquMcUJYaPLABRzM6KyQAUEGMPVLBH8JZXXoXGZdm7KlceKqXqOZorj07QKbpAHrpGVXSPaqiOCHpCL2iCpo50Xp03531emnMWPcfoj5yPH6fek5Q=</latexit>↵

<latexit sha1_base64="+285/N63jUH7i6ect0ftpOahG0A=">AAAB7nicbZDLSgMxFIYz9VbrrerSTbB4WZUZKerOghuXFewF2qGcSTNtaCYTkoxQhj6EG8GKuPUVfA13vo2Ztgtt/SHw8f/nkHNOIDnTxnW/ndzK6tr6Rn6zsLW9s7tX3D9o6DhRhNZJzGPVCkBTzgStG2Y4bUlFIQo4bQbD2yxvPlKlWSwezEhSP4K+YCEjYKzV7ACXAzjrFktu2Z0KL4M3h9LN50umSa1b/Or0YpJEVBjCQeu250rjp6AMI5yOC51EUwlkCH3atiggotpPp+OO8Yl1ejiMlX3C4Kn7uyOFSOtRFNjKCMxAL2aZ+V/WTkx47adMyMRQQWYfhQnHJsbZ7rjHFCWGjywAUczOiskAFBBjL1SwR/AWV16GxkXZuyxX7iul6imaKY+O0DE6Rx66QlV0h2qojggaoic0Qa+OdJ6dN+d9Vppz5j2H6I+cjx8KWZPF</latexit>

↵0

Figure 4 A long non-branching path in the tree decomposition of width 2 of an approximation α.
There are two non-full bags in the path with the same profile, and thus the query α can be simplified
to α′ by applying contractions to the atom refinements involved.

The basic idea behind Subclaim 5.4 is that we the definition of profile was carefully
design so that we could contract every refinements between b and b′, while preserving every
desirable properties on the trio. The construction is illustrated in Figure 4, and both an
informal proof and a formal proof can be found in the full version. We can now describe key
steps in the proof of Claim 5.2. A formal proof can also be found in the full version.

Proof sketch of Claim 5.2. We claim that, starting from a trio f : ρ
hom−−→−→ α and a locally

acyclic nice tagged tree decomposition of f , if we can find a long non-branching path, then
an elementary argument (see the full version) yields the existence of two bags b and b′ on
this path, satisfying the assumptions of Subclaim 5.4, and sufficiently far apart that the
construction described in Subclaim 5.4 strictly shortens the path between b and b′. Overall,
the iterative application of this construction, which preserves both the niceness and the local
acyclicity of the tagged tree decomposition, and only produces bigger approximations (in
the sense of containment), yields a trio f ′ : ρ′ hom−−→−→ α′ with a locally acyclic nice tagged tree
decomposition of width at most k, whose non-branching paths are all “small”, and such that
α ⫅ α′. ◁

Finally, our main lemma follows from Claims 5.1 and 5.2.

Proof of Lemma 3.8. In order to show AppTwk
(γ) ⫅ App⋆,⩽ℓ

Twk
(γ) – the other containment

being trivial – , pick a trio f : ρ → α. Applying Claim 5.1 and then Claim 5.2 yields the
existence of a trio f ′ : ρ′ → α′ together with a nice tagged tree decomposition (T ′, v′, t′) of
f ′ such that α ⫅ α′ and (T ′, v′, t′) is locally acyclic, and any non-branching path in T ′ has
length at most Θ(∥γ∥ · (k + 1)∥γ∥).

Moreover, we can assume w.l.o.g., by applying Fact 4.2, that every leaf of T ′ is tagged
by at least one atom of ρ′. The local acyclicity of T ′ implies that if b be a leaf of T ′, and
π =̂ x

L1−−→ t1
L2−−→ · · · Ln−1−−−→ tn−1

Ln−−→ y is an atom refinement in ρ′ of some atom x
L−→ y

of γ, then if b is tagged by one atom of π this atom must either be z0
L1−−→ z1 or zn−1

Ln−−→ zn

by local acyclicity – see e.g. Figure 3 for a visual proof. The number of such atoms in ρ′

being bounded by 2∥γ∥, we conclude that T ′ has at most 2∥γ∥ leaves.

https://arxiv.org/abs/2212.01679
https://arxiv.org/abs/2212.01679
https://arxiv.org/abs/2212.01679

D. Figueira and R. Morvan 15:15

Then, observe that a tree with at most p leaves and whose non-branching paths have
length at most q is of height at most9 p · q − 1. We conclude that the height of T ′ is
Θ(∥γ∥2 · (k + 1)∥γ∥). Using again the local acyclicity of T ′, observe that the refinement length
of ρ′ is at most twice the height of T ′, and hence ρ′ ∈ Ref⩽ℓ(γ) where ℓ = Θ(∥γ∥2 · (k +1)∥γ∥).
In other words, α′ ∈ App⋆,⩽ℓ

Twk
(γ). Hence, we have shown that for all α ∈ App⋆

Twk
(γ), there

exists α′ ∈ App⋆,⩽ℓ
Twk

(γ) such that α ⫅ α′. ◀

6 Queries over simple regular expressions

A simple regular expression, or SRE, is a regular expression the form a∗ for some letter a ∈ A
or of the form a1 + · · ·+ am for some a1, . . . , am ∈ A.

Let UCRPQ(SRE) be the set of all UCRPQ whose languages are expressed via SRE
expressions. Observe that UCRPQ(SRE) is semantically closed under concatenation, that
is, concatenations of SRE expressions can be also expressed in the language. For example,
γ(x, y) = x

a∗·(a+b)·b∗

−−−−−−−→ y is equivalent to γ′(x, y) = x
a∗

−→ z ∧ z
a+b−−→ z′ ∧ z′ b∗

−→ y. One
interest of UCRPQ(SRE) comes from the fact that it is used widely in practice, as recent
studies on SPARQL query logs on Wikidata, DBpedia and other sources show that this kind
of regular expressions cover a majority of the queries investigated, e.g., 75% of the “property
paths” (C2RPQ atoms) of the corpus of 1.5M queries of [7, Table 15]. An additional interest
comes from the fact that the containment problem for UCRPQ(SRE) is much better behaved
than for general UCRPQs, since it is in Πp

2 [11, Corollary 5.2], that is, just one level up the
polynomial hierarchy compared to the CQ containment problem, which is in NP [9], and in
sharp contrast with the costly ExpSpace-complete CRPQ containment problem [8, 12].

We devote this section to showing the following result.

▶ Theorem 6.1. For k > 1, the semantic tree-width k problem for UCRPQ(SRE) is in Πp
2.

Observe that simple regular expressions are closed under sublanguages. Hence, in the light
of Theorem 1.5, the maximal under-approximation of a UCRPQ(SRE) query by infinitary
unions of CQs of tree-width k is always equivalent to a UCRPQ(SRE) query of tree-width k.
We will explain how the construction of the maximal under-approximation of the previous
section can be exploited to improve the complexity from 2ExpSpace down to Πp

2.

6.1 Summary queries
We will first show that the maximal under-approximation of tree-width k of a UC2RPQ
can be expressed as a union of polynomial sized “summary” queries. Each summary query
represents a union of exponentially-bounded C2RPQs sharing some common structure. These
are normal UC2RPQ queries extended with some special kind of atoms, called “path-l
approximations”. Intuitively, a path-l approximation is a maximal under-approximation
of tree-width l of queries of the form

∧
i xi

Li−→ yi such that xi ̸= yj for all i, j. Path-l
approximations may require an exponential size when represented as UCRPQs. Formally, a
path-l approximation is a query of the form “Pl(X, Y, γ)” where: (i) X, Y , are two disjoint
sets of variables of size at most l, (ii) γ(z̄) is a conjunction of atoms

∧
1⩽i⩽n Ai(xi, yi) where

z̄ contains all variables of X ∪ Y , (iii) each Ai is a C2RPQ atom of the form xi
L−→ yi or

yi
L−→ xi such that xi is in X and yi is in Y . We give its semantics in terms of infinitary

9 The length of a path being its number of nodes, and with the convention that the height of a single
node is zero.

ICDT 2023

15:16 Approximation & Semantic Tree-Width of CRPQs

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1
<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2

<latexit sha1_base64="rBGi1lD4rymrS1IRe7SJwFA5gBk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCpJKdWdBTcuK9oLtKFMppN26GQSZiZCCH0ENy6U6taX8DXc+TZO2i609YeBj/8/hznneBFnStv2t5VbW9/Y3MpvF3Z29/YPiodHLRXGktAmCXkoOx5WlDNBm5ppTjuRpDjwOG1745ssbz9SqVgoHnQSUTfAQ8F8RrA21n3Sr/SLJbtsz4RWwVlA6fpzmumt0S9+9QYhiQMqNOFYqa5jR9pNsdSMcDop9GJFI0zGeEi7BgUOqHLT2agTdGacAfJDaZ7QaOb+7khxoFQSeKYywHqklrPM/C/rxtq/clMmolhTQeYf+TFHOkTZ3mjAJCWaJwYwkczMisgIS0y0uU7BHMFZXnkVWpWyUytX76ql+jnMlYcTOIULcOAS6nALDWgCgSE8wQu8Wtx6tqbW+7w0Zy16juGPrI8fKxeSHg==</latexit>y2
<latexit sha1_base64="yPRTJw8s3wjr8q3A5gWKhJp+7Nk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCqJFHVnwY3LivYCbSiT6aQdOpmEmYkQQh/BjQuluvUlfA13vo2TtAtt/WHg4//PYc45XsSZ0rb9bRVWVtfWN4qbpa3tnd298v5BS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+CbL249UKhaKB51E1A3wUDCfEayNdZ/0nX65YlftXGgZnDlUrj+nmd4a/fJXbxCSOKBCE46V6jp2pN0US80Ip5NSL1Y0wmSMh7RrUOCAKjfNR52gE+MMkB9K84RGufu7I8WBUkngmcoA65FazDLzv6wba//KTZmIYk0FmX3kxxzpEGV7owGTlGieGMBEMjMrIiMsMdHmOiVzBGdx5WVonVedi2rtrlapn8JMRTiCYzgDBy6hDrfQgCYQGMITvMCrxa1na2q9z0oL1rznEP7I+vgBKZOSHQ==</latexit>y1

<latexit sha1_base64="mXIvgRzaPF8YSAEJ14qzgDncu+g=">AAAB6HicbZDLTgJBEEVr8IX4Ql266Ug0rsiMIepOEjcuIZFHAhPS09RAS88j3T0mSPgCNy40Bpf+hb/hzr+xB1goeJNOTu6tSleVFwuutG1/W5mV1bX1jexmbmt7Z3cvv39QV1EiGdZYJCLZ9KhCwUOsaa4FNmOJNPAENrzBTZo3HlAqHoV3ehijG9BeyH3OqDZW9bGTL9hFeyqyDM4cCtefk1TvlU7+q92NWBJgqJmgSrUcO9buiErNmcBxrp0ojCkb0B62DIY0QOWOpoOOyYlxusSPpHmhJlP3d8eIBkoNA89UBlT31WKWmv9lrUT7V+6Ih3GiMWSzj/xEEB2RdGvS5RKZFkMDlEluZiWsTyVl2twmZ47gLK68DPXzonNRLFVLhfIpzJSFIziGM3DgEspwCxWoAQOEJ3iBV+veerberMmsNGPNew7hj6yPHwWtkXo=</latexit>z<latexit sha1_base64="Rbb9dRCglIXnItRrNxJexyeOTTU=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiiIuSSFF3Fty4rGgv0MYymU7aoZNJmJkIJfQR3LhQqltfwtdw59s4abvQ1h8GPv7/HOac48ecKe0431ZuaXlldS2/XtjY3NresXf36ipKJKE1EvFINn2sKGeC1jTTnDZjSXHoc9rwB9dZ3nikUrFI3OthTL0Q9wQLGMHaWHfk4bRjF52SMxFaBHcGxavPcaa3asf+ancjkoRUaMKxUi3XibWXYqkZ4XRUaCeKxpgMcI+2DAocUuWlk1FH6Mg4XRRE0jyh0cT93ZHiUKlh6JvKEOu+ms8y87+slejg0kuZiBNNBZl+FCQc6Qhle6Muk5RoPjSAiWRmVkT6WGKizXUK5gju/MqLUD8rueel8m25WDmGqfJwAIdwAi5cQAVuoAo1INCDJ3iBV4tbz9bYep+W5qxZzz78kfXxA/vfkf8=</latexit> c⇤

<latexit sha1_base64="QEDPvNcEVN6snRcXCSLzDjNaTVU=">AAAB7XicbZDLTgIxFIbP4A3xhrp000g06ILMGKLuJHHjEhO5JDCSTulApTOdtB0TMuEd3LiAGLc+g6/hzrexAywU/JMmX/7/nPSc40WcKW3b31ZmZXVtfSO7mdva3tndy+8f1JWIJaE1IriQTQ8ryllIa5ppTpuRpDjwOG14g9s0bzxTqZgIH/Qwom6AeyHzGcHaWPUiJmeP5518wS7ZU6FlcOZQuPkcp5pUO/mvdleQOKChJhwr1XLsSLsJlpoRTke5dqxohMkA92jLYIgDqtxkOu0InRini3whzQs1mrq/OxIcKDUMPFMZYN1Xi1lq/pe1Yu1fuwkLo1jTkMw+8mOOtEDp6qjLJCWaDw1gIpmZFZE+lphoc6CcOYKzuPIy1C9KzmWpfF8uVE5hpiwcwTEUwYErqMAdVKEGBJ7gBcYwsYT1ar1Z77PSjDXvOYQ/sj5+AHuEks8=</latexit> (a
c)

⇤

<latexit sha1_base64="4LAhf4TVXWs8Virk4xjGD1eWEoc=">AAAB8HicbZDLSgMxFIbP1Futt6pLN4NFqQplRoq6s+DGZQV7kXYsmTRTQ5PMkGSEMvQp3Kgo4tY38DXc+TZm2i609YfAx/+fQ845fsSo0o7zbWXm5hcWl7LLuZXVtfWN/OZWXYWxxKSGQxbKpo8UYVSQmqaakWYkCeI+Iw2/f5HmjXsiFQ3FtR5ExOOoJ2hAMdLGuimi5GiID24PO/mCU3JGsmfBnUDh/PMp1XO1k/9qd0MccyI0ZkiplutE2kuQ1BQzMsy1Y0UihPuoR1oGBeJEeclo4KG9Z5yuHYTSPKHtkfu7I0FcqQH3TSVH+k5NZ6n5X9aKdXDmJVREsSYCjz8KYmbr0E63t7tUEqzZwADCkppZbXyHJMLa3ChnjuBOrzwL9eOSe1IqX5ULlX0YKws7sAtFcOEUKnAJVagBBg4P8AKvlrQerTfrfVyasSY92/BH1scPqsaUEA==</latexit>(a+
c) ⇤ <latexit sha1_base64="HcAZEZtYx5Sv26HKdQAvyzCT2/Y=">AAAB7XicbZDLTgIxFIbP4A3xhrp000g06ILMGKLuJHHjEhO5JDCSTulApTOdtB0TMuEd3LiAGLc+g6/hzrexAywU/JMmX/7/nPSc40WcKW3b31ZmZXVtfSO7mdva3tndy+8f1JWIJaE1IriQTQ8ryllIa5ppTpuRpDjwOG14g9s0bzxTqZgIH/Qwom6AeyHzGcHaWPUi9s4ezzv5gl2yp0LL4MyhcPM5TjWpdvJf7a4gcUBDTThWquXYkXYTLDUjnI5y7VjRCJMB7tGWwRAHVLnJdNoROjFOF/lCmhdqNHV/dyQ4UGoYeKYywLqvFrPU/C9rxdq/dhMWRrGmIZl95MccaYHS1VGXSUo0HxrARDIzKyJ9LDHR5kA5cwRnceVlqF+UnMtS+b5cqJzCTFk4gmMoggNXUIE7qEINCDzBC4xhYgnr1Xqz3melGWvecwh/ZH38AHn9ks4=</latexit>(ab) ⇤

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1
<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2

<latexit sha1_base64="rBGi1lD4rymrS1IRe7SJwFA5gBk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCpJKdWdBTcuK9oLtKFMppN26GQSZiZCCH0ENy6U6taX8DXc+TZO2i609YeBj/8/hznneBFnStv2t5VbW9/Y3MpvF3Z29/YPiodHLRXGktAmCXkoOx5WlDNBm5ppTjuRpDjwOG1745ssbz9SqVgoHnQSUTfAQ8F8RrA21n3Sr/SLJbtsz4RWwVlA6fpzmumt0S9+9QYhiQMqNOFYqa5jR9pNsdSMcDop9GJFI0zGeEi7BgUOqHLT2agTdGacAfJDaZ7QaOb+7khxoFQSeKYywHqklrPM/C/rxtq/clMmolhTQeYf+TFHOkTZ3mjAJCWaJwYwkczMisgIS0y0uU7BHMFZXnkVWpWyUytX76ql+jnMlYcTOIULcOAS6nALDWgCgSE8wQu8Wtx6tqbW+7w0Zy16juGPrI8fKxeSHg==</latexit>y2
<latexit sha1_base64="yPRTJw8s3wjr8q3A5gWKhJp+7Nk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCqJFHVnwY3LivYCbSiT6aQdOpmEmYkQQh/BjQuluvUlfA13vo2TtAtt/WHg4//PYc45XsSZ0rb9bRVWVtfWN4qbpa3tnd298v5BS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+CbL249UKhaKB51E1A3wUDCfEayNdZ/0nX65YlftXGgZnDlUrj+nmd4a/fJXbxCSOKBCE46V6jp2pN0US80Ip5NSL1Y0wmSMh7RrUOCAKjfNR52gE+MMkB9K84RGufu7I8WBUkngmcoA65FazDLzv6wba//KTZmIYk0FmX3kxxzpEGV7owGTlGieGMBEMjMrIiMsMdHmOiVzBGdx5WVonVedi2rtrlapn8JMRTiCYzgDBy6hDrfQgCYQGMITvMCrxa1na2q9z0oL1rznEP7I+vgBKZOSHQ==</latexit>y1

<latexit sha1_base64="lBd2mikvmDS/+/4KJ5v+L9+2M1U=">AAACenicbVFNT9tAEN2YtoChLaFHLlaiSqBWkY2iwiUCqZceQ0UAKbHQeDOGFeu12Z0FgsUv4Noeyj/hp/S/9NC1E1Vt0iet9PTezOx8JIUUhsLwZ8NbevHy1fLKqr+2/vrN243m5onJreY44LnM9VkCBqVQOCBBEs8KjZAlEk+Tq8+Vf3qD2ohcHdOkwDiDCyVSwYGcdATnG+2wE9YIFkk0I+2D5x8VnvrnzQYfjXNuM1TEJRgzjMKC4hI0CS7xwR9ZgwXwK7jAoaMKMjRxWXf6ELx3yjhIc+2eoqBW/84oITNmkiUuMgO6NPNeJf7PG1pK9+NSqMISKj79KLUyoDyoxg7GQiMnOXEEuBau14BfggZObjm+74++4rV1Mf1ZveMoLqsW62LzJlEvBWnwY1076pG2GJdSJOiWoHAx4Qb0tY3Le9Fd9P6kxaXCW7qrR3RnieaPsEhOdjvRp073qNs+bLEpVtgWa7FtFrE9dsi+sD4bMM6QPbJv7Hvjl9fydrwP01CvMct5x/6B1/0NSwDIFg==</latexit>0

<latexit sha1_base64="plPGcCydVztox5XDMiFu1t6kLmk=">AAAB7nicbZDLSgMxFIbP1Futt6pLN6FFqC7KTCnqzoIblxXsBdqxZNJMG5rJDElGKEMfwo1gRdz6Cr6GO9/GTNuFtv4Q+Pj/c8g5x4s4U9q2v63M2vrG5lZ2O7ezu7d/kD88aqowloQ2SMhD2fawopwJ2tBMc9qOJMWBx2nLG92keeuRSsVCca/HEXUDPBDMZwRrY7W8EvbOHs57+aJdtmdCq+AsoHj9+ZJqWu/lv7r9kMQBFZpwrFTHsSPtJlhqRjid5LqxohEmIzygHYMCB1S5yWzcCTo1Th/5oTRPaDRzf3ckOFBqHHimMsB6qJaz1Pwv68Tav3ITJqJYU0HmH/kxRzpE6e6ozyQlmo8NYCKZmRWRIZaYaHOhnDmCs7zyKjQrZeeiXL2rFmsFmCsLJ1CAEjhwCTW4hTo0gMAInmAKr1ZkPVtv1vu8NGMteo7hj6yPHzSakzY=</latexit>

b(ab)⇤

<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a

<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c

<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a

<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c

<latexit sha1_base64="uztINijzHu1OIzAokcoOP5ZtGoM=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm6FFEBclkaLuLLhxWdFeoI1lMp20QyeTMDMRSugjuHGhVLe+hK/hzrdx0nahrT8MfPz/Ocw5x485U9pxvq3cyura+kZ+s7C1vbO7Z+8fNFSUSELrJOKRbPlYUc4ErWumOW3FkuLQ57TpD6+zvPlIpWKRuNejmHoh7gsWMIK1se7Iw2nXLjllZyq0DO4cSlefk0xvta791elFJAmp0IRjpdquE2svxVIzwum40EkUjTEZ4j5tGxQ4pMpLp6OO0bFxeiiIpHlCo6n7uyPFoVKj0DeVIdYDtZhl5n9ZO9HBpZcyESeaCjL7KEg40hHK9kY9JinRfGQAE8nMrIgMsMREm+sUzBHcxZWXoXFWds/LldtKqVqEmfJwBEU4ARcuoAo3UIM6EOjDE7zAq8WtZ2tivc9Kc9a85xD+yPr4Afqrkfs=</latexit>

c⇤

<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a

<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c

<latexit sha1_base64="IOV/GzDmDFW50kuwQuqwd3Cn+Ew=">AAAB7nicbZDLSgMxFIYz9VbrrerSTbAorsqMFBU3Fty4rGAv0A7lTJppQzOZkGSEMvQh3AhWxK2v4Gu4823MtF1o6w+Bj/8/h5xzAsmZNq777eRWVtfWN/Kbha3tnd294v5BQ8eJIrROYh6rVgCaciZo3TDDaUsqClHAaTMY3mZ585EqzWLxYEaS+hH0BQsZAWOtZge4HMB1t1hyy+5UeBm8OZRuPl8yTWrd4lenF5MkosIQDlq3PVcaPwVlGOF0XOgkmkogQ+jTtkUBEdV+Oh13jE+s08NhrOwTBk/d3x0pRFqPosBWRmAGejHLzP+ydmLCKz9lQiaGCjL7KEw4NjHOdsc9pigxfGQBiGJ2VkwGoIAYe6GCPYK3uPIyNM7L3kW5cl8pVU/RTHl0hI7RGfLQJaqiO1RDdUTQED2hCXp1pPPsvDnvs9KcM+85RH/kfPwAJyWT2A==</latexit>↵ :<latexit sha1_base64="MI5vr/yNrFOWJY4WTin746iu3tE=">AAAB7nicbZDLSgMxFIbP1Futt6pLN8GiuCozUlTcWHDjsoK9QDuUTJppQ5PMkGSEMvQh3AhWxK2v4Gu4823MtF1o6w+Bj/8/h5xzgpgzbVz328mtrK6tb+Q3C1vbO7t7xf2Dho4SRWidRDxSrQBrypmkdcMMp61YUSwCTpvB8DbLm49UaRbJBzOKqS9wX7KQEWys1ez0sRD4ulssuWV3KrQM3hxKN58vmSa1bvGr04tIIqg0hGOt254bGz/FyjDC6bjQSTSNMRniPm1blFhQ7afTccfoxDo9FEbKPmnQ1P3dkWKh9UgEtlJgM9CLWWb+l7UTE175KZNxYqgks4/ChCMToWx31GOKEsNHFjBRzM6KyAArTIy9UMEewVtceRka52Xvoly5r5SqpzBTHo7gGM7Ag0uowh3UoA4EhvAEE3h1YufZeXPeZ6U5Z95zCH/kfPwAIoyT1Q==</latexit>� :
<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a

<latexit sha1_base64="mXIvgRzaPF8YSAEJ14qzgDncu+g=">AAAB6HicbZDLTgJBEEVr8IX4Ql266Ug0rsiMIepOEjcuIZFHAhPS09RAS88j3T0mSPgCNy40Bpf+hb/hzr+xB1goeJNOTu6tSleVFwuutG1/W5mV1bX1jexmbmt7Z3cvv39QV1EiGdZYJCLZ9KhCwUOsaa4FNmOJNPAENrzBTZo3HlAqHoV3ehijG9BeyH3OqDZW9bGTL9hFeyqyDM4cCtefk1TvlU7+q92NWBJgqJmgSrUcO9buiErNmcBxrp0ojCkb0B62DIY0QOWOpoOOyYlxusSPpHmhJlP3d8eIBkoNA89UBlT31WKWmv9lrUT7V+6Ih3GiMWSzj/xEEB2RdGvS5RKZFkMDlEluZiWsTyVl2twmZ47gLK68DPXzonNRLFVLhfIpzJSFIziGM3DgEspwCxWoAQOEJ3iBV+veerberMmsNGPNew7hj6yPHwWtkXo=</latexit>z

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1
<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2

<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a

<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c
<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c
<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a
<latexit sha1_base64="mXIvgRzaPF8YSAEJ14qzgDncu+g=">AAAB6HicbZDLTgJBEEVr8IX4Ql266Ug0rsiMIepOEjcuIZFHAhPS09RAS88j3T0mSPgCNy40Bpf+hb/hzr+xB1goeJNOTu6tSleVFwuutG1/W5mV1bX1jexmbmt7Z3cvv39QV1EiGdZYJCLZ9KhCwUOsaa4FNmOJNPAENrzBTZo3HlAqHoV3ehijG9BeyH3OqDZW9bGTL9hFeyqyDM4cCtefk1TvlU7+q92NWBJgqJmgSrUcO9buiErNmcBxrp0ojCkb0B62DIY0QOWOpoOOyYlxusSPpHmhJlP3d8eIBkoNA89UBlT31WKWmv9lrUT7V+6Ih3GiMWSzj/xEEB2RdGvS5RKZFkMDlEluZiWsTyVl2twmZ47gLK68DPXzonNRLFVLhfIpzJSFIziGM3DgEspwCxWoAQOEJ3iBV+veerberMmsNGPNew7hj6yPHwWtkXo=</latexit>z

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2

<latexit sha1_base64="yPRTJw8s3wjr8q3A5gWKhJp+7Nk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCqJFHVnwY3LivYCbSiT6aQdOpmEmYkQQh/BjQuluvUlfA13vo2TtAtt/WHg4//PYc45XsSZ0rb9bRVWVtfWN4qbpa3tnd298v5BS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+CbL249UKhaKB51E1A3wUDCfEayNdZ/0nX65YlftXGgZnDlUrj+nmd4a/fJXbxCSOKBCE46V6jp2pN0US80Ip5NSL1Y0wmSMh7RrUOCAKjfNR52gE+MMkB9K84RGufu7I8WBUkngmcoA65FazDLzv6wba//KTZmIYk0FmX3kxxzpEGV7owGTlGieGMBEMjMrIiMsMdHmOiVzBGdx5WVonVedi2rtrlapn8JMRTiCYzgDBy6hDrfQgCYQGMITvMCrxa1na2q9z0oL1rznEP7I+vgBKZOSHQ==</latexit>y1

<latexit sha1_base64="lBd2mikvmDS/+/4KJ5v+L9+2M1U=">AAACenicbVFNT9tAEN2YtoChLaFHLlaiSqBWkY2iwiUCqZceQ0UAKbHQeDOGFeu12Z0FgsUv4Noeyj/hp/S/9NC1E1Vt0iet9PTezOx8JIUUhsLwZ8NbevHy1fLKqr+2/vrN243m5onJreY44LnM9VkCBqVQOCBBEs8KjZAlEk+Tq8+Vf3qD2ohcHdOkwDiDCyVSwYGcdATnG+2wE9YIFkk0I+2D5x8VnvrnzQYfjXNuM1TEJRgzjMKC4hI0CS7xwR9ZgwXwK7jAoaMKMjRxWXf6ELx3yjhIc+2eoqBW/84oITNmkiUuMgO6NPNeJf7PG1pK9+NSqMISKj79KLUyoDyoxg7GQiMnOXEEuBau14BfggZObjm+74++4rV1Mf1ZveMoLqsW62LzJlEvBWnwY1076pG2GJdSJOiWoHAx4Qb0tY3Le9Fd9P6kxaXCW7qrR3RnieaPsEhOdjvRp073qNs+bLEpVtgWa7FtFrE9dsi+sD4bMM6QPbJv7Hvjl9fydrwP01CvMct5x/6B1/0NSwDIFg==</latexit>0

<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c

<latexit sha1_base64="uztINijzHu1OIzAokcoOP5ZtGoM=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm6FFEBclkaLuLLhxWdFeoI1lMp20QyeTMDMRSugjuHGhVLe+hK/hzrdx0nahrT8MfPz/Ocw5x485U9pxvq3cyura+kZ+s7C1vbO7Z+8fNFSUSELrJOKRbPlYUc4ErWumOW3FkuLQ57TpD6+zvPlIpWKRuNejmHoh7gsWMIK1se7Iw2nXLjllZyq0DO4cSlefk0xvta791elFJAmp0IRjpdquE2svxVIzwum40EkUjTEZ4j5tGxQ4pMpLp6OO0bFxeiiIpHlCo6n7uyPFoVKj0DeVIdYDtZhl5n9ZO9HBpZcyESeaCjL7KEg40hHK9kY9JinRfGQAE8nMrIgMsMREm+sUzBHcxZWXoXFWds/LldtKqVqEmfJwBEU4ARcuoAo3UIM6EOjDE7zAq8WtZ2tivc9Kc9a85xD+yPr4Afqrkfs=</latexit>

c⇤

<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a

<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c

<latexit sha1_base64="mXIvgRzaPF8YSAEJ14qzgDncu+g=">AAAB6HicbZDLTgJBEEVr8IX4Ql266Ug0rsiMIepOEjcuIZFHAhPS09RAS88j3T0mSPgCNy40Bpf+hb/hzr+xB1goeJNOTu6tSleVFwuutG1/W5mV1bX1jexmbmt7Z3cvv39QV1EiGdZYJCLZ9KhCwUOsaa4FNmOJNPAENrzBTZo3HlAqHoV3ehijG9BeyH3OqDZW9bGTL9hFeyqyDM4cCtefk1TvlU7+q92NWBJgqJmgSrUcO9buiErNmcBxrp0ojCkb0B62DIY0QOWOpoOOyYlxusSPpHmhJlP3d8eIBkoNA89UBlT31WKWmv9lrUT7V+6Ih3GiMWSzj/xEEB2RdGvS5RKZFkMDlEluZiWsTyVl2twmZ47gLK68DPXzonNRLFVLhfIpzJSFIziGM3DgEspwCxWoAQOEJ3iBV+veerberMmsNGPNew7hj6yPHwWtkXo=</latexit>z

<latexit sha1_base64="rBGi1lD4rymrS1IRe7SJwFA5gBk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCpJKdWdBTcuK9oLtKFMppN26GQSZiZCCH0ENy6U6taX8DXc+TZO2i609YeBj/8/hznneBFnStv2t5VbW9/Y3MpvF3Z29/YPiodHLRXGktAmCXkoOx5WlDNBm5ppTjuRpDjwOG1745ssbz9SqVgoHnQSUTfAQ8F8RrA21n3Sr/SLJbtsz4RWwVlA6fpzmumt0S9+9QYhiQMqNOFYqa5jR9pNsdSMcDop9GJFI0zGeEi7BgUOqHLT2agTdGacAfJDaZ7QaOb+7khxoFQSeKYywHqklrPM/C/rxtq/clMmolhTQeYf+TFHOkTZ3mjAJCWaJwYwkczMisgIS0y0uU7BHMFZXnkVWpWyUytX76ql+jnMlYcTOIULcOAS6nALDWgCgSE8wQu8Wtx6tqbW+7w0Zy16juGPrI8fKxeSHg==</latexit>y2
<latexit sha1_base64="yPRTJw8s3wjr8q3A5gWKhJp+7Nk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCqJFHVnwY3LivYCbSiT6aQdOpmEmYkQQh/BjQuluvUlfA13vo2TtAtt/WHg4//PYc45XsSZ0rb9bRVWVtfWN4qbpa3tnd298v5BS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+CbL249UKhaKB51E1A3wUDCfEayNdZ/0nX65YlftXGgZnDlUrj+nmd4a/fJXbxCSOKBCE46V6jp2pN0US80Ip5NSL1Y0wmSMh7RrUOCAKjfNR52gE+MMkB9K84RGufu7I8WBUkngmcoA65FazDLzv6wba//KTZmIYk0FmX3kxxzpEGV7owGTlGieGMBEMjMrIiMsMdHmOiVzBGdx5WVonVedi2rtrlapn8JMRTiCYzgDBy6hDrfQgCYQGMITvMCrxa1na2q9z0oL1rznEP7I+vgBKZOSHQ==</latexit>y1

<latexit sha1_base64="plPGcCydVztox5XDMiFu1t6kLmk=">AAAB7nicbZDLSgMxFIbP1Futt6pLN6FFqC7KTCnqzoIblxXsBdqxZNJMG5rJDElGKEMfwo1gRdz6Cr6GO9/GTNuFtv4Q+Pj/c8g5x4s4U9q2v63M2vrG5lZ2O7ezu7d/kD88aqowloQ2SMhD2fawopwJ2tBMc9qOJMWBx2nLG92keeuRSsVCca/HEXUDPBDMZwRrY7W8EvbOHs57+aJdtmdCq+AsoHj9+ZJqWu/lv7r9kMQBFZpwrFTHsSPtJlhqRjid5LqxohEmIzygHYMCB1S5yWzcCTo1Th/5oTRPaDRzf3ckOFBqHHimMsB6qJaz1Pwv68Tav3ITJqJYU0HmH/kxRzpE6e6ozyQlmo8NYCKZmRWRIZaYaHOhnDmCs7zyKjQrZeeiXL2rFmsFmCsLJ1CAEjhwCTW4hTo0gMAInmAKr1ZkPVtv1vu8NGMteo7hj6yPHzSakzY=</latexit>

b(ab)⇤

<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a
<latexit sha1_base64="uztINijzHu1OIzAokcoOP5ZtGoM=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm6FFEBclkaLuLLhxWdFeoI1lMp20QyeTMDMRSugjuHGhVLe+hK/hzrdx0nahrT8MfPz/Ocw5x485U9pxvq3cyura+kZ+s7C1vbO7Z+8fNFSUSELrJOKRbPlYUc4ErWumOW3FkuLQ57TpD6+zvPlIpWKRuNejmHoh7gsWMIK1se7Iw2nXLjllZyq0DO4cSlefk0xvta791elFJAmp0IRjpdquE2svxVIzwum40EkUjTEZ4j5tGxQ4pMpLp6OO0bFxeiiIpHlCo6n7uyPFoVKj0DeVIdYDtZhl5n9ZO9HBpZcyESeaCjL7KEg40hHK9kY9JinRfGQAE8nMrIgMsMREm+sUzBHcxZWXoXFWds/LldtKqVqEmfJwBEU4ARcuoAo3UIM6EOjDE7zAq8WtZ2tivc9Kc9a85xD+yPr4Afqrkfs=</latexit>

c⇤
<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c
<latexit sha1_base64="rBGi1lD4rymrS1IRe7SJwFA5gBk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCpJKdWdBTcuK9oLtKFMppN26GQSZiZCCH0ENy6U6taX8DXc+TZO2i609YeBj/8/hznneBFnStv2t5VbW9/Y3MpvF3Z29/YPiodHLRXGktAmCXkoOx5WlDNBm5ppTjuRpDjwOG1745ssbz9SqVgoHnQSUTfAQ8F8RrA21n3Sr/SLJbtsz4RWwVlA6fpzmumt0S9+9QYhiQMqNOFYqa5jR9pNsdSMcDop9GJFI0zGeEi7BgUOqHLT2agTdGacAfJDaZ7QaOb+7khxoFQSeKYywHqklrPM/C/rxtq/clMmolhTQeYf+TFHOkTZ3mjAJCWaJwYwkczMisgIS0y0uU7BHMFZXnkVWpWyUytX76ql+jnMlYcTOIULcOAS6nALDWgCgSE8wQu8Wtx6tqbW+7w0Zy16juGPrI8fKxeSHg==</latexit>y2

<latexit sha1_base64="yPRTJw8s3wjr8q3A5gWKhJp+7Nk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCqJFHVnwY3LivYCbSiT6aQdOpmEmYkQQh/BjQuluvUlfA13vo2TtAtt/WHg4//PYc45XsSZ0rb9bRVWVtfWN4qbpa3tnd298v5BS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+CbL249UKhaKB51E1A3wUDCfEayNdZ/0nX65YlftXGgZnDlUrj+nmd4a/fJXbxCSOKBCE46V6jp2pN0US80Ip5NSL1Y0wmSMh7RrUOCAKjfNR52gE+MMkB9K84RGufu7I8WBUkngmcoA65FazDLzv6wba//KTZmIYk0FmX3kxxzpEGV7owGTlGieGMBEMjMrIiMsMdHmOiVzBGdx5WVonVedi2rtrlapn8JMRTiCYzgDBy6hDrfQgCYQGMITvMCrxa1na2q9z0oL1rznEP7I+vgBKZOSHQ==</latexit>y1
<latexit sha1_base64="plPGcCydVztox5XDMiFu1t6kLmk=">AAAB7nicbZDLSgMxFIbP1Futt6pLN6FFqC7KTCnqzoIblxXsBdqxZNJMG5rJDElGKEMfwo1gRdz6Cr6GO9/GTNuFtv4Q+Pj/c8g5x4s4U9q2v63M2vrG5lZ2O7ezu7d/kD88aqowloQ2SMhD2fawopwJ2tBMc9qOJMWBx2nLG92keeuRSsVCca/HEXUDPBDMZwRrY7W8EvbOHs57+aJdtmdCq+AsoHj9+ZJqWu/lv7r9kMQBFZpwrFTHsSPtJlhqRjid5LqxohEmIzygHYMCB1S5yWzcCTo1Th/5oTRPaDRzf3ckOFBqHHimMsB6qJaz1Pwv68Tav3ITJqJYU0HmH/kxRzpE6e6ozyQlmo8NYCKZmRWRIZaYaHOhnDmCs7zyKjQrZeeiXL2rFmsFmCsLJ1CAEjhwCTW4hTo0gMAInmAKr1ZkPVtv1vu8NGMteo7hj6yPHzSakzY=</latexit>

b(ab)⇤

Figure 5 The query Pl({x1, x2}, {y1, y2}, γ) (where l = 2) on the left contains the approximation
α, witnessed by the path decomposition on the right.

unions of CQs. A query like the one before is defined to be equivalent to the (infinitary)
union of all queries α(z̄) ∈ AppTwk

(γ) that admit a path decomposition of width l having
the bag X at the root and Y at the leaf – where a path decomposition is defined to be any
tree decomposition whose underlying tree is a path. See Figure 5 for an example.

We now simply define a k-summary query as a C2RPQ extended with path-l approximation
atoms for any l ⩽ k, with the expected semantics. The important property of summary
queries is that they are exponentially more succinct than the UC2RPQ counterpart for
expressing maximal under-approximations, as the next lemma shows.

▶ Proposition 6.2. For every class L closed under sublanguages, and for every C2RPQ(L)
γ, AppTwk

(γ) can be expressed as a union of polynomial-sized k-summary queries having only
C2RPQ(L) atoms. Further, one can test in NP if a summary query is part of this union.
We call Appzip

Twk
(γ) to any such a union of summary queries.

Informal proof. As corollary of the proof of Lemma 3.8, we can assume to have AppTwk
(γ)

expressed as a union of C2RPQ(L) with a nice tree decomposition of width k with a
linear number of leaves, and hence it suffices to replace non-branching paths with path-l
approximations. Concretely, for any such C2RPQ α having a witnessing tree decomposition
with a long non-branching path, the tree must contain a sub-path whose every bag is non-
atomic, and such that it starts and ends in bags of size at most k (by the niceness property).
Such a non-atomic non-branching path can be “compressed” by replacing the subquery
corresponding to the path with a corresponding path-l approximation query. The resulting
summary query will contain α and in turn be contained in γ. Simultaneously applying
such replacement to all non-atomic non-branching paths of maximal length then yields a
polynomial sized summary query.

Further, given a k-summary query σ, one can test in NP whether there exists an element
of App⋆

Twk
(γ) that leads to such summary query by the process just mentioned. This is done

by first checking that σ is of the “right shape” (essentially a query of tree-width k when
disregarding the path-l approximation atoms), and that it is contained in γ via a polynomial
refinement ρ ∈ Ref(γ) and a strong onto homomorphism to the query resulting from replacing
Pl(X, Y, δ) atoms with δ in σ. ◀

6.2 Semantic tree-width problem
With the previous results in place, we now show that the semantic tree-width k problem is
in Πp

2 for UCRPQ(SRE), for every k > 1.

▶ Theorem 6.1. For k > 1, the semantic tree-width k problem for UCRPQ(SRE) is in Πp
2.

Proof. It suffices to show the statement for any CRPQ(SRE) γ. Remember that γ is of
semantic tree-width k if, and only if, γ ⫅ Appzip

Twk
(γ). The first ingredient to this proof is the

fact that this containment has a polynomial counter-example property:

D. Figueira and R. Morvan 15:17

▷ Claim 6.3. If γ ̸⫅ Appzip
Twk

(γ) then there is a polynomial-sized expansion ξ of γ such that
ξ ̸⫅ Appzip

Twk
(γ).

This is because any path x0
a−→ · · · a−→ xm in an expansion ξ of γ such that m > ∥γ∥

and ξ ⫅ Appzip
Twk

(γ) can be “pumped” to an even longer path of any length greater than
m obtaining another expansion ξ′ such that ξ′ ⫅ Appzip

Twk
(γ). This implies that a minimal

counterexample must be of polynomial size.
The second ingredient is that testing whether CQ is a counterexample is in NP.

▷ Claim 6.4. The problem of testing, given a CQ γ, whether γ ⫅ Appzip
Twk

(γ), is in NP.

Informal proof. We first guess a polynomial-sized k-summary query δzip and test in NP that
it is part of Appzip

Twk
(γ) by Proposition 6.2. We now guess a valuation µ : vars(δzip)→ vars(γ)

and test that it is a homomorphism ξ
hom−−→ γ, where ξ is an expansion of the CRPQ resulting

from discarding the path-l approximation atoms of δzip, which can be done in NL. It remains
to check that each atom Pl(X, Y, δ̂) of δ has an expansion ξ̂ such that h : ξ̂

hom−−→ γ for
a homomorphism such that h(x) = µ(x) for all x ∈ X ∪ Y . This can be done via an
NL algorithm using l + 1 pointers to traverse the width-l nice path decomposition of ξ̂,
simultaneously guessing ξ̂, the expansion of γ which homomorphically maps to ξ̂, and the
valuation of h. ◁

As a consequence of the two claims, we obtain a Σp
2 algorithm for non-containment

of γ ⫅ Appzip
Twk

(γ). We first guess an expansion ξ of γ of polynomial size, and we then
test ξ ̸⫅ Appzip

Twk
(γ) in coNP. This gives a Πp

2 algorithm for the semantic tree-width k

problem. ◀

7 Discussion

We have studied the definability and approximation of UC2RPQ queries by queries of bounded
tree-width and shown that the maximal under-approximation in terms of an infinitary union
of conjunctive queries of tree-width k > 1 can be always effectively expressed as a UC2RPQ
of tree-width k (Corollary 3.9). However, while the semantic tree-width 1 problem as shown
to be ExpSpace-complete [5, Theorem 6.1, Proposition 6.2], we have left a gap between our
lower and upper bounds in Theorem 1.3.

▷ Question 7.1. For k > 1, is the semantic tree-width k problem ExpSpace-complete?

We also do not know whether the Πp
2 bound on the semantic tree-width k problem for

UCRPQ(SRE) has a matching lower bound. The known lower bound for the UCRPQ(SRE)
containment problem [11, Theorem 5.1] does not seem to be useful to be used in a reduction,
since it necessitates queries of arbitrary high tree-width.

It is worth stressing that in [5] two-way navigation plays a crucial part to prove the
existence of the maximal under-approximation by a UC2RPQ of tree-width 1 [5, Theorem 5.2],
but this feature plays no role whatsoever in our proof – see Theorem 1.5 and Remark 2.5.
Moreover, Twk queries enjoy the very nice property of being closed under refinement when
k > 1 but not when k = 1 – see Example 3.7 – which forces Barceló, Romero, and Vardi to
introduce the notion of “pseudoacyclicity” [5, §5.2.1], namely the greatest subclass of Tw1
closed under refinement, while we can directly work with the rather comfortable App⋆

Twk
(γ).

On the other hand, graphs of tree-width k > 1 being combinatorially less trivial than
graphs of tree-width 1, our proof must carefully handle this information, using tagged tree
decompositions of Section 4. Similarly to [5, Theorem 6.3] for the case k = 1, our results

ICDT 2023

15:18 Approximation & Semantic Tree-Width of CRPQs

implies that for each k > 1 the evaluation problem for UC2RPQs Γ of semantic tree-width k

is fixed-parameter tractable (FPT) in the size of the query, i.e. in O(|G|k+1 · f(|Γ|)) for a
computable function f , where G is the database given as input. This improves the dependence
on the size of the database, namely O(|G|2k+2 ·f(|Γ|)), proven by Romero, Barceló and Vardi
[15, Corollary IV.12].

▷ Question 7.2 (Also mentionned in [15, §IV-(4))]). Does every r.e. class of CRPQs with
FPT evaluation has bounded semantic tree-width?

Finally, as a consequence of the existence of a minimal equivalent CQ [9, Theorem 12], a
CQ is equivalent to a CQ of tree-width at most k if, and only if, it is equivalent to a finite
union of CQs of tree-width at most k. Example 1.2 suggests that this is false for CRPQs.
Both for k = 1 (see [5, §6.5]) and k ⩾ 2, we do not if the problem of whether a given CRPQ
is equivalent to a single CRPQ of tree-width at most k is decidable. More generally, while we
know that there exists CRPQs γ1, γ2 such that γ1 ∨ γ2 is not equivalent to a single CRPQ10,
we have a very limited understanding of how much union adds to the expressive power of
CRPQs. This begs the following question:

▷ Question 7.3. Is the problem of whether a given UCRPQ (resp. UC2RPQ) is equivalent
to a single CRPQ (resp. C2RPQ) decidable?

References
1 Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and Domagoj

Vrgoč. Foundations of modern query languages for graph databases. ACM Comput. Surv.,
50(5), September 2017. doi:10.1145/3104031.

2 Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

3 Pablo Barceló, Leonid Libkin, and Miguel Romero. Efficient approximations of conjunctive
queries. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on Principles
of Database Systems, pages 249–260, 2012. doi:10.1145/2213556.2213591.

4 Pablo Barceló and Miguel Romero. The Complexity of Reverse Engineering Problems for
Conjunctive Queries. In Michael Benedikt and Giorgio Orsi, editors, 20th International
Conference on Database Theory (ICDT 2017), volume 68 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 7:1–7:17, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICDT.2017.7.

5 Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. Semantic acyclicity on graph databases.
SIAM Journal on computing, 45(4):1339–1376, 2016. doi:10.1137/15M1034714.

6 Pablo Barceló Baeza. Querying graph databases. In Proceedings of the 32nd ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS ’13, pages 175–188, New
York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2463664.2465216.

7 Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study of large SPARQL
query logs. VLDB Journal, 29(2):655–679, 2020. doi:10.1007/s00778-019-00558-9.

8 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Containment
of conjunctive regular path queries with inverse. In Principles of Knowledge Representation
and Reasoning (KR), pages 176–185, 2000.

10 See [4, Figure 1 & Example 21, p. 15]: by denoting γ1, γ2, γ3 the CQs in the top-left, below-left and
right parts of Figure 1, respectively, their example shows that any CRPQ that contains both γ1 and γ2
must also contain γ3. As γ3 is contained in neither γ1 nor γ2, our claim follows.

https://doi.org/10.1145/3104031
https://doi.org/10.1145/2213556.2213591
https://doi.org/10.4230/LIPIcs.ICDT.2017.7
https://doi.org/10.1137/15M1034714
https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1007/s00778-019-00558-9

D. Figueira and R. Morvan 15:19

9 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In John E. Hopcroft, Emily P. Friedman, and Michael A. Harrison,
editors, Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May 4-6,
1977, Boulder, Colorado, USA, pages 77–90. ACM, 1977. doi:10.1145/800105.803397.

10 Diego Figueira. Foundations of graph path query languages – course notes for the reasoning web
summer school 2021. In Reasoning Web. Declarative Artificial Intelligence – 17th International
Summer School 2021, Leuven, Belgium, September 8-15, 2021, Tutorial Lectures, volume
13100 of Lecture Notes in Computer Science, pages 1–21. Springer, 2021. doi:10.1007/
978-3-030-95481-9_1.

11 Diego Figueira, Adwait Godbole, S. Krishna, Wim Martens, Matthias Niewerth, and Tina
Trautner. Containment of simple conjunctive regular path queries. In Principles of Know-
ledge Representation and Reasoning (KR), 2020. URL: https://hal.archives-ouvertes.fr/
hal-02505244.

12 Daniela Florescu, Alon Levy, and Dan Suciu. Query containment for conjunctive queries with
regular expressions. In ACM Symposium on Principles of Database Systems (PODS), pages
139–148. ACM Press, 1998. doi:10.1145/275487.275503.

13 Ton Kloks. Treewidth: computations and approximations. Lecture Notes in Computer Science.
Springer, 1994. doi:10.1007/BFb0045375.

14 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and
Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

15 Miguel Romero, Pablo Barceló, and Moshe Y. Vardi. The homomorphism problem for regular
graph patterns. In Annual Symposium on Logic in Computer Science (LICS), pages 1–12.
IEEE Computer Society Press, 2017. doi:10.1109/LICS.2017.8005106.

ICDT 2023

https://doi.org/10.1145/800105.803397
https://doi.org/10.1007/978-3-030-95481-9_1
https://doi.org/10.1007/978-3-030-95481-9_1
https://hal.archives-ouvertes.fr/hal-02505244
https://hal.archives-ouvertes.fr/hal-02505244
https://doi.org/10.1145/275487.275503
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1109/LICS.2017.8005106

Work-Efficient Query Evaluation with PRAMs
Jens Keppeler #

TU Dortmund University, Germany

Thomas Schwentick #

TU Dortmund University, Germany

Christopher Spinrath #

TU Dortmund University, Germany

Abstract
The paper studies query evaluation in parallel constant time in the PRAM model. While it is
well-known that all relational algebra queries can be evaluated in constant time on an appropriate
CRCW-PRAM, this paper is interested in the efficiency of evaluation algorithms, that is, in the
number of processors or, asymptotically equivalent, in the work. Naive evaluation in the parallel
setting results in huge (polynomial) bounds on the work of such algorithms and in presentations of
the result sets that can be extremely scattered in memory. The paper first discusses some obstacles
for constant time PRAM query evaluation. It presents algorithms for relational operators that are
considerably more efficient than the naive approaches. Further it explores three settings, in which
efficient sequential query evaluation algorithms exist: acyclic queries, semi-join algebra queries,
and join queries – the latter in the worst-case optimal framework. Under natural assumptions on
the representation of the database, the work of the given algorithms matches the best sequential
algorithms in the case of semi-join queries, and it comes close in the other two settings. An important
tool is the compaction technique from Hagerup (1992).

2012 ACM Subject Classification Theory of computation → Shared memory algorithms; Theory of
computation → Database query processing and optimization (theory)

Keywords and phrases PRAM, query evaluation, work-efficient, parallel, acyclic queries, free-connex
queries

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.16

Related Version The full version of this paper contains some proofs and additional details omitted
in this version due to space constraints.
Full Version: https://arxiv.org/abs/2301.08178 [19]

Acknowledgements We are grateful to Uri Zwick for clarifications regarding results in [13] and to
Jonas Schmidt and Jennifer Todtenhoefer for careful proofreading. We thank Martin Dietzfelbinger
for helpful discussions. Furthermore, we thank the reviewers of ICDT for many insightful suggestions.

1 Introduction

Parallel query evaluation has been an active research area during the last 10+ years. Parallel
evaluation algorithms have been thoroughly investigated, mostly using the Massively Parallel
Communication (MPC) model [7]. For surveys we refer to [20, 15].

The MPC model is arguably very well-suited to study parallel query evaluation. However,
it is not the only model for parallel query evaluation. Indeed, there is also the Parallel
Random Access Machine (PRAM) model, a more “theoretical” model which allows for a
more fine-grained analysis of parallel algorithms, particularly in non-distributed settings.
It was shown by Immerman [16, 17] that PRAMs with polynomially many processors can
evaluate first-order formulas and thus relational algebra queries in time O(1).

© Jens Keppeler, Thomas Schwentick, and Christopher Spinrath;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 16; pp. 16:1–16:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jens.keppeler@tu-dortmund.de
mailto:thomas.schwentick@tu-dortmund.de
https://orcid.org/0000-0002-1062-922X
mailto:christopher.spinrath@tu-dortmund.de
https://doi.org/10.4230/LIPIcs.ICDT.2023.16
https://arxiv.org/abs/2301.08178
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Work-Efficient Query Evaluation with PRAMs

In the study of PRAM algorithms it is considered very important that algorithms perform
well compared with sequential algorithms. The overall number of computation steps in a
PRAM-computation is called its work. An important goal is to design parallel algorithms
that are work-optimal in the sense that their work asymptotically matches the running time
of the best sequential algorithms.

Obviously, for O(1)-time PRAM algorithms the work and the number of processors differ
at most by a constant factor. Thus, the result by Immerman shows that relational algebra
queries can be evaluated with polynomial work. Surprisingly, to the best of our knowledge,
work-efficiency of O(1)-time PRAM algorithms for query evaluation has not been investigated
in the literature. This paper is meant to lay some groundwork in this direction.

The proof of the afore-mentioned result that each relational algebra query can be evaluated
in constant-time by a PRAM with polynomial work is scattered over several papers. It
consists basically of three steps, translating from queries to first-order logic formulas [11],
to bounded-depth circuits [6], and then to PRAMs [16]. It was not meant as a “practical
translation” of queries and does not yield one. However, it is not hard to see directly that
the operators of the relational algebra can, in principle, be evaluated in constant time on a
PRAM. It is a bit less obvious, though, how the output of such an operation is represented,
and how it can be fed into the next operator.

▶ Example 1.1. Let us consider an example to illustrate some issues of constant-time query
evaluation on a PRAM. Let q be the following conjunctive query, written in a rule-based
fashion, for readability.

q(x, y, z)← E(x, x1), E(x1, x2), E(y, y1), E(y1, y2), E(z, z1), E(z1, z2), R(x2, y2, z2)

A (very) naive evaluation algorithm can assign one processor to each combination of six
E-tuples and one R-tuple, resulting in work O(|E|6|R|). Since the query is obviously acyclic,
it can be evaluated more efficiently in the spirit of Yannakakis’ algorithm. For simplicity, we
ignore the semi-join step of the Yannakakis algorithm. The join underlying the first two atoms
E(x, x1), E(x1, x2) can be computed as a sub-query q1(x, x2)← E(x, x1), E(x1, x2). This can
be evaluated by |E|2 many processors, each getting a pair of tuples E(a1, a2), E(b1, b2) and pro-
ducing output tuple (a1, b2) in case a2 = b1. The output can be written into a 2-dimensional
table, indexed in both dimensions by the tuples of E. In the next round, the output tuples
can be joined with tuples from R to compute q2(x, y2, z2)← E(x, x1), E(x1, x2), R(x2, y2, z2).
However, since it is not clear in advance, which entries of the two-dimensional table carry
q1-tuples, the required work is about |E|2 · |R|. Output tuples of q2 can again be written
into a 2-dimensional table, this time indexed by one tuple from E (for x) and one tuple from
R (for y2 and z2). Proceeding in a similar fashion, q can be evaluated with work O(|E|3|R|).
Other evaluation orders are possible but result in similar work bounds. In terms of the
input size of the database, this amounts to O(IN4), whereas Yannakakis’ algorithm yields
O(IN · OUT) in the sequential setting, where IN denotes the number of tuples in the given
relations and OUT the size of the query result, respectively.

Let us take a look at the representation of the output of this algorithm. The result tuples
reside in a 3-dimensional table, each indexed by a tuple from E. It is thus scattered over
a space of size |E|3, no matter the size of the result. Furthermore, the same output tuple
might occur several times due to several valuations. To produce a table, in which each output
tuples occurs exactly once, a deduplication step is needed, which could yield additional work
in the order of |E|6.

The example illustrates two challenges posed by the O(1)-time PRAM setting, which will
be discussed in more detail in Section 3.

J. Keppeler, T. Schwentick, and C. Spinrath 16:3

It is, in general, not possible to represent the result of a query in a compact form, say,
as an array, contiguously filled with result tuples. This obstacle results here in upper
bounds in terms of the size of the input database, but not in the size of the query result.
It might be necessary to deduplicate output (or intermediate) relations, but, unfortunately,
this cannot be done by sorting a relation, since sorting is not possible in O(1)-time on a
PRAM, either.

We will use compactification techniques for PRAMs from [14] to deal with the first challenge.
The second challenge is addressed by a suitable representation of the relations. Besides the
setting without any assumptions, we consider the setting, where data items are mapped to
an initial segment of the natural numbers by a dictionary, and the setting where the relations
are represented by ordered arrays.

We show that, for each ε > 0, there is a Yannakakis-based algorithms for acyclic join
queries in the dictionary setting with an upper work bound of O(IN · OUT)1+ε. Two other
results are work-optimal algorithms for queries of the semijoin algebra and almost worst-case
and work-optimal algorithms for join queries.

We emphasize that the stated result does not claim a fixed algorithm that has an upper
work bound W such that, for every ε > 0, it holds W ∈ O(IN · OUT)1+ε. It rather means
that there is a uniform algorithm that has ε as a parameter and has the stated work bound,
for each fixed ε > 0. The linear factor hidden in the O-notation thus depends on ε. This
holds analogously for our other upper bounds of this form.

This paper consists roughly of three parts, each of which has some contributions to our
knowledge on work-efficient constant-time PRAM query evaluation.

The first part presents some preliminaries in Section 2, discusses the framework including
some of our (typical) assumptions and data structures in Section 4, surveys lower bound
results that pose challenges for O(1)-time PRAM query evaluation in Section 3, and presents
some basic operations that will be used in our query evaluation algorithms in Section 4.

The second part presents algorithms for these basic operations in Section 5 and for
relational operators in Section 6.

After this preparation, the third part studies query evaluation in three settings in which
(arguably) efficient algorithms exist for sequential query evaluation: the semi-join algebra
(Subsection 7.1), acyclic queries (Subsection 7.2), and worst-case optimal join evaluation
(Subsection 7.3).

Related work. Due to space limitations, we only mention two other related papers. In a
recent paper, query evaluation by circuits has been studied [28]. Although this is in principle
closely related, the paper ignores polylogarithmic depth factors and therefore does not study
O(1)-time. The work of O(1)-time PRAM algorithms has recently been studied in the context
of dynamic complexity, where the database can change and the algorithms need to maintain
the query result [25].

2 Preliminaries

In this section, we fix some notation and recall some concepts from database theory and
PRAMs that are relevant for this paper. For a natural number n, we write [n] for {1, . . . , n}.

A database schema Σ is a finite set of relation symbols, where each symbol R is equipped
with a finite set attr(R) of attributes. A tuple t = (a1, . . . , a|X|) over a finite list X =
(A1, . . . , Ak) of attributes has, for each i, a value ai for attribute Ai. Unless we are interested
in the lexicographic order of a relation, induced by X, we can view X as a set. An R-relation

ICDT 2023

16:4 Work-Efficient Query Evaluation with PRAMs

is a finite set of tuples over attr(R). The arity of R is |attr(R)|. For Y ⊆ X, we write t[Y]
for the restriction of t to Y . For Y ⊆ attr(R), R[Y] = {t[Y] | t ∈ R}. A database D over
Σ consists of an R-relation D(R), for each R ∈ Σ. We usually write R instead of D(R) if
D is understood from the context. That is, we do not distinguish between relations and
relation symbols. The size |R| of a relation R is the number of tuples in R. By |D| we denote
the number of tuple entries in database D. For details on (the operators of) the relational
algebra, we refer to [3]. We always assume a fixed schema and therefore a fixed maximal
arity of tuples.

Parallel Random Access Machines (PRAMs). A parallel random access machine (PRAM)
consists of a number of processors that work in parallel and use a shared memory. The
memory is comprised of memory cells which can be accessed by a processor in O(1) time.
Furthermore, we assume that the usual arithmetic and bitwise operations can be done in
O(1) time by a processor. In particular, since the schema is considered fixed, a database
tuple can be loaded, compared, etc. in O(1) time by one processor.

We mostly use the Concurrent-Read Concurrent-Write model (CRCW-PRAM), i.e. pro-
cessors are allowed to read and write concurrently from and to the same memory location.
More precisely, we mainly assume the arbitrary PRAM model: if multiple processors concur-
rently write to the same memory location, one of them, “arbitrarily”, succeeds. For some
algorithms the common model would suffice, where all processors need to write the same value
into the same location. We sometimes also use the weaker Exclusive-Read Exclusive-Write
model (EREW-PRAM), where concurrent access is forbidden and the CREW-PRAM, where
concurrent writing is forbidden. The work w of a PRAM computation is the sum of the
number of all computation steps of all processors made during the computation. We define
the space s required by a PRAM computation as the maximal index of any memory cell
accessed during the computation. We refer to [18] for more details on PRAMs and to [26,
Section 2.2.3] for a discussion of alternative space measures.

In principle, we assume that relations are stored as sequences of tuples, i.e., as arrays.
Informally an array A is a sequence t1, . . . , tN and it represents a relation R, if each tuple
from R appears once as some ti. In Section 4, we describe more precisely, how databases are
represented for our PRAM algorithms.

3 Obstacles

We next discuss some obstacles that pose challenges for O(1)-time parallel algorithms for
query evaluation. They stem from various lower bound results from the literature.

The first obstacle, already mentioned in the introduction, is that we cannot expect that
query results can be stored in arrays in a compact fashion, that is, as a sequence t1, . . . , tm

of tuples, for a result with m tuples. This follows from the following lower bound on the
linear approximate compaction problem, where the, somewhat relaxed, goal is to move m

scattered tuples into a target array of size 4m.

▶ Proposition 3.1 ([22, Theorem 4.1]). Solving the linear approximate compaction problem
on a randomized strong priority CRCW-PRAM requires Ω(log∗ n) expected time.

Since the PRAM model of that bound is stronger than the arbitrary CRCW model, it applies
to our setting.

The following theorem illustrates, how this lower bound restrains the ability to compute
query results in a compact form, even if the input relations are given by compact arrays.
Analogous results can be shown for simple projection and selection queries.

J. Keppeler, T. Schwentick, and C. Spinrath 16:5

▶ Theorem 3.2. Let q be the conjunctive query defined by q : H(x) ← R(x), S(x). Every
algorithm, which, upon input of arrays for relations R and S, computes an array of size
|q(D)| for q(D) without empty cells, requires ω(1) time. This holds even if the arrays for R

and S are compact and their entries are lexicographically ordered.

Proof sketch. Towards a contradiction, we assume that there is an algorithm on a PRAM
which computes in constant time, upon input of an input database D, an array of size |q(D)|
for the query result q(D). This can be used to solve the linear approximate compaction
problem in constant time as follows. Let A be an instance for the linear approximate
compaction problem with m non-empty cells. In the first step create an array AR of size n

for the unary relation R that consists of even numbers 2 to 2n. This can be done in parallel
in constant time with n processors.

In the second step, store, for every i ∈ {1,. . . , n}, the value 2i in the array AS of size
n for relation S if A[i] has a value (i.e. the i-th cell is not empty), and 2i + 1, otherwise.
Hence, the query result of q exactly consists of even numbers 2i where i is an index such that
A[i] has a value. From the array for the query result a solution for the linear approximate
compaction problem can be obtained by replacing every value 2i in the result by A[i]. The
size of the compact array is m.

All in all, the algorithm takes constant time to solve the linear approximate compaction
problem. This is a contradiction to Proposition 3.1. We note that by construction, the arrays
for the relations R and S are ordered and have no empty cells. ◀

As a consequence of Theorem 3.2, our main data structure to represent relations are
arrays that might contain empty cells that do not correspond to tuples in the relation.

As the example in the introduction illustrated, it is important that intermediate results
can be compacted to some extent. Indeed, processors can be assigned to all cells of an array,
but not so easily to only the non-empty cells. We extensively use a classical technique by
Hagerup [14] that yields some (non-linear) compaction (see Proposition 5.1 for the statement
of this result). However, Hagerup’s compaction algorithm does not preserve the order of
the elements in the array, so ordered arrays with non-empty cells are transformed into more
compact but unordered arrays.

This brings us to another notorious obstacle for O(1)-time parallel algorithms: they can
not sort with polynomially many processors, even not in a (slightly) non-compact fashion.
The padded sort problem asks to sort n given items into an array of length n + o(n) with
empty cells in spots without an item.

▶ Proposition 3.3 ([22, Theorem 4.2]). Solving the padded sort problem on a randomized
strong priority CRCW-PRAM requires Ω(log∗ n) expected time.

Thus, we cannot rely on sorting as an intermediate operator, either.
Yet another weakness of O(1)-time parallel algorithms is counting. It follows readily

from the equivalence with polynomial-size constant-depth circuits that (reasonable) CRCW-
PRAMs cannot tell whether the number of ones in a sequence of zeros and ones is even [12, 2],
let alone count them. These obstacles apply in particular to the evaluation of aggregate queries
and for query evaluation under bag semantics with explicit representation of multiplicities of
tuples. However, we do not study any of those in this paper.

Note. It turned out at submission time of this paper that we had missed a paper by
Goldberg and Zwick [13], that contains two improvements to the above: it shows that ordered
compaction and approximate counting, up to a factor of 1 + 1

(log n)a , for any a > 0, are
possible in constant time with work O(n1+ε). In fact both results rely on the same technique
for computing consistent approximate prefix sums. We discuss this issue further in our
conclusion.

ICDT 2023

16:6 Work-Efficient Query Evaluation with PRAMs

4 Basics

Query evaluation algorithms often use additional data structures like index structures. We
consider two different kinds of such data structures for our O(1)-time parallel algorithms.

The first setting that we consider is that of dictionary-based compressed databases,
see, e.g., [10]. In a nutshell, the database has a dictionary that maps data values to
natural numbers and internally stores and manipulates tuples over these numbers to improve
performance. Such dictionaries are often defined attribute-wise, but for the purpose of this
paper this does not matter. Query evaluation does not need to touch the actual dictionaries,
it only works with the numbers. In this paper, we write “in the presence of a dictionary”
or “in the dictionary setting” to indicate that we assume that such a dictionary exists for
the database D at hand, and that it uses numbers of size at most O(|D|). In particular, the
database relations then only contain numbers of this size.

In the other ordered setting, we assume that database relations are represented by ordered
arrays, for each order of its attributes. In particular, we assume a linear order on the data
values.

Arrays. As mentioned before, we assume in this paper that relations are stored in 1-
dimensional arrays, whose entries are tuples that might be augmented by additional data.

More formally, an array A is a sequence of consecutive memory cells. The number of
cells is its size |A|. By A[i] for 1 ≤ i ≤ |A| we refer to the i-th cell of A and to the (current)
content of that cell, and we call i its index. We assume that the size of an array is always
available to all processors (for instance, it might be stored in a “hidden” cell with index 0).
Given an index i, any processor can access cell A[i] in O(1) time with O(1) work.

In this paper, a cell A[i] of an array always holds a distinguished database tuple t = A[i].t
(over some schema) and a flag that indicates whether the cell is inhabited.1 There might be
additional data, e.g., further Boolean flags and links to other cells of (possibly) other arrays.

We say that an array represents a relation R if some inhabited cell holds tuple t, for each
tuple t of R, and no inhabited cells contain other tuples. It represents R concisely, if each
tuple occurs in exactly one inhabited cell. To indicate that an array represents a relation R

we usually denote it as AR, A′
R, etc.

An array A that represents a relation R is ordered if it is lexicographically ordered with
respect to some ordered list X of the attributes from R’s schema in the obvious sense. Its
order is Y -compatible, for a set Y of attributes, if the attributes of Y form a prefix of X

(hence the order induces a partial order with respect to Y).
We often consider the induced tuple sequence t1, . . . , t|A| of an array A. Here, ti = A[i].t

is a proper tuple, if A[i] is inhabited, or otherwise ti is the empty tuple ⊥.

▶ Example 4.1. The tuple sequence [(1, 5),⊥, (3, 4), (8, 3), (1, 5),⊥,⊥, (7, 3)] from an array
A of size eight has five proper tuples and three empty tuples. It represents the relation
R = {(1, 5), (3, 4), (8, 3), (7, 3)}, but not concisely. The sequence [(1, 5), (3, 4), (7, 3),⊥, (8, 3)]
represents R concisely and ordered with respect to the canonical attribute order.

Operations and links. Before we explain the basic operations used by our evaluation
algorithms we illustrate some aspects by an example.

1 If a cell is not inhabited, its data is basically ignored.

J. Keppeler, T. Schwentick, and C. Spinrath 16:7

▶ Example 4.2. We sketch how to evaluate the projection πB(R) given the array A =
[(1, 5), (3, 4), (7, 3),⊥, (8, 3)] from Example 4.1.

First, with the operation Map the array A′[5, 4, 3,⊥, 3] is computed and each tuple A[i] is
augmented by a link to A′[i] and vice versa. To achieve this, the tuples from A are loaded to
processors 1, . . . , 5, each processor applies the necessary changes to its tuple, and then writes
the new tuple to the new array A′. We note that it is not known in advance which cells of A
are inhabited and therefore, we need to assign one processor for each cell. Each processor
only applies a constant number of steps, so the overall work for the Map-operation is O(|A|).

To get an array that represents πB(R) concisely, a second operation eliminates duplicates.
To this end, it creates a copy A′′ of A′ and checks with one processor for each pair (i, j)
of indices with i < j in parallel, whether A′′[i] = A′′[j] holds. If A′′[i] = A′′[j] holds, then
cell A′′[i] is made uninhabited. Lastly, the algorithm creates links from every cell in A′

to the unique inhabited cell in A′′ holding the same tuple. To do this, it checks with one
processor for each pair (i, j) of indices with i < j in parallel, whether A′[i] = A′′[j] holds
and A′′[j] is inhabited. If this is the case, the processor for (i, j) augments the cell A′[i] with
a link to A′′[j] and vice versa. Note that multiple processors might attempt to augment a
cell A′′[j] with a link to a cell of A′; but since this happens in parallel only one processor
will be successful. Overall, we get 2-step-links from A to A′′ and 2-step-links from A′′ to
“representatives” in A.

The second operation has a work bound of O(|A|2) because it suffices to assign one
processor for each pair (i, j) of indices and each processor only applies a constant number of
steps. We will show in Section 5 that work bounds O(|A|) and O(|A|1+ε) can be achieved for
eliminating duplicates in the dictionary and ordered setting, respectively (cf. Lemma 5.10).

Of course, one might skip the intermediate writing and reading of tuples of A′. We will
often blur the distinction whether tuples reside in an array or within a sequence of processors.

Basic operations. Next, we describe some basic operations which we will use as building
blocks in the remainder of this paper to query evaluation algorithms for PRAMs. We will
describe algorithms for them in the next section.

Just as in Example 4.2, the operations usually get arrays as input, produce arrays as
output, augment tuples and add links between tuples. In fact, each time a tuple of a new
array results from some tuple of an input array we silently assume that (possibly mutual)
links are added.

Concatenate(A, B) computes a new array C of size |A|+ |B| consisting of the tuples from
A followed by the tuples from B in the obvious way. As usual, mutual links are added, in
particular, the link from B[1] indicates where the tuples from B start in C.

Map(A, f) returns an array B with B[i] = f(A[i]), where f is a function that maps proper
tuples in A to empty or proper (possibly augmented) tuples and empty to empty tuples.

Partition(A, n, g) yields n arrays A1, . . . ,An of size |A| and adds links. Here, g is a
function that maps proper tuples in A to numbers in [n]. For every i ∈ [|A|] and every
j ∈ [n], Aj [i] = A[i], if A[i] is inhabited and g(A[i]) = j, otherwise Aj [i] is uninhabited.

Compactε(A) copies the proper tuples in A into distinct cells of an array B of size at most
biε, where i ≤ 1

ε (1 + ε) is a non-negative integer2 such that biε ≤ n1+εbε, and b is |A| or
an upper bound for the (possibly unknown) number n of proper tuples in A, given as an
optional parameter. We refer to i as the “compaction parameter” and note that it can be
inferred from the size of B. Mutual links are added as usual.

2 In the special case n = 0, i = 0 is required.

ICDT 2023

16:8 Work-Efficient Query Evaluation with PRAMs

SearchRepresentatives(A, B) links every inhabited cell A[i] to an inhabited representative
cell B[j], such that B[j].t = A[i].t holds, if such a cell exists. Furthermore, for every i1, i2
with A[i1] = A[i2] ̸= ⊥, both A[i1] and A[i2] are linked to the same representative. If
required a copy of B might be produced in which representatives are marked. We stress
that B does not have to represent its relation concisely, and, in fact, the operation is used
to remove duplicates.

Deduplicate(A) chooses one representative tuple for each tuple-value, marks the remain-
ing cells as uninhabited and redirects incoming links from other arrays towards the
representatives, if possible.

5 Algorithmic Techniques and Algorithms for Basic Array Operations

In this section, we first describe some important algorithmic techniques and present algorithms
for the basic operations established in Section 4, afterwards.

Compaction. To implement the operation Compactε, we will utilise the following classical
result by Hagerup, whose formulation is slightly adapted to our setting.

▶ Proposition 5.1 ([14], Unnumbered theorem, p. 340). For every ε > 0, there is a O(1)-time
parallel algorithm that, given an array A and a number k, copies the proper tuples in A to
distinct cells of an array of size at most k1+ε or detects that A contains more than k proper
tuples. The algorithm requires O(|A|) work and space on an arbitrary CRCW-PRAM.

The space bound is only implicit in [14]. For the sake of convenience, we give a detailed
account of the algorithm in the full version of this paper [19], including an analysis of the
space requirements.

Array hash tables. In the presence of dictionaries we use array hash tables which associate
each inhabited cell in A with a number from [|A|], such that A[i],A[j] get the same number
if and only if A[i].t = A[j].t holds. Array hash tables can be efficiently computed.

▶ Lemma 5.2. There is a O(1)-time parallel algorithm that, in the presence of a dictionary,
computes an array hash table for a given array A, and requires O(|A|) work and O(|A| · |D|)
space on an arbitrary CRCW-PRAM.

We note that due to the “arbitrary” resolution of concurrent write, the result of such a
computation is not uniquely determined by the relations.

Proof sketch. Let A1, . . . , Aℓ be the attributes of the relation R represented by A in an
arbitrary but fixed order and define Xj = {A1, . . . , Aj} for all j ∈ {1,. . . , ℓ}. The algorithm
inductively computes hash values for tuples in R[Xj] for increasing j from 1 to ℓ.

The idea is to assign, to each tuple t ∈ R[Xj], a processor number in the range {1,. . . , |A|}
as hash value and augment each cell of A containing a proper tuple t′ with t′[X] = t by this
hash value. Since the same (projected) tuple t ∈ R[Xj] might occur in multiple, pairwise
different, cells of A, it does not suffice to load all tuples in A to |A| processors and let
each processor augment the tuple loaded to it by its processor number: multiple (different)
numbers might get assigned to the same tuple (in different cells of A). To resolve these
conflicts, the algorithm utilizes the presence of a dictionary and the hash values for tuples in
R[Xj−1].

For the base case j = 1 the algorithm allocates an auxiliary array of size O(|D|) and loads
the tuples in A to processors 1 to |A|. To be more precise, for each i ∈ {1,. . . , |A|}, the tuple
ti in cell A[i] is loaded to processor i. Recall that, in the dictionary setting, each value in the

J. Keppeler, T. Schwentick, and C. Spinrath 16:9

active domain is a number of size at most O(|D|). Thus, the projection t[A1] can be used
as index for the auxiliary array. Each processor i with a proper tuple writes its processor
number i into cell ti[A1] of the auxiliary array and then assigns to ti the value actually
written at position ti[A1]. Note that, for each value a, all processors i with ti[A1] = a will
assign the same value to their tuple ti, since precisely one processor among the processors
with ti[A1] = a succeeds in writing its number to cell ti[A1] on an arbitrary CRCW-PRAM.
This can be done with O(|A|) work and O(|D|) space.

For j > 1 the algorithm proceeds similarly but also takes, for a tuple t, the hash value
hj−1(t[Xj−1]) for t[Xj−1] into account, in addition to t[Aj]. For this purpose, the algorithm
first computes the hash values for R[Xj−1]. It then allocates an auxiliary array of size
O(|A| · |D|) which is interpreted as two-dimensional array and each processor i writes its
number into cell (hj−1(ti[Xj−1]), ti[Xj]) of the auxiliary array (if ti is a proper tuple). The
number in this cell is then the hash value for ti[Xj].

Writing and reading back the processor numbers requires O(|A|) work and the auxiliary
array requires O(|A| · |D|) space. The same bounds hold for the recursive invocations of
ComputeHashvalues. Since the recursion depth is ℓ, the procedure requires O(ℓ·|A|) = O(|A|)
work and, because the space for the auxiliary arrays can be reused, O(|A| · |D|) space in
total. ◀

Since most of our query evaluation algorithms rely on these two techniques, we adopt the
arbitrary CRCW-PRAM as our standard model and refer to it simply by CRCW-PRAM.

Search in ordered arrays. In sequential database processing, indexes implemented by search
trees play an important role, in particularly for the test whether a given tuple is in a given
relation. We use ordered arrays instead. Our search algorithm for ordered arrays uses links
from each cell to the next and previous inhabited cell. We refer to those links as predecessor
and successor links, respectively, and say an array is fully linked if it has predecessor and
successor links.

▶ Proposition 5.3. For every ε > 0, there is a O(1)-time parallel algorithm that computes,
for an array A, predecessor and successor links with work O(|A|1+ε) on a common CRCW-
PRAM.

Proof sketch. We describe the computation of predecessor links. Successor links can be
computed analogously. Let n = |A| and δ = ε

2 . In the first round, the algorithm considers
subintervals of length nδ and establishes predecessor links within them. To this end, it uses,
for each interval a nδ×nδ-table whose entries (i, j) with i < j are initialised by 1, if A[i]
is inhabited and, otherwise, by 0. Next, for each triple i, j, k of positions in the interval
entry (i, j) is set to 0 if i < k < j and A[k] is inhabited. It is easy to see that afterwards
entry (i, j) still carries a 1 if and only if i is the predecessor of j. And for all such pairs a
link from A[j] to A[i] is added. For every interval, (nδ)3 = n3δ processors suffice for this
computation, i.e. one processor for each triple i, j, k of positions in the interval. Since there
are n

nδ = n1−δ intervals, this yields an overall work of n1−δ ·n3δ = n1+2δ = n1+ε. In the next
round, intervals of length n2δ are considered and each is viewed as a sequence of nδ smaller
intervals of length nδ. The goal in the second round is to establish predecessor links for the
minimum cells of each of the smaller intervals. This can be done similarly with the same
asymptotic work as round 1. After ⌈ 1

δ ⌉ rounds, this process has established predecessor links
for all cells (besides for the minimum cells without a predecessor). ◀

ICDT 2023

16:10 Work-Efficient Query Evaluation with PRAMs

In fully linked ordered arrays, tuples can be searched for efficiently.

▶ Proposition 5.4. For every ε > 0, there is a O(1)-time parallel algorithm that computes,
for a given tuple t and an ordered array A with predecessor and successor links, the largest
tuple t′ in A with t′ ≤ t with work O(|A|ε) on an CREW-PRAM.

Proof sketch. Let n = |A|. In the first round, using nε processors, the algorithm tests for all
cells with positions k = in1−ε whether A[k] is inhabited, or the predecessor of A[k] contains
a tuple t′ ≤ t and whether this does not hold for position (i + 1)n1−ε or its successor. By a
suitable process the search continues recursively in the thus identified sub-interval. After ⌈ 1

ε⌉
rounds it terminates. Since, in each round, nε processors are used, the statement follows. ◀

We note that analogously it is possible to search for m tuples in parallel with work O(m |A|ε).
As an alternative to ordered arrays, bounded-depth search trees could be used. They can

be defined in the obvious way with degree about nε. The work for a search is asymptotically
the same as for fully linked ordered arrays.

Algorithms for basic array operations. In the remainder of this section we consider
algorithms for basic array operations. For the operations Concatenate, Map, and Partition,
neither the algorithm nor the analysis depends on the setting, i.e. they are the same
in the dictionary setting and the ordered setting. Furthermore, their implementation is
straightforward and only requires EREW-PRAMs, instead of CRCW-PRAMs.

▶ Lemma 5.5. There is a O(1)-time parallel algorithm for Concatenate that, given arrays
A and B, requires O(|A|+ |B|) work and space on an EREW-PRAM.

Proof sketch. The tuples in A are loaded to processors 1 to |A| and the tuples in B to
processors |A| + 1 to |A| + |B|. The tuples are then stored in the output array C. Each
processor can also augment its tuple (between A, B and C) with mutual links. ◀

▶ Lemma 5.6. There is a O(1)-time parallel algorithm for Map that, given an array A and a
function f that can be evaluated in O(1)-time with work and space O(1) on an EREW-PRAM,
requires O(|A|) work and O(|A|) space on an EREW-PRAM. If f is order-preserving and A
is ordered, then the output array is ordered, too.

Proof sketch. The algorithm loads the tuples in A to processors 1 to |A| and each processor
computes the image f(t) for its tuple t.

Since f(t) has to be computed for |A| tuples, the bounds for work and space follow. ◀

▶ Lemma 5.7. There is a O(1)-time parallel algorithm for Partition that, given an array
A, an integer n, and a function g that maps proper tuples in A into {1,. . . , n} and can be
evaluated in O(1)-time with work and space O(1), requires O(n · |A|) work and O(n · |A|)
space on an EREW-PRAM.

Proof sketch. The algorithm first augments every proper tuple t with the number g(t) using
Map. This requires O(|A|) work and O(|A|) space, cf. Lemma 5.6.

Then the arrays A1, . . . ,An of size |A| are allocated (and initialised). This requires
O(n · |A|) work and space.

For each i ∈ {1,. . . , |A|} in parallel, the tuple ti in cell A[i] is then – if it is a proper tuple
– copied into cell Aj [i] where j = g(ti). This requires O(A) work. ◀

J. Keppeler, T. Schwentick, and C. Spinrath 16:11

Let us point out that the upper bound for the work stated in Lemma 5.7 can be reduced
to O(n + |A|) by adapting the classical lazy array initialisation technique for (sequential)
RAMs to PRAMs.3 It turned out, however, that this is not necessary for our results, since n

is either a constant or the work is dominated by other operations in our algorithms.
The algorithm for Compactε does not depend on the setting either. It is implicitly proved

in the proof of Proposition 5.1 in [14] for a fixed choice of b. The idea is to try several, but
constantly many, compaction parameters.

▶ Lemma 5.8 ([14], implicit in proof). For every ε > 0, there is a O(1)-time parallel algorithm
for Compactε that, given an array A and an upper bound b for the number of proper tuples
in A, requires O(|A|) work and space on a CRCW-PRAM.

Proof sketch. Let n denote the number of proper tuples in the given array A.
We assume n ≥ 1 in the following4 and set k = ⌈ 1

ε⌉. The algorithm invokes the algorithm
guaranteed by Proposition 5.1 with ki = b

iε
1+ε for every 0 ≤ i ≤ ⌈k(1 + ε)⌉ in ascending order

until it is successful (or the current ki is larger than |A| in which case the procedure can just
return A). Each of the (constantly many) invocations requires O(|A|) work and space.

If the algorithm is successful for i = 0, the requirements are trivially met.
Otherwise, let i be such that the compaction for i + 1 was successful but the compaction

for i was not (note that for j = ⌈k(1 + ε)⌉ the compaction will always succeed, since kj is an
upper bound for the number of proper tuples in A). Then the resulting array has size

k1+ε
i+1 =

(
b

(i+1)ε
1+ε

)1+ε

= b(i+1)ε = biε · bε.

Moreover, since the compaction algorithm was not successful for i, we also have that
ki = b

iε
1+ε < n and, thus, biε < n1+ε.

All in all, the array B has size b(i+1)ε ≤ n1+ε · bε. ◀

For SearchRepresentatives(A,B) we present four algorithms, depending on the setting
and, in the ordered setting, whether A or B is suitably ordered. This operation is crucial
for deduplication, semi-join and join and the upper bounds impact the bounds for those
operations as well.

▶ Lemma 5.9. For every ε > 0, there are O(1)-time parallel algorithms for SearchRepre-
sentatives that, given arrays A and B, have the following bounds on a CRCW-PRAM.
(a) Work O((|A|+ |B|) · |B|) and space O((|A|+ |B|)), without any assumptions;
(b) Work O(|A|+ |B|) and space O((|A|+ |B|) · |D|) in the presence of a dictionary;
(c) Work O(|A| · |B|ε) and space O((|A|+ |B|)), if B is ordered and fully linked;
(d) Work O(|B| · |A|ε) and space O((|A| + |B|)), if A is ordered and fully linked and B is

concise.

Proof sketch. For (a), the naive algorithm can be used. In a first phase, it uses one processor
per pair (i, j) of indices for the cells of B to mark duplicates in B: if i < j and B[i].t = B[j].t,
then B[j] is marked as duplicate. On the second phase, it uses one processor per pair (i, j) of
indices for the cells of A and B and links A[i] to B[j] if B[i].t = B[j].t and B[j] is not marked
as duplicate.

3 In a nutshell, this requires replacing a global counter by one counter per processor and maintaining
back-references to initialised cells per processor (processors can still read counters and back-references
of other processors).

4 The algorithm yields i = 0, if n = 0 holds, as required.

ICDT 2023

16:12 Work-Efficient Query Evaluation with PRAMs

For (b), first an array hash table for (the concatenation of) A and B is computed with
O(|A|+ |B|) work and O((|A|+ |B|) · |D|) space, thanks to Lemma 5.2 and Lemma 5.5. For
a proper tuple t, let h(t) denote the hash value in the range {1,. . . , |A|+ |B|} assigned to t.
The algorithm then allocates an auxiliary array of size |A|+ |B| and, for each proper tuple
si in B, it writes, in parallel, i into cell h(si) of the auxiliary array. Here si denotes the
i-tuple from B. Other processors might attempt to write an index to cell h(si) but only one
will succeed. This requires O(|B|) work to write the indices and O(|A|+ |B|) space for the
auxiliary array.

For each proper tuple t in A it is then checked in parallel, if cell h(t) contains an index i.
If yes, then t is marked and augmented with a pointer to cell B[i], since B[i].t = t. If not,
then t has no partner tuple in B, thus t is not augmented by a link.

Towards (c), the algorithm identifies, for each proper tuple t in A, the smallest proper
tuple s in B such that t ≤ s. If t = s holds, t’s cell is marked and a link to the cell of s is
added. For each tuple, this can be done with work |B|ε, thanks to Proposition 5.4 and these
searches can be done in parallel by assigning |B|ε processors per tuple of A.

For (d), the algorithm searches, for each proper tuple s in B, the smallest tuple t in A
with t ≥ s. If t = s then the cell of t is marked and a link to the cell of s is added. If A is
guaranteed to be concise, that’s all. Otherwise, for each proper tuple t in A the smallest
inhabited cell A[i] with A[i].t = t is searched. If it is marked then t is marked as well and a
link to the cell in B to which A[i] links is added. ◀

▶ Lemma 5.10. For every ε > 0, there are O(1)-time parallel algorithms for Deduplicate
that, given an array A have the following bounds on an arbitrary CRCW-PRAM.
(a) Work O(|A|2) and space O(|A|), without any assumptions;
(b) Work O(|A|) and space O(|A| · |D|) in the presence of a dictionary;
(c) Work O(|A|1+ε) and space O(|A|), if A is ordered.

Proof sketch. In all three cases, SearchRepresentatives(A,A) is invoked and afterwards
all inhabited cells with tuples that received a link to a different tuple are made uninhabited,
leaving only the other tuples as representatives. For (c), it might be necessary to compute
full links according to Proposition 5.3. The bounds then follow with Lemma 5.9. ◀

6 Algorithms for Database Operations

In this section, we present O(1)-time parallel algorithms for the operators of the relational
algebra and analyse their complexity with respect to work and space.

We formulate the results for relations rather than arrays. We always assume that a
relation R is represented concisely by an array AR, but we make no assumptions about the
compactness of the representation. All algorithms produce output arrays which represent
the result relation concisely.

With the notable exception of the join operator, for most operators the algorithms are
simple combinations of the algorithms of Section 5. The respective proofs are given in the
full version of this paper [19]. The algorithms for the join operator are more involved and
are presented at the end of the section.

We note that the relational algebra has an additional rename operator, which, of course,
does not require a parallel algorithm.

▶ Proposition 6.1. There is a O(1)-time parallel algorithm that receives as input a relation
R and an attribute X in R, and an element a in the domain or an attribute Y , and computes
the selection σX=a(R) (if a is given) or σX=Y (R) (if Y is given). The algorithm requires
O(|AR|) work and space on an EREW-PRAM. The output array is of size at most |AR|. If
AR is ordered, then the output is ordered, too.

J. Keppeler, T. Schwentick, and C. Spinrath 16:13

The algorithm is a simple application of the operation Map.

▶ Proposition 6.2. For every ε > 0, there are O(1)-time parallel algorithms for CRCW-
PRAMs that compute upon input of two relations R and S the semijoin R ⋉ S with the
following bounds. Here, X denotes the joint attributes of R and S.
(a) Work O((|AR|+ |AS |) · |AS |) and space O((|AR|+ |AS |)), without any assumptions;
(b) Work O(|AR|+ |AS |) and space O((|AR|+ |AS |) · |D|) in the presence of a dictionary;
(c) Work O(|AR| · |AS |ε) and space O((|AR| + |AS |)), if AS is X-compatibly ordered and

fully linked;
(d) Work O(|AS | · |AR|ε) and space O((|AR|+ |AS |)), if AR is X-compatibly ordered and

fully linked and AS is concise.
The output array is of size |AR|. If AR is ordered, then the output is ordered, too. Moreover,
each t ∈ R⋉S in the output of R⋉S gets augmented by a link to a corresponding tuple in S.

▶ Proposition 6.3. For every ε > 0, there are CRCW-PRAM O(1)-time parallel algorithms
that compute upon input of two relations R and S the difference R \ S with the following
bounds.
(a) Work O((|AR|+ |AS |) · |AS |) and space O((|AR|+ |AS |)), without any assumptions;
(b) Work O(|AR|+ |AS |) and space O((|AR|+ |AS |) · |D|) in the presence of a dictionary;
(c) Work O(|AR| · |AS |ε) and space O((|AR|+ |AS |)), if AS is ordered and fully linked;
(d) Work O(|AS | · |AR|ε) and space O((|AR|+ |AS |)), if AR is ordered and fully linked and
AS is concise.

The output array is of size |AR|. If AR is ordered, then the output is ordered, too.

The algorithms for Proposition 6.2 and Proposition 6.3 combine the appropriate algorithm
for SearchRepresentatives with suitable applications of Map.

▶ Proposition 6.4. For every ε > 0, there are CRCW-PRAM O(1)-time parallel algorithms
that receive as input a relation R and a list X of attributes from R, and evaluate the projection
πX(R) with the following bounds.
(a) Work O((|AR|2) and space O(|AR|), without any assumptions;
(b) Work O(|AR|) and space O(|AR| · |D|) in the presence of a dictionary;
(c) Work O(|AR|1+ε) and space O(|AR|), if AR is X-compatibly ordered.
The output array is of size |AR|. If AR is ordered then the output is ordered, too.

The algorithms combine Deduplicate with Map in a straightforward manner. We note that
we do not require in (c) that AR is fully linked, since the work bound allows to compute
links.

▶ Proposition 6.5. For every ε > 0, there are CRCW-PRAM O(1)-time parallel algorithms
that compute upon input of two relations R and S the union R∪ S with the following bounds.
(a) Work O((|AR|+ |AS |) · |AS |) and space O((|AR|+ |AS |)), without any assumptions;
(b) Work O(|AR|+ |AS |) and space O((|AR|+ |AS |) · |D|) in the presence of a dictionary;
(c) Work O(|AR| · |AS |ε + |AS |) and space O((|AR| + |AS |)), if AS is ordered and fully

linked.
The output array is of size |AR|+ |AS |.

The algorithms basically concatenate R \ S and S. We note that thanks to the symmetry of
union, the algorithm of (c) can also be applied if AR is ordered.

▶ Proposition 6.6. For every ε > 0, there are CRCW-PRAM O(1)-time parallel algorithms
that compute upon input of two relations R and S the join R ▷◁ S with the following bounds.
Here, X denotes the joint attributes of R and S.

ICDT 2023

16:14 Work-Efficient Query Evaluation with PRAMs

(a) Work O((|AS |2 + |πX(S)|1+ε |AS |1+ε) + (|AR|+ |AS |) |AS |+ |R ▷◁ S| |AR|2ε |AS |2ε) and
space O(|πX(S)|1+ε |AS |1+ε + |AR|+ |AS |+ |R ▷◁ S| |AR|2ε |AS |2ε)
without any assumptions;

(b) Work O(|πX(S)|1+ε |AS |1+ε + (|AR|+ |AS |) + |R ▷◁ S| |AR|2ε |AS |2ε) and
space O(|πX(S)|1+ε |AS |1+ε + (|AR|+ |AS |)|D|+ |R ▷◁ S| |AR|2ε |AS |2ε)
in the presence of a dictionary;

(c) Work O(|AS |1+ε + |AR| · |AS |ε + |R ▷◁ S| |AR|2ε |AS |2ε) and
space O(|AR|+ |AS |+ |R ▷◁ S| |AR|2ε |AS |2ε),
if AS is X-compatibly ordered and fully linked.

The output array is of size |R ▷◁ S| |AR|2ε |AS |2ε.

Proof idea. The algorithms proceed in three phases, the grouping phase, the pairing phase
and the joining phase. For (a) and (b), the tuples of S are grouped with respect to their
X-attributes in the grouping phase. Each group is compacted into an array of some size
|AS |ℓε. Likewise the projection πX(S), containing the “index tuples”, is compacted. In the
pairing phase, a semijoin reduction is performed and the remaining R-tuples are partitioned
with respect to the size of their corresponding “X-group” from S. Finally, during the joining
phase, output tuples are produced, by combining tuples from R with the tuples from their
“X-group” from S. The work bounds for the three phases can be seen as the three main
summands in the statement of the proposition.

If S is represented by an array that is X-compatibly ordered and fully linked, the
grouping phase can be performed more efficiently. In that case, AS itself can be viewed
as the concatenation of all “X-groups”. Thus, this steps is for free and, furthermore, the
compaction of the “X-groups” can be done in-place and therefore only requires work |AS |
in total. The pairing phase and the joining phase are basically as for (a) and (b), but the
work bounds for the pairing phase differ, due to the more efficient semijoin algorithm in the
ordered setting. ◀

7 Query Evaluation

After studying algorithms for basic operations and operators of the relational algebra, we
are now prepared to investigate the complexity of O(1)-time parallel algorithms for query
evaluation.

Although every query of the relational algebra can be evaluated by a O(1)-time parallel
algorithms with polynomial work, the polynomials can be arbitrarily bad. In fact, that
a graph has a k-clique can be expressed by a conjunctive query with k variables and it
follows from Rossman’s ω(nk/4) lower bound for the size of bounded-depth circuit families
for k-Clique [24] that any O(1)-time parallel algorithm that evaluates this query needs work
ω(nk/4).

We therefore concentrate in this section on restricted query evaluation settings. We
study two restrictions of query languages which allow efficient sequential algorithms, the
semijoin algebra and free-connex and/or acylic conjunctive queries. Furthermore, we present
a O(1)-time parallel version of worst-case optimal join algorithms.

In the following, IN always denotes the maximum number of tuples in any relation of
the underlying database that is addressed by the given query. Furthermore, we always
assume that the database relations are represented concisely by compact arrays without any
uninhabited cells.

J. Keppeler, T. Schwentick, and C. Spinrath 16:15

7.1 Semi-Join Algebra
The semijoin algebra is the fragment of the relational algebra that uses only selection,
projection, rename, union, set difference and, not least, semijoin. It is well-known that
semijoin queries produce only query results of size O(|D|) and can be evaluated in time
O(|D|) [21, Theorem 7]. From the results of Section 6 we can easily conclude the following.

▶ Proposition 7.1. For each query q of the semijoin algebra and for every ε > 0 there are
CRCW-PRAM O(1)-time parallel algorithms that, given a database D, evaluate q(D) with
the following bounds.
(a) Work O(IN2+ε) and space O(IN2+ε), without any assumptions;
(b) Work O(IN) and space O(IN · |D|) in the presence of a dictionary.

Proof sketch. Towards (a), the operators of the query are evaluated with the naive algorithms
from Section 6 (stated as (a)). After each evaluation the result array is compacted by
Compactε/2. Statement (b) follows by using the (b)-algorithms from Section 6. ◀

Altogether, semijoin queries can be evaluated work-optimally by a O(1)-time parallel
algorithm. We plan to address ordered setting in a journal version of this paper. We expect
that the results of [13] enable almost work-optimal O(1)-time parallel algorithms with a
O(IN1+ε) work bound, if the relations are represented by suitably ordered arrays. We discuss
this further in our conclusion.

7.2 Evaluation of Conjunctive Queries
In this section we give algorithms to evaluate subclasses of conjunctive queries in parallel.
More precisely, we consider acyclic join queries, acyclic conjunctive queries, free-connex
acyclic conjuntive queries and arbitrary free-connex conjunctive queries.

Conjunctive queries are conjunctions of relation atoms. We write a conjunctive query
(CQ for short) q as a rule of the form q : A ← A1, . . . , Am, where A, A1, . . . , Am are atoms
and m ≥ 1. A conjunctive query q is acyclic, if it has a join tree Tq, i.e. an undirected tree
(V (T), E(T)) where V (T) consists of the atoms in q and for each variable v in Tq the set
{α ∈ V (T)|α contains v} induces a connected subtree of Tq. It is free-connex acyclic if q is
acyclic and the Boolean query whose body consists of the body atoms and the head atom of
q is acyclic as well [5, 9]. A join query is a conjunctive query with no quantified variable, i.e.
every variable in a join query is free. For more background on (acyclic) conjunctive queries
we refer to [1, 3].

Our algorithms rely on the well-known Yannakakis algorithm [29]. Yannakakis’ algorithm
receives as input an acyclic conjunctive query q, the join tree Tq and a database D. With
each node v in Tq a relation Sv is associated. Initially, Sv = Rv(D), where Rv is the relation
that is labelled in v. The algorithm is divided into three steps.

(1) bottom-up semijoin reduction: All nodes are visited in bottom-up traversal order of
T . When a node v is visited, Sv is updated to Sv ⋉ Sc for every child c of v in T .

(2) top-down semijoin reduction: All nodes are visited in top-down traversal order of T .
When a node v is visited, the relation Sc is updated to Sc ⋉Sv for every child c of v in T .

(3) All nodes are visited in bottom-up traversal order in T . When a node v is visited, the
algorithm updates, for every child c of v, the relation Sv to πfree(q)∪attr(Sv)(Sv ▷◁ Sc),
where free(q) denotes the attributes that are associated with the free variables of q.

Proposition 6.2 immediately yields the following lemma.

ICDT 2023

16:16 Work-Efficient Query Evaluation with PRAMs

▶ Lemma 7.2. There are CRCW-PRAM O(1)-time parallel algorithms for phase (1) and (2)
of the Yannakakis algorithm with the following bounds.
(a) Work O(IN2) and space O(IN), without any assumptions;
(b) Work O(IN) and space O(IN · |D|) in the presence of a dictionary.

By combining Yannakakis’ algorithm with the algorithms from Section 6 we obtain the
following results.

▶ Proposition 7.3. For every ε > 0 and every acyclic join query q, there are CRCW-PRAM
O(1)-time parallel algorithms that compute q(D), given a database D, with the following
bounds.
(a) Work O(IN2 + OUT2+εINε) and space O(IN + OUT2+εINε), without any assumptions;
(b) Work O(IN1+ε ·OUT1+ε) and space O((IN ·OUT)1+ε |D|), in the presence of a dictionary.

To perform phase (3) of the Yannakakis algorithm the parallel algorithms first shrink
every array ARv

to the size |Sv|1+ε′
|Rv(D)|ε

′
using Compactε′(Sv), for some very small ε′,

depending (only) on the size of the join tree. Likewise, by calling the join algorithm with
a suitable parameter, it strongly compacts each intermediate join result. That the stated
bounds are met can be established by a straightforward, but tedious calculation, given in the
full version of this paper [19].

▶ Proposition 7.4. For every ε > 0, and every acyclic conjunctive query q, there are
CRCW-PRAM O(1)-time parallel algorithms that compute q(D), given a database D, with
the following bounds.
(a) Work O(IN2 +OUT2+εIN2+ε) and space O(IN+IN2+ε ·OUT1+ε), without any assumptions;
(b) Work O(OUT1+εIN2+2ε) and space O(OUT1+εIN2+ε |D|), in the presence of a dictionary.

The algorithms are obtained from the algorithms for Proposition 7.3 by a suitable
adaptation of phase (3). A proof sketch for Proposition 7.4 is given in the full version [19].

It turns out that the bounds for acyclic join queries carry over to free-connex acyclic
conjunctive queries. We use the reduction from free-connex acyclic queries to join queries
given in [8]. We adapt it for O(1)-time parallel algorithms.

▶ Lemma 7.5. For every free-connex acyclic query q and every database D there exists an
acyclic join query q̃ and a database D̃ such that q(D) = q̃(D̃). Here, q̃ only depends on q.

Furthermore, there are CRCW-PRAM O(1)-time parallel algorithms that compute upon
input of a free-connex acyclic query q and a database D the corresponding join query q̃ and
database D̃ with the following bounds.
(a) Work O(IN2) and space O(IN), without any assumptions;
(b) Work O(IN) and space O(IN · |D|) in the presence of a dictionary;

A proof sketch for Lemma 7.5 is given in the full version of this paper [19]. By combining
Lemma 7.5 and Proposition 7.3 we obtain the following result.

▶ Corollary 7.6. There are CRCW-PRAM O(1)-time parallel algorithms that receives as
input a free-connex acyclic conjunctive query q and a database D and computes the result
q(D), with the following bounds.
(a) Work O(IN2 + OUT2+εINε) and space O(IN + OUT2+εINε), without any assumptions;
(b) Work O(IN1+ε ·OUT1+ε) and space O((IN ·OUT)1+ε |D|), in the presence of a dictionary.

In [5, Definition 36] and [8, Definition 3.2], a definition of free-connex, not necessarily
acyclic, conjunctive queries is given. Corollary 7.6 can be extended to that class of queries
along the lines of [8, Lemma 4.4].

We plan to give a more detailed account in a journal version of this paper.

J. Keppeler, T. Schwentick, and C. Spinrath 16:17

7.3 Weakly Worst-Case Optimal Work for Natural Joins
This section is concerned with the evaluation of natural join queries q = R1 ⋊⋉ . . . ⋊⋉ Rm over
some schema Σ = {R1, . . . , Rm} with attributes attr(q) =

⋃m
i=1 attr(Ri). It was shown

in [4] that |q(D)| ≤
∏m

i=1 |Ri|xi holds for every database D and that this bound is tight for
infinitely many databases D (this is also known as the AGM bound). Here x1, . . . , xm is a
fractional edge cover of q defined as a solution of the following linear program.

minimize
m∑

i=1
xi subject to

∑
i:A∈attr(Ri)

xi ≥ 1 for all A ∈ attr(q)

and xi ≥ 0 for all 1 ≤ i ≤ m

We say that a natural join query q has weakly worst-case optimal O(1)-time parallel
algorithms, if, for every ε > 0, there is a O(1)-time parallel algorithm that evaluates q

with work (
∏m

i=1 |Ri|xi + IN)1+ε. For comparison, in the sequential setting, algorithms
are considered worst-case optimal if they have a time bound O(

∏m
i=1 |Ri|xi + IN) [23]. In

this subsection, we show that natural join queries indeed have weakly worst-case optimal
O(1)-time parallel algorithms.

▶ Theorem 7.7. For every ε > 0 and natural join query q = R1 ⋊⋉ . . . ⋊⋉ Rm with attributes
X = (A1, . . . , Ak), there is a O(1)-time parallel algorithm that, given arrays AR1 , . . . ,ARm

ordered w.r.t. X, computes q(D) and requires O
((

(
∏m

i=1 |Ri|xi) + IN
)
· INε

)
work and space

on a CRCW-PRAM where (x1, . . . , xm) is a fractional edge cover of q.

Proof idea. A O(1)-time parallel algorithm can proceed, from a high-level perspective,
similarly to the sequential attribute elimination join algorithm, see e.g. [3, Algorithm 10].

In a nutshell, the algorithm computes iteratively, for increasing j from 1 to k relations
Lj defined as follows: L1 =

⋂
1≤i≤m,A1∈attr(Ri) πA1(Ri) and, for j > 1, Lj is the union of

all relations Vt = {t} ×
⋂

1≤i≤m,Aj∈attr(Ri) πAj (Ri ⋉ {t}) for each t ∈ Lj−1. Lk is then the
query result q(D). Note that each Lj contains tuples over attributes Xj = (A1, . . . , Aj).

To achieve the desired running time in the sequential setting, it is essential that each rela-
tion Vt for t ∈ Lj−1 is computed in time Õ(min1≤i≤m |Ri⋉{t}|), where Õ hides a logarithmic
factor; for instance with the Leapfrog algorithm, see e.g. [27], [3, Proposition 27.10].

In the parallel setting each relation Vt is computed with work O(min1≤i≤m |Ri⋉{t}|·IN
1
2 ε)

– for all tuples t ∈ Li−1 in parallel. Note that the work bound is not uniform, i.e. the work
bound for a tuple t depends on how many “matching” tuples there are in each of the input
relations. This makes assigning processors challenging.

Utilizing that the input relations are ordered w.r.t. Xj , our algorithm groups the tuples in
the relations πXj

(Ri) w.r.t. Xj−1 and identifies, for each t ∈ Lj−1, the corresponding group in
πXj

(Ri). These groups are compacted using Compactδ for δ = ε
4 which allows to approximate

the size of Ri ⋉ {t} up to a factor of IN
1
2 ε for each i, and, thus, min1≤i≤m |Ri ⋉ {t}| for each

tuple t.
The tuples in Lj−1 are then partitioned w.r.t. (the approximation of) min1≤i≤m |Ri ⋉{t}|

into sets Sj,ℓ. Each tuple in a set Sj,ℓ can then be assigned the same number of processors,
determined by the size of the array for the smallest group, similarly as in the Leapfrog
algorithm. This is feasible because the number of sets Sj,ℓ in the partition is bounded by a
constant due to the guarantees of Compactε.

The full proof is given in the full version of this paper [19]. ◀

We plan to address the evaluation of natural join queries in the dictionary setting in a
journal version of this paper. We expect that almost the same work bound holds, with an
additional summand O(max1≤i≤m |Ri|2), accounting for the grouping of each πXj

(Ri) with
respect to πXj−1(Ri).

ICDT 2023

16:18 Work-Efficient Query Evaluation with PRAMs

8 Conclusion

This paper is meant as a first study on work-efficient O(1)-time parallel algorithms for query
evaluation and many questions remain open. The results are very encouraging as they show
that quite work-efficient O(1)-time parallel algorithms for query evaluation are possible. In
fact, the results give a hint at what could be a good notion of work-efficiency in the context of
constant-time parallel query evaluation. Our impression is that work-optimality is very hard
to achieve in constant time and that query evaluation should be considered as work-efficient
for a query language, if there are constant-time parallel algorithms with O(T 1+ε) work, for
every ε > 0, where T is the best sequential time of an evaluation algorithm. Of course, it
would be nice if this impression could be substantiated by lower bound results, but that
seems to be quite challenging.

We have not given results for all combinations of query languages and settings, e.g.,
Subsection 7.1 and Subsection 7.2 do not yet cover the ordered setting and Subsection 7.3
not the dictionary setting.

As mentioned in Section 3, when finding the results of this paper we were unaware of
the fact that [13] provides algorithms for ordered compaction with constant time and work
O(n1+ε). Naturally, these algorithms can be useful for the ordered setting and we expect
them to yield a O(n1+ε) work bound for the semi-join algebra (Subsection 7.1). We do not
expect them to improve the bounds for natural joins (Subsection 7.3) or for general acyclic
queries (Subsection 7.2). We plan to fully explore the consequences in a journal version of
this paper, but we decided against incorporating them into the final version of this paper,
due to the lack of peer-review. In that journal version we will also address some of the
reviewer’s suggestions that could not be incorporated yet.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995. URL: http://webdam.inria.fr/Alice/.
2 Miklós Ajtai. Σ1

1 formulae on finite structures. Ann. of Pure and Applied Logic, 24:1–48, 1983.
doi:10.1016/0168-0072(83)90038-6.

3 Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens, and Andreas Pieris. Database
Theory. Open source at https://github.com/pdm-book/community, 2021. Preliminary Version,
August 19, 2022.

4 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational
joins. SIAM J. Comput., 42(4):1737–1767, 2013. doi:10.1137/110859440.

5 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries and
constant delay enumeration. In Jacques Duparc and Thomas A. Henzinger, editors, Computer
Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL,
Lausanne, Switzerland, September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes in
Computer Science, pages 208–222. Springer, 2007. doi:10.1007/978-3-540-74915-8_18.

6 David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within NC1.
J. Comput. Syst. Sci., 41(3):274–306, 1990. doi:10.1016/0022-0000(90)90022-D.

7 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. J. ACM, 64(6):40:1–40:58, 2017. doi:10.1145/3125644.

8 Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. Constant delay enumeration
for conjunctive queries: a tutorial. ACM SIGLOG News, 7(1):4–33, 2020. doi:10.1145/
3385634.3385636.

9 Johann Brault-Baron. De la pertinence de l’énumération : complexité en logiques propo-
sitionnelle et du premier ordre. Theses, Université de Caen, April 2013. URL: https:
//hal.archives-ouvertes.fr/tel-01081392.

http://webdam.inria.fr/Alice/
https://doi.org/10.1016/0168-0072(83)90038-6
https://github.com/pdm-book/community
https://doi.org/10.1137/110859440
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1016/0022-0000(90)90022-D
https://doi.org/10.1145/3125644
https://doi.org/10.1145/3385634.3385636
https://doi.org/10.1145/3385634.3385636
https://hal.archives-ouvertes.fr/tel-01081392
https://hal.archives-ouvertes.fr/tel-01081392

J. Keppeler, T. Schwentick, and C. Spinrath 16:19

10 Zhiyuan Chen, Johannes Gehrke, and Flip Korn. Query optimization in compressed database
systems. In Sharad Mehrotra and Timos K. Sellis, editors, Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, Santa Barbara, CA, USA, May
21-24, 2001, pages 271–282. ACM, 2001. doi:10.1145/375663.375692.

11 E. F. Codd. Relational completeness of data base sublanguages. In R. Rustin, editor, Database
Systems, pages 33–64. Prentice-Hall, 1972.

12 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984. doi:10.1007/BF01744431.

13 Tal Goldberg and Uri Zwick. Optimal deterministic approximate parallel prefix sums and their
applications. In Third Israel Symposium on Theory of Computing and Systems, ISTCS 1995,
Tel Aviv, Israel, January 4-6, 1995, Proceedings, pages 220–228. IEEE Computer Society, 1995.
doi:10.1109/ISTCS.1995.377028.

14 Torben Hagerup. On a compaction theorem of Ragde. Inf. Process. Lett., 43(6):335–340, 1992.
doi:10.1016/0020-0190(92)90121-B.

15 Xiao Hu and Ke Yi. Massively parallel join algorithms. SIGMOD Rec., 49(3):6–17, 2020.
doi:10.1145/3444831.3444833.

16 Neil Immerman. Expressibility and parallel complexity. SIAM J. Comput., 18(3):625–638,
1989. doi:10.1137/0218043.

17 Neil Immerman. Descriptive Complexity. Graduate texts in computer science. Springer, 1999.
doi:10.1007/978-1-4612-0539-5.

18 Joseph F. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
19 Jens Keppeler, Thomas Schwentick, and Christopher Spinrath. Work-efficient query evaluation

with PRAMs, 2023. doi:10.48550/ARXIV.2301.08178.
20 Paraschos Koutris, Semih Salihoglu, and Dan Suciu. Algorithmic aspects of parallel data

processing. Found. Trends Databases, 8(4):239–370, 2018. doi:10.1561/1900000055.
21 Dirk Leinders, Maarten Marx, Jerzy Tyszkiewicz, and Jan Van den Bussche. The semijoin

algebra and the guarded fragment. Journal of Logic, Language and Information, 14(3):331–343,
2005. doi:10.1007/s10849-005-5789-8.

22 Philip D. MacKenzie. Load balancing requires omega(log∗n) expected time. In Greg N.
Frederickson, editor, Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on
Discrete Algorithms, 27-29 January 1992, Orlando, Florida, USA, pages 94–99. ACM/SIAM,
1992. URL: http://dl.acm.org/citation.cfm?id=139404.139425.

23 Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join algorithms.
J. ACM, 65(3):16:1–16:40, 2018. doi:10.1145/3180143.

24 Benjamin Rossman. On the constant-depth complexity of k-clique. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May
17-20, 2008, pages 721–730, 2008. doi:10.1145/1374376.1374480.

25 Jonas Schmidt, Thomas Schwentick, Till Tantau, Nils Vortmeier, and Thomas Zeume. Work-
sensitive dynamic complexity of formal languages. In Stefan Kiefer and Christine Tasson,
editors, Foundations of Software Science and Computation Structures - 24th International
Conference, FOSSACS 2021, volume 12650 of Lecture Notes in Computer Science, pages
490–509. Springer, 2021. doi:10.1007/978-3-030-71995-1_25.

26 Peter van Emde Boas. Machine models and simulation. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science, Volume A: Algorithms and Complexity, pages 1–66. Elsevier
and MIT Press, 1990.

27 Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Nicole
Schweikardt, Vassilis Christophides, and Vincent Leroy, editors, Proc. 17th International
Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014, pages 96–106.
OpenProceedings.org, 2014. doi:10.5441/002/icdt.2014.13.

ICDT 2023

https://doi.org/10.1145/375663.375692
https://doi.org/10.1007/BF01744431
https://doi.org/10.1109/ISTCS.1995.377028
https://doi.org/10.1016/0020-0190(92)90121-B
https://doi.org/10.1145/3444831.3444833
https://doi.org/10.1137/0218043
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.48550/ARXIV.2301.08178
https://doi.org/10.1561/1900000055
https://doi.org/10.1007/s10849-005-5789-8
http://dl.acm.org/citation.cfm?id=139404.139425
https://doi.org/10.1145/3180143
https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1007/978-3-030-71995-1_25
https://doi.org/10.5441/002/icdt.2014.13

16:20 Work-Efficient Query Evaluation with PRAMs

28 Yilei Wang and Ke Yi. Query evaluation by circuits. In Leonid Libkin and Pablo Barceló,
editors, PODS ’22: International Conference on Management of Data, Philadelphia, PA, USA,
June 12 - 17, 2022, pages 67–78. ACM, 2022. doi:10.1145/3517804.3524142.

29 Mihalis Yannakakis. Algorithms for acyclic database schemes. In Very Large Data Bases, 7th
International Conference, September 9-11, 1981, Cannes, France, Proceedings, pages 82–94.
IEEE Computer Society, 1981.

https://doi.org/10.1145/3517804.3524142

Conjunctive Queries with Free Access Patterns
Under Updates
Ahmet Kara #

Universität Zürich, Switzerland

Milos Nikolic #

University of Edinburgh, UK

Dan Olteanu #

Universität Zürich, Switzerland

Haozhe Zhang #

Universität Zürich, Switzerland

Abstract
We study the problem of answering conjunctive queries with free access patterns under updates. A
free access pattern is a partition of the free variables of the query into input and output. The query
returns tuples over the output variables given a tuple of values over the input variables.

We introduce a fully dynamic evaluation approach for such queries. We also give a syntactic
characterisation of those queries that admit constant time per single-tuple update and whose output
tuples can be enumerated with constant delay given an input tuple. Finally, we chart the complexity
trade-off between the preprocessing time, update time and enumeration delay for such queries. For
a class of queries, our approach achieves optimal, albeit non-constant, update time and delay. Their
optimality is predicated on the Online Matrix-Vector Multiplication conjecture. Our results recover
prior work on the dynamic evaluation of conjunctive queries without access patterns.

2012 ACM Subject Classification Theory of computation → Database query processing and optim-
ization (theory); Information systems → Database views; Information systems → Data streams

Keywords and phrases fully dynamic algorithm, enumeration delay, complexity trade-off, dichotomy

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.17

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 682588.

1 Introduction

We consider the problem of dynamic evaluation for conjunctive queries with access restrictions.
Restricted access to data is commonplace [28, 29, 27]: For instance, the flight information
behind a user-interface query can only be accessed by providing values for specific input
fields such as the departure and destination airports in a flight booking database.

We formalise such queries as conjunctive queries with free access patterns (CQAP for
short): The free variables of a CQAP are partitioned into input and output. The query yields
tuples of values over the output variables given a tuple of values over the input variables.
In database systems, CQAPs formalise the notion of parameterized queries (or prepared
statements) [1]. In probabilistic graphical models, they correspond to conditional queries [25]:
Such inference queries ask for (the probability of) each possible value of a tuple of random
variables (corresponding to CQAP output variables) given specific values for a tuple of
random variables (corresponding to CQAP input variables). Prior work on queries with
access patterns considered a more general setting than CQAP: There, each relation in the
query body may have input and output variables such that values for the latter can only be

© Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 17; pp. 17:1–17:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kara@ifi.uzh.ch
https://orcid.org/0000-0001-8155-8070
mailto:milos.nikolic@ed.ac.uk
https://orcid.org/0000-0002-1548-6803
mailto:olteanu@ifi.uzh.ch
https://orcid.org/0000-0002-4682-7068
mailto:zhang@ifi.uzh.ch
https://orcid.org/0000-0002-0930-1980
https://doi.org/10.4230/LIPIcs.ICDT.2023.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Conjunctive Queries with Free Access Patterns Under Updates

obtained if values for the former are supplied [15, 34, 12, 5, 6]. In this more general setting,
and in sharp contrast to our simpler setting, a fundamental question is whether the query
can even be answered for a given access pattern to each relation [28, 29, 27].

We introduce a fully dynamic evaluation approach for CQAPs. It is fully dynamic in the
sense that it supports both inserts and deletes of tuples to the input database. It computes a
data structure that supports the enumeration of the distinct output tuples for any values of
the input variables and maintains this data structure under updates to the input database.

Our analysis of the overall computation time is refined into three components. The
preprocessing time is the time to compute the data structure before receiving any updates.
Given a tuple over the input variables, the enumeration delay is the time between the start of
the enumeration process and the output of the first tuple, the time between outputting any
two consecutive tuples, and the time between outputting the last tuple and the end of the
enumeration process [13]. The update time is the time used to update the data structure1 for
one single-tuple update. The preprocessing step may be replaced by a sequence of inserts to
the initially empty database. However, as shown in prior work on conjunctive queries under
updates [19, 21], bulk inserts, as performed in the preprocessing step, may take asymptotically
less time than a sequence of single-tuple inserts.

There are simple, albeit more expensive alternatives to our approach. For instance, on
an update request we may only update the input database, and on an enumeration request
we may use an existing enumeration algorithm for the residual query obtained by setting
the input variables to constants in the original query. However, such an approach needs
time-consuming and independent preparation for each enumeration request, e.g., to remove
dangling tuples and possibly create a data structure to support enumeration. In contrast, the
data structure constructed by our approach shares this preparation across the enumeration
requests and can readily serve enumeration requests for any values of the input variables.

The contributions of this paper are as follows.
Section 3 introduces the CQAP language. Two new notions account for the nature of

free access patterns: access-top variable orders and query fractures.
An access-top variable order is a decomposition of the query into a rooted forest of

variables, where: the input variables are above all other variables; and the free (input and
output) variables are above the bound variables. This variable order is compiled into a forest
of view trees, which is a data structure that represents compactly the query output.

Since access to the query output requires fixing values for the input variables, the query
can be fractured by breaking its joins on the input variables and replacing each of their
occurrences with fresh variables within each connected component of the query hypergraph.
This does not violate the access pattern, since each fresh input variable can be set to the
corresponding given input value. Yet this may lead to structurally simpler queries whose
dynamic evaluation admits lower complexity.

Section 3 also introduces the static and dynamic widths that capture the complexities of
the preprocessing and respectively update steps. For a given CQAP, these widths are defined
over the access-top variable orders of the fracture of the query.

Section 4 introduces our approach for CQAP evaluation. Computing and maintaining
each view in the view tree accounts for preprocessing and respectively updates, while the
view tree as a whole allows for the enumeration of the output tuples with constant delay.

1 We do not allow updates during the enumeration; this functionality is orthogonal to our contributions
and can be supported using a versioned data structure.

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 17:3

Section 5 gives a syntactic characterisation of those CQAPs that admit linear-time
preprocessing and constant-time update and enumeration delay. We call this class CQAP0.
All queries outside CQAP0 do not admit constant-time update and delay regardless of the
preprocessing time, unless the widely held Online Matrix-Vector Multiplication conjecture [17]
fails. Our dichotomy generalises a prior dichotomy for q-hierarchical queries without access
patterns [7]. The q-hierarchical queries are in CQAP0, yet they have no input variables. The
class CQAP0 further contains cyclic queries with input variables. For instance, the edge
triangle detection problem is in CQAP0: Given an edge (u, v), check whether it participates in
a triangle. The smallest query patterns not in CQAP0 strictly include the non-q-hierarchical
ones and also contain others that are sensitive to the interplay of the output and input
variables. Proving that they do not admit constant-time update and delay requires different
and additional hardness reductions from the Online Matrix-Vector Multiplication problem.

Section 6 charts the preprocessing time - update time - enumeration delay trade-off for
the dynamic evaluation of the class of CQAPs whose fractures are hierarchical. It shows
that as the preprocessing and update times increase, the enumeration delay decreases. Our
trade-off reveals the optimality for a particular class of CQAPs with hierarchical fractures,
called CQAP1, which lies outside CQAP0: The complexity of CQAP1 for both the update
time and the enumeration delay matches the lower bound Ω(N 1

2) for queries outside CQAP0,
where N is the size of the input database. This is weakly Pareto optimal as we cannot lower
both the update time and delay complexities (whether one of them can be lowered remains
open). Our approach for CQAP1 exhibits a continuum of trade-offs: O(N1+ϵ) preprocessing
time, O(N ϵ) amortized update time and O(N1−ϵ) enumeration delay, for ϵ ∈ [0, 1]. By
tweaking the parameter ϵ, one can optimise the overall time for a sequence of enumeration
and update tasks and achieve an asymptotically lower compute time than prior work. A
well-studied query in CQAP1 is the Dynamic Set Intersection problem [26]: We are given
sets S1, ..., Sm subject to element insertions and deletions. For each access request (i, j) with
i, j ∈ [m], we need to decide whether the intersection of Si and Sj is empty. Our approach
recovers the complexity given by prior work [26] for this problem using ϵ = 0.5.

2 Preliminaries

Data Model. A schema X = (X1, . . . , Xn) is a tuple of distinct variables. Each variable
Xi has a discrete domain Dom(Xi). We treat schemas and sets of variables interchangeably,
assuming a fixed ordering of variables. A tuple x of values has schema X = Sch(x) and
is an element from Dom(X) = Dom(X1) × · · · × Dom(Xn). A relation R over schema X is
a function R : Dom(X) → Z such that the multiplicity R(x) is non-zero for finitely many
tuples x. A tuple x is in R, denoted by x ∈ R, if R(x) ̸= 0. The size |R| of R is the size
of the set {x | x ∈ R}. A database is a set of relations and has size given by the sum of
the sizes of its relations. Given a tuple x over schema X and S ⊆ X , x[S] is the restriction
of x onto S. For a relation R over schema X , schema S ⊆ X , and tuple t ∈ Dom(S):
σS=tR = { x | x ∈ R ∧ x[S] = t } is the set of tuples in R that agree with t on the variables
in S; πSR = { x[S] | x ∈ R } stands for the set of tuples in R projected onto S, i.e., the set
of distinct S-values from the tuples in R with non-zero multiplicities. For a relation R over
schema X and Y ⊆ X , the indicator projection IYR is a relation over Y such that [2]:

for all y ∈ Dom(Y) : IYR(y) =
{

1 if there is t ∈ R such that y = t[Y]
0 otherwise

ICDT 2023

17:4 Conjunctive Queries with Free Access Patterns Under Updates

An update is a relation where tuples with positive multiplicities represent inserts and
tuples with negative multiplicities represent deletes. Applying an update to a relation means
unioning the update with the relation. A single-tuple update to a relation R is a singleton
relation δR = {x → m}, where the multiplicity m = δR(t) of the tuple t in δR is non-zero.

Computational Model. We consider the RAM model of computation. Each relation or
materialised view R over schema X is implemented by a data structure that stores key-value
entries (x, R(x)) for each tuple x with R(x) ̸= 0 and needs O(|R|) space. This data structure
can: (1) look up, insert, and delete entries in (amortised) constant time, (2) enumerate all
stored entries in R with constant delay, and (3) report |R| in constant time. For a schema
S ⊂ X , we use an index data structure that for any t ∈ Dom(S) can: (4) enumerate all
tuples in σS=tR with constant delay, (5) check t ∈ πSR in constant time; (6) return |σS=tR|
in constant time; and (7) insert and delete index entries in (amortised) constant time.

We next exemplify a data structure that conforms to the above computational model.
Consider a relation (materialized view) R over schema X . A hash table with chaining stores
key-value entries (x, R(x)) for each tuple x over X with R(x) ̸= 0. The entries are doubly
linked to support enumeration with constant delay. The hash table can report the number of
its entries in constant time and supports lookups, inserts, and deletes in constant time on
average, under the assumption of simple uniform hashing.

To support index operations on a schema F ⊂ X , we create another hash table with
chaining where each table entry stores a tuple t of F -values as key and a doubly-linked list
of pointers to the entries in R having the F-values t as value. Looking up an index entry
given t takes constant time on average under simple uniform hashing, and its doubly-linked
list enables enumeration of the matching entries in R with constant delay. Inserting an index
entry into the hash table additionally prepends a new pointer to the doubly-linked list for a
given t; overall, this operation takes constant time on average. For efficient deletion of index
entries, each entry in R also stores back-pointers to its index entries (one back-pointer per
index for R). When an entry is deleted from R, locating and deleting its index entries in
doubly-linked lists takes constant time per index.

3 Conjunctive Queries with Free Access Patterns

We introduce the queries investigated in this paper along with several of their properties. A
conjunctive query with free access patterns (CQAP for short) has the form

Q(O|I) = R1(X1), . . . , Rn(Xn).

We denote by: (Ri)i∈[n] the relation symbols; (Ri(Xi))i∈[n] the atoms; vars(Q) =
⋃

i∈[n] Xi

the set of variables; atoms(X) the set of the atoms containing the variable X; atoms(Q) =
{Ri(Xi) | i ∈ [n]} the set of all atoms; and free(Q) = O∪I ⊆ vars(Q) the set of free variables,
which are partitioned into input variables I and output variables O. An empty set of input
or output variables is denoted by a dot (·).

Given a database D and a tuple i over I, the output of Q for the input tuple i is denoted
by Q(O|i) and is defined by πOσI=iQ(D): This is the set of tuples o over O such that the
assignment i ◦ o to the free variables satisfies the body of Q.

The hypergraph of a query Q is H = (V = vars(Q), E = {{Xi | i ∈ [n]}}), whose vertices
are the variables and hyperedges are the schemas of the atoms in Q. The fracture of a CQAP
Q is a CQAP Q† constructed as follows. We start with Q† as a copy of Q. We replace
each occurrence of an input variable by a fresh variable. Then, we compute the connected

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 17:5

components of the hypergraph of the modified query. Finally, we replace in each connected
component of the modified query all new variables originating from the same input variable
by one input variable.

We next define the notion of dominance for variables in a CQAP Q. For variables A and
B, we say that B dominates A if atoms(A) ⊂ atoms(B). The query Q is free-dominant (input-
dominant) if for any two variables A and B, it holds: if A is free (input) and B dominates
A, then B is free (input). The query Q is almost free-dominant (almost input-dominant)
if: (1) For any variable B that is not free (input) and for any atom R(X) ∈ atoms(B),
there is another atom S(Y) ∈ atoms(B) such that X ∪ Y cover all free (input) variables
dominated by B; (2) Q is not already free-dominant (input-dominant). A query Q is
hierarchical if for any A, B ∈ vars(Q), either atoms(A) ⊆ atoms(B), atoms(B) ⊆ atoms(A),
or atoms(B) ∩ atoms(A) = ∅. A query is q-hierarchical if it is hierarchical and free-dominant.

▶ Definition 1. A query is in CQAP0 if its fracture is hierarchical, free-dominant, and input-
dominant. A query is in CQAP1 if its fracture is hierarchical and is almost free-dominant,
or almost input-dominant, or both.

The subset of CQAP0 without input variables is the class of q-hierarchical queries [7].

▶ Example 2. The query Q1(A, C | B, D) = R(A, B), S(B, C), T (C, D), U(A, D) is input-
dominant, free-dominant, but not hierarchical. Its fracture Q†(A, C | B1, B2, D1, D2) =
R(A, B1), S(B2, C), T (C, D1), U(A, D2) is hierarchical but not input-dominant: C dominates
both B2 and D1 and A dominates both B1 and D2, yet A and C are not input. It is however
almost input-dominant: A is not input and for any of its atoms R(A, B1) and U(A, D2),
there is another atom U(A, D2) and respectively R(A, B1) such that both R(A, B1) and
U(A, D2) cover the variables B1 and D2 dominated by A; a similar reasoning applies to C.
This means that Q1 is in CQAP1.

The query Q2(A | B) = S(A, B), T (B) is in CQAP0, since its fracture Q†(A | B1, B2) =
S(A, B1), T (B2) is hierarchical, free-dominant, and input-dominant.

The query Q3(B | A) = S(A, B), T (B) is in CQAP1. Its fracture is the query itself. It is
hierarchical, yet not input-dominant, since B dominates A and is not input. It is, however,
almost input-dominant: for each atom of B, there is one other atom such that together they
cover A. Indeed, atom S(A, B) already covers A, and it also does so together with T (B);
atom T (B) does not cover A, but it does so together with S(A, B).

The following are the smallest hierarchical queries that are not in CQAP0 but in CQAP1:
Q(A | ·) = R(A, B), S(B); Q(B | A) = R(A, B), S(B); and Q(· | A) = R(A, B), S(B). ⌟

3.1 Variable Orders
Variable orders are used as logical plans for the evaluation of conjunctive queries [31]. We
next adapt them to CQAPs. Given a query, two variables depend on each other if they occur
in the same query atom. A variable order (VO) ω for a CQAP Q is a pair (Tω, depω), where:

Tω is a (rooted) forest with one node per variable. The variables of each atom in Q lie
along the same root-to-leaf path in Tω.
The function depω maps each variable X to the subset of its ancestor variables in Tω on
which the variables in the subtree rooted at X depend.

An extended VO is a VO where we add as new leaves atoms corresponding to relations
and their indicator projections. We add each atom in the query as child of its variable placed
lowest in the VO. We explain next how the indicator projections are added to a VO ω. The
role of the indicators is to reduce the asymptotic complexity of cyclic queries [2].

ICDT 2023

17:6 Conjunctive Queries with Free Access Patterns Under Updates

indicators(CQAP Q, VO ω) : extended VO

switch ω:

R(Y) 1 return R(Y)
X

ω1 . . . ωk

2 let ω̂i = indicators(ωi) ∀i ∈ [k]
3 let S = {X} ∪ depω(X) and R be the set of atoms in ω

4 let I = { IZR(Z) | R(Y) ∈ (atoms(Q) \ R) and Z = Y ∩ S ̸= ∅ }
5 let {I1, ..., Iℓ} = GYO∗(I, R)

6 return

 X

ω̂1 . . . ω̂k I1 . . . Iℓ

Figure 1 Adding indicator projections to a VO ω of a CQAP Q. The function indicators is defined
using pattern matching on the structure of the VO ω, which can be a leaf or an inner node (cf.
left column under switch). Each variable X in ω gets as new children the indicator projections
of relations that do not occur in the subtree rooted at X but form a cycle with those that occur.
GYO∗ (Section 3.1) is based on the GYO reduction [4].

Given a CQAP Q and a VO ω, where the atoms of Q have been already added, the
function indicators in Figure 1 extends ω with indicator projections. At each variable X in
ω, we compute the set I of all possible indicator projections (Line 4). Such indicators IZR

are for relations R whose atoms are not included in the subtree rooted at X but share a
non-empty set Z of variables with {X} ∪ depω(X). We choose from this set those indicators
that form a cycle with the atoms in the subtree of ω rooted at X (Line 5). We achieve this
using a variant of the GYO reduction [4]. Given the hypergraph formed by the hyperedges
representing these indicators I and the atoms R, GYO repeatedly applies two rules until it
reaches a fixpoint: (1) Remove a node that only appears in one hyperedge; (2) Remove a
hyperedge that is included in another hyperedge. If the result of GYO is a hypergraph with
no nodes and one empty hyperedge, then the input hypergraph is (α-)acyclic. Otherwise,
the input hypergraph is cyclic and the GYO’s output is a hypergraph with cycles. Our GYO
variant, dubbed GYO∗ in Figure 1, returns the hyperedges that originated from the indicator
projections in I and contribute to this non-empty output hypergraph. The chosen indicator
projections become children of X (Line 6).

In the rest of this paper, whenever we refer to a variable order, we always assume an
extended VO.

▶ Example 3. Consider the triangle CQAP query

Q(B, C|A) = R(A, B), S(B, C), T (C, A).

The fracture Q† of Q is the query itself. Figure 2 depicts a VO ω for Q. The input variable
A is on top of the output variables B and C. At variable C, the function indicators from
Figure 1 creates an indicator projection IA,BR since the relation R is not under C but forms
a cycle with the relations S and T . ⌟

We introduce notation for an extended VO ω. Its subtree rooted at X is denoted by ωX .
The sets vars(ω) and ancω(X) consist of all variables of ω and respectively the variables on
the path from X to the root excluding X. We denote by atoms(ω) all atoms and indicators
at the leaves of ω and by QX the join of all atoms atoms(ω) (all variables are free).

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 17:7

dep(A) = ∅
dep(B) = {A}

dep(C) = {A, B}

A

B

C

S(B, C) T (C, A)

R(A, B)

IA,BR(A, B)

VA(A)

VB(A, B)

V ′
C(A, B)

VC(A, B, C)

S(B, C) T (C, A)

R(A, B)

IA,BR(A, B)

Figure 2 Left: (Access-top extended) VO for the query Q(B, C|A) = R(A, B), S(B, C), T (C, A).
Right: The view tree constructed from this VO. Note the indicator IA,BR(A, B) added below the
variable C (left) and below the view VC (right).

We next introduce classes of VOs for CQAP queries. A VO ω is canonical if the variables
of the leaf atom of each root-to-leaf path are the inner nodes of the path. Hierarchical queries
are precisely those conjunctive queries that admit canonical variable orders. A VO ω is
free-top if no bound variable is an ancestor of a free variable. It is input-top if no output
variable is an ancestor of an input variable. The sets of free-top and input-top VOs for Q

are denoted as free-top(Q) and input-top(Q), respectively. A VO is called access-top if it is
free-top and input-top: acc-top(Q) = free-top(Q) ∩ input-top(Q).

▶ Example 4. The query Q(B|A) = R(A, B), S(B) admits the VO (in term notation; “-”
represents the parent-child relationship): B − {A − R(A, B), S(B)}, where B has the variable
A and the atom S(B) as children and A has the atom R(A, B) as child. The dependency
sets are dep(B) = ∅ and dep(A) = {B}. This VO is free-top, since both variables are free; it
is not input-top, since the output variable B is on top of the input variable A. By swapping
A and B in the order, it becomes input-top and then also access-top; the dependencies then
become: dep(A) = ∅ and dep(B) = {A}.

The triangle query Q(A, B|·) = R(A, B), S(B, C), T (A, C) admits the VO C − A −
{T (A, C), B − {R(A, B), S(B, C), IACT (A, C)}}, where one child of B is the indicator pro-
jection IACT of T on {A, C}. The dependency sets are dep(C) = ∅, dep(A) = {C}, and
dep(B) = {A, C}. The VO is input-top, since the query has no input variables; it is not
free-top, since the bound variable C is on top of the free variables A and B.

The fracture of the 4-cycle query in Example 2 admits the access-top VO consisting
of two disconnected paths: B1 − D2 − A − {R(A, B1), U(A, D2)} and B2 − D1 − C −
{S(B2, C), T (C, D1)}, where the dependency sets are: dep(A) = {B1, D2}, dep(D2) = {B1},
dep(B1) = dep(B2) = ∅, dep(C) = {B2, D1}, and dep(D1) = {B2}. ⌟

3.2 Width Measures
We next introduce two width measures for a VO ω and CQAP Q. They capture the complexity
of computing and maintaining the output of Q.

▶ Definition 5. The static width w(ω) and dynamic width δ(ω) of a VO ω are:

w(ω) = max
X∈vars(ω)

ρ∗
QX

({X} ∪ depω(X))

δ(ω) = max
X∈vars(ω)

max
R(Y)∈atoms(ωX)

ρ∗
QX

(({X} ∪ depω(X)) \ Y)

For a query QX and a set of variables X = {X} ∪ depω(X), the fractional edge cover
number [3] ρ∗

QX
(X) defines a worst-case upper bound on the time needed to compute QX(X).

Here, QX is the join of all atoms under X in the VO ω. The static width w of a VO ω is

ICDT 2023

17:8 Conjunctive Queries with Free Access Patterns Under Updates

then defined by the maximum over the fractional edge cover numbers of the queries QX for
the variables X in ω. The dynamic width is defined similarly, with one simplification: We
consider every case of a relation (or indicator projection) R being replaced by a single-tuple
update, so its variables Y are all set to constants and can be ignored in the computation of
the fractional edge cover number.

We consider the standard lexicographic ordering ≤ on pairs of dynamic and static widths:
(δ1, w1) ≤ (δ2, w2) if δ1 ≤ δ2 or δ1 = δ2 and w1 ≤ w2. Given a set S of VOs, we define
minω∈S(δ(ω), w(ω)) = (δ, w) such that ∀ω ∈ S : (δ, w) ≤ (δ(ω), w(ω)).

▶ Definition 6. The dynamic width δ(Q) and static width w(Q) of a CQAP Q are:

(δ(Q), w(Q)) = min
ω∈acc-top(Q†)

(δ(ω), w(ω))

Since we are interested in dynamic evaluation, Definition 6 first minimises for the dynamic
width and then for the static width. To determine the dynamic and the static width of a
CQAP Q, we first search for the VOs of the fracture Q† with minimal dynamic width and
choose among them one with the smallest static width. The extended technical report [22]
further expands on the width measures with examples and properties.

▶ Example 7. Consider the query Q(O | I) = R(A, B, C), S(A, B, D), T (A, E). The static
width w and the dynamic width δ of Q vary depending on the access pattern:
For Q({C, D, E} | {A, B}), w = 1 and δ = 0. For Q({A, C, D, E} | {B}), w = 1 and δ = 1.
For Q({A, C, D} | {B, E}), w = 2 and δ = 1. For Q({A, E} | {B, C, D}), w = 2 and δ = 2.
For Q({A, B} | {C, D, E}), w = 3 and δ = 2. For Q({A, B, C, D, E}|·), Q(·|{A, B, C, D, E})
and Q({B, C, D, E}|{A}), w = 1 and δ = 0.

Recall the triangle CQAP query Q(B, C|A) = R(A, B), S(B, C), T (C, A) from Example 3
and its access-top VO in Figure 2. By adding the indicator IA,BR below C, the frac-
tional edge cover number ρ∗({C} ∪ dep(C)) = ρ∗({A, B, C}) of the query QC(A, B, C) =
S(B, C), T (C, A), IA,BR(A, B) reduces from 2 to 3

2 . This fractional edge cover number is
the largest one among the fractional edge cover numbers of the queries induced by other
variables, thus the static width of the VO ω is 3

2 .
The dynamic width of ω is dominated by the fractional edge cover number ρ∗({C} ∪

dep(C)) − S) = ρ∗({A, B, C} − S) of the query QC , where S is the schema of S, T , or IA,BR.
In each of these three cases, {A, B, C} − S consists of a single variable. Hence, the fractional
edge cover number is 1 and then the dynamic width of ω is 1. ⌟

4 CQAP Evaluation

In this section, we introduce a fully dynamic evaluation approach for arbitrary CQAPs whose
complexity is stated in the following theorem.

▶ Theorem 8. Given a CQAP with static width w and dynamic width δ and a database of
size N , the query can be evaluated with O(Nw) preprocessing time, O(N δ) update time under
single-tuple updates, and O(1) enumeration delay.

Our approach has three stages: preprocessing, enumeration, and updates. They are
detailed in the following subsections. We consider in the following a fixed CQAP Q(O|I), its
fracture Q†(O|I†), and a database of size N .

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 17:9

τ(VO ω) : view tree

switch ω:

R(Y) 1 return R(Y)

X

ω1 . . . ωk

2 let Ti = τ(ωi) ∀i ∈ [k]
3 let S = {X} ∪ depω(X) and VX(S) = join of roots of T1, ..., Tk

4 if X has no sibling return

VX(S)

T1 . . . Tk

5 let V ′
X(S \ {X}) = VX(S) return

V ′

X(S \ {X})

VX(S)

T1 . . . Tk

Figure 3 Constructing a view tree following a VO ω. The function τ is defined using pattern
matching on the structure of the VO ω, which can be a leaf or an inner node (cf. left column under
switch). At each variable X in ω, the function creates a view VX whose schema consists of X and
the dependency set of X. If X has siblings, it adds a view on top of VX that marginalises out X.

4.1 Preprocessing

In the preprocessing stage, we construct a set of view trees that represent the result of Q†
over both its input and output variables. A view tree [30] is a (rooted) tree with one view
per node. It is a logical project-join plan in the classical database systems literature, but
where each intermediate result is materialised. The view at a node is defined as the join of
the views at its children, possibly followed by a projection. The view trees are modelled
following an access-top VO ω of Q†. In the following, we discuss the case of ω consisting of a
single tree; otherwise, we apply the preprocessing stage to each tree in ω.

Given an access-top VO ω, the function τ(ω) in Figure 3 returns a view tree constructed
from ω. The function traverses ω bottom-up and creates at each variable X, a view VX

defined over the join of the child views of X. The schema of VX consists of X and the
dependency set of X (Line 3). This view allows to efficiently enumerate the X-values given a
tuple of values for the variables in the dependency set. If X has siblings, the function creates
an additional view V ′

X on top of VX whose purpose is to aggregate away (or marginalise out)
X from VX (Line 5). This view allows to efficiently maintain the ancestor views of VX under
updates to the views created for the siblings of X.

The time to construct the view tree τ(ω) is dominated by the time to materialise the
view VX for each variable X. The auxiliary view V ′

X above VX can be materialised by
marginalising out X in one scan over VX . Each view VX can be materialised in O(Nw) time,
where w = ρ∗

QX
({X ∪ depω(X)}). The definition of the static width of ω implies that the

view tree τ(ω) can be constructed in O(Nw(ω)) time. By choosing a VO whose static width
is w(Q), the preprocessing time of our approach becomes O(Nw(Q)), as stated in Theorem 8.

The next example demonstrates the construction of a view tree for a CQAP0 query.

▶ Example 9. Figure 4 shows the hypergraphs of the query Q(B, C, D, E|A) = R(A, B, C),
S(A, B, D), T (A, E) and its fracture Q†(B, C, D, E|A1, A2) = R(A1, B, C), S(A1, B, D),
T (A2, E). The fracture has two connected components: Q1(B, C, D|A1) = R(A1, B, C),

ICDT 2023

17:10 Conjunctive Queries with Free Access Patterns Under Updates

A

B E

C D
T (A, E)

R(A, B, C) S(A, B, D)

A1

B

C D

R(A1, B, C) S(A1, B, D)

A2

E

T (A2, E)

Figure 4 (Left) Hypergraph of the two queries with the same body but different access patterns,
as used in Examples 9 and 10; (middle and right) hypergraph of their fractures.

dep(A1) = ∅
dep(B) = {A1}

dep(C) = {A1, B}
dep(D) = {A1, B}

A1

B

C D

R(A1, B, C) S(A1, B, D)

VA1 (A1)

VB(A1, B)

V ′
C(A1, B)

VC(A1, B, C)

R(A1, B, C)

V ′
D(A1, B)

VD(A1, B, D)

S(A1, B, D)

δVA1 (a)

δVB(a, b)

δV ′
C(a, b)

δVC(a, b, c)

δR(a, b, c)

V ′
D(a, b)

VD(A1, B, D)

S(A1, B, D)

Figure 5 (Left) Access-top VO for Q1(B, C, D|A1) = R(A1, B, C), S(A1, B, D); (middle) the
view tree constructed from the VO; (right) the delta view tree under a single-tuple update to R.

S(A1, B, D) and Q2(E|A2) = T (A2, E). Figure 5 depicts an access-top VO (left) for Q1
and its corresponding view tree (middle). The VO has static width 1. Each variable in
the VO is mapped to a view in the view tree, e.g., B is mapped to VB(A1, B), where
{B, A1} = {B} ∪ dep(B). The views V ′

C and V ′
D are auxiliary views. The views V ′

C , V ′
D, and

VA1 marginalise out the variables C, D and respectively B from their child views. The view
VB is the intersection of V ′

C and V ′
D. Hence, all views can be computed in O(N) time. Since

the query fracture is acyclic, the view tree does not contain indicator projections.
The only access-top VO for the connected component Q2 of Q† is the top-down path

A2 − E − T (A2, E). The views mapped to A2 and E are VA2(A2) and respectively VE(A2, E).
They can obviously be computed in O(N) time. ⌟

The next example considers a CQAP1 whose preprocessing time is quadratic.

▶ Example 10. Consider the CQAP1 Q(E, D|A, C) = R(A, B, C), S(A, B, D), T (A, E) and
its fracture Q†(E, D|A1, A2, C) = R(A1, B, C), S(A1, B, D), T (A2, E). The fracture has the
two connected components Q1(B, D|A1, C) = R(A1, B, C), S(A1, B, D) and Q2(E|A2) =
T (A2, E). The hypergraphs (Figure 4) of Q and its fracture are the same as for the query in
Example 9. Figure 6 depicts an access-top VO (left) for Q1 and its corresponding view tree
(middle). The VO has static width 2. The view VB joins the relations R and S, which takes
O(N2) time. The views VD, VC , and VA are constructed from VB by marginalising out one
variable at a time. Hence, the view tree construction takes O(N2) time. The view tree for
Q2 is the same as in Example 9 and can be constructed in linear time. ⌟

Finally, we exemplify the construction of a view tree for a cyclic query.

▶ Example 11. Figure 2 depicts a VO and the view tree constructed from it for the triangle
CQAP query Q(B, C|A) = R(A, B), S(B, C), T (C, A) from Example 3. The view VC joins
the relations R and S and the indicator projection IA,BR, which can be computed in O(N 3

2)
time using a worst-case optimal join algorithm. The view VB can be computed in linear

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 17:11

dep(A1) = ∅
dep(C) = {A1}

dep(D) = {A1, C}
dep(B) = {A1, C, D}

A1

C

D

B

R(A1, B, C) S(A1, B, D)

VA1 (A1)

VC(A1, C)

VD(A1, C, D)

VB(A1, B, C, D)

R(A1, B, C) S(A1, B, D)

δVA1 (a)

δVC(a, c)

δVD(a, c, D)

δVB(a, b, c, D)

δR(a, b, c) S(a, b, D)

Figure 6 (Left) Access-top VO for Q1(B, D|A1, C) = R(A1, B, C), S(A1, B, D); (middle) the
view tree corresponding to the VO; (right) the delta view tree under a single-tuple update to R.

time by looking up each tuple from V ′
C in R. The views V ′

C and VA are constructed by
marginalising out one variable at a time in time O(N 3

2) and O(N) time, respectively. Hence,
the view tree construction takes O(N 3

2) time. ⌟

4.2 Enumeration
The view trees constructed by the function τ for any access-top VO for Q† allow for constant-
delay enumeration of the tuples in Q(O|i) given any tuple i over the input variables I.

Assume that ωi is a tree in the forest ω for which τ(ωi) constructs the view tree Ti, for
i ∈ [n]. Let Qi(Oi|Ii) with Oi = O ∩ vars(ωi) and Ii = I† ∩ vars(ωi) be the CQAP that
joins the atoms at the leaves of Ti. We first explain how to enumerate the tuples in Qi(Oi | i)
from Ti with constant delay, given an input tuple i over Ii. We traverse the view tree Ti in
preorder and execute at each view VX the following steps. In case X ∈ Ii, we check whether
the projection of i onto the schema of VX is in VX . If not, the query output is empty and we
stop. Otherwise, we continue with the preorder traversal. In case X ∈ Oi, we retrieve in
constant time the first X-value in VX given that the values over the variables in the root path
of X are already fixed to constants. After all views are visited once, we have constructed
the first complete output tuple and report it. Then, we iterate with constant delay over the
remaining distinct X-values in the last visited view VX . For each distinct X-value, we obtain
a new tuple and report it. After all X-values in VX are exhausted, we backtrack.

Assume now that we have a procedure that enumerates the tuples in Qi(Oi | ii) for any
tuple ii over Ii with constant delay. Consider a tuple i over the input variables I of Q. It
holds Q(O|i) = ×i∈[n]Qi(Oi|ii) where ii[X ′] = i[X] if X = X ′ or X is replaced by X ′ when
constructing the fracture of Q. We can enumerate the tuples in Q(O | i) with constant delay
by nesting the enumeration procedures for Q1(O1 | i1), . . . , Qn(On | in).

▶ Example 12. Consider the query Q(B, C, D, E|A) from Example 9 and the two connected
components Q1(B, C, D|A1) and Q2(E|A2) of its fracture. Figure 5 (middle) depicts the
view tree for Q1. Given an A1-value a, we can use this view tree to enumerate the distinct
tuples in Q1(B, C, D|a) with constant delay. We first check if a is included in the view VA1 .
If not, Q1(B, C, D|a) must be empty and we stop. Otherwise, we retrieve the first B-value
b paired with a in VB, the first C-value c paired with (a, b) in VC , and the first D-value d

paired with (a, b) in VD. Thus, we obtain in constant time the first output tuple (b, c, d) in
Q1(B, C, D|a) and report it. Then, we iterate over the remaining distinct D-values paired
with (a, b) in VD and report for each such D-value d′, a new tuple (b, c, d′). After all D-values
are exhausted, we retrieve the next distinct C-value paired with (a, b) in VC and restart the
iteration over the distinct D-values paired with (a, b) in VD, and so on. Overall, we construct
each distinct tuple in Q1(B, C, D|a) in constant time after the previous one is constructed.

ICDT 2023

17:12 Conjunctive Queries with Free Access Patterns Under Updates

Assume now that we have constant-delay enumeration procedures for the tuples in
Q1(B, C, D|a) and the tuples in Q2(E|a) for any A-value a. We can enumerate with
constant delay the tuples in Q(B, C, D, E|a) as follows. We ask for the first tuple (b, c, d) in
Q1(B, C, D|a) and then iterate over the distinct E-values in Q2(E|a). For each such E-value
e, we report the tuple (b, c, d, e). Then, we ask for the next tuple in Q1(B, C, D|a) and restart
the enumeration over the tuples in Q2(E|a), and so on. ⌟

4.3 Updates
We now explain how to update the view trees constructed by the function τ in Figure 3.
Consider a single-tuple update δR = {x → m} to an input relation R; m is positive in case
of insertion and negative in case of deletion. We first update each view tree that has an
atom R(X) at a leaf: We update each view on the path from that leaf to the root of the
view tree using the classical delta rules [9]. The update δR may affect indicator projections
IZR. A new single-tuple update δIZR = {x[Z] → k} to IZR is triggered in the following
two cases. If δR is an insertion and x[Z] is a value not already in πZR, then the new update
is triggered with k = 1. If δR is a deletion and πZR does not contain x[Z] after applying
the update to R, then the new update is triggered with k = −1. This update is propagated
up to the root of each view tree, like for δR.

Recall that the time to compute a view VX is O(Nw), where w = ρ∗
QX

({X} ∪ depω(X)).
In case of an update to a relation or indicator R over schema Y , the variables in Y are set to
constants. The time to update VX is then O(N δ), where δ = ρ∗

QX
(({X} ∪ depω(X)) \ Y).

Assuming that the dynamic width of ω is δ(Q), we conclude that the update time of our
approach is O(N δ(Q)), as stated in Theorem 8.

▶ Example 13. Figure 5 (right) shows the delta view tree for the view tree to the left under
a single-tuple update δR(a, b, c) to R. We update the relation R(A, B, C) with δR(a, b, c)
in constant time. The ancestor views of δR (in blue) are the deltas of the corresponding
views, computed by propagating δR from the leaf to the root. They can also be effected
in constant time. Overall, maintaining the view tree under a single-tuple update to any
relation takes O(1) time.

Consider now the delta view tree in Figure 6 (right) obtained from the view tree to its left
under the single-tuple update δR(a, b, c). We update VB(A1, B, C, D) with δVB(a, b, c, D) =
δR(a, b, c), S(a, b, D) in O(N) time, since there are at most N D-values paired with (a, b) in
S. We then update the views VD, VC , and VA1 in O(1) time. Updates to S are handled
analogously. Overall, maintaining the view tree under a single-tuple update to any relation
takes O(N) time. ⌟

4.4 Discussion
So far in this section, we explained how our approach works. We conclude with a high-level
discussion on key decisions behind our approach.

1. Variable orders. Our approach can be rephrased to use tree decompositions [16] instead
of VOs, since they are different syntaxes for the same query decomposition class [31]. Indeed,
the set consisting of a variable and its dependency set in a VO can be interpreted as a bag
of a tree decomposition whose edges between bags reflect those between the variables in
the VO. Variable orders are more natural for our algorithms for constructing view trees
and for enumeration as well as worst-case optimal join algorithms such as the LeapFrog

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 17:13

TrieJoin [33] and their use for constructing factorized representations of query results [31]:
These algorithms proceed one variable at a time and not one bag of variables at a time.
VO-based algorithms express more naturally computation by variable elimination.

2. Access-top VOs. Access-top VOs can have higher static and dynamic widths than
arbitrary VOs. However, they are needed to attain the constant-delay enumeration in
Theorem 8, as explained next. The maintenance procedure for view trees ensures that each
view is calibrated2 with respect to all of its descendant views and relations, since the updates
are propagated bottom-up from the relations to the top view. Since the views constructed for
the input variables are above all other views in a view tree constructed from an access-top
VO, these views are calibrated. For a given tuple of values over the input variables, the
calibration of these views guarantees that if they do not agree with this tuple, then there
is no output tuple associated with the input tuple. For constant-delay enumeration, we
follow a top-down traversal of the view tree and use the constant-time lookup of the hash
maps implementing the views. Furthermore, since the output variables are above the bound
variables in the VO, tuples of values over the output variables can be retrieved from views
whose schemas do not contain bound variables. Hence, we can enumerate the distinct tuples
over the output variables for a given tuple over the input variables.

In case we would have used an arbitrary (and not access-top) VO, then the input variables
may be anywhere in the VO; in particular, there may be views above the relations with the
input variables that do not have input variables. On an enumeration request, the values
given to the input variables act as selection conditions on the relations and may require
the calibration of the views on top before the enumeration starts; this calibration may
be as expensive as computing the query. Otherwise, we incur a non-constant cost for the
enumeration of each output tuple. Either way, the enumeration delay may not be constant.

3. Lazy approach using residual queries. A simple CQAP evaluation approach is the lazy
approach. On updates, the lazy approach just updates the input relations. On enumeration,
where each input variable is given a value, it computes the residual query obtained by setting
the input variables to the given values. The enumeration of the tuples in the output of a
residual query cannot guarantee constant delay, since the parts of the input relations, which
satisfy the selection conditions on the input variables, are not necessarily calibrated, and the
calibration may take as much time as computing the residual query.

4. Replacing each occurrence of an input variable by a fresh variable. Although this
query rewriting removes the joins on the input variables, it does not affect the correctness of
query evaluation. For enumeration, all fresh variables are fixed to given values. In access-top
VOs, these variables are above the other variables and are in views that are calibrated with
respect to the relations in their respective connected component of the rewritten query. We
can then check whether all view trees satisfy the assignment of values to the input values. If
a view tree fails, then the query output is empty for the values given to the input variables.

5. Query fractures. The query rewriting in the previous discussion point is only the first step
of query fracturing. The second step merges all fresh variables for an input variable into one
variable in case they are in the same connected component. This does not affect correctness

2 A relation R is calibrated with respect to other relations in a query Q if each tuple in R participates to
at least one tuple in the output of Q.

ICDT 2023

17:14 Conjunctive Queries with Free Access Patterns Under Updates

but may affect the complexity, as exemplified next. Consider the triangle query in Example 11:
Q(B, C|A) = R(A, B), S(B, C), T (C, A). If we were to replace A by two fresh variables A1
and A2, then the rewritten query would be: Q′(B, C|A1, A2) = R(A1, B), S(B, C), T (C, A2).
It still has one connected component. An access-top VO for Q′ is A1 − A2 − B − C (A1 and
A2 may be swapped, same for B and C). The static width of Q′ is 2. Yet by merging back
A1 and A2, we obtain Q, which admits the access-top VO A − B − C and static width 3/2
(same width can be obtained if B and C are swapped), as in Example 11.

5 A Dichotomy for CQAPs

The following dichotomy states that the queries in CQAP0 are precisely those CQAPs that
can be evaluated with constant update time and enumeration delay.

▶ Theorem 14. Let any CQAP query Q and database of size N .
If Q is in CQAP0, then it admits O(N) preprocessing time, O(1) enumeration delay, and
O(1) update time for single-tuple updates.
If Q is not in CQAP0 and has no repeating relation symbols, then there is no algorithm
that computes Q with arbitrary preprocessing time, O(N 1

2 −γ) enumeration delay, and
O(N 1

2 −γ) amortised update time, for any γ > 0, unless the OMv conjecture fails.
The hardness result in Theorem 14 is based on the following OMv problem:

▶ Definition 15 (Online Matrix-Vector Multiplication (OMv) [17]). We are given an n × n

Boolean matrix M and receive n Boolean column vectors v1, . . . , vn of size n, one by one;
after seeing each vector vi, we output the product Mvi before we see the next vector.

It is strongly believed that the OMv problem cannot be solved in subcubic time.

▶ Conjecture 16 (OMv Conjecture, Theorem 2.4 [17]). For any γ > 0, there is no algorithm
that solves the OMv problem in time O(n3−γ).

Queries in CQAP0 have dynamic width 0 and static width 1 [22]. Our approach from
Section 4 achieves linear preprocessing time, constant update time and enumeration delay
for such queries (Theorem 8), so it is optimal for CQAP0.

The smallest queries not included in CQAP0 are: Q1(O|·) = R(A), S(A, B), T (B) with
O ⊆ {A, B}; Q2(A|·) = R(A, B), S(B); Q3(·|A) = R(A, B), S(B); and Q4(B|A) = R(A, B),
S(B). Each query is equal to its fracture. Query Q1 is not hierarchical. Q2 is not free-
dominant. Q3 and Q4 are not input-dominant. Prior work showed that there is no algorithm
that achieves constant update time and enumeration delay for Q1 and Q2, unless the OMv
conjecture fails [7]. To prove the hardness statement in Theorem 14, we show that this
negative result also holds for Q3 and Q4. Then, given an arbitrary CQAP Q that is not in
CQAP0, we reduce the evaluation of one of the four queries above to the evaluation of Q.

6 Trade-Offs for CQAPs with Hierarchical Fractures

For CQAPs with hierarchical fractures, the complexities in Theorem 8 can be parameterised
to uncover trade-offs between preprocessing, update, and enumeration.

▶ Theorem 17. Let any CQAP Q with static width w and dynamic width δ, a database
of size N , and ϵ ∈ [0, 1]. If Q’s fracture is hierarchical, then Q admits O(N1+(w−1)ϵ)
preprocessing time, O(N1−ϵ) enumeration delay, and O(N δϵ) amortised update time for
single-tuple updates.

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 17:15

This trade-off continuum can be obtained using one algorithm parameterised by ϵ. This
algorithm either recovers or has lower complexity than prior approaches. Using ϵ = 1, we
recover the complexities in Theorem 8 and therefore also the constant update time and delay
for queries in CQAP0 in Theorem 14.

Theorem 17 can be refined for CQAP1, since δ = 1 and w ≤ 2 for queries in this class.

▶ Corollary 18 (Theorem 17). Let any query in CQAP1, a database of size N , and ϵ ∈
[0, 1]. Then Q admits O(N1+ϵ) preprocessing time, O(N1−ϵ) enumeration delay, and O(N ϵ)
amortised update time for single-tuple updates.

For ϵ = 0.5, the update time and delay for queries in CQAP1 match the lower bound in
Theorem 14 for all queries outside CQAP0. This makes our approach weakly Pareto optimal
for CQAP1, as lowering both the update time and delay would violate the OMv conjecture.

Our algorithm has two core ideas. (For lack of space, we defer the details to the extended
technical report [22].) First, we partition the input relations into heavy and light parts
based on the degrees of the values. This transforms a query over the input relations into a
union of queries over heavy and light relation parts. Second, we employ different evaluation
strategies for different heavy-light combinations of parts of the input relations. This allows
us to confine the worst-case behaviour caused by high-degree values in the database during
query evaluation.

We construct a set of VOs for the hierarchical fracture of a given CQAP. Each VO
represents a different evaluation strategy over heavy and light relation parts. For VOs
over light relation parts, we follow the general approach from Section 4 and construct view
trees from access-top VOs. For VOs involving heavy relation parts, we construct view trees
from VOs that are not access-top, thus yielding non-constant enumeration delay but better
preprocessing and update times. This trade-off is controlled by the parameter ϵ.

Enumerating distinct tuples from the constructed view trees poses two challenges. First,
these view trees may encode overlapping subsets of the query result. To enumerate only
distinct tuples from these view trees, we use the union algorithm [14] and view tree iterators,
as in prior work [23]. Second, for views trees built from VOs that are not access-top, the
enumeration approach from Section 4 would report the values of bound variables before the
values of free variables or the values of output variables before setting the values of input
variables. To resolve this issue, we instantiate a view tree iterator for each value of the
variable that violates the free-dominance or input-dominance condition. We then use the
union algorithm to report only distinct tuples over the output variables. By partitioning
input relations, we ensure that the number of instantiated iterators depends on ϵ. For view
trees built from access-top VOs, we use the enumeration approach from Section 4.

6.1 Data Partitioning

We partition relations based on the frequencies of their values. For a database D, relation
R ∈ D over schema X , schema S ⊂ X , and threshold θ, the pair (RS ✮H , RS ✮L) is a partition
of R on S with threshold θ if it satisfies the conditions:

(union) R(x) = RS ✮H(x) + RS ✮L(x) for x ∈ Dom(X)
(domain partition) πSRS ✮H ∩ πSRS ✮L = ∅

(heavy part) ∀t ∈ πSRS ✮H , ∃K ∈ D: |σS=tK| ≥ 1
2 θ

(light part) ∀t ∈ πSRS ✮L and ∀K ∈ D: |σS=tK| < 3
2 θ

ICDT 2023

17:16 Conjunctive Queries with Free Access Patterns Under Updates

We call (RS ✮H , RS ✮L) a strict partition of R on S with threshold θ if it satisfies the union and
domain partition conditions and the strict versions of the heavy and light part conditions:

(strict heavy part) ∀t ∈ πSRS ✮H , ∃K ∈ D: |σS=tK| ≥ θ

(strict light part) ∀t ∈ πSRS ✮L and ∀K ∈ D: |σS=tK| < θ

The relation RS ✮H is called heavy, and the relation RS ✮L is called light on the partition
key S, as they consist of all S-tuples that are heavy and respectively light in R. Due
to the domain partition, the relations RS ✮H and RS ✮L are disjoint. For |D| = N and a
strict partition (RS ✮H , RS ✮L) of R on S with threshold θ = N ϵ for ϵ ∈ [0, 1], we have: (1)
∀t ∈ πSRS ✮L : |σS=tRS ✮L| < θ = N ϵ; and (2) |πSRS ✮H | ≤ N

θ = N1−ϵ. The first bound
follows from the strict light part condition. In the second bound, πSRS ✮H refers to the tuples
over schema S with high degrees in some relation in the database. The database can contain
at most N

θ such tuples; otherwise, the database size would exceed N .
Disjoint relation parts can be further partitioned independently of each other on different

partition keys. We write RS1 ✮s1,...,Sn ✮sn to denote the relation part obtained after partitioning
RS1 ✮s1,...,Sn−1 ✮sn−1 on Sn, where si ∈ {H, L} for i ∈ [n]. The domain of RS1 ✮s1,...,Sn ✮sn is
the intersection of the domains of RSi ✮si , for i ∈ [n]. We refer to S1 ✮ s1, . . . , Sn ✮ sn as a
heavy-light signature for R. Consider for instance a relation R with schema (A, B, C). One
possible partition of R consists of the relation parts RA ✮L, RA ✮H,AB ✮L, and RA ✮H,AB ✮H .
The union of these relation parts constitutes the relation R.

6.2 Preprocessing
The preprocessing has two steps. First, we construct a set of VOs corresponding to the
different evaluation strategies over the heavy and light relation parts. Second, we build a
view tree from each such VO using the function τ from the general case (Figure 3).

We next describe the construction of a set of VOs from a canonical VO ω of a hierarchical
CQAP Q(O|I). Without loss of generality, we assume that ω is a tree; in case ω is a forest,
the reasoning below applies independently to each tree in the forest. The construction
proceeds recursively on the structure of ω and forms the query QX(OX |IX) at each variable
X. The query QX is the join of the atoms in ωX , the set OX consists of the output variables
in ωX , and the set IX consists of the input variables in ωX and all ancestor variables along
the path from X to the root of ω. The next step analyses the query QX .

If QX is in CQAP0, we turn ωX into an access-top VO for QX by pulling the free variables
above the bound variables and the input variables above the output variables. For queries in
CQAP0, this restructuring does not increase their static width.

If QX is not in CQAP0, then ωX contains a bound variable that dominates a free variable
or an output variable that dominates an input variable. If X does not violate either of these
conditions, we recur on each subtree and combine the constructed VOs. Otherwise, we create
two sets of VOs, which encode different evaluation strategies for different parts of the result
of QX . Let key be the set of variables on the path from X to the root of the canonical VO
for Q, including X. For the first set of VOs, each leaf atom Rsig(X) below X is replaced
by Rsig,key→H(X) before recurring on each subtree, denoting that the evaluation of QX is
over relations parts that are heavy on key. For the second set of VOs, we turn ωX into an
access-top VO over relations parts that are light on key; this restructuring of the VO may
increase its static width.

We construct a view tree for each VO formed in the previous step. For each view tree,
we strict partition the input relations based on their heavy-light signature and compute
the queries defining the views. We refer to this step as view tree materialisation. The

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 17:17

VA1 (A1)

VC(A1, C)

VD(A1, C, D)

VB(A1, B, C, D)

RA1B ✮L(A1, B, C) SA1B ✮L(A1, B, D)

VA1 (A1)

VB(A1, B)

V ′
C(A1, B)

VC(A1, B, C)

RA1B ✮H(A1, B, C)

V ′
D(A1, B)

VD(A1, B, D)

SA1B ✮H(A1, B, D)

Figure 7 View trees constructed for Q1(D|A1, C) = R(A1, B, C), S(A1, B, D) from Example 19
using the VOs: (left) A1 − C − D − B − {RA1B ✮L(A1, B, C), SA1B ✮L(A1, B, D)} and (right) A1 −
B − {C − RA1B ✮H(A1, B, C), D − SA1B ✮H(A1, B, D)}.

view trees constructed for the evaluation of queries in CQAP0 or over heavy relation parts
follow canonical VOs, meaning that they can be materialised in linear time. The view trees
constructed for the evaluation of queries over light relation parts follow access-top VOs.
Using the degree constraints in the input relations, each such view trees can be materialised
in O(N1+(w−1)ϵ), where w is the static width of the query.

▶ Example 19. We explain the construction of the views tree for the connected component
from Figure 4 (middle) corresponding to the query Q1(D|A1, C) = R(A1, B, C), S(A1, B, D).
In the canonical VO of this query, shown in Figure 5 (left), the bound variable B dominates
the free variables C and D. We strictly partition the relations R and S on (A1, B) with
threshold N ϵ, where N is the database size. To evaluate the join over the light relation parts,
we turn the subtree in the canonical VO rooted at B into an access-top VO and construct a
view tree following this new VO, see Figure 7 (left). We compute the view VB(A1, B, C, D)
in time O(N1+ϵ): For each (a, b, c) in the light part RA1B ✮L(A1, B, C) of R, we fetch the
D-values in SA1B ✮L(A1, B, D) that are paired with (a, b). The iteration in RA1B ✮L(A1, B, C)
takes O(N) time and for each (a, b), there are at most N ϵ D-values in SA1B ✮L(A1, B, D).
The views VD, VC , and VA result from VB by marginalising out one variable at a time.
Overall, this takes O(N1+ϵ) time.

To evaluate the join over the heavy parts of R and S, we construct a view tree following
the canonical VO (Figure 7 right). The VO and view tree are the same as in Figure 4, except
that the leaves are the heavy parts of R and S. The view tree can be materialised in O(N)
time, cf. Example 9. Overall, the two view trees can be computed in O(N1+ϵ) time. ⌟

6.3 Updates
A single-tuple update to an input relation may cause changes in several view trees constructed
for a given hierarchical CQAP. If the input relation is partitioned, we first identify which
part of the relation is affected by the update. We then propagate the update in each view
tree containing the affected relation part, as discussed in Section 4.

▶ Example 20. We consider the maintenance of the view trees from Figure 7 under a
single-tuple update δR(a, b, c) to R. The update affects the heavy part RA1B ✮H if (a, b) ∈
πA1,BRA1B ✮H ; otherwise, it affects the light part RA1B ✮L. For the former, we propagate
the update from RA1B ✮H to the root. For each view on this path, we compute its delta
query and update the view in constant time for fixed (a, b, c). For the latter, we compute
the delta δVB(a, b, c, D) = δRA1B ✮L(a, b, c), SA1B ✮L(a, b, D) in O(N ϵ) time because there
are at most N ϵ D-values paired with (a, b) in SA1B ✮L. We then update VD(a, c, D) with

ICDT 2023

17:18 Conjunctive Queries with Free Access Patterns Under Updates

δVD(a, c, D) = δVB(a, b, c, D) in O(N ϵ) time and update the views VC(A1, C) and VA1(A1)
in constant time. The case of single-tuple updates to S is analogous. Overall, maintaining
the two view trees under a single-tuple update to any input relation takes O(N ϵ) time. ⌟

An update may change the degree of values over a partition key from light to heavy or
vice versa. In such cases, we need to rebalance the partitioning and possibly recompute some
views. Although such rebalancing steps may take time more than O(N δϵ), they happen
periodically and their amortised cost remains the same as for a single-tuple update.

7 Related Work

Our work is the first to investigate the dynamic evaluation for queries with access patterns.

Free Access Patterns. Our notion of queries with free access patterns corresponds to
parameterized queries [1]. These queries have selection conditions that set variables to
parameter values to be supplied at query time. Prior work closest in spirit to ours investigates
the space-delay trade-off for the static evaluation of full conjunctive queries with free access
patterns [11]. It constructs a succinct representation of the query output, from which the
tuples that conform with value bindings of the input variables can be enumerated. It does
not support queries with projection nor dynamic evaluation. Follow-up work considers the
static evaluation for Boolean conjunctive queries with access patterns [10]. Further works on
queries with access patterns [15, 34, 12, 5, 6] consider the setting where input relations have
input and output variables and there is no restriction on whether they are bound or free;
also, a variable may be input in a relation and output in another. This poses the challenge
of whether the query can be answered under specific access restrictions [28, 29, 27].

Dynamic evaluation. Our work generalises the dichotomy for q-hierarchical queries under
updates [7] and the complexity trade-offs for queries under updates [19, 20, 21]. The IVM
approaches Dynamic Yannakakis [18] and F-IVM [30], which is implemented on top of
DBToaster [24], achieve (i) linear-time preprocessing, linear-time single-tuple updates, and
constant enumeration delay for free-connex acyclic queries; and (ii) linear-time preprocessing,
constant-time single-tuple updates, and constant enumeration delay for q-hierarchical queries.
Theorem 8 recovers these results by noting that the static and dynamic widths are: 1 and
respectively in {0, 1} for free-connex acyclic queries and 1 and respectively 0 for q-hierarchical
queries. We refer the reader to a comprehensive comparison [23] of dynamic query evaluation
techniques and how they are recovered by the trade-off [21] extended in our work.

Our CQAP0 dichotomy strictly generalises the one for q-hierarchical queries [7]: The
set of q-hierarchical queries is a strict subset of CQAP0, while there are hard patterns of
non-CQAP0 beyond those for non-q-hierarchical queries.

There are key technical differences between the prior framework for dynamic evaluation
trade-off [21] and ours: different data partitioning; new modular construction of view trees;
access-top variable orders; new iterators for view trees modelled on any variable order. We
create a set of variable orders that represent heavy/light evaluation strategies and then map
them to view trees. One advantage is a simpler complexity analysis for the views, since the
variables orders and their view trees share the same width measures.

Cutset optimisations. Cutset conditioning [32] and cutset sampling [8] are used for efficient
exact and approximate inference in Bayesian networks. The idea is to choose a cutset, which
is a subset of variables, such that conditioning on the variables in the cutset, i.e., instantiating

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 17:19

them with possible values, yields a network with a small treewidth that allows exact inference.
The set of input variables of a CQAP can be seen as a given cutset, while fixing the input
variables to given values is conditioning. Query fracturing, as introduced in our work, is a
query rewriting technique that does not have a counterpart in cutset optimisations in AI.

8 Conclusion

This paper introduces a fully dynamic evaluation approach for conjunctive queries with free
access patterns. It gives a syntactic characterisation of those queries that admit constant-time
update and delay and further investigates the trade-off between preprocessing time, update
time, and enumeration delay for such queries.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995. URL: http://webdam.inria.fr/Alice/.
2 Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: Questions Asked Frequently. In

PODS, pages 13–28, 2016.
3 Albert Atserias, Martin Grohe, and Dániel Marx. Size Bounds and Query Plans for Relational

Joins. SIAM J. Comput., 42(4):1737–1767, 2013.
4 Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desirability of

Acyclic Database Schemes. J. ACM, 30(3):479–513, 1983.
5 Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. Querying with Access Patterns

and Integrity Constraints. VLDB, 8(6):690–701, 2015.
6 Michael Benedikt, Balder Ten Cate, and Efthymia Tsamoura. Generating Low-cost Plans

from Proofs. In PODS, pages 200–211, 2014.
7 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering Conjunctive Queries

Under Updates. In PODS, pages 303–318, 2017.
8 Bozhena Bidyuk and Rina Dechter. Cutset Sampling for Bayesian Networks. J. Artif. Intell.

Res., 28:1–48, 2007.
9 Rada Chirkova and Jun Yang. Materialized Views. Found. & Trends DB, 4(4):295–405, 2012.

10 Shaleen Deep, Xiao Hu, and Paraschos Koutris. Space-Time Tradeoffs for Answering Boolean
Conjunctive Queries. CoRR, abs/2109.10889, 2021. arXiv:2109.10889.

11 Shaleen Deep and Paraschos Koutris. Compressed Representations of Conjunctive Query
Results. In PODS, pages 307–322, 2018.

12 Alin Deutsch, Bertram Ludäscher, and Alan Nash. Rewriting Queries using Views with Access
Patterns under Integrity Constraints. Theor. Comput. Sci., 371(3):200–226, 2007.

13 Arnaud Durand and Etienne Grandjean. First-order Queries on Structures of Bounded Degree
are Computable with Constant Delay. TOCL, 8(4):21, 2007.

14 Arnaud Durand and Yann Strozecki. Enumeration Complexity of Logical Query Problems
with Second-order Variables. In CSL, pages 189–202, 2011.

15 Daniela Florescu, Alon Levy, Ioana Manolescu, and Dan Suciu. Query Optimization in the
Presence of Limited Access Patterns. SIGMOD Rec., 28(2):311–322, 1999.

16 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree Decompositions and Tractable
Queries. In PODS, pages 21–32, 1999.

17 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector
Multiplication Conjecture. In STOC, pages 21–30, 2015.

18 Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. The Dynamic Yannakakis Al-
gorithm: Compact and Efficient Query Processing Under Updates. In SIGMOD, pages
1259–1274, 2017.

ICDT 2023

http://webdam.inria.fr/Alice/
http://arxiv.org/abs/2109.10889

17:20 Conjunctive Queries with Free Access Patterns Under Updates

19 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Counting
Triangles under Updates in Worst-Case Optimal Time. In ICDT, pages 4:1–4:18, 2019.

20 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Maintaining
Triangle Queries under Updates. TODS, 45(3):11:1–11:46, 2020.

21 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in Static and Dynamic
Evaluation of Hierarchical Queries. In PODS, pages 375–392, 2020.

22 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Conjunctive Queries with Free
Access Patterns under Updates. CoRR, abs/2206.09032, 2022. arXiv:2206.09032.

23 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in Static and Dynamic
Evaluation of Hierarchical Queries. To appear in LMCS, 2023.

24 Christoph Koch et al. DBToaster: Higher-order Delta Processing for Dynamic, Frequently
Fresh Views. VLDB J., 23(2):253–278, 2014.

25 Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles and Techniques.
MIT Press, 2009.

26 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Dynamic Set Intersection. In WADS, pages
470–481, 2015.

27 Chen Li and Edward Chang. On Answering Queries in the Presence of Limited Access Patterns.
In ICDT, pages 219–233, 2001.

28 Alan Nash and Bertram Ludäscher. Processing First-Order Queries under Limited Access
Patterns. In PODS, pages 307–318, 2004.

29 Alan Nash and Bertram Ludäscher. Processing Unions of Conjunctive Queries with Negation
under Limited Access Patterns. In EDBT, pages 422–440, 2004.

30 Milos Nikolic and Dan Olteanu. Incremental View Maintenance with Triple Lock Factorization
Benefits. In SIGMOD, pages 365–380, 2018.

31 Dan Olteanu and Jakub Závodný. Size Bounds for Factorised Representations of Query
Results. TODS, 40(1):2:1–2:44, 2015.

32 Judea Pearl. Probabilistic Reasoning in Intelligent Systems - Networks of Plausible Inference.
Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann, 1989.

33 Todd L. Veldhuizen. Triejoin: A Simple, Worst-Case Optimal Join Algorithm. In ICDT, pages
96–106, 2014.

34 Ramana Yerneni, Chen Li, Jeffrey Ullman, and Hector Garcia-Molina. Optimizing Large Join
Queries in Mediation Systems. In ICDT, pages 348–364, 1999.

http://arxiv.org/abs/2206.09032

Finite-Cliquewidth Sets of Existential Rules
Toward a General Criterion for Decidable yet Highly Expressive Querying

Thomas Feller #

Technische Universität Dresden, Germany

Tim S. Lyon #

Technische Universität Dresden, Germany

Piotr Ostropolski-Nalewaja #

Technische Universität Dresden, Germany
University of Wrocław, Poland

Sebastian Rudolph #

Technische Universität Dresden, Germany

Abstract
In our pursuit of generic criteria for decidable ontology-based querying, we introduce finite-cliquewidth
sets (fcs) of existential rules, a model-theoretically defined class of rule sets, inspired by the clique-
width measure from graph theory. By a generic argument, we show that fcs ensures decidability of
entailment for a sizable class of queries (dubbed DaMSOQs) subsuming conjunctive queries (CQs).
The fcs class properly generalizes the class of finite-expansion sets (fes), and for signatures of arity
≤2, the class of bounded-treewidth sets (bts). For higher arities, bts is only indirectly subsumed
by fcs by means of reification. Despite the generality of fcs, we provide a rule set with decidable
CQ entailment (by virtue of first-order-rewritability) that falls outside fcs, thus demonstrating the
incomparability of fcs and the class of finite-unification sets (fus). In spite of this, we show that if
we restrict ourselves to single-headed rule sets over signatures of arity ≤2, then fcs subsumes fus.

2012 ACM Subject Classification Theory of computation → Description logics; Theory of
computation → Database query languages (principles); Theory of computation → Logic and
databases; Mathematics of computing → Graph theory

Keywords and phrases existential rules, TGDs, cliquewidth, treewidth, bounded-treewidth sets,
finite-unification sets, first-order rewritability, monadic second-order logic, datalog

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.18

Related Version Full Version: https://arxiv.org/abs/2209.02464 [15]

Funding Work supported by the European Research Council (ERC) Consolidator Grant 771779 A
Grand Unified Theory of Decidability in Logic-Based Knowledge Representation (DeciGUT).

1 Introduction

The problem of querying under existential rules1 (henceforth often shortened to rules) is a
popular topic in the research fields of database theory and knowledge representation. For
arbitrary rule sets, query entailment is undecidable [9], motivating research into expressive
fragments for which decidability can be regained.

1 Existential rules are also referred to as tuple-generating dependencies (TGDs) [1], conceptual graph
rules [31], Datalog± [20], and ∀∃-rules [3] in the literature.

© Thomas Feller, Tim S. Lyon, Piotr Ostropolski-Nalewaja, and Sebastian Rudolph;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 18; pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.feller@tu-dresden.de
https://orcid.org/0000-0001-8420-6118
mailto:timothy_stephen.lyon@tu-dresden.de
https://orcid.org/0000-0003-3214-0828
mailto:piotr.ostropolski-nalewaja@tu-dresden.de
https://orcid.org/0000-0002-8021-1638
mailto:sebastian.rudolph@tu-dresden.de
https://orcid.org/0000-0002-1609-2080
https://doi.org/10.4230/LIPIcs.ICDT.2023.18
https://arxiv.org/abs/2209.02464
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Finite-Cliquewidth Sets of Existential Rules

A theoretical tool which has not only proven useful for describing querying methods,
but also for identifying classes of rule sets with decidable query entailment, is the chase [4].
Given a database D and a rule set R, the (potentially non-terminating) chase procedure
yields a so-called universal model [14]. Universal models satisfy exactly those queries entailed
by D and R and thus allow for the reduction of query entailment to query evaluation.

Rule sets admitting finite universal models (a property equivalent to being a finite-
expansion set [3] or core-chase terminating [14]) are particularly well-behaved. But even in
cases where universal models are necessarily infinite, they may still be sufficiently “tame”
to allow for decidable query entailment, as is the case with the class of bounded-treewidth
sets (bts) [3]. A rule set R qualifies as bts iff for every database D, there exists a universal
model of D and R whose treewidth (a structural measure originating from graph theory) is
bounded by some n ∈ N. The bts class subsumes class of finite expansion sets (fes), and
gives rise to decidable query entailment for a sizable family of concrete, syntactically defined
classes of rule sets deploying more or less refined versions of guardedness [3, 7, 23].

While bts is a fairly general class, it still fails to contain rather simple rule sets; e.g., the
rule set R∞

tran, consisting of the two rules

E(x, y) → ∃zE(y, z) and E(x, y) ∧ E(y, z) → E(x, z),

falls outside the bts class. To give an idea as to why this holds, consider any database D
containing an E-fact (e.g., E(a, b)): the chase will yield a universal model resembling the
transitive closure of an infinite E-path, a clique-like structure of infinite treewidth. What
is more, not only does R∞

tran fail to be bts, it also fails to fall under the other generic
decidability criteria: it is neither fus (described below) nor finitely controllable (which would
guarantee the existence of a finite “countermodel” for each non-entailed query). In spite of
this, results for description logics confirm the decidability of (conjunctive) query entailment
over R∞

tran (see [18, 24]), incentivizing a generalization of the decidability criteria mentioned
above.

On a separate, but related note: the bts class is incomparable with the class of finite-
unification sets (fus) [3], another class giving rise to decidable query entailment thanks to
first-order rewritability. Such rule sets may feature non-guarded rules [8]; for instance, they
may include concept products [6, 30], which create a biclique linking instances of two unary
predicates, as in

Elephant(x) ∧ Mouse(y) → BiggerThan(x, y).

The above examples demonstrate a crucial weakness of the bts class, namely, its
inability to tolerate universal models exhibiting “harmless” unbounded clique-like structures.
Opportunely, the graph-theoretic notion of cliquewidth [13] overcomes this problem, while
retaining most of the desirable properties associated with the notion of treewidth. Inspired
by this less mainstream, but more powerful concept, we set out to introduce finite-cliquewidth
sets (fcs) of rules. As the original cliquewidth notion is tailored to finite undirected graphs,
some (not entirely straightforward) generalizations are necessary to adapt it to countable
instances, while at the same time, preserving its advantageous properties.

Our contributions can be summarized as follows:
We introduce an abstract framework showing how to utilize specific types of
model-theoretic measures to establish the decidability of query entailment for a
comprehensive class of queries (dubbed datalog / monadic second-order queries, or
DaMSOQs for short) that significantly extends the class of conjunctive queries.

T. Feller, T. S. Lyon, P. Ostropolski-Nalewaja, and S. Rudolph 18:3

Generalizing the eponymous notion from finite graph theory, we introduce the
model-theoretic measure of cliquewidth for countable instances over arbitrary signatures.
Based on our framework, we show that the derived notion of finite-cliquewidth sets
guarantees decidability of DaMSOQ entailment. In particular, we demonstrate that R∞

tran
is indeed fcs, thus showing that fcs incorporates rule sets outside bts and fus.
We compare the fcs and bts classes, obtaining: (good news) for binary signatures, fcs
subsumes bts, which (bad news) does not hold for higher-arity signatures, but (relieving
news) fcs still “indirectly subsumes” higher-arity bts through reification.
We compare the fcs and fus classes, obtaining: (good news) for sets of single-headed
rules over signatures of arity ≤2, fcs subsumes fus, which (bad news) does not hold for
multi-headed rules, but (relieving news) this could not be any different as there are fus
rule sets for which DaMSOQ entailment is undecidable.

For space reasons, we defer technical details and most proofs to the extended
version [15].

2 Preliminaries

Syntax and formulae. We let T denote a set of terms, defined as the union of three countably
infinite, mutually disjoint sets of constants C, nulls N, and variables V. We use a, b, c, . . .
(occasionally annotated) to denote constants, and use x, y, z, . . . (occasionally annotated) to
denote both nulls and variables. A signature Σ is a finite set of predicate symbols (called
predicates), which are capitalized (E, R, . . .). Throughout the paper, we assume a fixed
signature Σ, unless stated otherwise. For each predicate R ∈ Σ, we denote its arity with ar(R).
We say Σ is binary if it contains only predicates of arity ≤2. We assume Σ to contain a
special, “universal” unary predicate ⊤, assumed to hold of every term.2 An atom over Σ
is an expression of the form R(⃗t), where t⃗ is an ar(R)-tuple of terms. If t⃗ consists only of
constants, then R(⃗t) is a ground atom. An instance I over Σ is a (possibly countably infinite)
set of atoms over constants and nulls, whereas a database D is a finite set of ground atoms.
The active domain dom(X) of a set of atoms X is the set of terms appearing in the atoms of
X . Moreover, as instances over binary signatures can be viewed as directed edge-labelled
graphs, we often use graph-theoretic terminology when discussing such objects.

Homomorphisms. Given sets X , Y of atoms, a homomorphism from X to Y is a mapping
h : dom(X) → dom(Y) that satisfies: (i) R(h(⃗t)) ∈ Y , for all R(⃗t) ∈ X , and (ii) h(a) = a, for
each a ∈ C. X and Y are homomorphically equivalent (written X ≡ Y) iff homomorphisms
exist from X to Y and from Y to X . A homomorphism h is an isomorphism iff it is bijective
and h−1 is also a homomorphism. An instance I ′ is an induced sub-instance of an instance I
iff (i) I ′ ⊆ I and (ii) if R(⃗t) ∈ I and t⃗ ⊆ dom(I ′), then R(⃗t) ∈ I ′.

Existential rules. An (existential) rule ρ is a first-order sentence ∀x⃗y⃗ ϕ(x⃗, y⃗) → ∃z⃗ ψ(y⃗, z⃗),
where x⃗, y⃗, and z⃗ are mutually disjoint tuples of variables, and both the body ϕ(x⃗, y⃗) and the
head ψ(y⃗, z⃗) of ρ (denoted with body(ρ) and head(ρ), respectively) are conjunctions (possibly
empty, sometimes seen as sets) of atoms over the indicated variables. The frontier fr(ρ) of ρ
is the set of variables y⃗ shared between the body and the head. We often omit the universal
quantifiers prefixing existential rules. A rule ρ is (i) n-ary iff all predicates appearing in ρ

2 Assuming the presence of such a built-in domain predicate ⊤ does not affect our results, but it allows
for a simpler and more concise presentation.

ICDT 2023

18:4 Finite-Cliquewidth Sets of Existential Rules

are of arity at most n, (ii) single-headed iff head(ρ) contains a single atom, (iii) datalog iff
ρ does not contain an existential quantifier (otherwise non-datalog). We call a finite set of
existential rules R a rule set. Satisfaction of a rule ρ (a rule set R) by an instance I is
defined as usual and is written I |= ρ (I |= R, respectively). Given a database D and a rule
set R, we define the pair (D,R) to be a knowledge base, and define an instance I to be a
model of (D,R), written I |= (D,R), iff D ⊆ I and I |= R. A model I of (D,R) is called
universal iff there is a homomorphism from I into every model of (D,R).

Rule application and Skolem chase. A rule ρ = ϕ(x⃗, y⃗) → ∃z⃗ψ(y⃗, z⃗) is applicable to an
instance I iff there is a homomorphism h from ϕ(x⃗, y⃗) to I. We then call (ρ, h) a trigger of
I. The application of a trigger (ρ, h) in I yields the instance Ch(I, ρ, h) = I ∪ h̄(ψ(y⃗, z⃗)),
where h̄ extends h, mapping each variable z from z⃗ to a null denoted zρ,h(y⃗). Note that this
entails Ch(Ch(I, ρ, h), ρ, h′) = Ch(I, ρ, h) whenever h(y⃗) = h′(y⃗). Moreover, applications
of different rules or the same rule with different frontier-mappings are independent, so their
order is irrelevant. Hence we can define the parallel one-step application of all applicable
rules as

Ch1(I,R) =
⋃

ρ∈R, (ρ,h) trigger of I

Ch(I, ρ, h).

Then, we define the (breadth-first) Skolem chase sequence by letting Ch0(I,R) = I and
Chi+1(I,R) = Ch1(Chi(I,R),R), ultimately obtaining the Skolem chase Ch∞(I,R) =⋃

i∈N Chi(I,R). We note that the Skolem chase of a countable instance is countable, as is
the number of overall rule applications performed to obtain Ch∞(I,R).

(Unions of) conjunctive queries and their entailment. A conjunctive query (CQ) is a
formula q(y⃗) = ∃x⃗ ϕ(x⃗, y⃗) with ϕ(x⃗, y⃗) a conjunction (sometimes written as a set) of atoms
over the variables from x⃗, y⃗ and constants. The variables from y⃗ are called free. A Boolean
CQ (or BCQ) is a CQ with no free variables. A union of conjunctive queries (UCQ) ψ(y⃗)
is a disjunction of CQs with free variables y⃗. We will treat UCQs as sets of CQs. A BCQ
q = ∃x⃗ ϕ(x⃗) is satisfied in an instance I if there exists a homomorphism from ϕ(x⃗) to I. I
satisfies a union of BCQs if it satisfies at least one of its disjuncts. An instance I and rule
set R entail a BCQ q = ∃x⃗ ϕ(x⃗), written (I,R) |= q iff ϕ(x⃗) maps homomorphically into
every model of I and R. This coincides with the existence of a homomorphism from ϕ(x⃗)
into any universal model of I and R (e.g., the Skolem chase Ch∞(I,R)).

Rewritings and finite-unification sets. Given a rule set R and a CQ q(y⃗), we say that a
UCQ ψ(y⃗) is a rewriting of q(y⃗) under the rule set R iff for any database D and any tuple
of its elements a⃗ the following holds: Ch∞(D,R) |= q(⃗a) iff D |= ψ(⃗a). A rule set R is a
finite-unification set (fus) iff for every CQ, there exists a UCQ rewriting [3]. This property is
also referred to as first-order rewritability. If a rule set R is fus, then for any given CQ q(y⃗),
we fix one of its rewritings under R and denote it with rewR(q(y⃗)).

Treewidth and bounded-treewidth sets. Let I be an instance. A tree decomposition of I
is a (potentially infinite) tree T = (V,E), where:

V ⊆ 2dom(I), that is, each node X ∈ V is a set of terms of I, and
⋃

X∈V X = dom(I),
for each R(t1, ... , tn) ∈ I, there is an X ∈ V with {t1, ... , tn} ⊆ X,
for each term t in I, the subgraph of T induced by the nodes X with t ∈ X is connected.

T. Feller, T. S. Lyon, P. Ostropolski-Nalewaja, and S. Rudolph 18:5

The width of a tree decomposition is set to be the maximum over the sizes of all its nodes
minus 1, if such a maximum exists; otherwise, it is set to ∞. Last, we define the treewidth
of an instance I to be the minimal width among all of its tree decompositions, and denote
the treewidth of I as tw(I). A set of rules R is a bounded-treewidth set (bts) iff for any
database D, there is a universal model for (D,R) of finite treewidth.3

3 A Generic Decidability Argument

In this section, we provide an abstract framework for establishing decidability of entailment
for a wide range of queries, based on certain model-theoretic criteria being met by the
considered rule set. We first recall the classical notion of a (Boolean) datalog query, and
after, we specify the class of queries considered in our framework.

▶ Definition 1. Given a signature Σ, a (Boolean) datalog query q over Σ is represented
by a finite set Rq of datalog rules with predicates from ΣEDB ⊎ ΣIDB where ΣEDB ⊆ Σ and
ΣIDB ∩ Σ = ∅ such that (i) ΣEDB-atoms do not occur in rule heads of Rq, and (ii) ΣIDB
contains a distinguished nullary predicate Goal. Given an instance I and a datalog query
q, we say that q holds in I (I satisfies q), written I |= q, iff Goal ∈ Ch∞(I,Rq). Query
entailment is defined via satisfaction as usual. ⌟

Datalog queries can be equivalently expressed as sentences in second-order logic (with the
ΣIDB predicates quantified over) or in least fixed-point logic (LFP). For our purposes, the
given formulation is the most convenient; e.g., it makes clear that the second-order entailment
problem (D,R) |= q reduces to the first-order entailment problem (D,R ∪ Rq) |= Goal.

▶ Definition 2. A datalog/MSO query (DaMSOQ) over a signature Σ is a pair (q,Ξ), where q

is a datalog query over Σ and Ξ is a monadic second-order (MSO)4 sentence equivalent to q.
Satisfaction and entailment of DaMSOQs is defined via any of their constituents. ⌟

Consequently, DaMSOQs are the (semantic) intersection of datalog and MSO queries. While
representing DaMSOQs as a pair (q,Ξ) is logically redundant, it is purposeful and necessary:
the below decision procedure requires both constituents as input and it is not generally
possible to compute one from the other. Arguably, the most comprehensive, known DaMSOQ
fragment that is well-investigated and has a syntactic definition is that of nested monadically
defined queries, a very expressive yet computationally manageable formalism [29], subsuming
(unions of) Boolean CQs, monadic datalog queries [10], conjunctive 2-way regular path
queries [16], and nested versions thereof (e.g. regular queries [27] and others [5]).

▶ Definition 3. Let Σ be a finite signature. A width measure (for Σ) is a function w mapping
every countable instance over Σ to a value from N ∪ {∞}. We call w MSO-friendly iff there
exists an algorithm that, taking a number n ∈ N and an MSO sentence Ξ as input,

never terminates if Ξ is unsatisfiable, and
always terminates if Ξ has a model I with w(I) ≤ n. ⌟

3 The term “finite-treewidth set” would be more fitting and in line with our terminology, but we stick
to the established name. Also, the bts notion is not used entirely consistently in the literature; it
sometimes refers to structural properties of a specific type of chase. The “semantic bts” notion adopted
here subsumes all the others.

4 For an introduction to monadic second-order logic, see [13, Section 1.3].

ICDT 2023

18:6 Finite-Cliquewidth Sets of Existential Rules

As an unsophisticated example, note that the expansion function expansion : I 7→ |dom(I)|,
mapping every countable instance to the size of its domain, is an MSO-friendly width measure:
there are up to isomorphism only finitely many instances with n elements, which can be
computed and checked. As a less trivial example, the notion of treewidth has also been
reported to fall into this category [3].

▶ Definition 4. Let w be a width measure. A rule set R is called a finite-w set iff for every
database D, there exists a universal model I∗ of (D,R) satisfying w(I∗) ∈ N. ⌟

Note that the finite width required by this definition does not need to be uniformly
bounded: it may depend on the database and thus grow beyond any finite bound. This is
already the case when using the expansion measure from above, giving rise to the class of
finite-expansion sets (fes), coinciding with the notion of core-chase terminating rule sets [14].

▶ Theorem 5. Let w be an MSO-friendly width measure and let R be a finite-w set. Then,
the entailment problem (D,R) |= (q,Ξ) for any database D and DaMSOQ (q,Ξ) is decidable.

Proof. We prove decidability by providing two semi-decision procedures: one terminating
whenever (D,R) |= (q,Ξ), the other terminating whenever (D,R) ̸|= (q,Ξ). Then, these two
procedures, run in parallel, constitute a decision procedure.

Detecting (D,R) |= (q,Ξ). We note that (D,R) |= (q,Ξ) iff (D,R) |= q iff (D,R∪Rq) |=
Goal. The latter is a first-order entailment problem. Thanks to the completeness of
first-order logic [19], we can recursively enumerate all the consequences of (D,R ∪ Rq)
and terminate as soon as we find Goal among those, witnessing entailment of the query.
Detecting (D,R) ̸|= (q,Ξ). In that case, there must exist some model I of (D,R) with
I ̸|= (q,Ξ). Note that such “countermodels” can be characterized by the MSO formula∧

D ∧
∧

R ∧ ¬Ξ. Moreover, any universal model I∗ of (D,R) must satisfy I∗ ̸|= (q,Ξ),
which can be shown (by contradiction) as follows: Let I∗ be a universal model of (D,R)
and suppose I∗ |= (q,Ξ), i.e., I∗ |= q. Since satisfaction of datalog queries is preserved
under homomorphisms and I∗ is universal, we know there exists a homomorphism from
I∗ to I, implying I |= q, and thus I |= (q,Ξ), contradicting our assumption. As R is a
finite-w set, there exists a universal model I∗ of (D,R) for which w(I∗) is finite. Hence,
the following procedure will terminate, witnessing non-entailment: enumerate all natural
numbers in their natural order and for each number n initiate a parallel thread with the
algorithm from Definition 3 with input n and

∧
D ∧

∧
R∧¬Ξ (the algorithm is guaranteed

to exist due to MSO-friendliness of w). Terminate as soon as one thread does. ◀

4 Cliquewidth and its Properties

In this section, we will propose a width measure, for which we use the term cliquewidth.
Our definition of this measure works for arbitrary countable instances and thus properly
generalizes Courcelle’s earlier eponymous notions for finite directed edge-labelled graphs [13]
and countable unlabelled undirected graphs [12], as well as Grohe and Turán’s cliquewidth
notion for finite instances of arbitrary arity [21].

4.1 Cliquewidth of Countable Instances
Intuitively, the notion of cliquewidth is based on the idea of assembling the considered
structure (e.g., instance or graph) from its singleton elements (e.g., terms or nodes). To
better distinguish these elements during assembly, each may be assigned an initial color (from
some finite set L). The “assembly process” consists of successively applying the following
operations to previously assembled node-colored structures:

T. Feller, T. S. Lyon, P. Ostropolski-Nalewaja, and S. Rudolph 18:7

take the disjoint union of two structures (⊕),
uniformly assign the color k′ to all hitherto k-colored elements (Recolork→k′),
given a predicate R and a color sequence k⃗ of length ar(R), add R-atoms for all tuples of
appropriately colored elements (AddR,⃗k).

Then, the cliquewidth of a structure is the minimal number of colors needed to assemble it
through successive applications of the above operations. For finite structures (e.g., graphs
and instances), this is a straightforward, conceivable notion. In order to generalize it to the
countably infinite case, one has to find a way to describe infinite assembly processes. In
the finite case, an “assembly plan” can be described by an algebraic expression using the
above operators, which in turn can be represented by its corresponding “syntax tree.” The
more elusive idea of an “infinite assembly plan” is then implemented by allowing for infinite,
“unfounded” syntax trees. We formalize this idea of “assembly-plan-encoding syntax trees”
by representing them as countably infinite instances of a very particular shape.

▶ Definition 6. We define the infinite binary tree to be the instance

Tbin =
{

Succ0(s, s0)
∣∣ s∈ {0, 1}∗}

∪
{

Succ1(s, s1)
∣∣ s∈ {0, 1}∗}

with binary predicates Succ0 and Succ1. That is, the nulls of Tbin are denoted by finite
sequences of 0 and 1. The root of Tbin is the null identified by the empty sequence, denoted ε.

Given a finite set L of colors, a finite set Cnst ⊆ C of constants, and a finite signature
Σ, the set Dec(L,Cnst,Σ) of decorators consists of the following unary predicate symbols:

ck for any c ∈ Cnst ∪ {∗} and k ∈ L,
AddR,⃗k for any R ∈ Σ and k⃗ ∈ Lar(R),
Recolork→k′ for k, k′ ∈ L,
⊕, and Void.

A (L,Cnst,Σ)-decorated infinite binary tree (or, decorated tree for short) is Tbin extended
with facts over Dec(L,Cnst,Σ) that only use nulls from the original domain of Tbin, i.e.,
from {0, 1}∗. A decorated tree T is called a well-decorated tree iff

for every null s ∈ {0, 1}∗, T contains exactly one fact Dec(s) with Dec ∈ Dec(L,Cnst,Σ),
for every c ∈ Cnst, T contains at most one fact of the form ck(s),
if AddR,⃗k(s) ∈ T or Recolork→k′(s) ∈ T , then Void(s0) ̸∈ T and Void(s1) ∈ T ,
if ⊕(s) ∈ T , then Void(s0), Void(s1) ̸∈ T ,
if Void(s) ∈ T or ck(s) ∈ T , then Void(s0), Void(s1) ∈ T . ⌟

Recall that, due to Rabin’s famous Tree Theorem [26], the validity of a given MSO
sentence Ξ in Tbin is decidable. Also, it should be obvious that, given a decorated tree,
checking well-decoratedness can be done in first-order logic. More precisely, fixing L, Σ, and
Cnst, there is a first-order sentence Φwell such that for any (L,Cnst,Σ)-decorated tree T , T
is well-decorated iff T |= Φwell.

▶ Definition 7. Let T be a (L,Cnst,Σ)-well-decorated tree. We define the function entT :
{0, 1}∗ → 2Cnst∪{0,1}∗ mapping each null s ∈ {0, 1}∗ to its entities (a set of nulls and
constants) as follows:

entT(s) =
{
ss′ | ∗k(ss′) ∈ T , s′ ∈ {0, 1}∗}

∪
{

c | ck(ss′) ∈ T , c ∈ Cnst, s′ ∈ {0, 1}∗}
.

ICDT 2023

18:8 Finite-Cliquewidth Sets of Existential Rules

Every tree node s also endows each of its entities with a color from L through the function
colTs : entT(s) → L in the following way:

colTs (e) =

k if e = c ∈ Cnst and ck(s) ∈ T , or if e = s ∈ {0, 1}∗ and ∗k(s) ∈ T ,
k′ if Recolork→k′(s) ∈ T and colTs0(e) = k,

colTs0(e) if Recolork→k′(s) ∈ T and colTs0(e) ̸= k, or if AddR,⃗k(s) ∈ T ,
colTsb(e) if ⊕(s) ∈ T , e ∈ entT(sb), and b ∈ {0, 1}.

Every node s is assigned a set of Σ-atoms over its entities as indicated by the sets Atomss:

Atomss =

{⊤(c)} if ck(s) ∈ T , c ∈ Cnst,
{⊤(s)} if ∗k(s) ∈ T ,
{R(e⃗) | colTs (e⃗) = k⃗} if AddR,⃗k(s) ∈ T ,
∅ otherwise.

Defining a colored instance as a pair (I, λ) of an instance I and a function λ mapping
elements of dom(I) to colors in a set L, we now associate each node s in T with the colored
Σ-instance (IT

s , λ
T
s), with IT

s =
⋃

s′∈{0,1}∗Atomsss′ and λT
s = colTs . Finally, we define the

colored instance (IT, λT) represented by T as (IT
ε , λ

T
ε) where ε is the root of T .

▶ Definition 8. Given a colored instance (I, λ) over a finite set Cnst of constants and
a countable set of nulls as well as a finite signature Σ, the cliquewidth of (I, λ), written
cw(I, λ), is defined to be the smallest natural number n such that (I, λ) is isomorphic to a
colored instance represented by some (L,Cnst,Σ)-well-decorated tree with |L| = n. If no such
number exists, we let cw(I, λ) = ∞. The cliquewidth cw(I) of an instance I is defined to be
the minimum cliquewidth over all of its colored versions. ⌟

▶ Example 9. The instance I< = {R(n,m) | n,m ∈ N, n < m} has a cliquewidth of 2,
witnessed by the well-decorated tree corresponding to the (non-well-founded) expression E

implicitly defined by E = AddR,1,2(∗1 ⊕ Recolor1→2(E)).

We will later use the following operation on decorated trees.

▶ Definition 10. Let (I, λ) be a colored instance and T be a well-decorated tree witnessing
that cw(I, λ) ≤ n. Then for any R ∈ Σ we let AddR,⃗k(I, λ) denote the instance IT ′ represented
by the well-decorated tree T ′ defined as follows:

The root ε of T ′ is decorated by AddR,⃗k,
the left sub-tree of ε is isomorphic to T ,
the right sub-tree of ε is wholly decorated with Void. ⌟

4.2 Finite-Cliquewidth Sets and Decidability
We now identify a new class of rule sets for which DaMSOQ query entailment is decidable,
that is, the class of finite-cliquewidth sets.

▶ Theorem 11. For a fixed n ∈ N, determining if a given MSO formula Ξ has a model I
with cw(I) ≤ n is decidable. Thus, cliquewidth is MSO-friendly.

Proof (Sketch). We use the classical idea of MSO interpretations. Picking L = {1, . . . , n},
one shows that for every given MSO sentence Ξ, one can compute an MSO sentence Ξ′,
such that for every (L,Cnst,Σ)-well-decorated tree T , IT |= Ξ iff T |= Ξ′. Thus, checking

T. Feller, T. S. Lyon, P. Ostropolski-Nalewaja, and S. Rudolph 18:9

if Ξ holds in some Cnst,Σ-instance of cliquewidth ≤n can be done by checking if Ξ′ holds
in some (L,Cnst,Σ)-well-decorated tree, which in turn is equivalent to the existence of a
(L,Cnst,Σ)-decorated tree that is a model of Ξ′ ∧ Φwell. Obtain Ξ′′ from Ξ′ ∧ Φwell by
reinterpreting all unary predicates as MSO set variables that are quantified over existentially.
Ξ′′ is an MSO formula over the signature {Succ0, Succ1} which is valid in Tbin iff some
decoration exists that makes Ξ′ ∧ Φwell true. Thus, we have reduced our problem to checking
the validity of a MSO sentence in Tbin, which is decidable by Rabin’s Tree Theorem [26]. ◀

With this insight in place and the appropriate rule set notion defined, we can leverage
Theorem 5 for our decidability result.

▶ Definition 12. A rule set R is called a finite-cliquewidth set (fcs) iff for any database D,
there exists a universal model for (D,R) of finite cliquewidth. ⌟

▶ Corollary 13. For every fcs rule set R, the query entailment problem (D,R) |= (q,Ξ) for
databases D, and DaMSOQs (q,Ξ) is decidable.

In view of Example 9, it is not hard to verify that the rule set R∞
tran from the introduction

is fcs. Yet, it is neither bts (as argued before), nor fus, which can be observed from the
fact that it does not admit a finite rewriting of the BCQ E(a, b). Notably, it also does not
exhibit finite controllability (fc), another generic property that guarantees decidability of
query entailment [28]. A rule set R is fc iff for every D and CQ q with (D,R) ̸|= q there
exists a finite (possibly non-universal) model I |= (D,R) with I ̸|= q. Picking D = {E(a, b)}
and q = ∃xE(x, x) reveals that R∞

tran is not fc. Therefore, fcs encompasses rule sets not
captured by any of the popular general decidability classes (namely, bts, fus, and fc). On
another note, is no surprise that, akin to bts, fus, and fc, the membership of a rule set in
fcs is undecidable, which can be argued exactly in the same way as for bts and fus [3].

4.3 Cliquewidth and Treewidth

We now show that for binary signatures, the class of instances with finite cliquewidth
subsumes the class of instances with finite treewidth, implying bts ⊆ fcs.

▶ Theorem 14. Let I be a countable instance over a binary signature. If I has finite
treewidth, then I has finite cliquewidth.

Proof (Sketch). We convert a tree decomposition T of I with a width n into a well-decorated
tree: (1) By copying nodes, transform T into an infinite binary tree T ′. (2) For each term t

from I, let the pivotal node of t in T ′ be the node closest to the root containing t. For any
two terms t and t′ from I co-occurring in an atom, their pivotal nodes are in an ancestor
relationship. (3) Assign one of n+ 1 “slots” to every term so that in each node of T ′, every
element has a distinct slot. (4) Extract a well-decorated tree from T ′ by transforming every
node into the following bottom-up sequence of operations: (i) ⊕-assemble the input from
below, (ii) introduce every element for which the current node is pivotal with a color that
encodes “open link requests” to elements (identified by their slots) further up, (iii) satisfy the
color-link requests from below via Add, (iv) remove the satisfied requests by Recolor. ◀

We note that the converse of Theorem 14 does not hold: Despite its finite cliquewidth, the
treewidth of instance I< from Example 9 is infinite, as its R-edges form an infinite clique.

ICDT 2023

18:10 Finite-Cliquewidth Sets of Existential Rules

To the informed reader, Theorem 14 might not come as a surprise, given that this
relationship is known to hold for countable unlabelled undirected graphs5 [12]. It does,
however, cease to hold for infinite structures with predicates of higher arity.

▶ Example 15. Let R be a ternary predicate. The instance Itern = {R(−1, n, n+1) | n ∈ N}
has a treewidth of 2, however, it does not have finite cliquewidth [15]. Concomitantly, the
rule set Rtern = {R(v, x, y) → ∃zR(v, y, z)} is bts, but not fcs.

While this result may be somewhat discouraging, one can show that its effects can be greatly
mitigated by the technique of reification.

▶ Definition 16. Given a finite signature Σ = Σ≤2 ⊎ Σ≥3 divided into at-most-binary and
higher-arity predicates, we define the reified version of Σ as the binary signature Σrf = Σ≤2 ⊎
Σrf

2 with Σrf
2 = {Ri | R ∈ Σ≥3, 1 ≤ i ≤ ar(R)} a fresh set of binary predicates. The function

reify maps atoms over Σ≤2 to themselves, while any higher-arity atom α = R(t1, ... , tk) with
k ≥ 3 is mapped to the set {Ri(uα, ti) | 1 ≤ i ≤ k}, where uα is a fresh null or variable. We
lift reify to instances, rules, and queries in the natural way. ⌟

It is best to think of the “reification term” uα as a locally existentially quantified variable.
In particular, in rule heads, uα will be existentially quantified. Moreover, in datalog queries,
reify is only applied to ΣEDB-atoms, while ΣIDB-atoms are left unaltered; this ensures that
the result is again a datalog query.

▶ Example 17. Consider the instance Itern from Example 15. We observe that reify(Itern) =
{R1(un,−1), R2(un, n), R3(un, n+1) | n ∈ N} has a treewidth of 3 and a cliquewidth of 6,
witnessed by the (non-well-founded) expression AddR1,5,1(∗1 ⊕ E), where E is implicitly
defined via E = Recolor2→3(Recolor4→5(Recolor3→6(AddR3,4,3(AddR2,4,2(∗2 ⊕ (∗4 ⊕ E)))))).

Let us list in all brevity some pleasant and fairly straightforward properties of reification:
(i) If tw(I) is finite, then so are tw(reify(I)) and cw(reify(I)).
(ii) Ch∞(reify(I), reify(R)) ≡ reify(Ch∞(I,R)).
(iii) If R is bts, then reify(R) is bts and fcs.
(iv) (D,R) |= (q,Ξ) iff (reify(D), reify(R)) |=(reify(q), reify(Ξ)).

▶ Example 18. Revisiting Example 15, we can confirm that reify(Rtern) comprising the rule
R1(u, v) ∧ R2(u, x) ∧ R3(u, y) → ∃u′z

(
R1(u′, v) ∧ R2(u′, y) ∧ R3(u′, z)

)
is bts and fcs.

The above insights regarding reification allow us to effortlessly reduce any query entailment
problem over an arbitrary bts rule set to a reasoning problem over a binary fcs one.
Also, reification is a highly local transformation; it can be performed independently and
atom-by-atom on D, R, and (q,Ξ). Therefore, restricting ourselves to fcs rule sets does not
deprive us of the expressiveness, versatility, and reasoning capabilities offered by arbitrary bts
rule sets over arbitrary signatures, which includes the numerous classes based on guardedness:
guarded and frontier-guarded rules as well as their respective variants weakly, jointly, and
glut-(frontier-)guarded rules [3, 7, 23]. It is noteworthy that our line of argument also gives
rise to an independent proof of decidability of query entailment for bts:6

5 This follows as a direct consequence of a compactness property relating the cliquewidth of countable
undirected graphs to that of their finite induced subgraphs.

6 Note that this result establishes entailment for arbitrary DaMSOQs, while previously reported results
[3, 7] only covered CQs. But even when restricting the attention to CQ entailment, the proofs given in
these (mutually inspired) prior works do not appear entirely conclusive to us: both invoke a result by
Courcelle [11], which, as stated in the title of the article and confirmed by closer inspection, only deals
with classes of finite structures/graphs with a uniform treewidth bound. Hence, the case of infinite
structures is not covered, despite being the prevalent one for universal models. Personal communication
with Courcelle confirmed that the case of arbitrary countable structures – although generally believed
to hold true – is not an immediate consequence of his result.

T. Feller, T. S. Lyon, P. Ostropolski-Nalewaja, and S. Rudolph 18:11

▶ Theorem 19. For every bts rule set R, the query entailment problem (D,R) |= (q,Ξ) for
databases D, and DaMSOQs (q,Ξ) is decidable.

Proof. As argued, (D,R) |= (q,Ξ) reduces to (reify(D), reify(R)) |= (reify(q), reify(Ξ)). As R
is bts, so is reify(R). The latter being binary, we conclude that it is fcs. Then, the claim
follows from decidability of DaMSOQ entailment for fcs rule sets (Corollary 13). ◀

5 Comparing FCS and FUS

We have seen that the well-known bts class is subsumed by the fcs class (directly for arities
≤2, and via reification otherwise). As discussed in the introduction, another prominent class
of rule sets (incomparable to bts) with decidable CQ entailment is the fus class. We dedicate
the remainder of the paper to mapping out the relationship between fcs and fus, obtaining
the following two results (established in Section 5.1 and Section 5.2, respectively):

▶ Theorem 20. Any fus rule set of single-headed rules over a binary signature is fcs.

▶ Theorem 21. There exists a fus rule set of multi-headed rules over a binary signature
that is not fcs.

As a consequence of these findings, the necessary restriction to single-headed rules prevents
us from wielding the powers of reification in this setting.

5.1 The Case of Single-Headed Rules
In this section, we establish Theorem 20. To this end, let a binary signature Σ, a finite
unification set R of single-headed rules over Σ, and a database D over Σ be arbitrary but
fixed for the remainder of the section. We will abbreviate Ch∞(D,R) by Ch∞. Noting that
Ch∞ is a universal model, Theorem 20 is an immediate consequence of the following lemma,
which we are going to establish in this section.

▶ Lemma 22. Ch∞ has finite cliquewidth.

Looking past datalog. Let Ch∃ ⊆ Ch∞ be the instance containing the existential atoms
of Ch∞, that is, the atoms derived via the non-datalog rules of R. We show that Ch∃ forms
a typed polyforest, meaning that Ch∃ can be viewed as a directed graph where (i) edges are
typed with binary predicates from Σ and (ii) when disregarding the orientation of the edges,
the graph forms a forest. This implies that Ch∃ has treewidth 1. A tree decomposition
of Ch∃ can be extended into a finite-width tree decomposition of D ∪ Ch∃ by adding the
finite set dom(D) to every node. In the sequel, we use D ∪ Ch∃ as a basis, to which, in a
very controlled manner, we then add the “missing” non-existential atoms derived via datalog
rules. Thereby, R being fus will be of great help.

Rewriting datalog rules. We transform the datalog subset of R into a new rule set Rrew
DL ,

which we then use to fix a set of colors and establish the finiteness of cw(Ch∞). Letting
RDL denote the set of all datalog rules from R, we note the following useful equation:
Ch∞ = Ch∞(D ∪ Ch∃,RDL) (†). For any R ∈ Σ, we let rew(R) denote the datalog rule
set {φ(x⃗, y⃗) → R(y⃗) | ∃x⃗φ(x⃗, y⃗) ∈ rewR(R(y⃗))} giving rise to the overall datalog rule set
Rrew

DL =
⋃

R∈Σrew(R). We now show that the rule set Rrew
DL admits an important property:

▶ Lemma 23. For any R(⃗t) ∈ Ch∞ \ (D ∪ Ch∃), there exists a trigger (ρ, h) in D ∪ Ch∃
with ρ ∈ Rrew

DL such that applying (ρ, h) adds R(⃗t) to D ∪ Ch∃.

ICDT 2023

18:12 Finite-Cliquewidth Sets of Existential Rules

Proof. Given that R is fus, it follows that for any ar(R)-tuple t⃗ of terms from D ∪Ch∃, there
exists a CQ ∃x⃗φ(x⃗, y⃗) ∈ rewR(R(y⃗)) such that the following holds: Ch∞(D ∪ Ch∃,R) |=
R(⃗t) iff D ∪ Ch∃ |= ∃x⃗φ(x⃗, t⃗). Thus, said trigger exists for some ρ ∈ rew(R) in D ∪ Ch∃. ◀

From Lemma 23 and (†), we conclude Ch1(D ∪ Ch∃,Rrew
DL) = Ch∞ (‡). This tells us that

we can apply rules of Rrew
DL in one step to obtain Ch∞. Ultimately, we will leverage this to

bound the cliquewidth of Ch∞. In view of (‡), we may reformulate Lemma 22 as follows:

▶ Lemma 24. Ch1(D ∪ Ch∃,Rrew
DL) has finite cliquewidth.

Separating connected from disconnected rules. Next, we distinguish between two types of
rules in Rrew

DL . We say a datalog rule is disconnected iff its head variables belong to distinct
connected components in its body; otherwise it is called connected. We let Rconn

DL denote
all connected rules of Rrew

DL and let Rdisc
DL denote all disconnected rules. One can observe

that upon applying connected rules, frontier variables can only be mapped to – and hence
connect – “nearby terms” of D ∪ Ch∃ (using a path-based distance, bounded by the size of
rule bodies), which, together with our insights about the structure of D ∪ Ch∃, permits the
construction of a tree decomposition of finite width, giving rise to the following lemma:

▶ Lemma 25. Ch1(D ∪ Ch∃,Rconn
DL) has finite treewidth.

Note that this lemma does not generalize to all of Rrew
DL , since disconnected rules from Rdisc

DL

might realize “concept products” as in A(x) ∧ A(y) → E(x, y). Clearly, such rules from Rdisc
DL

are the reason why bts fails to subsume fus. Let us define Ch∃+ = Ch1(D ∪ Ch∃,Rconn
DL).

As Ch1(Ch∃,Rrew
DL) = Ch1(Ch∃+,Rdisc

DL), all that is left to show is:

▶ Lemma 26. Ch1(Ch∃+,Rdisc
DL) has finite cliquewidth.

Searching for a suitable coloring. Having established the finite treewidth of Ch∃+ by
Lemma 25, its finite cliquewidth can be inferred by Theorem 14, implying the existence of a
well-decorated tree T with IT = Ch∃+. Moreover, we know that Ch∃+ already contains all
terms of Ch∞. Thus, all that remains is to “add” the missing datalog atoms of Ch∞ \ Ch∃+
to IT . Certainly, the coloring function colTε provided by T cannot be expected to be very
helpful in this task. To work around this, the following technical lemma ensures that an
arbitrary coloring can be installed on top of a given instance of finite cliquewidth.

▶ Lemma 27 (Recoloring Lemma). Let I be an instance satisfying cw(I) = n and let
λ′ : dom(I) → L′ be an arbitrary coloring of I. Then cw(I, λ′) ≤ (n+ 1) · |L′|.

Proof (Sketch). Let cw(I) = n be witnessed by a well-decorated tree T . Let L with |L| = n

be the set of colors used in T . We construct a well-decorated tree T λ′ representing (I, λ′)
and using the color set (L × L′) ⊎ L′, thus witnessing cw(I, λ′) ≤ (n+ 1) · |L′|. We obtain
T λ′ from T by modifying each node s of T as follows:

If s is labeled with ∗k, we change it to ∗(k,λ′(s)).
If s is labeled with ck with c ∈ Cnst, we change it to c(k,λ′(c)).
If s is labeled with AddR,k, we replace s with a sequence of nodes, one for each decorator
in {AddR,(k,ℓ) | ℓ ∈ L′}. We proceed in an analogous fashion for decorators AddR,k,k′ and
Recolork→k′ .
If v is labeled with other decorators, we keep it as is.

Last, on top of the obtained tree, we apply a “color projection” to L′ by adding recoloring
statements of the form Recolor(k,ℓ)→ℓ for all (k, ℓ) ∈ L × L′. To complete the construction,
we add the missing nodes to T λ′ , each decorated with Void. ◀

T. Feller, T. S. Lyon, P. Ostropolski-Nalewaja, and S. Rudolph 18:13

We proceed by defining types for elements in Ch∃+, giving rise to the desired coloring. For
the following, note that by definition, any rule from Rdisc

DL must have two frontier variables.

▶ Definition 28. Let ρ ∈ Rdisc
DL with body(ρ) = φ(x1, x2, y⃗), with x1, x2 frontier variables.

Let us define ρ1(x) = ∃y⃗x2 φ(x, x2, y⃗) and ρ2(x) = ∃y⃗x1 φ(x1, x, y⃗). Then, for a term
t ∈ dom(Ch∃+), we define its type τ(t) as

{
ρi(x) | ρ ∈ Rdisc

DL , Ch∃+ |= ρi(t), i ∈ {1, 2}
}
. ⌟

Now, we define our new coloring function λ∃. Given a term t of Ch∃+, we let λ∃(t) = τ(t).

▶ Corollary 29. There exists an n∃ ∈ N with cw(Ch∃+, λ∃) = n∃.

Proof. From Lemma 25 and Theorem 14, we know that cw(Ch∃+) is finite. Hence, there
exists a natural number n and a coloring λ such that cw(Ch∃+, λ) = n. Moreover, the
codomain of λ∃ is finite, say n′. Thus, we get n∃ = (n+ 1) · n′ by Lemma 27. ◀

Coping with disconnected rules. We now conclude the proof of Lemma 26, i.e., we show that
cw(Ch1(Ch∃+,Rdisc

DL), λ∃) ≤ n∃, thereby proving Theorem 20. To this end, consider some
rule ρ ∈ Rdisc

DL . As stated earlier, we can assume that ρ is of the form φ(x1, x2, y⃗) → R(x1, x2).
From this, we obtain the following useful correspondence:

▶ Lemma 30. For any t, t′ ∈ dom(Ch∃+) and ρ ∈ Rdisc
DL ,

Ch∃+ |= ∃y⃗φ(t, t′, y⃗) iff ρ1(x) ∈ τ(t) and ρ2(x) ∈ τ(t′).

Proof. (⇒) follows from the definition of each set. For (⇐), we exploit disconnectedness
and split φ(x1, x2, y⃗) into two distinct parts. Let φ1(x1, y⃗1) be the connected component
of φ(x1, x2, y⃗) that contains x1, and φ2(x2, y⃗2) denote the remainder (which includes the
connected component of x2). By assumption, y⃗1 and y⃗2 are disjoint, whence ∃y⃗φ(t, t′, y⃗) is
equivalent to ∃y⃗1φ1(t, y⃗1)∧∃y⃗2φ2(t′, y⃗2). Note that ρ1(x) ∈ τ(t) implies Ch∃+ |= ∃y⃗1φ1(t, y⃗1),
while ρ2(x) ∈ τ(t′) implies Ch∃+ |= ∃y⃗2φ2(t′, y⃗2). Therefore, Ch∃+ |= ∃y⃗φ(t, t′, y⃗). ◀

▶ Lemma 31. Let ρ ∈ Rdisc
DL be of the form φ(x1, x2, y⃗) → R(x1, x2). Then,⋃

ρ1(x)∈ ℓ, ρ2(x)∈ ℓ′

AddR,ℓ,ℓ′(Ch∃+, λ∃) = Ch∃+ ∪
{

R(t, t′) | Ch∃+ |= ∃y⃗φ(t, t′, y⃗)
}
.

Proof. All Ch∃+ atoms are contained in both sides of the equation. Considering any
R(t, t′) ̸∈ Ch∃+ we find it contained in the left-hand side iff ρ1(x) ∈ λ∃(t) = τ(t) and
ρ2(x) ∈ λ∃(t′) = τ(t′) iff Ch∃+ |= ∃y⃗φ(t, t′y⃗) (by Lemma 30) iff R(t, t′) is contained in the
right-hand side of the equation. ◀

Of course, the right hand side of the equation in Lemma 31 coincides with Ch1(Ch∃+, {ρ}).
We observe – given that the coloring λ∃ remains unaltered – that the finitely many distinct
applications of AddR,ℓ,ℓ′ in Lemma 31 are independent and can be chained without changing
the result. Further, no such application increases the cliquewidth of the instance it is applied
to. Since these arguments can be lifted to the application of all rules from Rdisc

DL , we get

cw
(

Ch∃+ ∪
⋃

φ(x1,x2,y⃗)→R(x1,x2) ∈ Rdisc
DL

{
R(t, t′)

∣∣ Ch∃+ |= ∃y⃗φ(t, t′, y⃗)
})

≤ n∃.

Observe that the considered instance is equal to Ch1(Ch∃+,Rdisc
DL). Hence, we have

established Lemma 26, concluding Lemma 24, which finishes the proof of Lemma 22, thus
entailing the desired Theorem 20.

ICDT 2023

18:14 Finite-Cliquewidth Sets of Existential Rules

a

y V V V V V

V V V V V

V V V V V

H H H H

H H H H

H H H H

H

H

H

V

H

Figure 1 The instance G∞.

5.2 The Case of Multi-Headed Rules

We will now prove Theorem 21, which implies that for multi-headed rules fus ̸⊆ fcs. To
this end, we exhibit a fus rule set that yields universal models of infinite cliquewidth. Let
Σgrid = {H, V} with H, V binary predicates. Let Rgrid denote the following rule set over Σgrid:

(loop) → ∃x
(

H(x , x) ∧ V(x, x)
)

(grow) → ∃yy′(H(x , y) ∧ V(x, y′)
)

(grid) H(x, y) ∧ V(x, x′) → ∃ y′ (
H(x′, y′) ∧ V(y, y′)

)
We make use of Rgrid to establish Theorem 21, the proof of which consists of two parts.
First, we provide a database Dgrid to form a knowledge base (Dgrid,Rgrid) for which no
universal model of finite cliquewidth exists (Lemma 33). Second, we show that Rgrid is a
finite unification set (Lemma 34).

Rgrid is not a finite-cliquewidth set. Toward establishing this result, let Dgrid = {⊤(a)}
and define the instance G∞, where a is a constant and y as well as xi,j with i, j ∈ N are nulls:

G∞ =
{

H(a, x1,0), V(a, x0,1), H(y, y), V(y, y)
}

∪
{

H(xi,j , xi+1,j), V(xi,j , xi,j+1) | (i, j) ∈ (N × N) \ {(0, 0)}
}
.

Figure 1 depicts G∞ graphically. The following lemma summarizes consecutively
established properties of G∞ and its relationship with (Dgrid,Rgrid).

▶ Lemma 32. With G∞ and (Dgrid,Rgrid) as given above, we obtain:
G∞ has infinite cliquewidth,
G∞ is a universal model of (Dgrid,Rgrid),
the only homomorphism h : G∞ → G∞ is the identity,
any universal model of (Dgrid,Rgrid) contains an induced sub-instance isomorphic to G∞,
(Dgrid,Rgrid) has no universal model of finite cliquewidth.

From the last point (established via the insight that taking induced subinstances never
increases cliquewidth), the announced result immediately follows.

▶ Lemma 33. Rgrid is not fcs.

T. Feller, T. S. Lyon, P. Ostropolski-Nalewaja, and S. Rudolph 18:15

Rgrid is a finite-unification set. Unfortunately, Rgrid does not fall into any of the known
syntactic fus subclasses and showing that a provided rule set is fus is a notoriously difficult
task in general.7 At least, thanks to the rule (loop), every BCQ that is free of constants
is always entailed and can thus be trivially re-written. For queries involving constants, we
provide a hand-tailored query rewriting algorithm, along the lines of prior work exploring
the multifariousness of fus [25]. The required argument is quite elaborate and we just sketch
the main ideas here due to space restrictions.

We make use of special queries, referred to as marked queries: queries with some of their
terms “marked” with the purpose of indicating terms that need to be mapped to database
constants in the course of rewriting. The notion of query satisfaction is lifted to such marked
CQs, which enables us to identify the subclass of properly marked queries as those who
actually have a match into some instance Ch∞(D,Rgrid), where D is an arbitrary database.

With these notions at hand, we can now define a principled rewriting procedure consisting
of the exhaustive application of three different types of transformation rules. We show that
this given set of transformations is in fact sound and complete, i.e., it produces correct
first-order rewritings upon termination. Last, we provide a termination argument by showing
that the operations reduce certain features of the rewritten query. Thus, we arrive at the
second announced result, completing the overall proof.

▶ Lemma 34. Rgrid is fus.

5.3 Fus and Expressive Queries
Let us put the negative result of Section 5.2 into perspective. Thanks to Corollary 13, we
know that fcs ensures decidability of arbitrary DaMSOQ entailment, a quite powerful class
of queries. By contrast, fus is a notion tailored to CQs and unions thereof. As it so happens,
searching for a method to establish decidability of DaMSOQ entailment for arbitrary fus
rule sets turns out to be futile. This even holds for a fixed database and a fixed rule set.

▶ Lemma 35. DaMSOQ entailment is undecidable for (Dgrid,Rgrid).

The corresponding proof is rather standard: One can, given a deterministic Turing machine
TM , create a DaMSOQ (qTM ,ΞTM) that is even expressible in monadic datalog and, when
evaluated over G∞, uses the infinite grid to simulate a run of that Turing machine, resulting in
a query match iff TM halts on the empty tape. As G∞ is a universal model of (Dgrid,Rgrid),
and DaMSOQ satisfaction is preserved under homomorphisms, the entailment (Dgrid,Rgrid) |=
(qTM ,ΞTM) coincides with the termination of TM , concluding the argument.

6 Conclusions and Future Work

In this paper, we have introduced a generic framework, by means of which model-theoretic
properties of a class of existential rule sets can be harnessed to establish that the entailment of
datalog/MSO queries – a very expressive query formalism subsuming numerous popular query
languages – is decidable for that class. We have put this framework to use by introducing
finite-cliquewidth sets and clarified this class’s relationship with notable others, resulting in
the insight that a plethora of known as well as hitherto unknown decidability results can be
uniformly obtained via the decidability of DaMSOQ entailment over finite-cliquewidth sets
of rules. Our results entail various appealing directions for follow-up investigations:

7 This should not be too surprising however, as being fus is an undecidable property [3].

ICDT 2023

18:16 Finite-Cliquewidth Sets of Existential Rules

Certainly, the class of single-headed binary fus rule sets is not the most general fragment
of fus subsumed by fcs. We strongly conjecture that many of the known, syntactically
defined, “concrete subclasses” of fus are actually contained in fcs, and we are confident
that corresponding results can be established.
Conversely, we are striving to put the notion of fcs to good use by identifying
comprehensive, syntactically defined subclasses of fcs, enabling decidable, highly
expressive querying beyond the realms of bts, fus, or fc. As a case in point, the
popular modeling feature of transitivity of a relation has been difficult to accommodate
in existing frameworks [2, 17, 22, 32], whereas the observations presented in this paper
seem to indicate that fcs can tolerate transitivity rules well and natively.
Finally, we are searching for even more general MSO-friendly width notions that give rise
to classes of rule sets subsuming fcs, and which also encompass bts natively, without
arity restrictions or “reification detours.”

Aside from these major avenues for future research, there are also interesting side roads
worth exploring:

Are there other, more general model-theoretic criteria of “structural well-behavedness”
that, when ensured for universal models, guarantee decidability of query entailment “just”
for (U)CQs? Clearly, if we wanted fus to be subsumed by such a criterion, it would
have to accept structures like G∞ (i.e., infinite grids) and we would have to relinquish
decidability of DaMSOQ entailment.
More generally: Are there other “decidability sweet spots” between expressibility of query
classes and structural restrictions on universal models?

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995. URL: http://webdam.inria.fr/Alice/.
2 Jean-François Baget, Meghyn Bienvenu, Marie-Laure Mugnier, and Swan Rocher. Combining

existential rules and transitivity: Next steps. In Qiang Yang and Michael J. Wooldridge, editors,
Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15),
pages 2720–2726. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/385.

3 Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. On rules with
existential variables: Walking the decidability line. Artificial Intelligence, 175(9):1620–1654,
2011. doi:10.1016/j.artint.2011.03.002.

4 Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies. Journal of the
ACM, 31(4):718–741, 1984. doi:10.1145/1634.1636.

5 Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. How to best nest regular path
queries. In Meghyn Bienvenu, Magdalena Ortiz, Riccardo Rosati, and Mantas Simkus, editors,
Informal Proceedings of the 27th International Workshop on Description Logics, Vienna,
Austria, July 17-20, 2014, volume 1193 of CEUR Workshop Proceedings, pages 404–415.
CEUR-WS.org, 2014. URL: http://ceur-ws.org/Vol-1193/paper_80.pdf.

6 Pierre Bourhis, Michael Morak, and Andreas Pieris. Making cross products and guarded
ontology languages compatible. In Carles Sierra, editor, Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI’17), pages 880–886. ijcai.org, 2017. doi:
10.24963/ijcai.2017/122.

7 Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. Journal of Artificial Intelligence Research, 48:115–174,
2013. doi:10.1613/jair.3873.

8 Andrea Calì, Georg Gottlob, and Andreas Pieris. Towards more expressive ontology languages:
The query answering problem. Artificial Intelligence, 193:87–128, 2012. doi:10.1016/j.
artint.2012.08.002.

http://webdam.inria.fr/Alice/
http://ijcai.org/Abstract/15/385
https://doi.org/10.1016/j.artint.2011.03.002
https://doi.org/10.1145/1634.1636
http://ceur-ws.org/Vol-1193/paper_80.pdf
https://doi.org/10.24963/ijcai.2017/122
https://doi.org/10.24963/ijcai.2017/122
https://doi.org/10.1613/jair.3873
https://doi.org/10.1016/j.artint.2012.08.002
https://doi.org/10.1016/j.artint.2012.08.002

T. Feller, T. S. Lyon, P. Ostropolski-Nalewaja, and S. Rudolph 18:17

9 Ashok K. Chandra, Harry R. Lewis, and Johann A. Makowsky. Embedded implicational
dependencies and their inference problem. In Proceedings of the 13th Annual ACM Symposium
on Theory of Computing (STOC’81), pages 342–354. ACM, 1981. doi:10.1145/800076.
802488.

10 Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable
optimization problems for database logic programs (preliminary report). In Janos Simon,
editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC’88),
pages 477–490. ACM, 1988. doi:10.1145/62212.62259.

11 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

12 Bruno Courcelle. Clique-width of countable graphs: A compactness property. Discrete
Mathematics, 276(1-3):127–148, 2004. doi:10.1016/S0012-365X(03)00303-0.

13 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic – A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. URL: http://www.cambridge.org/fr/knowledge/isbn/
item5758776/?site_locale=fr_FR.

14 Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In Maurizio Lenzerini
and Domenico Lembo, editors, Proceedings of the 27th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS’08), pages 149–158. ACM, 2008. doi:
10.1145/1376916.1376938.

15 Thomas Feller, Tim S. Lyon, Piotr Ostropolski-Nalewaja, and Sebastian Rudolph. Finite-
cliquewidth sets of existential rules: Toward a general criterion for decidable yet highly
expressive querying. CoRR, abs/2209.02464, 2022. doi:10.48550/arXiv.2209.02464.

16 Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query containment for conjunctive queries
with regular expressions. In Alberto O. Mendelzon and Jan Paredaens, editors, Proceedings of
the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’98), pages 139–148. ACM, 1998. doi:10.1145/275487.275503.

17 Harald Ganzinger, Christoph Meyer, and Margus Veanes. The two-variable guarded fragment
with transitive relations. In Proceedings of the 14th Annual IEEE Symposium on Logic in
Computer Science (LICS’99), pages 24–34. IEEE Computer Society, 1999. doi:10.1109/LICS.
1999.782582.

18 Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Conjunctive query answering
for the description logic SHIQ. Journal of Artificial Intelligence Research, 31:157–204, 2008.
doi:10.1613/jair.2372.

19 Kurt Gödel. Über die Vollständigkeit des Logikkalküls. PhD thesis, Universität Wien, 1929.
20 Georg Gottlob. Datalog+/-: A unified approach to ontologies and integrity constraints. In

Valeria De Antonellis, Silvana Castano, Barbara Catania, and Giovanna Guerrini, editors,
Proceedings of the 17th Italian Symposium on Advanced Database Systems, (SEBD’09), pages
5–6. Edizioni Seneca, 2009.

21 Martin Grohe and György Turán. Learnability and definability in trees and similar structures.
Theory of Computing Systems, 37(1):193–220, 2004. doi:10.1007/s00224-003-1112-8.

22 Emanuel Kieronski and Sebastian Rudolph. Finite model theory of the triguarded fragment and
related logics. In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS’21), pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470734.

23 Markus Krötzsch and Sebastian Rudolph. Extending decidable existential rules by joining
acyclicity and guardedness. In Toby Walsh, editor, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI’11), pages 963–968. IJCAI/AAAI, 2011.
doi:10.5591/978-1-57735-516-8/IJCAI11-166.

24 Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Query answering in the horn
fragments of the description logics SHOIQ and SROIQ. In Toby Walsh, editor, Proceedings of
the 22nd International Joint Conference on Artificial Intelligence (IJCAI’11), pages 1039–1044.
IJCAI/AAAI, 2011. doi:10.5591/978-1-57735-516-8/IJCAI11-178.

ICDT 2023

https://doi.org/10.1145/800076.802488
https://doi.org/10.1145/800076.802488
https://doi.org/10.1145/62212.62259
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/S0012-365X(03)00303-0
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
https://doi.org/10.1145/1376916.1376938
https://doi.org/10.1145/1376916.1376938
https://doi.org/10.48550/arXiv.2209.02464
https://doi.org/10.1145/275487.275503
https://doi.org/10.1109/LICS.1999.782582
https://doi.org/10.1109/LICS.1999.782582
https://doi.org/10.1613/jair.2372
https://doi.org/10.1007/s00224-003-1112-8
https://doi.org/10.1109/LICS52264.2021.9470734
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-166
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-178

18:18 Finite-Cliquewidth Sets of Existential Rules

25 Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, and Sebastian Rudolph. A
journey to the frontiers of query rewritability. CoRR, abs/2012.11269, 2020. arXiv:2012.11269.

26 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35, 1969. URL: http://www.jstor.
org/stable/1995086.

27 Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular queries on graph databases.
Theory of Computing Systems, 61(1):31–83, 2017. doi:10.1007/s00224-016-9676-2.

28 Riccardo Rosati. On the decidability and finite controllability of query processing in databases
with incomplete information. In Stijn Vansummeren, editor, Proceedings of the 25th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’06), pages
356–365. ACM, 2006. doi:10.1145/1142351.1142404.

29 Sebastian Rudolph and Markus Krötzsch. Flag & check: Data access with monadically defined
queries. In Richard Hull and Wenfei Fan, editors, Proceedings of the 32nd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS’13), pages 151–162.
ACM, 2013. doi:10.1145/2463664.2465227.

30 Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. All elephants are bigger than all mice.
In Franz Baader, Carsten Lutz, and Boris Motik, editors, Proceedings of the 21st International
Workshop on Description Logics (DL2008), volume 353 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008. URL: http://ceur-ws.org/Vol-353/RudolphKraetzschHitzler.pdf.

31 Eric Salvat and Marie-Laure Mugnier. Sound and complete forward and backward chainings
of graph rules. In Peter W. Eklund, Gerard Ellis, and Graham Mann, editors, Proceedings of
the 4th International Conference on Conceptual Structures (ICCS’96), volume 1115 of LNCS,
pages 248–262. Springer, 1996. doi:10.1007/3-540-61534-2_16.

32 Wieslaw Szwast and Lidia Tendera. The guarded fragment with transitive guards. Annals of
Pure and Applied Logic, 128(1-3):227–276, 2004. doi:10.1016/j.apal.2004.01.003.

http://arxiv.org/abs/2012.11269
http://www.jstor.org/stable/1995086
http://www.jstor.org/stable/1995086
https://doi.org/10.1007/s00224-016-9676-2
https://doi.org/10.1145/1142351.1142404
https://doi.org/10.1145/2463664.2465227
http://ceur-ws.org/Vol-353/RudolphKraetzschHitzler.pdf
https://doi.org/10.1007/3-540-61534-2_16
https://doi.org/10.1016/j.apal.2004.01.003

Generalizing Greenwald-Khanna Streaming
Quantile Summaries for Weighted Inputs∗

Sepehr Assadi # Ñ

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Nirmit Joshi # Ñ

Department of Computer Science, Northwestern University, Evanston, IL, USA

Milind Prabhu # Ñ

Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA

Vihan Shah # Ñ

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Abstract
Estimating quantiles, like the median or percentiles, is a fundamental task in data mining and
data science. A (streaming) quantile summary is a data structure that can process a set S of n

elements in a streaming fashion and at the end, for any ϕ ∈ (0, 1], return a ϕ-quantile of S up to an
ε error, i.e., return a ϕ′-quantile with ϕ′ = ϕ ± ε. We are particularly interested in comparison-based
summaries that only compare elements of the universe under a total ordering and are otherwise
completely oblivious of the universe. The best known deterministic quantile summary is the 20-year
old Greenwald-Khanna (GK) summary that uses O((1/ε) log (εn)) space [SIGMOD’01]. This bound
was recently proved to be optimal for all deterministic comparison-based summaries by Cormode
and Vesleý [PODS’20].

In this paper, we study weighted quantiles, a generalization of the quantiles problem, where each
element arrives with a positive integer weight which denotes the number of copies of that element
being inserted. The only known method of handling weighted inputs via GK summaries is the naive
approach of breaking each weighted element into multiple unweighted items, and feeding them one
by one to the summary, which results in a prohibitively large update time (proportional to the
maximum weight of input elements).

We give the first non-trivial extension of GK summaries for weighted inputs and show that it
takes O((1/ε) log (εn)) space and O(log(1/ε) + log log(εn)) update time per element to process a
stream of length n (under some quite mild assumptions on the range of weights and ε). En route to
this, we also simplify the original GK summaries for unweighted quantiles.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near lin-
ear time algorithms; Theory of computation → Approximation algorithms analysis; Theory of
computation → Data structures design and analysis

Keywords and phrases Streaming algorithms, Quantile summaries, Rank estimation

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.19

Funding Sepehr Assadi: Research supported in part by the NSF CAREER Grant CCF-2047061,
and gift from Google Research.
Vihan Shah: Research supported in part by the NSF CAREER Grant CCF-2047061. Part of this
work was done when the author was an undergraduate student at Rutgers University-Camden and
was supported in part by the NSF grant CCF-1910565.

Acknowledgements We would like to thank Rajiv Gandhi for making the collaboration between the
authors possible and for his support throughout this project.

∗ A full version of the paper with the same title appears on arXiv.

© Sepehr Assadi, Nirmit Joshi, Milind Prabhu, and Vihan Shah;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 19; pp. 19:1–19:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sepehr.assadi@rutgers.edu
https://sepehr.assadi.info/
mailto:nirmit@u.northwestern.edu
https://nirmitj6.github.io/static-webpage/
mailto:milindpr@umich.edu
https://milind-prabhu.github.io/
mailto:vihan.shah98@rutgers.edu
https://people.cs.rutgers.edu/~vjs69/
https://doi.org/10.4230/LIPIcs.ICDT.2023.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Generalizing GK Summaries for Weighted Inputs

1 Introduction

Given a set S of elements x1, . . . , xn from a totally ordered universe, the rank of an element
x in this universe, denoted by rank(x), is the number of elements xj in S with xj ≤ x.
Similarly, the ϕ-quantile of S, for any ϕ ∈ (0, 1], is the element xi ∈ S with rank(xi) = ⌈ϕ · n⌉.
Computing quantiles is a fundamental problem with a wide range of applications considering
they provide a concise representation of the distribution of the input elements. Throughout
this paper, we solely focus on comparison-based algorithms for this problem that can only
compare two elements of the universe according to their ordering and are otherwise completely
oblivious of the universe.

We are interested in the quantile estimation problem in the streaming model, introduced
in the seminal work of Alon, Matias, and Szegedy [3]. In this model, the elements of S are
arriving one by one in an arbitrary order and the streaming algorithm can make just one pass
over this data and use a limited memory and thus cannot simply store S entirely. Already
more than four decades ago, Munro and Paterson proved that one cannot solve this problem
exactly in the streaming model [17] and thus the focus has been on finding approximation
algorithms: Given ε > 0, the algorithm is allowed to return an ε-approximate ϕ-quantile, i.e.,
a (ϕ± ε)-quantile. More formally, we are interested in the following data structure:

▶ Definition 1 (Quantile Summary). An ε-approximate quantile summary processes any set
of elements in a streaming fashion and at the end finds an ε-approximate ϕ-quantile for any
given quantile ϕ ∈ (0, 1], defined as any ϕ′-quantile for ϕ′ ∈ [ϕ− ε, ϕ + ε].

In the absence of the streaming aspect of the problem, one can always compute an
ε-approximate quantile summary in O(1/ε) space; simply store the ε-quantile, 3ε-quantile,
5ε-quantile and so on from S. It is easy to see that given any ϕ, returning the closest stored
quantile results in an ε-approximate ϕ-quantile. It is also easy to see that this space is
information-theoretically optimal for the problem. However, this approach cannot be directly
implemented in the streaming model as a-priori it is not clear how to compute the needed
quantiles of S in the first place.

The first (streaming) ε-approximate quantile summary was proposed by Manku, Rajagopa-
lan, and Lindsay [14]. The MRL summary uses O((1/ε) log2(εn)) space and requires the prior
knowledge of the length of the stream. This summary was soon after improved by Greenwald
and Khanna [9] who proposed the GK summary that uses O((1/ε) log(εn)) space and no
longer requires knowing the length of the stream. This is the state-of-the-art for deterministic
comparison-based summaries. By allowing for randomization one can further improve upon
the space requirement of these algorithms and achieve bounds with no dependence on the
length of the stream. The state-of-the-art result for randomized summaries is an algorithm
due to Karnin, Lang and Liberty [12] which uses O((1/ε) log log (1/εδ)) space to construct an
ε-approximate quantile summary with probability at least (1−δ). We provide a more detailed
discussion of the literature on randomized summaries and non-comparison based summaries
in the full version of the paper. While using randomization gives streaming algorithms which
are more space-efficient, a major drawback of most of these algorithms is that their analysis
crucially depends on the assumption that the input stream is independent of the randomness
used by the algorithm. This assumption is unrealistic in several settings; for instance, when
the future input to the algorithm depends on its previous outputs. Recently, this has invoked
an interest in adverserially robust algorithms that work even when an adversary is allowed
to choose the stream adaptively [16, 7, 10, 2, 8, 18]. Deterministic algorithms are inherently
adverserially robust and therefore understanding them is an interesting goal in itself.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:3

In this paper, we focus on deterministic summaries; specifically on furthering our un-
derstanding of GK summaries. Over the years, two important questions have been raised
about them: Is it possible to improve the space of GK summaries, perhaps even all the
way down to the information-theoretic optimal bound of O(1/ε)? And, is it possible to
simplify GK summaries and their intricate analysis in a way that allow for generalizations
of these summaries to be more easily proposed and studied? (see Problem 2 of “List of
Open Problems in Sublinear Algorithms” [19] posed by Cormode or [12, 6, 13, 1] for similar
variations of this question, for example, when the input items are weighted).

The first question was addressed initially by Hung and Ting [11] who proved an
Ω((1/ε) log(1/ε)) space lower bound for ε-approximate quantile summaries, improving over
the information-theoretic bound. Very recently, this question was fully settled by Cor-
mode and Vesleý [6] who proved that in fact GK summaries are asymptotically optimal:
Ω((1/ε) log(εn)) space is needed for any deterministic (comparison-based) summary. The
second question above however is still left without a satisfying resolution. In this paper, we
make progress towards answering this question by showing that the GK summary can be
generalized to handle weighted inputs. Formally, we present algorithms to construct the
following data-structure.

▶ Definition 2 (Weighted Quantile Summary). Consider a weighted stream Sw of n updates
(xi, w(xi)) for 1 ≤ i ≤ n. The i-th update denotes the insertion of w(xi) copies of the element
xi (the weight w(xi) is guaranteed to be a positive integer). We define Wk =

∑k
i=1 w(xi)

to be the sum of the weights of the first k elements of Sw. An ε-approximate weighted
quantile summary is a data-structure that makes a single pass over Sw and at the end, for
any ϕ ∈ [0, 1), finds an xj such that, ∑

xi<xj

w(xi), w(xj) +
∑

xi<xj

w(xi)

 ∩ [
(ϕ− ε)Wn, (ϕ + ε)Wn

]
̸= ∅. (1)

A notable application of the weighted quantiles problem is in the very popular XGBoost
library [5] which contains an efficient implementation of the gradient-boosted trees algorithm.
To solve the weighted quantiles problem, XGBoost uses a merge and prune summary [4] via
an extension of the ideas in [15]. However, they do not give an upper bound on the space
achieved by this summary. Our result addresses this issue by proposing a new and efficient
weighted quantile summary with formal space guarantees.

Our Contributions

One approach to construct a weighted quantile summary is to break each weighted item
into multiple unweighted items and feed them to an unweighted summary such as the GK
summary. However, such algorithms are slow since the time required to process an element
is proportional to its weight. As such, it has been asked if faster algorithms exist. We
answer this in the affirmative by proposing a fast algorithm for this problem in Section 3. In
particular, this algorithm uses O((1/ε) log (εn)) space and O(log(1/ε) + log log(εn)) update
time per element to process a stream of length n, when the weights are poly(n) and ε ≥ 1

n1−δ

for any δ ∈ (0, 1) (Theorem 11). This matches the space and time complexity of the GK
summary when it is used to summarize a stream of n unweighted items [9, 13]. To our
knowledge, this constitutes the first (non-trivial) extension of the GK algorithm for weighted
streams.

ICDT 2023

19:4 Generalizing GK Summaries for Weighted Inputs

En route to this, we also present a new description of the GK summaries by simplifying
or entirely bypassing several of their more intricate components in [9] such as their so-called
“tree representation” and their complex “compress” operations in Section 4.2. As a warm-up
to this, we also present a simple and greedy algorithm for unweighted quantiles which uses
O((1/ε) log2(εn)) space in Section 4.1. This algorithm, although has a suboptimal space
bound, will be useful in motivating and providing intuition for GK summaries. Interestingly,
this summary is quite similar (albeit not identical) to the so-called GKAdaptive summary [13]
that was already proposed by [9] as a more practical variant of their GK summaries (Luo et
al. [13] further confirmed this by showing that GKAdaptive outperforms GK summaries
experimentally). While no theoretical guarantees are known for GKAdaptive, we prove that
this slight modification of this algorithm submits to a simple analysis of an O((1/ε) log2(εn))
space upper bound (Theorem 25).

We also emphasize that, similar to the original GK summaries, our weighted extension
does not need foreknowledge of the stream length. This guarantee implies that we can track
the quantiles throughout the stream, with error proportional to the current weight of the
stream, and not only at the end.

2 Preliminaries

We now present the basic setup of our quantile summary and preliminary definitions. We
start with an alternate equivalent formulation of the problem defined in Definition 2 in terms
of the unweighted quantiles problem for which we first define the notion of unfolding streams.

Unfolding Streams

For the weighted stream Sw, we define its corresponding unfolded stream Unfold(Sw) to be
the stream which contains w(xi) copies of xi for 1 ≤ i ≤ n. More explicitly,

Unfold(Sw) := ⟨x(1)
1 , x

(2)
1 , . . . , x

(w(x1))
1 , . . . x(1)

n , x(2)
n , . . . , x(w(xn))

n ⟩

where x
(j)
i is the j-th copy of element xi.

It is easy to verify that the goal of the problem, as stated in Definition 2, is equivalent to
creating an ε-approximate quantile summary of Unfold(Sw). Note that to break ties while
assigning ranks to equal elements, we will assume that elements that appeared earlier in
Unfold(Sw) have lower ranks. As a side note we would like to point out here that although the
algorithm we present does not “unfold” the stream, we will continue working with Unfold(Sw)
to present the analysis of the algorithm.

We use WQS to denote the summary of Sw that our algorithm creates. WQS will consist of
a subset of the elements of the stream along with some auxiliary metadata about the stored
elements. We use ei to denote the i-th largest element of the stream stored in WQS. We use
e

(j)
i to refer to the the j-th copy of ei in Unfold(Sw), for 1 ≤ j ≤ w(ei). We also use e to

refer to an arbitrary element of the summary (when the rank is not relevant). The number
of elements of the stream stored in WQS shall be denoted by s. For each element e, WQS stores
w(e). The other main information we store for each element e are its r-min and r-max values,
which we now define:

r-min(e) and r-max(e): are lower and upper bounds maintained by WQS on the rank of
e(1) (the first copy of e to appear in Unfold(Sw)). Since we are not storing all elements,
we cannot determine the exact rank of a stored element, and thus focus on maintaining
proper lower and upper bounds.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:5

10 21 30WQS:

(3, 5, 4) (9, 12, 2) (17, 17, 3)(r-min, r-max, w):

(2, 2, 6) (3, 3, 4) (7, 0, 9)(g, ∆, G):

Insert(25, 2)

=⇒

10 21 25 30

(3, 5, 4) (9, 12, 2) (11, 17, 2) (19, 19, 3)

(2, 2, 6) (3, 3, 4) (1, 6, 2) (7, 0, 3)

Delete(10)

=⇒

21 25 30

(9, 12, 2) (11, 17, 2) (19, 19, 3)

(9, 3, 10) (1, 6, 2) (7, 0, 3)

Figure 1 An illustration of the update operations in the summary starting from some arbitrary
state (the parameters (g, ∆, G) in this figure are defined in Section 2.2).

To handle corner cases that arise later, we assume that WQS contains a sentinel element e0
and define r-min(e0) = r-max(e0) = 0 and w(e0) = 1. Also, we insert a +∞ element at the
start of the stream which is considered larger than any other element and store it in WQS
as es. The r-min and r-max of this element is also always equal to the weight of inserted
elements (including itself). Since +∞ is the largest element, inserting it in Sw does not affect
the rank of any other element.

▶ Observation 3. (r-min(e) + j − 1) and (r-max(e) + j − 1) are lower and upper bounds on
the rank of e(j).

During the stream, we insert and delete elements from the summary. This changes the rank
of the elements so we have to update WQS to reflect the changes. The procedure used to
update the r-min and r-max values of elements is describe below:

Insert(x, w(x)). Inserts a given element x with weight w(x) into WQS.

(i) Store the element x along with its weight w(x) in WQS.
(ii) Find the smallest element ei in WQS such that ei > x;
(iii) Set r-min(x) = r-min(ei−1)+w(ei−1) and r-max(x) = r-max(ei); moreover, increase

r-min(ej) and r-max(ej) by w(x) for all j ≥ i.

Delete(ei). Deletes the element ei from WQS.
(i) Remove element ei from WQS; keep all remaining r-min, r-max values unchanged.

We now justify that after the above operations are performed, for each element e in the
summary, its r-min and r-max values are valid lower and upper bounds on the rank of e(1).
Suppose that a new element x satisfying ei−1 < x < ei is inserted into WQS. The rank of x is
at least one more than the rank of the last copy of ei−1. Therefore, r-min(x), which is set
to (r-min(ei−1) + w(ei−1)− 1) + 1 = r-min(ei−1) + w(ei−1), is a valid lower bound on the
rank of e(1). The rank of x is at most equal to the rank of the first copy of ei. Therefore,
setting r-max(x) equal to r-max(ei) makes it a valid upper bound. After the insertion of x,
the ranks of all elements in the summary larger than x increase by w(x) and hence their
r-min and r-max values need to be updated. The ranks of elements smaller than x do not
change. Also, deleting an element from the summary does not change the bounds on the
ranks of other elements in the summary.

The following claim shows that if a certain condition on r-min and r-max values of the
elements in WQS is maintained, we can guarantee that WQS will be an ε-approximate summary
of Unfold(Sw).

▷ Claim 4. Suppose in WQS over a length n stream, r-max(ei)−(r-min(ei−1)+w(ei−1)−1) ≤
⌊εWn⌋; then WQS is an ε-approximate quantile summary of Unfold(Sw).

The proof of this claim is presented in the full version.

ICDT 2023

19:6 Generalizing GK Summaries for Weighted Inputs

2.1 Time Steps and Bands
Another important notion is that of time steps and bands. For simplicity, we define this for
the unweighted setting, and then we build upon that for to define them for the weighted
setting.

Unweighted Setting. We measure the time as the number of elements appeared in the
stream so far in multiples of Θ(1/ε). Formally,

▶ Definition 5 (Time Steps). Let ℓ := 1
ε which we assume is an integer. We partition the

stream into consecutive chunks of size ℓ; the time step t then refers to the t-th chunk of
elements denoted by (x(t)

1 , . . . , x
(t)
ℓ) (we assume that the length of the stream is a multiple

of ℓ)1. We define t0(x) as the time step in which x appears in the stream.

The next important definitions are band-values and bands borrowed from [9]. Roughly
speaking, we would like to be able to partition elements of the stream into a “small” number
of groups (bands) so that elements within a group have “almost the same” time of insertion
(as a proxy on how accurate our estimate of their r-min, r-max is). Formally,

▶ Definition 6 (Band Values and Bands). For any element x of the unweighted stream S, we
assign an integer called a band-value, denoted by b-value(x), as follows:

(i) At the time step t = t0(x), we set b-value(x) = 0;
(ii) At any time step t > t0(x), if t is a multiple of 2b-value(x), then we increase b-value(x)

by one.

Weighted Setting. We define an equivalent notion of time steps for weighted streams. We
say that tk = ⌊εWk⌋ time steps have elapsed after the arrival of k elements in Sw. Intuitively,
a chunk of total weight ℓ := 1

ε arrives in the stream in a single time step. For each element
xk in Sw, we define its insertion time step t0(xk) = ⌊ε(Wk−1 + 1)⌋. The band value of an
element x of Sw is the band value assigned to the first copy of x in Unfold(Sw) by Definition 6.

We would formally also have an equivalent definition of bands for the weighted setting
that will allow us to compute them in O(1) time. Their equivalence is proved in the full
version of the paper.

▶ Definition 7 (Band-Values and Bands). When k elements of Sw have been inserted, for any
element x of the stream, b-value(x) is α if and only if the following inequality is satisfied,

2α−1 + (tk mod 2α−1) ≤ tk − t0(x) < 2α + (tk mod 2α).

For any integer α ≥ 0, we refer to the set of all elements x with b-value(x) = α as the
band α, denoted by Bandα; we also use Band≤α to denote the union of bands 0 to α.

A corollary of Definition 7 is that number of band-values after seeing k elements is
B(k) = O(log tk) = O(log(εWk)). We also note that at any point, the sum of weights of all
the elements belonging to bands 0 to α is at most O(ℓ · 2α+1) because all the copies of all
these elements belong to Band≤ α for Unfold(Sw). We note these facts below:

of b-values B(k) = O(log εWk) and
∑

x∈Band≤α

w(x) ≤ O(ℓ · 2α+1) for all α ≥ 0. (2)

1 Both assumptions in this definition are without loss of generality: we can change the value of ε by an
O(1) factor to guarantee the first one and add O(1/ε) dummy elements at the end to guarantee the
second one.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:7

We now make the following observation:

▶ Observation 8. At any point in time, if b-value(x) ≤ b-value(y) for elements x and y,
then at any point after this, b-value(x) ≤ b-value(y).

This is simply because, in the unweighted setting, band-values of elements are updated
simultaneously based on the value of the current time step (Definition 6). Thus, the b-value
of the first copies of each element in a band is also updated simultaneously in Unfold(Sw).
Thus, Observation 8 is true.

2.2 Indirect handling of r-min and r-max values

To describe our algorithm, it is better to store the r-min and r-max values indirectly as g and
∆ values which we define for the weighted algorithm as follows. For any element ei in WQS,

gi = r-min(ei)− (r-min(ei−1) + w(ei−1)− 1), ∆i = r-max(ei)− r-min(ei); (3)

The g value can be interpreted to be the difference between the minimum possible rank
of ei and the minimum possible rank of the last copy of ei−1. The ∆ value is the difference
between the r-max and r-min values of the first copy of ei. The r-min and r-max values can
be recovered given the g-values, ∆-values and the weights of all elements in WQS as follows:

r-min(ei) = gi +
i−1∑
j=1

(gj + w(ej)− 1), r-max(ei) = ∆i + gi +
i−1∑
j=1

(gj + w(ej)− 1).

This motivates the definition of the quantity Gi, for each element ei in WQS:

Gi = gi + w(ei)− 1. (4)

We will soon see that the G-value has a nice property that will prove useful in the analysis
of the algorithms that we propose. We now use the g and ∆ values defined to state the
invariant that we maintain to ensure that WQS is an ε-approximate quantile summary.

▶ Invariant 1. After seeing k elements of Sw, each element ei ∈ WQS satisfies gi + ∆i ≤ tk.

From Equation (3) we note that gi + ∆i = r-max(ei)− (r-min(ei−1) + w(ei−1)− 1). Also,
tk = ⌊εWk⌋ by definition. Therefore, if WQS maintains Invariant 1, Claim 4 implies that it is
an ε-approximate quantile summary of Sw.

The following observation now describes how g and ∆ values of elements are updated
during Insert and Delete operations (see Section 2).

▶ Observation 9. In the summary WQS:
Insert(x, w(x)): Sets g(x) = 1 and ∆(x) = gi + ∆i − 1 and keeps the remaining (g, ∆)
values unchanged.
Delete(ei): Sets gi+1 to equal gi+1 +Gi = gi+1 +(gi +w(ei)−1), and keeps the remaining
(g, ∆) values unchanged.

The correctness of Observation 9 follows from Equation (3) and the way in which r-min and
r-max values change when these operations are performed. As promised, we present useful
properties of G and ∆ values.

ICDT 2023

19:8 Generalizing GK Summaries for Weighted Inputs

G-value. To understand this, we define the notion of coverage of any element in WQS. We
say that ei covers ei−1 whenever ei−1 is deleted from the summary, in which case, ei also
covers all elements that ei−1 was covering so far (every element only covers itself upon
insertion). We define:

C(ei): the set of elements covered by ei. By definition, at any point of time,

Gi =
∑

x∈C(ei)

w(x) and C(ei) ∩ C(ej) = ∅ (5)

for any ei, ej currently stored in WQS.

We claim that Gi equals the sum of weights of the elements in the coverage of ei. This is
easy to verify by induction. When we insert an element, we set its g value to be 1 and the
element only covers itself, thus its G value is equal to its weight by Equation (4). In the way
G-value is updated upon deletions, according to Observation 9, this continues to be the case
throughout the algorithm.

∆-value. The ∆-value of an element is a measure of the error with which we know its rank.
We can use Invariant 1 to deduce the following upper bound on the ∆ value of an element x

in terms of its insertion time t0(x).

∆(x) ≤ t0(x). (6)

The intuition here is that after seeing k elements of the stream, the maximum possible
difference in possible ranks is bounded by tk if Invariant 1 is maintained. Hence, the error
in the rank of a newly inserted element is also upper bounded by tk. Formally, suppose
that x is the j-th element of the stream and satisfies ei−1 < x < ei at the time of insertion
into WQS. When x is inserted into WQS, we set ∆(x) = gi + ∆i − 1. Invariant 1 implies that
∆(x) ≤ ⌊εWj−1⌋ − 1 ≤ ⌊ε(Wj−1 + 1)⌋ = t0(x).

3 A non-trivial extension of GK algorithm for weighted streams

In this section, we present our extension of the GK algorithm for weighted streams. As a
warm-up to our main algorithm, we explicitly analyze the special case of the algorithm when
all weights are 1 (the unweighted setting) in Section 4.2. Along the way, we also present a
very simple and greedy way of maintaining unweighted quantile summaries in O(1

ε · log2(εn))
space in Section 4.1. There, we shed further light on some counter-intuitive choices in GK
summaries which turn out to be a basis for their tighter O(1

ε log(εn)) space. In particular,
we motivate the following definition:

▶ Definition 10 (Segment). The segment of an element ei in WQS, denoted by seg(ei), is
defined as the maximal set of consecutive elements ej , ej+1, · · · , ei−1 in WQS with b-value
strictly less than b-value(ei). We let G∗

i be the sum of the G-values of ei and its segment,
i.e., G∗

i = Gi +
∑

ek∈seg(ei)
Gk.

See Figure 2 below for an illustration.
At any step, the algorithm first inserts the arriving element into WQS; we call this the

insertion step. It then only deletes an element from WQS if it can be deleted together with its
entire segment without violating Invariant 1. While there is any such element whose deletion

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:9

B
an

d-
va

lu
e

Position

seg(e6)

1

2

3

4

5

1 2 3 4 5 6 7 8

seg(e5)

e6

e5

e4

e3

e2

e1

e7

e8

Figure 2 An illustration of Definition 10. The ranks of elements increase along the horizontal
axis. The segment of the element e5 contains e3 and e4. The segment of e6 contains e2, e3, e4 and e5.

(along with its segment) does not violate Invariant 1 (and another simple but important
condition on b-value), the algorithm deletes it from WQS; we call this the deletion step. We
now give a formal description of the algorithm.

▶ Algorithm 1. A generalization of the GK algorithm for weighted streams:

For each arriving item (xj , w(xj)):
(i) Run Insert(xj , w(xj)):
(ii) While there exists an element ei in WQS satisfying:

(1) b-value(ei) ≤ b-value(ei+1) and (2) G∗
i + gi+1 + ∆i+1 ≤ tj

Run Delete(ek) for ek in {ei} ∪ seg(ei).

▶ Theorem 11. For any ε > 0 and a weighted stream of length n with total weight Wn, Al-
gorithm 1 maintains an ε-approximate quantile summary in O(1

ε · log(εWn)) space. Also,
there is an implementation of Algorithm 1 that takes O

(
log(1/ε) + log log(εWn) + log2(εWn)

εn

)
worst-case update time per element.

We remark here that as long as the weights are poly(n) bounded and ε ≥ 1/n1−δ for
any fixed δ ∈ (0, 1), the space used by the algorithm will be O((1/ε) log(εn)) and its update
time will be O(log(1/ε) + log log(εn)). This matches the space and time complexities of the
implementation of the GK summary described in [13]. Note that the interesting regime for ε

is at least a small constant, because when ε < 1/n1−δ, the information-theoretic lower bound
of (1/2ε) on the summary size already implies that we need to store Ω(n1−δ) elements even
for original GK summaries on unweighted inputs, which is prohibitive for most applications.

Algorithm 1 maintains a valid ε-approximate summary since it may only delete an element
ei along with its segment if the condition (ii): G∗

i + gi+1 + ∆i+1 ≤ tk is satisfied. Thus,
Invariant 1 is satisfied for the element ei+1 after the deletion of ei (other g and ∆ values
are unaffected by this). We now focus on bounding the space used by the algorithm in the
following. Then, in Section 3.2, we give an efficient implementation to finalize the proof of
Theorem 11.

3.1 Space Analysis
In this subsection, we prove a bound on the space used by Algorithm 1. Formally, we have
the following:

ICDT 2023

19:10 Generalizing GK Summaries for Weighted Inputs

▶ Lemma 12. For any ε > 0 and a stream of length n with the total weight Wn, Algorithm 1
maintains an ε-approximate quantile summary in O(1

ε · log(εWn)) space.

We first make a critical observation.

▶ Observation 13. Elements from Band≤α in WQS only cover elements of Band≤α at any
time.

This is because when ei and seg(ei) get covered by ei+1, Algorithm 1 ensures that
b-value(ei) ≤ b-value(ei+1). From Definition 10, seg(ei) contains elements with b-value
less than b-value(ei). Thus, C(ei+1) contains elements with b-value at most b-value(ei+1)
and this continues to be the case at a later time by Observation 8.

Another important observation is that, after executing a deletion step after k insertions, an
element ei present in WQS either satisfies b-value(ei) > b-value(ei+1) or G∗

i +gi+1 +∆i+1 > tk;
otherwise Algorithm 1 would have deleted this element. We refer to the elements in WQS
satisfying the former condition as type-1 elements and the ones satisfying only the latter
condition as type-2 elements. Thus, each element is exactly one of the two types (except only
es = +∞ which we can ignore). It will therefore suffice to obtain a bound on the number of
type-1 and type-2 elements to bound the space complexity of WQS. Let us first bound the
number of type-1 elements in the following lemma.

▶ Lemma 14. After the deletion step when k elements have been seen, the number of type-1
elements stored in WQS is O

(
ℓ · log tk

)
.

Proof. We first partition the type-1 elements into B(k) sets Y0, . . . , YB(k) where for any
band-value α:

Yα := {ei ∈ WQS | ei is type-1 and b-value(ei+1) = α} ;

(notice that elements in Yα are such that the band-value of their next element is α, not
themselves2) We will show that the size of any set Yα is at most O(ℓ). We map each element
of ei to the smallest element ej with b-value greater than α; see Figure 3a for an illustration.
Let Tα be the set of all such elements ej . Also, it is easy to see that the mapping from Yα to
Tα is one to one; giving us |Yα| = |Tα|. Note that ej−1 must be a type-2 element. Hence,

G∗
j−1 + gj + ∆j > tk. (7)

Since b-value(ej) is greater than b-value(ei+1) = α, by Observation 8, one can argue that
ej is inserted in WQS before ei+1. Let g′

j be the g-value of ej when ei+1 got inserted. By
Invariant 1,

g′
j + ∆j ≤ t0(ei+1) (∆ value does not change over time). (8)

Subtracting Equation (8) from Equation (7) and using the bounds from Definition 7 we
conclude that,

G∗
j−1 + (gj − g′

j) > tk − t0(ei+1) ≥ 2α−1 − 2. (9)

In the above equation:

2 While this may sound counter-intuitive at first glance, recall that the criterion for defining the type of
an element is a function of both this element and the next one; this definition allows us to take this into
account.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:11

6 4 5 24 2 73
ei ei+1 ejej−1

(a) The shaded blocks are elements of Y4. The arrows indicate the mapping from elements in Y4 to
elements in T4. Each element ei in Y4 is mapped to the first larger element ej with a band-value higher
than 4.

6 4 5 24 2 73

ej−1 and its segment

(b) Each dark gray block represents an element ej in T4. All elements which are either ej−1 or are in the
seg(ej−1) are shaded light gray.

Figure 3 The two figures represent a section of the summary with each block representing an
element. The number inside the block is the element’s band-value.

(i) The term (gj − g′
j) counts the sum of weights of the elements covered by ej after ei+1

is inserted. Claim 15 will show that these elements are in Band≤α.
(ii) The term G∗

j−1 counts the sum of the weights of the elements covered by ej−1 and
seg(ej−1). By Definition 10, ej−1 and all elements in seg(ej−1) have b-value ≤ α.
Observation 13 allows us to conclude that the sum of weights of elements counted by
G∗

j−1 are in Band≤α as well.
(iii) Additionally, it is easy to see that for distinct ej1 and ej2 in Tα, the segments of ej1−1

and ej2−1 do not overlap (as can be observed in Figure 3). Thus, by Equation (5), the
elements covered by ej1 and its segment are distinct from the elements covered by and
ej2 and its segment.

Finally, from the above discussion, we conclude that the LHS of Equation (9), summed over
all Tα, is proportional to the total weight of all the elements in Band≤α. Formally,

|Tα| · (2α−1 − 2) ≤
∑

ej ∈Tα

G∗
j−1 +

∑
ej ∈Tα

(gj − g′
j) ≤

∑
xk∈Band≤α

w(xk) +
∑

xk∈Band≤α

w(xk) ≤ O(ℓ · 2α+2),

where the last inequality follows from Equation (2). Hence, |Tα| = |Yα| = O(ℓ) for α ≥ 3.
We have O(ℓ) elements for α = 0, 1, 2 anyway. Since there are B(k) = log tk possible values
of α, the number of type-1 elements is O(ℓ log tk).

▷ Claim 15. All the elements covered by ej after ei+1 was inserted have b-value at most α

currently.

Proof. Let us assume that there exists an element which currently has b-value > α but gets
covered by ej after ei+1 was inserted. All such elements are less than ej and greater than ei+1
since they get covered by ej . Now consider the smallest such element e. Clearly, ei+1 belongs
to the segment of e just after the insertion of ei+1. Since e does not belong to the summary
right now, it must have been deleted. This implies that its segment, which contained ei+1,
got deleted. This means ei+1 is also deleted, which is a contradiction. ◁

This finalizes the proof of Lemma 14. ◀

It now remains to bound the number of type-2 elements in WQS which we do in the following
lemma.

ICDT 2023

19:12 Generalizing GK Summaries for Weighted Inputs

▶ Lemma 16. After the deletion step when k elements of the stream have been seen, the
number of type-2 elements is O(ℓ · log tk).

Proof. Any type-2 element ei in WQS, has the property that G∗
i + gi+1 + ∆i > tk. This will

give a lower bound on G∗
i + gi+1 in terms of the b-value(ei+1).

▷ Claim 17. After seeing k elements, for any type-2 element ei, G∗
i +gi+1 ≥ 2b-value(ei+1)−1−2.

Proof. As ei is a type-2 element, G∗
i + gi+1 + ∆i+1 > tk. By Equation (6), ∆i+1 ≤ t0(ei+1)

and therefore,

G∗
i + gi+1 > tk − t0(ei+1) ≥ 2b-value(ei+1)−1 − 2,

where the second inequality is by Definition 7. ◁

Claim 17 gives us a lower bound on the G∗-value of each type-2 element ei as a function
of the g-value and band-value of the next element ei+1. Therefore, we partition the type-2
elements into sets X0, . . . , XB(k) such that for any band-value α,

Xα := {ei ∈ WQS | ei is type-2 and b-value(ei+1) = α} .

Moreover, for any ei ∈ Xα, since ei is a type-2 element, b-value(ei) ≤ b-value(ei+1) = α.
Summing over the inequality of Claim 17 for each element in Xα, we obtain:

|Xα| · (2α−1 − 2) ≤
∑

ei∈Xα

G∗
i + gi+1. (10)

We next show an upper bound on the right-hand side of Equation (10) which will imply the
necessary bound on |Xα|.

▷ Claim 18. After seeing k elements, for any α ≥ 0,
∑

ei∈Xα

G∗
i ≤ 2

∑
ej∈WQS∩Band≤α

Gj .

Proof. We partition Xα into two disjoint sets Xα ∩Bandα and Xα ∩Band≤α−1 and observe
that two elements from one of these two sets must have disjoint segments. Also, the elements
in their segments must all be in Band≤α. Therefore,∑

ei∈Xα

G∗
i =

∑
ei∈Xα∩Bandα

G∗
i +

∑
ei∈Xα∩Band≤α−1

G∗
i ≤

∑
ej∈WQS∩Band≤α

Gj +
∑

ej∈WQS∩Band≤α

Gj .

= 2
∑

ej∈WQS∩Band≤α

Gj . ◁

The next claim bounds the sum of G-values of the elements in WQS from Band≤α.

▷ Claim 19. After seeing k elements, for any α ≥ 0,
∑

ei∈WQS∩Band≤α
Gi ≤ O(ℓ · 2α+1).

Proof. An element is only deleted by Algorithm 1 if condition (1) is satisfied. By Observation 8,
this continues to be the case at any later point in the algorithm. Therefore, C(ei) only
contains elements whose b-value is at most b-value(ei). Therefore,∑

ei∈WQS∩Band≤α

Gi =
∑

ei∈WQS∩Band≤α

∑
xj∈C(ei)

w(xj)

(as Gi =
∑

xj∈C(ei) w(xj) by Equation (5))

≤
∑

xj∈Band≤α

w(xj)

(as C(ei)’s are disjoint and their elements belong to Band≤ α)
= O(ℓ · 2α+1), (by the bound in Equation (2))

completing the argument. ◁

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:13

By plugging the bounds of Claim 18 and Claim 19 in Equation (10) and using the fact that
a G value of an element is at least its g value, we have that,

|Xα| · (2α−1−2) ≤
∑

ei∈Xα

G∗
i +

∑
ej∈WQS∩Band≤α

gj ≤ 2
∑

ej∈WQS∩Band≤α

Gj +
∑

ej∈WQS∩Band≤α

Gj ≤ 3 ·O(ℓ ·2α+1),

which implies |Xα| = O(ℓ) for 3 ≤ α ≤ B(k). There can be O(ℓ) elements each in X0,
X1 and X2 since there are at most O(ℓ) elements in Band≤2. By Equation (2) we have
B(k) = O(log tk) and therefore that the number of type-2 elements is O(ℓ · log tk). ◀

We have now shown that, after performing the deletion step after k elements have been seen,
the number of type-1 elements in WQS is O(ℓ · log tk) by Lemma 14 and the number of type-2
elements in WQS is O(ℓ · log tk) by Lemma 16. Since each element in WQS (other than +∞) is
either type-1 or type-2, the total number of elements in WQS is O(ℓ · log tk).

This finalizes the proof of Lemma 12 since tn = O(εWn) and ℓ = O(1
ε). We conclude the

discussion of the space complexity with the following remark;
▶ Remark 20 (Delaying Deletions). Suppose in Algorithm 1, instead of running the deletion
step in Line (ii) after each element, we run it only after inserting c elements c > 1; then, the
space complexity of the algorithm only increases by an additive term O(c).

Performing the deletion step after k elements, the number of elements reduces to O(ℓ·log tk)
as proved earlier as long as we have been satisfying both the conditions of the deletions of
Algorithm 1 while performing every deletion. Thus, the extra space is only due to storing
the additional O(c) elements that are inserted in WQS.

The above remark will be useful in proposing an implementation of Algorithm 1 which
has an asymptotically faster update time per element, which we do in the following.

3.2 An Efficient Implementation of Algorithm 1
In this section, we present an efficient implementation of Algorithm 1. This is similar to the
implementation of the GK summary proposed in [13]. The key idea is that the deletion step
is slow and therefore performing it after every time step is rather time inefficient. However,
not performing the deletion step for too long blows up the space. The fast implementation
we present deals with this trade-off and chooses the delay between consecutive deletion steps
so that both the time and space complexity of the algorithm are optimized. Formally, we
show the following:

▶ Lemma 21. There is an implementation of Algorithm 1 that takes O
(

log(1/ε) +
log log(εWn) + log2(εWn)

εn

)
worst case processing time per element.

Part I: Storing WQS

We store our summary WQS as a balanced binary search tree (BST), where each node contains
an element of WQS along with its metadata. For each element e we store w(e), g(e), ∆(e)
and t0(e). The sorting key of the BST is the value of elements. The Insert and Delete
operations insert elements into and delete elements from the BST respectively.

Part II: Performing a Deletion Step

The deletion step involves the deletion of elements in the summary that satisfy the two
conditions of Algorithm 1. Checking condition (ii) requires that we know the G∗ values
corresponding to each element of the summary, which we show how to do efficiently in the
following.

ICDT 2023

19:14 Generalizing GK Summaries for Weighted Inputs

Computing G∗ values. First, we perform an inorder traversal of WQS and store the elements
ei in sorted order as a temporary linked list. The G∗ value computation will use a stack and
will make one pass over the list from the smallest to the largest element. We describe the
computation when the traversal reaches the element ei in the list. To obtain G∗

i , we sum up
the G∗ values of all elements on the top of the stack with b-value less than b-value(ei) and
add the sum to Gi. All these elements are popped from the stack and then ei along with
its computed G∗ value is pushed onto the stack. We claim that at this point G∗

i has been
correctly computed. Since each element is pushed and popped from the stack at most once,
the G∗ values of all elements can be computed in time linear in the size of WQS.

We now describe how each deletion step is performed.

▶ Algorithm. Performing a deletion step efficiently:

1. Perform an inorder traversal of WQS (which is a BST) to obtain a temporary (doubly-
linked) list of elements sorted by value.

2. Compute b-values of all elements of WQS using Definition 7.
3. Compute the G∗ value of all elements using the algorithm described above.
4. Traverse the list from larger elements to smaller ones. For each element ei, delete it

from BST (as well as the list), if it satisfies both the deletion conditions mentioned in
Algorithm 1.

Having described an insertion step and a deletion step, below is an implementation
of Algorithm 1 with fast amortized update time. We also describe how to modify this
implementation to also get the same bound on the worst-case update time.

▶ Implementation 1. Efficient Implementation of Algorithm 1.

Initialize WQS to be an empty balanced binary search tree.
DeleteTime← 2.
For each arriving item (xk, w(xk)):

(i) Run Insert(xk, w(xk)).
(ii) If (k = DeleteTime):

Execute the deletion step and update DeleteTime ← DeleteTime + ⌈ℓ log tk⌉.

Space Analysis

The space complexity of the above implementation is still O(1
ε log(εWn)). This follows

from the fact that, after performing a deletion when k elements have been seen, we wait
for another O(ℓ · log tk) elements only, which increases the space complexity by only a
constant factor due to Remark 20. Thus, the space complexity , after n insertions, remains
O(ℓ · log tn) = O(1

ε log(εWn)), as ℓ = 1/ε and tn = O(εWn).

Time Analysis

The main purpose behind storing WQS as a BST was to decrease the time required to perform
an Insert and Delete operation on WQS. This takes only O(log s), where s is the summary
size which is at most O(1

ε log εWn). Thus, we now have the following observation, which is
directly implied by the fact that we perform Insert and Delete at most once per element.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:15

▶ Observation 22. Over a stream of length n, the total time taken by the fast implementation
of Implementation 1 to perform all Insert and Delete operations is O(n · (log(1/ε) +
log log(εWn))).

Note that the only time taken by Implementation 1 not taken into account in Obser-
vation 22 is the part that determines which elements to delete, which we bound in the
following.

▶ Lemma 23. Over a stream of length n, the total time taken by Implementation 1 to decide
which elements need to be deleted over all the executed deletion steps is O(n + 1

ε log2(εWn)).

Proof. The time taken to decide which elements need to be deleted inside one deletion step
(when k elements have been seen) step is O(s) = O(ℓ · log tk). This is because creating a
linked list, followed by computation of b-value and G∗-value of all elements can be performed
in O(s) time, as discussed before. Finally, making a linear pass over the list from the largest
to the smallest element (to check if the deletion conditions hold) requires O(s) time.

Next, we obtain a bound on the number of deletion steps performed by the algorithm.
Consider the deletion steps performed when tk is the intervals [2i, 2i+1), for 1 ≤ i ≤
⌈log(εWn)⌉. Let d(i) be the number of such deletion steps and n(i) denote the number of
elements xk of the stream for which tk is in the range [2i, 2i+1). After the deletion step when
k elements have been seen, we wait for ⌈ℓ log tk⌉ insertions. Therefore, there are at least
ℓ · i elements inserted between two consecutive deletion steps that happen in the considered
interval. Therefore, we get the following bound on the number of deletion steps that are
performed during the interval.

d(i) ≤ n(i)
ℓ · i

+ 1. (11)

The time spent deciding which element to delete in a deletion step (after seeing k elements)
is at most O(ℓ log tk) = O(ℓ · i), when tk is in the interval [2i, 2i+1). This and Equation (11),
give the following bound on the total time spent to decide which elements to delete over all
deletions steps.

O

⌈log(εWn)⌉∑
i=1

d(i) · ℓi

 = O

⌈log(εWn)⌉∑
i=1

(n(i) + ℓi)

= O

(
n + 1

ε
log2(εWn)

)
This finalizes the proof of the lemma. ◀

Observation 22 and Lemma 23 together clearly imply that the total time taken by
Implementation 1 over a stream of length n is O

(
n ·(log(1/ε)+log log(εWn))+ 1

ε log2(εWn)
)
.

Thus, the amortized update time per element is O
(

log(1/ε) + log log(εWn) + log2(εWn)
εn

)
.

We can obtain the same bound on the worst-case update time per element using standard
ideas of distributing time of inefficient operations over multiple time steps. The idea is to
process the deletion step over all the following time steps before executing the next deletion
step. Formally, we have the following:

▷ Claim 24. There is an implementation of Algorithm 1 with worst-case update time
O

(
log(1/ε) + log log(εWn) + log2(εWn)

εn

)
.

ICDT 2023

19:16 Generalizing GK Summaries for Weighted Inputs

4 Unweighted Quantiles

For a definition of an unweighted quantile summary, see Definition 1. This is a special case
of the weighted quantiles problem where each element of the stream arrives with a weight of
1. The GK-algorithm [9] solves this problem optimally [6] by proposing a summary of size
O

(1
ε log(εn)

)
. In the following sections, we attempt to simplify the GK algorithm while still

being able to prove similar space guarantees.
Towards this end, we describe two algorithms. These algorithms also use the notion

of time steps and bands which are formally defined in Section 2.1 (see Definition 5 and
Definition 6). The n elements of the stream S are processed in O(εn) chunks each of size
ℓ = O(1/ε). We refer to each such chunk of ℓ elements as a time step. (Contrast this with
Algorithm 1 in the context of which a time step was defined to be a chunk of O(1/ε) weight).
When an element x of the stream arrives in the i-th time step, we set t0(x) = i. Elements are
further grouped geometrically based on what time step they appear in into O(log t) bands,
where t is the current time-step (see Figure 4).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Time

1

2
3
4

Band-value

(a) Progression of the band-values of elements inserted at time step 2.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1Chunk number:

Band number: 1 2 3 4

(b) Distribution of band values at t = 15.

Figure 4 An illustration of band-values and bands.

We use QS to represent the unweighted summary and ei to be the i-th largest element
stored in QS. For each element ei, we wish to maintain lower and upper bounds on rank(ei)
denoted by r-min(ei) and r-max(ei) respectively. This is done implicitly by storing gi and
∆i values as described in Equation (3) in Section 2.2. Unlike the weighted setting, we do not
need Gi values. (To see why, note that in Equation (4) when the weight of each element is
1, Gi = gi.) Any summary which maintains the following invariant is guaranteed to be an
ε-approximate quantile summary.

▶ Invariant 2. After t times steps of the stream S, each element ei ∈ QS satisfies gi + ∆i ≤ t.

Note that this is just a special case of Invariant 1 when all weights are one i.e. Wn = n. The
goal of our algorithms is to maintain this invariant using limited space.

4.1 A Greedy O
(

1
ε

log2(εn)
)

Size Summary

As a warm-up to our main algorithm, we first present a very simple and greedy way of
updating the quantile summary QS to maintain Invariant 2 in O(1

ε · log2(εn)) space.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:17

▶ Algorithm 2. A greedy algorithm for updating the quantile summary.

For each time step t with arriving items (x(t)
1 , . . . , x

(t)
ℓ):

(i) Run Insert(x(t)
j) for each element of the chunk.

(ii) Repeatedly run Delete(ei) for any (arbitrarily chosen) element ei in QS satisfying:

(1) b-value(ei) ≤ b-value(ei+1) and (2) gi + gi+1 + ∆i+1 ≤ t

▶ Theorem 25. For any ε > 0 and a stream of length n, Algorithm 2 maintains an ε-
approximate quantile summary in O(1

ε · log2(εn)) space. Also, there is an implementation
of Algorithm 2 that takes O

(
log(1/ε) + log log(εn)

)
worst-case processing time per element.

Finally, quantile queries can be answered in O
(

log(1/ε) + log log(εn)
)

worst-case time per
query.

Algorithm 2 maintains Invariant 2 since it may only delete an element ei if gi + gi+1 +
∆i+1 ≤ t, which then implies that gi+1 + ∆i+1 ≤ t after the deletion. The other (g, ∆)-
values remain unchanged. As argued, maintaining Invariant 2 directly implies that QS is an
ε-approximate quantile summary throughout the stream. Below we discuss some important
insights on showing the space complexity of the algorithm. For formal proofs and its efficient
implementation, we refer the reader to the full version of the paper.

After performing the deletion step at time t, we classify the elements into either type-1
or type-2, and bound each one of them separately as we did previously. An element ei

present in QS satisfies b-value(ei) > b-value(ei+1) then it is of type-1, or it must satisfy
gi + gi+1 + ∆i+1 > t and it is of type-2. We first bound the number of type-2 elements using
a similar counting argument as in Section 3.1.

▶ Lemma 26. After the deletion step at time step t, the number of type-2 elements stored in
QS is O(ℓ log t).

A more interesting is the bound on the number of type-2 elements. Observe that we do not
delete an element with its segment (unlike Algorithm 1), which was crucial in proving a
bound on type-1 element. However, as we show, the number of type-1 elements cannot be
much larger than the type-2 ones even for this deletion strategy. This is simply because the
band-values of consecutive type-1 elements strictly decrease from one element to the next
and thus we cannot have many type-1 elements next to each other.

▶ Lemma 27. After the deletion step at time step t, the number of type-1 elements stored in
QS is O(log t) times larger than the type-2 elements.

▶ Remark 28. In the space analysis, we bounded the number of type-2 elements in the
summary after the deletion step by O(ℓ · log t) = O((1/ε) · log(εn)), which is quite efficient
on is own. However, in the worst case, there can be O(log t) type-1 elements for every
type-2 element as shown in Figure 5. Thus, Algorithm 2 may end up storing as many as
O(ℓ · log2 t) = O((1/ε) · log2(εn)) type-1 elements in the summary, leading to its sub-optimal
space requirement.

4.2 The Simplified GK O(1
ε

· log (εn)) Size Summary
We give our description of GK summaries. As we say in Remark 28, one source of sub-
optimality of Algorithm 2 was a large number of type-1 elements stored in the summary
compared to the type-2 ones. A way to improve this is to actively try to decrease the number

ICDT 2023

19:18 Generalizing GK Summaries for Weighted Inputs

.
. . .

. . .

Position

O(log t)
bands

O(log t) type-2
elements

type-1 type-2

Band-values

Figure 5 Each block in the figure represents an element stored in QS. The ranks of elements
increase along the horizontal axis. The figure illustrates why Algorithm 2 might end up storing
O(ℓ log2 t) elements in QS. By Lemma 26, there could be as many as O(ℓ · log t) type-2 elements
in QS. Each of these type-2 elements could be preceded by a sequence of O(log t) type-1 elements
(since there are O(log t) bands).

of stored type-1 elements. Roughly speaking, this is done by deleting type-2 elements from
the summary only if it does not contribute to creating a long sequence of type-1 elements
(e.g., as in Figure 5). Roughly speaking, while there is an element whose deletion together
with its entire segment (Definition 10) doesn’t violate Invariant 2 (and the same condition on
b-values), we delete the element and its entire segment. Let g∗

i denote the sum of g-values
of the elements in seg(ei). Below is a formal description of the algorithm and the theorem,
whose proof we include in the full version.

▶ Algorithm 3. An improved algorithm for updating the quantile summary.

For each time step t with arriving items (x(t)
1 , . . . , x

(t)
ℓ):

(i) Run Insert(x(t)
j) for each element of the chunk.

(ii) While there exists an element ei in QS satisfying:

(1) b-value(ei) ≤ b-value(ei+1) and (2) g∗
i + gi+1 + ∆i+1 ≤ t

Run Delete(ek) for ek in {ei} ∪ seg(ei).

▶ Theorem 29. For any ε > 0 and a stream of length n, Algorithm 3 maintains an ε-
approximate quantile summary in O(1

ε · log(εn)) space. Also, there is an implementation
of Algorithm 3 that takes O(log(1

ε) + log log(εn)) worst case update time per element.

We shall note that even though our description of Algorithm 3 varies from the presentation
of GK summaries in [9], the two algorithms behave in an almost identical way.

References
1 Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei Wei, and

Ke Yi. Mergeable summaries. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24,
2012, 2012.

S. Assadi, N. Joshi, M. Prabhu, and V. Shah 19:19

2 Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon Yogev.
Adversarial laws of large numbers and optimal regret in online classification. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 447–455, 2021.

3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 20–29, 1996.

4 Tianqi Chen and Carlos Guestrin. XGBoost. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, August 2016.
doi:10.1145/2939672.2939785.

5 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

6 Graham Cormode and Pavel Veselý. A tight lower bound for comparison-based quantile sum-
maries. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, pages 81–93, 2020.

7 Anna C Gilbert, Brett Hemenway, Atri Rudra, Martin J Strauss, and Mary Wootters. Recov-
ering simple signals. In 2012 Information Theory and Applications Workshop, pages 382–391.
IEEE, 2012.

8 Anna C Gilbert, Brett Hemenway, Martin J Strauss, David P Woodruff, and Mary Wootters.
Reusable low-error compressive sampling schemes through privacy. In 2012 IEEE Statistical
Signal Processing Workshop (SSP), pages 536–539. IEEE, 2012.

9 Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile
summaries. In Proceedings of the 2001 ACM SIGMOD international conference on Management
of data, Santa Barbara, CA, USA, May 21-24, 2001, pages 58–66, 2001.

10 Moritz Hardt and David P Woodruff. How robust are linear sketches to adaptive inputs? In
Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 121–130,
2013.

11 Regant Y. S. Hung and Hing-Fung Ting. An Ω (1
ε

log 1
ε
) space lower bound for finding

ε-approximate quantiles in a data stream. In Frontiers in Algorithmics, 4th International
Workshop, FAW 2010, Wuhan, China, August 11-13, 2010. Proceedings, pages 89–100, 2010.

12 Zohar S. Karnin, Kevin J. Lang, and Edo Liberty. Optimal quantile approximation in streams.
In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11
October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 71–78, 2016.

13 Ge Luo, Lu Wang, Ke Yi, and Graham Cormode. Quantiles over data streams: experimental
comparisons, new analyses, and further improvements. VLDB J., 25(4):449–472, 2016.

14 Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approximate medians
and other quantiles in one pass and with limited memory. In SIGMOD 1998, Proceedings
ACM SIGMOD International Conference on Management of Data, June 2-4, 1998, Seattle,
Washington, USA, pages 426–435, 1998.

15 Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Random sampling
techniques for space efficient online computation of order statistics of large datasets. In
SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of
Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA, pages 251–262, 1999.

16 Ilya Mironov, Moni Naor, and Gil Segev. Sketching in adversarial environments. SIAM Journal
on Computing, 40(6):1845–1870, 2011.

17 J. Ian Munro and Mike Paterson. Selection and sorting with limited storage. In 19th Annual
Symposium on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18 October
1978, pages 253–258, 1978.

18 Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. In Annual Cryptology
Conference, pages 565–584. Springer, 2015.

19 List of open problems in sublinear algorithms – problem 2: Quantiles. https://sublinear.
info/2.

ICDT 2023

https://doi.org/10.1145/2939672.2939785
https://sublinear.info/2
https://sublinear.info/2

Probabilistic Query Evaluation with Bag Semantics
Martin Grohe #

RWTH Aachen University, Germany

Peter Lindner #

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Christoph Standke #

RWTH Aachen University, Germany

Abstract
We initiate the study of probabilistic query evaluation under bag semantics where tuples are allowed
to be present with duplicates. We focus on self-join free conjunctive queries, and probabilistic
databases where occurrences of different facts are independent, which is the natural generalization
of tuple-independent probabilistic databases to the bag semantics setting. For set semantics, the
data complexity of this problem is well understood, even for the more general class of unions of
conjunctive queries: it is either in polynomial time, or ♯P-hard, depending on the query (Dalvi &
Suciu, JACM 2012).

Due to potentially unbounded multiplicities, the bag probabilistic databases we discuss are no
longer finite objects, which requires a treatment of representation mechanisms. Moreover, the answer
to a Boolean query is a probability distribution over non-negative integers, rather than a probability
distribution over {true, false}. Therefore, we discuss two flavors of probabilistic query evaluation:
computing expectations of answer tuple multiplicities, and computing the probability that a tuple is
contained in the answer at most k times for some parameter k. Subject to mild technical assumptions
on the representation systems, it turns out that expectations are easy to compute, even for unions
of conjunctive queries. For query answer probabilities, we obtain a dichotomy between solvability in
polynomial time and ♯P-hardness for self-join free conjunctive queries.

2012 ACM Subject Classification Theory of computation → Incomplete, inconsistent, and uncertain
databases

Keywords and phrases Probabilistic Query Evaluation, Probabilistic Databases, Bag Semantics

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.20

Related Version Extended Version: https://arxiv.org/abs/2201.11524 [20]

Funding The work of Martin Grohe and Christoph Standke has been funded by the German Research
Foundation (DFG) under grants GR 1492/16-1 and GRK 2236 (UnRAVeL).

1 Introduction

Probabilistic databases (PDBs) provide a framework for managing uncertain data. In
database theory, they have been intensely studied since the late 1990s [30, 31]. Most efforts
have been directed towards tuple-independent relational databases under a set semantics.
Many relational database systems, however, use a bag semantics, where identical tuples
may appear several times in the same relation. Despite receiving little attention so far,
bag semantics are also a natural setting for probabilistic databases. For example, they
naturally enter the picture when aggregation is performed, or when statistics are computed
(e.g., by random sampling, say, without replacement). Either case might involve computing
projections without duplicate elimination first. Even when starting from a tuple-independent
probabilistic database with set semantics, this typically gives rise to (proper) bags. A bag
semantics for PDBs has only been considered recently [19, 18], in the context of infinite

© Martin Grohe, Peter Lindner, and Christoph Standke;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 20; pp. 20:1–20:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grohe@informatik.rwth-aachen.de
https://orcid.org/0000-0002-0292-9142
mailto:peter.lindner@epfl.ch
https://orcid.org/0000-0003-2041-7201
mailto:standke@informatik.rwth-aachen.de
https://orcid.org/0000-0002-3034-730X
https://doi.org/10.4230/LIPIcs.ICDT.2023.20
https://arxiv.org/abs/2201.11524
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Probabilistic Query Evaluation with Bag Semantics

PDBs. Even in the traditional setting of a PDB where only finitely many facts appear with
non-zero probability, under a bag semantics we have to consider infinite probability spaces,
simply because there is no a priori bound on the number of times a fact may appear in a
bag. In general, while the complexity landscape of query answering is well understood for
simple models of PDBs under set semantics, the picture for bag semantics is still unexplored.
In this work, we take first steps to address this.

Formally, probabilistic databases are probability distributions over conventional database
instances. In a database instance, the answer to a Boolean query under set semantics is
either true (1) or false (0). In a probabilistic database, the answer to such a query becomes a
{0, 1}-valued random variable. The problem of interest is probabilistic query evaluation, that
is, computing the probability that a Boolean query returns true, when given a probabilistic
database. The restriction to Boolean queries comes with no loss of generality: To compute
the probability of any tuple in the result of a non-Boolean query, all we have to do is replace
the free variables of the query according to the target tuple, and solve the problem for the
resulting Boolean query.

Under a bag semantics, a Boolean query is still just a query without free variables, but
the answer to Boolean query can be any non-negative integer, which can be interpreted as
the multiplicity of the empty tuple in the query answer, or more intuitively as the number of
different ways in which the query is satisfied. In probabilistic query evaluation, we then get
N-valued answer random variables. Still, the reduction from the non-Boolean to the Boolean
case works as described above. Therefore, without loss of generality, we only discuss Boolean
queries in this paper.

As most of the database theory literature, we study the data complexity of query eval-
uation [32], that is, the complexity of the problem, when the query Q is fixed, and the
PDB is the input. The standard model for complexity theoretic investigations is that of
tuple-independent PDBs, where the distinct facts constitute independent events. Probabilistic
query evaluation is well-understood for the class of unions of conjunctive queries (UCQs)
on PDBs that are tuple-independent (see the related works section below). However, all
existing results discuss the problem under set semantics. Here, on the contrary, we discuss
the probabilistic query evaluation under bag semantics.

For tuple-independent (set) PDBs, a variety of representation systems have been proposed
(cf. [17, 30]), although for complexity theoretic discussions, it is usually assumed that the
input is just given as a table of facts, together with their marginal probabilities [31]. In the
bag version of tuple-independent PDBs [18], different facts are still independent. Yet, the
individual facts (or, rather, their multiplicities) are N-valued, instead of Boolean, random
variables. As this, in general, rules out the naive representation through a list of facts,
multiplicities, and probabilities, it is necessary to first define suitable representation systems
before the complexity of computational problems can be discussed.

Once we have settled on a suitable class of representations, we investigate the problem
of probabilistic query evaluation again, subject to representation system R. Under bag
semantics, there are now two natural computational problems regarding query evaluation:
EXPECTATIONR(Q), which is computing the expected outcome, and PQER(Q, k) which is
computing the probability that the outcome is at most k. Notably, these two problems
coincide for set semantics, because the expected value of a {0, 1}-valued random variables
coincides with the probability that the outcome is 1. Under a bag semantics, however, the
two versions exhibit quite different properties.

Recall that using a set semantics, unions of conjunctive queries can either be answered
in polynomial time, or are ♯P-hard [12]. Interestingly, computing expectations using a bag
semantics is extraordinarily easy in comparison: With only mild assumptions on the repre-

M. Grohe, P. Lindner, and C. Standke 20:3

sentation, the expectation of any UCQ can be computed in polynomial time. Furthermore,
the variance of the random variable can also be computed in polynomial time, which via
Chebyshev’s inequality gives us a way to estimate the probability that the query answer
is close to its expectation. These results contrast the usual landscape of computational
problems in uncertain data management, which are rarely solvable efficiently.

The computation of probabilities of concrete answer multiplicities, however, appears
to be less accessible, and in fact, in its properties is more similar to the set semantics
version of probabilistic query evaluation. Our main result states that for Boolean conjunctive
queries without self-joins, we have a dichotomy between polynomial time and ♯P-hardness
of the query. This holds whenever efficient access to fact probabilities is guaranteed by the
representation system and is independent of k. Although the proof builds upon ideas and
notions introduced for the set semantics dichotomy [9, 10, 12], we are confronted with a
number of completely new and intricate technical challenges due to the change of semantics.
On the one hand, the bag semantics turns disjunctions and existential quantification into
sums. This facilitates the computation of expected values, because it allows us to exploit
linearity. On the other hand, the new semantics keep us from directly applying some of
the central ideas from [12] when analyzing PQER(Q, k), thus necessitating novel techniques.
The bag semantics dichotomy for answer count probabilities is, hence, far from being a
simple corollary from the set semantics dichotomy. From the technical perspective, the most
interesting result is the transfer of hardness from PQER(Q, 0) to PQER(Q, k). In essence,
we need to find a way to compute the probability that Q has 0 answers, with only having
access to the probability that Q has at most k answers for any single fixed k. This reduction
uses new non-trivial techniques: By manipulating the input table, we can construct multiple
instances of the PQER(Q, k) problem. We then transform the solutions to these problems,
which are obtained through oracle calls, into function values of a polynomial (with a priori
unknown coefficients) in such a way, that the solution to PQER(Q, 0) on the original input
is hidden in the leading coefficient of this polynomial. Using a technique from polynomial
interpolation, we can find these leading coefficients, and hence, solve PQER(Q, 0).

Related Work

The most prominent result regarding probabilistic query evaluation is the Dichotomy theorem
by Dalvi and Suciu [12] that provides a separation between unions of conjunctive queries for
which probabilistic evaluation is possible in polynomial time, and such where the problem
becomes ♯P-hard. They started their investigations with self-join free conjunctive queries [10]
and later extended their results to general CQs [11] and then UCQs [12]. Beyond the queries
they investigate, there are a few similar results for fragments with negations or inequalities
[14, 26, 27], for homomorphism-closed queries [4] and others [28], and on restricted classes of
PDBs [1]. Good overviews over related results are given in [31, 29]. In recent developments,
the original dichotomies for self-join free CQs, and for general UCQs have been shown to
hold even under severe restrictions to the fact probabilities that are allowed to appear [2, 23].

The bag semantics for CQs we use here is introduced in [7]. A detailed analysis of the
interplay of bag and set semantics is presented in [8]. Considering multiplicities as semi-ring
annotations [16, 21], embeds bag semantics into a broader mathematical framework.

In recent work (independent of ours), Feng et al. [13] analyze the fine-grained complexity
of computing expectations of queries in probabilistic bag databases, albeit assuming finite
multiplicity supports and hence still in the realm of finite probabilistic databases.

ICDT 2023

20:4 Probabilistic Query Evaluation with Bag Semantics

2 Preliminaries

We denote by N and N+ the sets of non-negative, and of positive integers, respectively. We
denote open, closed and half open intervals of real numbers by (a, b), [a, b], [a, b) and (a, b],
respectively, where a ≤ b. By

(
n
k

)
we denote the binomial coefficient and by

(
n

n1,...,nk

)
the

multinomial coefficient.
Let Ω be a non-empty finite or countably infinite set and let P : Ω → [0, 1] be a function

satisfying
∑

ω∈Ω P (ω) = 1. Then (Ω, P) is a (discrete) probability space. Subsets A ⊆ Ω are
called events. We write Prω∼Ω(ω ∈ A) for the probability of a randomly drawn ω ∈ Ω (dis-
tributed according to P) to be in A. More generally, we may write Prω∈Ω(ω has property φ)
for the probability of a randomly drawn element to satisfy some property φ. All probability
spaces appearing in this paper are discrete.

Functions X : Ω → R on a probability space are called random variables. The expected
value and variance of X are denoted by E(X) and Var(X), respectively. The values E(Xk)
for integers k ≥ 2 are called the higher-order moments of X.

2.1 Probabilistic Bag Databases
We fix a countable, non-empty set dom (the domain). A database schema τ is a finite,
non-empty set of relation symbols. Every relation symbol R has an arity ar(R) ∈ N+.

A fact over τ and dom is an expression R(a) where a ∈ domar(R). A (bag) database
instance D is a bag (i.e. multiset) of facts. Formally, a bag (instance) is specified by a function
♯D that maps every fact f to its multiplicity ♯D(f) in D. The active domain adom(D) is the
set of domain elements a from dom for which there exists a fact f containing a such that
♯D(f) > 0.

A probabilistic (bag) database (or, (bag) PDB) D is a pair (D, P) where D is a set of
bag instances and P : 2D → [0, 1] is a probability distribution over D. Note that, even when
the total number of different facts is finite, D may be infinite, as facts may have arbitrarily
large multiplicities. We let ♯D(f) denote the random variable D 7→ ♯D(f) for all facts f . If
D = (D, P) is a PDB, then adom(D) :=

⋃
D∈D adom(D). We call a PDB fact-finite if the set

{f : ♯D(f) > 0 for some D ∈ D} is finite. In this case, adom(D) is finite, too.
A bag PDB D is called tuple-independent if for all k ∈ N, all pairwise distinct facts

f1, . . . , fk, and all n1, . . . , nk ∈ N, the events ♯D(fi) = ni are independent, i. e.,

Pr
D∼D

(
♯D(fi) = ni for all i = 1, . . . , k

)
=

k∏
i=1

Pr
D∼D

(
♯D(fi) = ni

)
.

Unless it is stated otherwise, all probabilistic databases we treat in this paper are assumed to
be fact-finite and tuple-independent.

2.2 UCQs with Bag Semantics
Let V be a countably infinite set of variables. An atom is an expression of the shape R(t)
where R ∈ τ and t ∈ (dom ∪ V)ar(R). A conjunctive query (CQ) is a formula Q of first-order
logic (over τ and dom) of the shape

Q = ∃x1 . . . ∃xm : R1(t1) ∧ · · · ∧ Rn(tn),

in which we always assume that the xi are pairwise different, and that xi appears in at
least one of t1, . . . , tn for all i = 1, . . . , m. A CQ Q is self-join free, if every relation symbol
occurs at most once within Q. In general, the self-join width of a CQ Q is the maximum

M. Grohe, P. Lindner, and C. Standke 20:5

number of repetitions of the same relation symbol in Q. If Q is a CQ of the above shape, we
let Q∗ denote the quantifier-free part R1(t1) ∧ . . . Rn(tn) of Q, and we call Ri(ti) an atom
of Q for all i = 1, . . . , n. A union of conjunctive queries (UCQ) is a formula of the shape
Q = Q1 ∨· · ·∨QN where Q1, . . . , QN are CQs. A query is called Boolean, if it contains no free
variables (that is, there are no occurrences of variables that are not bound by a quantifier).
From now on, and throughout the remainder of the paper, we only discuss Boolean (U)CQs.

Recall that ♯D is the multiplicity function of the instance D. The bag semantics of
(U)CQs extends ♯D to queries. For Boolean CQs Q = ∃x1 . . . ∃xm : R1(t1) ∧ · · · ∧ Rn(tn) we
define

♯D(Q) :=
∑

a∈adom(D)m

n∏
i=1

♯D

(
Ri(ti[x/a])

)
, (1)

where x = (x1, . . . , xm) and a = (a1, . . . , am), and Ri(ti[x/a]) denotes the fact obtained from
Ri(ti) by replacing, for all j = 1, . . . , m, every occurrence of xj by aj . If Q = Q1 ∨ · · · ∨ QN

is a Boolean UCQ, then each of the Qi is a Boolean CQ. We define

♯D(Q) := ♯D(Q1) + · · · + ♯D(QN). (2)

Whenever convenient, we write ♯DQ instead of ♯D(Q). We emphasize once more, that the
query being Boolean does not mean that its answer is 0 or 1 under bag semantics, but could
be any non-negative integer.
▶ Remark 2.1. We point out that in (1), conjunctions should intuitively be understood as
joins rather than intersections. Our definition (1) for the bag semantics of CQs matches
the one that was given in [7]. This, and the extension (2) for UCQs, are essentially special
cases of how semiring annotations of formulae are introduced in the provenance semiring
framework [16, 21], the only difference being that we use the active domain semantics. For
UCQs however, this is equivalent since the value of (1) stays the same when the quantifiers
range over arbitrary supersets of adom(D). ⌟

Note that the result ♯DQ of a Boolean UCQ on a bag instance D is a non-negative integer.
Thus, evaluated over a PDB D = (D, P), this yields a N-valued random variable ♯DQ with

Pr
(
♯DQ = k

)
= Pr

D∼D

(
♯DQ = k

)
.

▶ Example 2.2. Consider the tuple-independent bag PDB over facts R(a) and S(a), where
R(a) has multiplicity 2 or 3, both with probability 1

2 , and S(a) has multiplicity 1, 2 or 3,
with probability 1

3 each. Then, the probability of the event ♯D(R(a) ∧ S(a)) = 6 is given by
Pr

(
♯D(R(a)) = 2

)
Pr

(
♯D(S(a)) = 3

)
+ Pr

(
♯D(R(a)) = 3

)
Pr

(
♯D(S(a)) = 2

)
= 1

3 . ⌟

There are now two straight-forward ways to formulate the problem of answering a Boolean
UCQ over a probabilistic database. We could either ask for the expectation E

(
♯DQ

)
, or

compute the probability that ♯DQ is at most / at least / equal to k. These two options
coincide for set semantics, as ♯DQ is {0, 1}-valued in this setting.1 For bag PDBs, these are
two separate problems to explore. Complexity-wise, we focus on data complexity [32]. That
is, the query (and for the second option, additionally the number k) is a parameter of the
problem, so that the input is only the PDB. Before we can start working on these problems,
we first need to discuss how bag PDBs are presented as an input to an algorithm. This is
the purpose of the next section.

1 In fact, in the literature both approaches have been used to introduce the problem of probabilistic query
evaluation [30, 31].

ICDT 2023

20:6 Probabilistic Query Evaluation with Bag Semantics

Relation R Parameter

R(1, 1) (Bernoulli, 1/2)
R(1, 2) (Binomial, 10, 1/3)
R(2, 2) (0 7→ 1/4; 1 7→ 1/4; 5 7→ 1/2)

Relation S Parameter

S(1) (Geometric, 1/3)
S(2) (Poisson, 3)

Figure 1 Example of a parameterized TI representation.

3 Representation Systems

For the set version of probabilistic query evaluation, the default representation system
represents tuple-independent PDBs by specifying all facts together with their marginal
probability. The distinction between a PDB and its representation is then usually blurred in
the literature. This does not easily extend to bag PDBs, as the distributions of ♯D(f) for
facts f may have infinite support.

▶ Example 3.1. Let D = (D, P) be a bag PDB over a single fact f with multiplicity
distribution ♯D(f) ∼ Geometric

(1
2
)
, i.e., PrD∼D

(
♯D(f) = k

)
= 2−k. Then the instances of

D with positive probability are {{}}, {{f}}, {{f, f}}, . . . , so D is an infinite PDB. ⌟

To use such PDBs as inputs for algorithms, we introduce a suitable class of representation
systems (RS) [17]. All computational problems are then stated with respect to an RS.

▶ Definition 3.2 (cf. [17]). A representation system (RS) for bag PDBs is a pair
(
T, J · K

)
where T is a non-empty set (the elements of which we call tables), and J · K is a function that
maps every T ∈ T to a probabilistic database JT K. ⌟

Given an RS, we abuse notation and also use T to refer to the PDB JT K. Note that Defini-
tion 3.2 is not tailored to tuple-independence yet and requires no independence assumptions.
For representing tuple-independent bag PDBs, we introduce a particular subclass of RS’s
where facts are labeled with the parameters of parameterized distributions over multiplicities.
For example, a fact f whose multiplicity is geometrically distributed with parameter 1

2 could
be annotated with (Geometric, 1/2), representing 1

2 using two integers.

▶ Definition 3.3. A parameterized TI representation system (in short: TIRS) is a tuple
R = (Λ, P, Σ, T, ⟨ · ⟩, J · K) where Λ ̸= ∅ is a set (the parameter set); P is a family

(
Pλ

)
λ∈Λ of

probability distributions Pλ over N; Σ ̸= ∅ is a finite set of symbols (the encoding alphabet);
⟨ · ⟩ : Λ → Σ∗ is an injective function (the encoding function); and (T, J · K) is an RS where

T is the family of all finite sets T of pairs
(
f, ⟨λf ⟩

)
with pairwise different facts f of a

given schema and λf ∈ Λ for all f ; and
J ·K maps every T ∈ T to the tuple-independent bag PDB D with multiplicity probabilities
Pr

(
♯Df = k

)
= Pλf

(k) for all
(
f, ⟨λf ⟩

)
∈ T . ⌟

Whenever a TIRS R is given, we assume R = (ΛR, PR, ΣR, TR, ⟨ · ⟩R, J · KR) by default.

▶ Example 3.4. Figure 1 shows a table T from a TIRS R, illustrating how the parameters
can be used to encode several multiplicity distributions. Four of the distributions are
standard parameterized distributions, presented using their symbolic name together with
their parameters. The multiplicity distribution for R(2, 2) is a generic distribution with finite
support {0, 1, 5}. The annotation (Binomial, 10, 1/3) of R(1, 2) in the table specifies that
♯T R(1, 2) ∼ Binomial

(
10, 1

3
)
. That is,

Pr
(
♯T R(1, 2) = k

)
=

{(10
k

)
(1

3)k(2
3)10−k if 0 ≤ k ≤ 10 and

0 if k > 10.

M. Grohe, P. Lindner, and C. Standke 20:7

The multiplicity probabilities of the other facts are given analogously in terms of the
Bernoulli, geometric, and Poisson distributions, respectively. The supports of the multiplicity
distributions are {0, 1} for the Bernoulli, {0, . . . , n} for the Binomial, and N for both the
geometric and Poisson distributions (and finite sets for explicitly encoded distributions). For
the first three parameterized distributions, multiplicity probabilities always stay rational if
the parameters are rational. This is not the case for the Poisson distribution. ⌟

While Definition 3.2 seems abstract, this level of detail in the encoding of probability
distributions allows us to rigorously discuss computational complexity without resorting
to a very narrow framework that only supports some predefined distributions. Our model
also comprises tuple-independent set PDBs: The traditional representation system can be
recovered from Definition 3.3 using only the Bernoulli distribution. Moreover, we remark
that we can always represent facts that are present with probability 0, by just omitting them
from the tables (for example, fact R(2, 1) in Figure 1).

▶ Remark 3.5. In this work, we focus on TIRS’s where the values needed for computation
(moments in Section 4 and probabilities in Section 5) are rational. An extension to support
irrational values is possible through models of real complexity [25, 5]. A principled treatment
requires a substantial amount of introductory overhead that would go beyond the scope of
this paper, and which we therefore leave for future work. ⌟

4 Expectations and Variances

Before computing the probabilities of answer counts, we discuss the computation of the
expectation and the variance of the answer count. Recall that in PDBs without multiplicities,
the answer to a Boolean query (under set semantics) is either 0 (i. e., false) or 1 (i. e.,
true). That is, the answer count is a {0, 1}-valued random variable there, meaning that its
expectation coincides with the probability of the answer count being 1. Because of this
correspondence, the semantics of Boolean queries on (set) PDBs are sometimes also defined in
terms of the expected value [31]. For bag PDBs, the situation is different, and this equivalence
no longer holds. Thus, computing expectations, and computing answer count probabilities
have to receive a separate treatment. Formally, we discuss the following problems in this
section:

Problem EXPECTATIONR(Q)

Parameter: A Boolean UCQ Q.
Input: A table T ∈ TR.
Output: The expectation E

(
♯T Q

)
.

Problem VARIANCER(Q)

Parameter: A Boolean UCQ Q.
Input: A table T ∈ TR.
Output: The variance Var

(
♯T Q

)
.

4.1 Expected Answer Count
We have pointed out above that computing expected answer counts for set PDBs and set
semantics is equivalent to computing the probability that the query returns true. There
are conjunctive queries, for example, Q = ∃x∃y : R(x) ∧ S(x, y) ∧ T (y), for which the latter
problem is ♯P-hard [15, 9]. Under a set semantics, disjunctions and existential quantifiers
semantically correspond to taking maximums instead of adding multiplicities. Under a bag
semantics, we are now able to exploit the linearity of expectation to easily compute expected
values, which was not possible under a set semantics.

ICDT 2023

20:8 Probabilistic Query Evaluation with Bag Semantics

▶ Lemma 4.1. Let D be a tuple-independent PDB and let Q be a Boolean CQ, Q =
∃x1 . . . ∃xm : R1(t1) ∧ · · · ∧ Rn(tn). For every a ∈ adom(D)m, we let F (a) denote the set
of facts appearing in Q∗[x/a], and for every f ∈ F (a), we let ν(f, a) denote the number of
times f appears in Q∗[x/a]. Then

E
(
♯DQ

)
=

∑
a∈adom(D)m

∏
f∈F (a)

E
((

♯Df
)ν(f,a)

)
. (3)

Proof. By definition, we have

♯DQ =
∑

a∈adom(D)

♯D(Q∗[x/a]) =
∑

a∈adom(D)

♯D(Q∗[x/a])

for every individual instance D of D. The last equation above holds because, as Q∗ is
assumed to contain every quantified variable, ♯D(Q∗[x/a]) = 0 whenever the tuple a contains
an element that is not in the active domain of D. By linearity of expectation, we have

E
(
♯DQ

)
=

∑
a∈adom(D)

E
(
♯D(Q∗[x/a])

)
.

Recall, that Q∗[x/a] is a conjunction of facts Ri(ti[x/a]). Thus, ♯D
(∧n

i=1 Ri

(
ti[x/a]

))
=∏n

i=1 ♯D
(
Ri

(
ti[x/a]

))
. Because D is tuple-independent, any two facts in F (a) are either

equal, or independent. Therefore,

E
(n∏

i=1
♯DRi(ti[x/a])

)
=

∏
f∈F (a)

E
(
(♯Df)ν(f,a)),

as the expectation of a product of independent random variables is the product of their
expectations. Together, this yields the expression from (3). ◀

By linearity, the expectation of a UCQ is the sum of the expectations of its CQs.

▶ Lemma 4.2. Let D be a PDB and let Q =
∨N

i=1 Qi be a Boolean UCQ. Then we have
E

(
♯DQ

)
=

∑N
i=1 E

(
♯DQi

)
.

Given that we can compute the necessary moments of fact multiplicities efficiently,
Lemmas 4.1 and 4.2 yield a polynomial time procedure to compute the expectation of a UCQ.
The order of moments we need is governed by the self-join width of the individual CQs.

▶ Definition 4.3. A TIRS R has polynomially computable moments up to order k, if for
all λ ∈ ΛR, we have

∑∞
n=0 nk · Pλ(n) < ∞ and the function ⟨λ⟩ 7→

∑∞
n=0 nℓ · Pλ(n) can be

computed in polynomial time in |⟨λ⟩| for all ℓ ≤ k. ⌟

Before giving the main statement, let us revisit Example 3.4 for illustration.

▶ Example 4.4. Let R be the TIRS from Example 3.4. The moments of X ∼ Bernoulli(p)
are E(Xk) = p for all k ≥ 1. Direct calculation shows that for X ∼ Binomial(n, p), the
moment E(Xk) is given by a polynomial in n and p. In general, for most of the common
distributions, one of the following cases applies. Either, as above, a closed form expression for
E(Xk) is known, or, the moments of X are characterized in terms of the moment generating
function (mgf) E(etX) of X, where t is a real-valued variable. In the latter case, E(Xk) is
obtained by taking the kth derivative of the mgf and evaluating it at t = 0 [6, p. 62]. An
inspection of the mgfs of the geometric, and the Poisson distributions [6, p. 621f] reveals that
their kth moments are polynomials in their respective parameters as well. Together, R has
polynomially computable moments up to order k for all k ∈ N+. ⌟

M. Grohe, P. Lindner, and C. Standke 20:9

▶ Proposition 4.5. Let Q =
∨N

i=1 Qi be a Boolean UCQ, and let R be a TIRS with
polynomially computable moments up to order k, where k is the maximum self-join width
among the Qi. Then EXPECTATIONR

(
♯T Q

)
is computable in polynomial time.

Proof. We plug (3) into the formula from Lemma 4.2. This yields at most ≤ N ·|adom(T)|m·m
terms (where m is the maximal number of atoms among the CQs Q1, . . . , QN). These terms
only contain moments of fact multiplicities of order at most k. ◀

We emphasize that the number k from Proposition 4.5, that dictates which moments we
need to be able to compute efficiently, comes from the fixed query Q and is therefore constant.
More precisely, it is given through the number of self-joins in the query. In particular, if
all CQs in Q are self-join free, it suffices to have efficient access to the expectations of the
multiplicities.

4.2 Variance of the Answer Count
With the ideas from the previous section, we can also compute the variance of query answers
in polynomial time. Naturally, to be able to calculate the variance efficiently, we need
moments of up to the double order in comparison to the computation of the expected value.

▶ Proposition 4.6. Let Q =
∨N

i=1 Qi be a Boolean UCQ, and let R be a TIRS with
polynomially computable moments up to order 2k, where k is the maximum self-join width
among the Qi. Then VARIANCER

(
♯T Q

)
is computable in polynomial time.

As before, the main idea is to rewrite the variance in terms of the moments of fact
multiplicities. This can be achieved by exploiting tuple-independence and linearity of
expectation. The full proof is contained in the extended version of this paper [20].

Despite the fact that the variance of query answers may be of independent interest, it
can be also used to obtain bounds for the probability that the true value of ♯T Q is close to
its expectation, using the Chebyshev inequality [24, Theorem 5.11]. This can be used to
derive bounds on Pr(♯T Q ≤ k), when the exact value is hard to compute.
▶ Remark 4.7. Proposition 4.6 extends naturally to higher-order moments: If R is a TIRS
with polynomially computable moments up to order ℓ · k and Q =

∨N
i=1 Qi a Boolean UCQ

where the maximum self-join width among the Qi is k, then all centralized and all raw
moments of order up to ℓ of ♯T Q are computable in polynomial time. ⌟

5 Answer Count Probabilities

In this section, we treat the alternative version of probabilistic query evaluation in bag
PDBs using answer count probabilities rather than expected values. Formally, we discuss
the following problem.

Problem PQER(Q, k)

Parameter: A Boolean (U)CQ Q, and k ∈ N.
Input: A table T ∈ TR.
Output: The probability Pr(♯T Q ≤ k).

This problem amounts to evaluating the cumulative distribution function of the random
variable ♯T Q at k. The properties of this problem bear a close resemblance to the set version
of probabilistic query evaluation, and we hence name this problem “PQE”.

ICDT 2023

20:10 Probabilistic Query Evaluation with Bag Semantics

▶ Remark 5.1. Instead of asking for Pr(♯T Q ≤ k), we could similarly define the problem of
evaluating the probability that ♯T Q is at least, or exactly equal to k. This has no impact on
complexity discussions, though, as these variants are polynomial time equivalent. ⌟

Throughout this section, calculations involve the probabilities for the multiplicities of
individual facts. However, we want to discuss the complexity of PQER(Q, k) independently of
the complexity, in k, of evaluating the multiplicity distributions. This motivates the following
definition, together with taking k to be a parameter, instead of it being part of the input.

▶ Definition 5.2. A TIRS R is called a p-TIRS, if for all k ∈ N there exists a polynomial pk

such that for all λ ∈ ΛR, the function ⟨λ⟩ 7→ Pλ(k) can be evaluated in time O
(
pk(|⟨λ⟩|)

)
. ⌟

Definition 5.2 captures reasonable assumptions for “efficient” TIRS’s with respect to
the evaluation of probabilities: If the requirement from the definition is not given, then
PQER(∃x : R(x), k) can not be solved in polynomial time, even on the class of tables that
only contain a single annotated fact R(a). This effect only arises due to the presence of
unwieldy probability distributions in R.

As it turns out, solving PQER(Q, k) proves to be far more intricate compared to the
problems of the previous section. For our investigation, we concentrate on self-join free
conjunctive queries. While some simple results follow easily from the set semantics version of
the problem, the complexity theoretic discussions quickly become quite involved and require
the application of a set of interesting non-trivial techniques.

Our main result in this section is a dichotomy for Boolean CQs without self-joins. From
now on, we employ nomenclature (like hierarchical) that was introduced in [11, 12]. If Q is a
Boolean self-join free CQ, then for every variable x, we let at(x) denote the set of relation
symbols R such that Q contains an R-atom that contains x. We call Q hierarchical if for
all distinct x and y, whenever at(x) ∩ at(y) ̸= ∅, then at(x) ⊆ at(y) or at(y) ⊆ at(x). This
definition essentially provides the separation between easy and hard Boolean CQs without
self-joins. In the bag semantics setting, however, there exists an edge case where the problem
gets easy just due to the limited expressive power of the representation system. This edge case
is governed only by the probabilities for multiplicity zero that appear in the representations.
We denote this set by zeroPr(R), i.e.,

zeroPr(R) = {p ∈ [0, 1] : Pλ(0) = p for some λ ∈ Λ(R)}.

If a p-TIRS satisfies zeroPr(R) ⊆ {0, 1}, then it can only represent bag PDBs whose
deduplication is deterministic. In this case, as we will show in the next subsection, the
problem becomes easy even for arbitrary UCQs.2

▶ Theorem 5.3. Let Q be a Boolean CQ without self-joins and let R be a p-TIRS.
1. If Q is hierarchical or zeroPr(R) ⊆ {0, 1}, then PQER(Q, k) is solvable in polynomial

time for all k ∈ N.
2. Otherwise, PQE(Q, k) is ♯P-hard for all k ∈ N.
▶ Remark 5.4. It is natural to ask what happens, if k is treated as part of the input. With
a reduction similar to the proof of Proposition 5 in [28], it is easy to identify situations in
which the corresponding problem is ♯P-hard. For example, this is already the case for the

2 Using the same definition in the set semantics version of the problem would come down to restricting
the input tuple-independent PDB to only use 0 and 1 as marginal probabilities, so the problem would
collapse to traditional (non-probabilistic) query evaluation. Under a bag semantics, there still exist
interesting examples in this class, as the probability distribution over non-zero multiplicities is not
restricted in any way.

M. Grohe, P. Lindner, and C. Standke 20:11

simple query ∃x : R(x), provided that k is encoded in binary and that the p-TIRS supports
fair coin flips whose outcomes are either a positive integer, or zero. A full proof is shown in
the extended version [20]. ⌟

The remainder of this section is dedicated to establishing Theorem 5.3.

5.1 Tractable Cases
Let us first discuss the case of p-TIRS’s R with zeroPr(R) ⊆ {0, 1}. Here, PQER(Q, 0)
is trivial, because the problem essentially reduces to deterministic query evaluation. The
following lemma generalizes this to all values of k.

▶ Lemma 5.5. If R is a p-TIRS with zeroPr(R) ⊆ {0, 1}, then PQER(Q, k) is solvable in
polynomial time for all Boolean UCQs Q, and all k ∈ N.

Proof. Let R be any p-TIRS with zeroPr(R) ⊆ {0, 1} and let Q be any Boolean UCQ. If
Pλ(0) = 1 for all λ ∈ ΛR, then R can only represent the PDB where the empty instance has
probability 1. In this case, ♯T Q = 0 almost surely, so Pr(♯T Q ≤ k) = 1 for all k ∈ N.

In the general case, suppose Q =
∨N

i=1 Qi such that Q1, . . . , QN are CQs. Let A be the
set of functions α that map the variables of Q into the active domain of the input T . We
call α good, if there exists i ∈ {1, . . . , N} such that all the facts emerging from the atoms of
Qi by replacing every variable x with α(x) have positive multiplicity in T (almost surely).
If there are at least k + 1 good α in A, then ♯T Q > k with probability 1 and, hence, we
return 0 in this case. Otherwise, when there are at most k good α, we restrict T to the set
of all facts that can be obtained from atoms of Q by replacing all variables x with α(x) (and
retaining the parameters λ). The resulting table T ′ contains at most k times the number of
atoms in Q many facts, which is independent of the number of facts in T . Hence, we can
compute Pr(♯T Q ≤ k) = Pr(♯T ′Q ≤ k) in time polynomial in T by using brute-force. ◀

From now on, we focus on the structure of queries again. The polynomial time procedure
for Boolean CQs without self-joins is reminiscent of the original algorithm for set semantics as
described in [11]. Therefore, we need to introduce some more vocabulary from their work. A
variable x is called maximal, if at(y) ⊆ at(x) for all y with at(x) ∩ at(y) ̸= ∅. With every CQ
Q we associate an undirected graph GQ whose vertices are the variables appearing in Q, and
where two variables x and y are adjacent if they appear in a common atom. Let V1, . . . , Vm

be the vertex sets of the connected components of GQ. We can then write the quantifier-free
part Q∗ of Q as Q∗ = Q∗

0 ∧
∧m

i=1 Q∗
i where Q∗

0 is the conjunction of the constant atoms of Q

and Q∗
1, . . . , Q∗

m are the conjunctions of atoms corresponding to the connected components
V1, . . . , Vm. We call Q∗

1, . . . , Q∗
m the connected components (short: components) of Q.

▶ Remark 5.6. If Q is hierarchical, then every component of Q contains a maximal variable.3
Moreover, if x is maximal in a component Q∗

i , then x appears in all atoms of Q∗
i . ⌟

▶ Remark 5.7. For every CQ Q with components Q∗
1, . . . , Q∗

m, and constant atoms Q∗
0, the

answer on every instance D is given by the product of the answers of the queries Q0, . . . , Qm,
where Qi = ∃xi : Q∗

i (and Q0 = Q∗
0), and xi are exactly the variables appearing in the

component Q∗
i . That is, ♯DQ = ♯DQ∗

0 ·
∏m

i=1 ♯D

(
∃xi : Q∗

i

)
. This is shown in the extended

version of this paper [20]. If convenient, we therefore use Q0 ∧ Q1 ∧ · · · ∧ Qm as an alternative
representation of Q. ⌟

3 This is true, since the sets at(x) for the variables of any component have a pairwise non-empty
intersection, meaning that they are pairwise comparable with respect to ⊆.

ICDT 2023

20:12 Probabilistic Query Evaluation with Bag Semantics

The main result of this subsection is the following.

▶ Theorem 5.8. Let R be a p-TIRS, and let Q be a hierarchical Boolean CQ without
self-joins. Then PQER(Q, k) is solvable in polynomial time for each k ∈ N.

Proof Sketch. The theorem is established by giving a polynomial time algorithm that
computes, and adds up the probabilities Pr

(
♯T Q = k′) for all k′ ≤ k. The important

observation is that (as under set semantics) the components Qi of the query (and the
conjunction Q0 of the constant atom) yield independent events, which follows since Q is
self-join free. In order to compute the probability of ♯T Q = k′, we can thus sum over all
decompositions of k′ into a product k′ = k0 · k1 · · · · · km, and reduce the problem to the
computations of Pr

(
♯T Qi = ki). Although the cases k = 0, and the conjunction Q0 have

to be treated slightly different for technical reasons, we can proceed recursively: Every
component contains a maximal variable, and setting this variable to any constant, the
component potentially breaks up into a smaller hierarchical, self-join free CQ. Investigating
the expressions shows that the total number of operations on the probabilities of fact
probabilities is polynomial in the size of T . ◀

▶ Remark 5.9. The full proof of Theorem 5.8 can be found in the extended version [20]. As
pointed out, the proof borrows main ideas from the algorithm for the probabilistic evaluation
of hierarchical Boolean self-join free CQs on tuple-independent PDBs with set semantics, as
presented in [12, p. 30:15] (originating in [9, 10]). The novel component is the treatment
of multiplicities using bag semantics. In comparison to the algorithm of Dalvi and Suciu,
existential quantifiers behave quite differently here, and we additionally need to argue about
the possible ways to distribute a given multiplicity over subformulae or facts. ⌟

5.2 Intractable Cases
We now show that in the remaining case (non-hierarchical queries and p-TIRS’s with
zeroPr(R) ∩ (0, 1) ̸= ∅), the problems PQER(Q, k) are all hard to solve.

Let Q be a fixed query and let PQEset(Q) denote the traditional set version of the
probabilistic query evaluation problem. That is, PQEset(Q) is the problem to compute the
probability that Q evaluates to true under set semantics, on input a tuple-independent set
PDB. We recall that the bag version PQER(Q, k) of the problem (introduced at the beginning
of the section) takes the additional parameter k, and depends on the representation system
R. Let us first discuss PQER(Q, k) for k = 0. In this case, subject to very mild requirements
on R, we can lift ♯P-hardness from the set version [12], even for the full class of UCQs.

▶ Proposition 5.10. Let S ⊆ [0, 1] be finite and let R be a p-TIRS such that 1−p ∈ zeroPr(R)
for all p ∈ S. Let Q be a Boolean UCQ. If PQEset(Q) is ♯P-hard on tuple-independent (set)
PDBs with marginal probabilities in S, then PQER(Q, 0) is ♯P-hard.

Proof. Let D be an input to PQEset(Q) with fact set F where all marginal probabilities are
in S, given by the list of all facts f with their marginal probability pf . For all p ∈ S, pick
λp ∈ Λ such that Pλ(0) = 1 − p. Let T =

⋃
f∈F

{
(f, ⟨λpf

⟩)
}

, and let δ be the function that
maps every instance D of T to its deduplication D′ (which is an instance of D). Then, by the
choice of the parameters, we have PrD∼JT K

(
δ(D) = D′) = PrD

(
{D′}

)
for all D′. Moreover,

♯DQ > 0 if and only if δ(D) |= Q. Thus,

Pr
D∼JT K

(
♯DQ > 0

)
= Pr

D∼JT K

(
δ(D) |= Q

)
= Pr

D′∼D

(
D′ |= Q

)
.

Therefore, PQEset(Q) over tuple-independent PDBs with marginal probabilities from S can
be solved by solving PQER(Q, 0). ◀

M. Grohe, P. Lindner, and C. Standke 20:13

Remarkably, [23, Theorem 2.2] shows that Boolean UCQs for which PQEset(Q) is ♯P-
hard are already hard when the marginal probabilities are restricted to S = {c, 1}, for
any rational c ∈ (0, 1). Hence, PQER(Q, 0) is also ♯P-hard on these queries, as soon as
{0, 1 − c} ⊆ zeroPr(R).

Our goal is now to show that if R is a p-TIRS, then for any Boolean CQ Q without
self-joins, ♯P-hardness of PQER(Q, 0) transfers to PQER(Q, k) for all k > 0.

▶ Theorem 5.11. Let R be a p-TIRS and let Q be a Boolean self-join free CQ. Then, if
PQER(Q, 0) is ♯P-hard, PQER(Q, k) is ♯P-hard for each k ∈ N.

Proving Theorem 5.11 is quite involved, and is split over various lemmas in the remainder
of this subsection. Let R be any fixed p-TIRS and let Q be a Boolean CQ without self-
joins. We demonstrate the theorem by presenting an algorithm that solves PQER(Q, 0) in
polynomial time, when given an oracle for PQER(Q, k) for any positive k.

Clearly, we cannot simply infer Pr(♯T Q = 0) from Pr(♯T Q ≤ k). Naively, we would want
to shift the answer count of Q by k, so that the problem could be answered immediately.
However, this is not possible in general. Our way out is to use the oracle several times, on
manipulated inputs. Since the algorithms we describe are confined to the p-TIRS R, we are
severely restricted in the flexibility of manipulating the probabilities of fact multiplicities:
Unless further assumptions are made, we can only work with the annotations that are already
present in the input T to the problem. We may, however, also drop entries from T or
introduce copies of facts using new domain elements.

For a given table T and a fixed single-component query Q, we exploit this idea in
Algorithm 1 in order to construct a new table T (m), called the inflation of T of order m. It
has the property that ♯T (m)Q is the sum of answer counts of Q on m independent copies of
T . A small example for the result of running Algorithm 1 for m = 2 is shown in Figure 3.
We will later use oracle answers on several inflations in order to interpolate Pr(♯T Qi = 0)
per component Qi individually, and then combine the results together.

Algorithm 1 inflateQ(T, m).

Parameter: Boolean self-join free CQ Q with a single component and no constant atoms
Input: T ∈ TR, m ∈ N
Output: Inflation of order m of T : T (m) =

⋃m

i=1 Tm,i ∈ TR such that
(O1) for all i ̸= j we have Tm,i ∩ Tm,j = ∅,
(O2) for all i = 1, . . . , m we have ♯Tm,i Q ∼ ♯T Q i.i.d., and
(O3) ♯T (m) Q =

∑m

i=1 ♯Tm,i Q.

1: Initialize Tm,1, . . . , Tm,m to be empty.
2: For each domain element a, introduce new pairwise distinct elements a(1), . . . , a(m).
3: for all relation symbols R appearing in Q do
4: Let R(t1, . . . , tr) be the unique atom in Q with relation symbol R.
5: for all pairs of the form

(
R(a1, . . . , ar), ⟨λ⟩

)
∈ T do

6: for all i = 1, . . . , m do

7: Add
(
R(ai,1, . . . , ai,k), ⟨λ⟩

)
to Tm,i where ai,j =

{
a

(i)
j , if tj is a variable;

aj , if tj is a constant.
8: end for
9: end for

10: end for
11: return T (m) :=

⋃m

i=1 Tm,i

ICDT 2023

20:14 Probabilistic Query Evaluation with Bag Semantics

Table T

Relation R Parameter

R(a, a, a) (Binomial, 10, 1/3)
R(a, b, c) (Geometric, 1/2)

Table T (2)

Relation R Parameter

R(a(1), a(1), a) (Binomial, 10, 1/3)
R(a(1), b(1), c) (Geometric, 1/2)
R(a(2), a(2), a) (Binomial, 10, 1/3)
R(a(2), b(2), c) (Geometric, 1/2)

Figure 3 Example of a table T and its inflation T (2) for the query ∃x, y : R(x, y, a).

▶ Lemma 5.12. For every fixed Boolean self-join free CQ Q with a single component and
no constant atoms, Algorithm 1 runs in time O

(
|T | · m

)
, and satisfies the output conditions

(O1), (O2) and (O3).

The proof of Lemma 5.12 is contained in the extended version [20]. The assumption that
the input to Algorithm 1 is self-join free with just a single connected component and no
constant atoms is essential to establish (O1) and (O3), because it eliminates any potential co-
dependencies among the individual tables Tm,1, . . . , Tm,m we create. The following example
shows that this assumption is inevitable, as the conditions of Lemma 5.12 can not be
established in general.

▶ Example 5.13. Let R be a TIRS with ΛR = {λ} such that Pλ(2) = Pλ(3) = 1
2 (and Pλ(k) =

0 for all k /∈ {2, 3}). Consider Q = ∃x∃y : R(x) ∧ S(y), and T =
(
(R(1), ⟨λ⟩), (S(1), ⟨λ⟩)

)
∈

TR. Note that Q has two components and, hence, does not satisfy the assumptions of
Lemma 5.12. Then ♯T Q takes the values 4, 6 and 9, with probabilities 1

4 , 1
2 , 1

4 . Thus, if
X, Y ∼ ♯T Q i.i.d., then X + Y is 13 with probability 1

16 + 1
16 = 1

8 . However, for every
T ′ ∈ TR, the random variable ♯T ′Q almost surely takes composite numbers, as it is equal to
the sum of all multiplicities of R-facts, times the sum of all multiplicities of S-facts, both
of these numbers being either 0 or at least 2. Thus, there exists no T ′ ∈ TR such that
♯T ′Q = X + Y . ⌟

For this reason, our main algorithm will call Algorithm 1 independently, for each connected
component Qi of Q. Then, Algorithm 1 does not inflate the whole table T , but only the
part Ti corresponding to Qi. If Q = Q′ ∧ Qi and we denote ♯Ti

Qi by X and ♯T \Ti
Q′ by Y ,

then replacing Ti in T with its inflation of order n yields a new table with answer count
(♯T \Ti

Q′) · (♯T (n)
i

Qi) = Y ·
∑n

i=1 Xi, where X1, . . . , Xn ∼ X i.i.d. Before further describing
the reduction, we first explore some algebraic properties of the above situation in general.

▶ Lemma 5.14. Let X and Y be independent random variables with values in N and let
k ∈ N. Suppose X1, X2, . . . are i.i.d. random variables with X1 ∼ X. Let p0 := Pr(X = 0)
and q0 := Pr(Y = 0). Then, there exist z1, . . . , zk ≥ 0 such that for all n ∈ N we have

Pr
(

Y ·
n∑

i=1
Xi ≤ k

)
= q0 + (1 − q0) · pn

0 +
k∑

j=1

(
n

j

)
· pn−j

0 · zj.

This is demonstrated in the extended version [20]. We now describe how p0 = Pr(X = 0)
can be recovered from the values of Pr

(
Y ·

∑n
i=1 Xi ≤ k

)
and q0 = Pr(Y = 0) whenever

q0 < 1 and p0 > 0. With the values z1, . . . , zn from Lemma 5.14, and z0 := 1 − q0, we define
a function

g(n) := Pr
(

Y ·
n∑

i=1
Xi ≤ k

)
− q0 =

k∑
j=0

(
n

j

)
· pn−j

0 · zj . (4)

M. Grohe, P. Lindner, and C. Standke 20:15

Now, for m ∈ N and x = 0, 1 . . . , m, we define

hm(x) := g(m + x) · g(m − x) =
k∑

j1,j2=0

(
m + x

j1

)
·
(

m − x

j2

)
· p2m−j1−j2

0 · zj1 · zj2 . (5)

Then, for every fixed m, hm is a polynomial in x with domain {0, . . . , m}. As it will turn
out, the leading coefficient lc(hm) of hm can be used to recover the value of p0 as follows:
Let jmax be the maximum j such that zj ̸= 0. Since for fixed m, both

(
m+x

j

)
and

(
m−x

j

)
are

polynomials of degree j in x, the degree of hm is 2jmax and its leading coefficient is

lc(hm) = (−1)jmax · (jmax!)−2 · p2m−2jmax
0 · z2

jmax
,

which yields

p0 =

√
lc(hm+1)
lc(hm) . (6)

Thus, it suffices to determine lc(hm) and lc(hm+1). However, we neither know jmax, nor zjmax ,
and we only have access to the values of hm and hm+1. To find the leading coefficients anyway,
we employ the method of finite differences, a standard tool from polynomial interpolation [22,
chapter 4]. For this, we use the difference operator ∆ that is defined as ∆f(x) := f(x+1)−f(x)
for all functions f . When f is a (non-zero) polynomial of degree n, the difference operator
reduces its degree by one and its leading coefficient is multiplied by n. Therefore, after taking
differences n times, starting from subsequent values of a polynomial f , we are left with the
constant function ∆nf = n! · lc(f) ̸= 0. In particular, taking differences more than n times
yields the zero function. Hence, we can determine lc(f) by finding the largest ℓ for which
∆ℓf(0) ̸= 0.

Algorithm 2 solveComponentQ(T, i).

Parameter: Boolean self-join free CQ Q = Q0 ∧
∧r

i=1 Qi with connected components Q1 . . . , Qr.
Oracle Access: Oracle for PQER(Q, k) that, on input T̃ , returns Pr(♯

T̃
Q ≤ k)

Input: T ∈ TR, i ∈ {1, . . . , r}
Output: Pr(♯Ti Qi = 0)

1: if Pλ(0) = 1 for all λ ∈ Λ then return 0 end if
2: Fix λ with Pλ(0) < 1 and suppose Q = Q′ ∧ Qi (cf. Remark 5.7).
3: if Q′ is empty then
4: Set q0 := 0 and g(0) := 1.
5: else
6: Let T ′ ∈ TR be the canonical database for Q′, with λf := λ for all facts f in T ′.
7: Calculate q0 := Pr

(
♯T ′ Q′ = 0

)
and set g(0) := 1 − q0.

8: end if
9: for n = 1, 2, . . . , 4k + 1 do

10: Set T
(n)
i := inflateQi (Ti, n).

11: Set g(n) := Pr
(
♯

T ′∪T
(n)
i

Q ≤ k
)

− q0, using the oracle.
12: end for
13: if g(k + 1) = 0 then return 0 end if
14: for x = 0, 1, . . . , 2k and m = 2k, 2k + 1 do hm(x) := g(m + x) · g(m − x) end for
15: Initialize ℓ := 2k.
16: while ∆ℓh2k(0) = 0 do ℓ := ℓ − 1 end while
17: return

√
∆ℓh2k+1(0)/∆ℓh2k(0)

ICDT 2023

20:16 Probabilistic Query Evaluation with Bag Semantics

The full procedure that uses the above steps to calculate p0 yields Algorithm 2. Recall
that it focuses on a single connected component. To ensure easy access to the value of q0, we
utilize a table that encodes the canonical database of the remainder of the query.4 Note that
k is always treated as a fixed constant, and our goal is to reduce PQER(Q, 0) to PQER(Q, k).

▶ Lemma 5.15. Algorithm 2 runs in polynomial time and yields the correct result.

Proof. With the notation introduced in the algorithm, we let Y = ♯T ′Q′ (or Y = 1 if Q′ is
empty) and X = ♯T Qi = ♯Ti

Qi. Then, q0 = Pr(Y = 0) as in Lemma 5.14 and the aim of the
algorithm is to return p0.

First, line 1 covers the edge case that R can only represent the empty database instance.
In all other cases, we fix λ with Pλ(0) > 0. As q0 = 1 − (1 − Pλ(0))t where t is the number
of atoms of Q′, we have q0 < 1. From Lemma 5.12, we see that ♯T ′∪T (n)

i
Q = Y ·

∑n
i=1 Xi,

so we are in the situation of Lemma 5.14. Hence, g and hm are as in (4) and (5). Now, as
g(k + 1) = p0 ·

∑k
j=0

(
n
j

)
· pk−j

0 · zj with z0 = 1 − q0 > 0, we find that p0 is zero if and only if
g(k + 1) is zero. This is checked in line 13. Finally, the paragraphs following Lemma 5.14
apply, and we determine the degree of h2k using the method of finite differences by setting ℓ

to the maximum possible degree and decreasing it step-by-step as long as ∆ℓh2k(0) = 0 in
lines 15 and 16. Then, we have ℓ = 2jmax and return√

∆ℓh2k+1(0)
∆ℓh2k(0) =

√
ℓ! lc(hm+1)
ℓ! lc(hm)

(6)= p0.

Concerning the runtime, since R is a p-TIRS, all answers of the oracle calls are of
polynomial size in the input. Since k is fixed, the algorithm performs a constant number of
computation steps and each term in the calculations is either independent of the input or of
polynomial size, yielding a polynomial runtime. ◀

Proof of Theorem 5.11. Let k > 0 and suppose that we have an oracle for PQER(Q, k). Let
Q = Q0 ∧

∧m
i=1 Qi be the partition of Q into components, with Q0 being the conjunction of

the constant atoms. Then the ♯T Qi are independent and ♯T Q = ♯T Q0 ·
∏m

i=1 ♯T Qi. Therefore,

Pr
(
♯T Q = 0

)
= 1 − Pr(♯T Q0 ̸= 0) ·

m∏
i=1

(
1 − Pr

(
♯T Qi = 0

))
.

As Pr(♯T Q0 ̸= 0) is easy to compute and Algorithm 2 computes Pr
(
♯T Qi = 0

)
for i = 1, . . . , k

with oracle calls for PQER(Q, k), this yields a polynomial time Turing-reduction from
PQER(Q, 0) to PQER(Q, k). ◀

With the results from the previous subsections, this completes the proof of Theorem 5.3.

Proof of Theorem 5.3. For p-TIRS’s with zeroPr(R) ⊆ {0, 1}, the statement is given by
Lemma 5.5. By Theorem 5.8, PQER(Q, k) is solvable in polynomial time for hierarchical
Boolean CQs without self-joins. For the case of Q being non-hierarchical (and zeroPr(R) ∩
(0, 1) ̸= ∅), let p ∈ (0, 1) such that p ∈ zeroPr(R). By [2, Theorem 3.4], the set version
PQEset(Q) is already hard on the class of tuple-independent set PDBs where all probabilities
are equal to 1 − p. It follows from Proposition 5.10 that PQER(Q, 0) is ♯P-hard. By
Theorem 5.11, so is PQER(Q, k) for all k ∈ N+. ◀

4 The canonical database belonging to a self-join free CQ is the instance containing the atoms appearing
in the query, with all variables being treated as constants.

M. Grohe, P. Lindner, and C. Standke 20:17

6 Conclusion

The results of our paper extend the understanding of probabilistic query evaluation into a new
direction by discussing bag semantics. We investigated two principal computational problems:
computing expectations, and computing the probability of answer counts. Interestingly,
even though these problems are equivalent for set semantics, they behave quite differently
under bag semantics. Our findings show that generally, computing expectations is the
easier problem. For computing answer count probabilities, in the case of self-join free CQs,
we obtain a polynomial time vs. ♯P-hard dichotomy, depending on whether the query is
hierarchical. This transfers the corresponding results of [9, 10] from set to bag semantics.

While our results for the expectation problem concern UCQs, the complexity of computing
answer count probabilities remains open beyond self-join free CQs. It is also unclear, how
the problem behaves on bag versions of other well-representable classes of set PDBs. A more
detailed analysis of the complexity of PQER(Q, k) in terms of k remains open as well.

To formally argue about the complexity of some natural distributions such as the Poisson
distribution, irrational probabilities or parameters have to be supported. This yields non-
trivial complexity theoretic questions that we leave for future work.

References
1 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Tractable Lineages on Treelike Instances:

Limits and Extensions. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (PODS 2016), pages 355–370. Association for Computing
Machinery, 2016. doi:10.1145/2902251.2902301.

2 Antoine Amarilli and Benny Kimelfeld. Uniform Reliability of Self-Join-Free Conjunctive
Queries, 2021. Extended version of [3]. arXiv:1908.07093v6.

3 Antoine Amarilli and Benny Kimelfeld. Uniform Reliability of Self-Join-Free Conjunctive
Queries. In 24th International Conference on Database Theory (ICDT 2021), volume 186 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:17. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICDT.2021.17.

4 Antoine Amarilli and İsmail İlkan Ceylan. A Dichotomy for Homomorphism-Closed Queries
on Probabilistic Graphs. In 23rd International Conference on Database Theory (ICDT
2020), volume 155 of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–
5:20, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ICDT.2020.5.

5 Mark Braverman and Stephen Cook. Computing over the Reals: Foundations for Scientific
Computing. Notices of the AMS, 53(3):318–329, 2006.

6 George Casella and Roger L. Berger. Statistical Inference. Thomson Learning, Pacific Grove,
CA, USA, 2nd edition, 2002.

7 Surajit Chaudhuri and Moshe Y. Vardi. Optimization of Real Conjunctive Queries. In
Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS 1993), pages 59–70. ACM Press, 1993. doi:10.1145/153850.153856.

8 Sara Cohen. Equivalence of Queries That Are Sensitive to Multiplicities. The VLDB Journal,
18(3):765–785, 2009. doi:10.1007/s00778-008-0122-1.

9 Nilesh Dalvi and Dan Suciu. Efficient Query Evaluation on Probabilistic Databases. In
Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB 2004),
volume 30, pages 864–875. VLDB Endowment, 2004.

10 Nilesh Dalvi and Dan Suciu. Efficient Query Evaluation on Probabilistic Databases. The
VLDB Journal, 16(4):523–544, 2007. doi:10.1007/s00778-006-0004-3.

ICDT 2023

https://doi.org/10.1145/2902251.2902301
http://arxiv.org/abs/1908.07093v6
https://doi.org/10.4230/LIPIcs.ICDT.2021.17
https://doi.org/10.4230/LIPIcs.ICDT.2020.5
https://doi.org/10.4230/LIPIcs.ICDT.2020.5
https://doi.org/10.1145/153850.153856
https://doi.org/10.1007/s00778-008-0122-1
https://doi.org/10.1007/s00778-006-0004-3

20:18 Probabilistic Query Evaluation with Bag Semantics

11 Nilesh Dalvi and Dan Suciu. The Dichotomy of Conjunctive Queries on Probabilistic Structures.
In Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS 2007), pages 293–302, New York, NY, USA, 2007. Association
for Computing Machinery. doi:10.1145/1265530.1265571.

12 Nilesh Dalvi and Dan Suciu. The Dichotomy of Probabilistic Inference for Unions of Conjunctive
Queries. Journal of the ACM, 59(6):1–87, 2012. doi:10.1145/2395116.2395119.

13 Su Feng, Boris Glavic, Aaron Huber, Oliver Kennedy, and Atri Rudra. Computing Expected
Multiplicities for Bag-TIDBs with Bounded Multiplicities, 2022. arXiv:2204.02758v3.

14 Robert Fink and Dan Olteanu. Dichotomies for Queries with Negation in Probabilistic
Databases. ACM Transactions on Database Systems, 41(1):4:1–4:47, 2016. doi:10.1145/
2877203.

15 Erich Grädel, Yuri Gurevich, and Colin Hirsch. The Complexity of Query Reliability. In
Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS 1998), pages 227–234. ACM Press, 1998. doi:10.1145/275487.
295124.

16 Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance Semirings. In Proceedings
of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS 2007), pages 31–40. Association for Computing Machinery, 2007. doi:
10.1145/1265530.1265535.

17 Todd J. Green and Val Tannen. Models for Incomplete and Probabilistic Information. In
Current Trends in Database Technology – EDBT 2006, pages 278–296, Berlin, Germany, 2006.
Springer-Verlag Berlin Heidelbeg. doi:10.1007/11896548_24.

18 Martin Grohe and Peter Lindner. Independence in Infinite Probabilistic Databases. J. ACM,
69(5):37:1–37:42, 2022. doi:10.1145/3549525.

19 Martin Grohe and Peter Lindner. Infinite Probabilistic Databases. Logical Methods in Computer
Science, Volume 18, Issue 1, 2022. doi:10.46298/lmcs-18(1:34)2022.

20 Martin Grohe, Peter Lindner, and Christoph Standke. Probabilistic Query Evaluation with
Bag Semantics, 2022. arXiv:2201.11524.

21 Erich Grädel and Val Tannen. Semiring Provenance for First-Order Model Checking, 2017.
arXiv:1712.01980v1.

22 Francis Begnaud Hildebrand. Introduction to Numerical Analysis. Courier Corporation, 1987.
23 Batya Kenig and Dan Suciu. A Dichotomy for the Generalized Model Counting Problem for

Unions of Conjunctive Queries. In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS 2021), pages 312–324, New York, NY,
USA, 2021. Association for Computing Machinery. doi:10.1145/3452021.3458313.

24 Achim Klenke. Probability Theory: A Comprehensive Course. Universitext. Springer-Verlag
London, London, UK, 2nd edition, 2014. Translation from the German language edition.
doi:10.1007/978-1-4471-5361-0.

25 Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer Science.
Birkhäuser Boston, 1991. doi:10.1007/978-1-4684-6802-1.

26 Dan Olteanu and Jiewen Huang. Using OBDDs for Efficient Query Evaluation on Probabilistic
Databases. In SUM 2008: Scalable Uncertainty Management, Lecture Notes in Computer
Science, pages 326–340, Berlin, Heidelberg, 2008. Springer. doi:10.1007/978-3-540-87993-0_
26.

27 Dan Olteanu and Jiewen Huang. Secondary-Storage Confidence Computation for Conjunctive
Queries with Inequalities. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of data, pages 389–402. ACM, 2009. doi:10.1145/1559845.1559887.

28 Christopher Ré and Dan Suciu. The Trichotomy Of HAVING Queries On A Probabilistic
Database. The VLDB Journal, 18(5):1091–1116, July 2009. doi:10.1007/s00778-009-0151-4.

29 Dan Suciu. Probabilistic Databases for All. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pages 19–31. ACM, 2020.
doi:10.1145/3375395.3389129.

https://doi.org/10.1145/1265530.1265571
https://doi.org/10.1145/2395116.2395119
http://arxiv.org/abs/2204.02758v3
https://doi.org/10.1145/2877203
https://doi.org/10.1145/2877203
https://doi.org/10.1145/275487.295124
https://doi.org/10.1145/275487.295124
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1007/11896548_24
https://doi.org/10.1145/3549525
https://doi.org/10.46298/lmcs-18(1:34)2022
http://arxiv.org/abs/2201.11524
http://arxiv.org/abs/1712.01980v1
https://doi.org/10.1145/3452021.3458313
https://doi.org/10.1007/978-1-4471-5361-0
https://doi.org/10.1007/978-1-4684-6802-1
https://doi.org/10.1007/978-3-540-87993-0_26
https://doi.org/10.1007/978-3-540-87993-0_26
https://doi.org/10.1145/1559845.1559887
https://doi.org/10.1007/s00778-009-0151-4
https://doi.org/10.1145/3375395.3389129

M. Grohe, P. Lindner, and C. Standke 20:19

30 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases, volume
3.2 of Synthesis Lectures on Data Management. Morgan & Claypool, San Rafael, CA, USA,
2011. Lecture ♯16. doi:10.2200/S00362ED1V01Y201105DTM016.

31 Guy Van den Broeck and Dan Suciu. Query Processing on Probabilistic Data: A Survey.
Foundations and Trends® in Databases, 7(3–4):197–341, 2017. doi:10.1561/1900000052.

32 Moshe Y. Vardi. The Complexity of Relational Query Languages. In Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing (STOC 1982), pages 137–146,
New York, NY, USA, 1982. ACM Press. doi:10.1145/800070.802186.

ICDT 2023

https://doi.org/10.2200/S00362ED1V01Y201105DTM016
https://doi.org/10.1561/1900000052
https://doi.org/10.1145/800070.802186

On Efficient Range-Summability of IID Random
Variables in Two or Higher Dimensions
Jingfan Meng #

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Huayi Wang #

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Jun Xu #

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Mitsunori Ogihara #

Department of Computer Science, University of Miami, Coral Gables, MI, USA

Abstract
d-dimensional (for d > 1) efficient range-summability (dD-ERS) of random variables (RVs) is a
fundamental algorithmic problem that has applications to two important families of database
problems, namely, fast approximate wavelet tracking (FAWT) on data streams and approximately
answering range-sum queries over a data cube. Whether there are efficient solutions to the dD-ERS
problem, or to the latter database problem, have been two long-standing open problems. Both are
solved in this work. Specifically, we propose a novel solution framework to dD-ERS on RVs that have
Gaussian or Poisson distribution. Our dD-ERS solutions are the first ones that have polylogarithmic
time complexities. Furthermore, we develop a novel k-wise independence theory that allows our
dD-ERS solutions to have both high computational efficiencies and strong provable independence
guarantees. Finally, we show that under a sufficient and likely necessary condition, certain existing
solutions for 1D-ERS can be generalized to higher dimensions.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases fast range-summation, multidimensional data streams, Haar wavelet transform

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.21

Related Version Previous Version: https://arxiv.org/abs/2110.07753

Funding This material is based upon work supported by the National Science Foundation under
Grant No. CNS-1909048, CNS-2007006, CNS-2051800, and by Keysight Technologies under Grant
No. BG005054.

1 Introduction

Efficient range-summability (ERS) of random variables (RVs) is a fundamental algorithmic
problem that has been studied for nearly two decades [5, 21, 6, 15]. This problem has so
far been defined only in one dimension (1D) as follows. Let X0, X1, · · · , X∆−1 be a list
of underlying RVs each of which has the same target distribution X. Here, the (index)
universe size ∆ is typically a large number (say ∆ = 264). A 1D-ERS problem calls for the
following oracle for answering range-sum queries over (realizations of) these underlying RVs.
At initialization, the oracle chooses a random outcome ω from the sample space Ω, which
mathematically determines the (values of the) realizations X0(ω), X1(ω), · · · , X∆−1(ω); here
the phrase “mathematically determines” emphasizes that (an implementation of) the oracle
does not actually realize these RVs (and pay the O(∆) time cost) at initialization. Thereafter,
given any query range [l, u) ≜ {l, l + 1, · · · , u − 1} that lies in the universe [0, ∆), the oracle

© Jingfan Meng, Huayi Wang, Jun Xu, and Mitsunori Ogihara;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 21; pp. 21:1–21:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jmeng40@gatech.edu
mailto:huayiwang@gatech.edu
mailto:jx@cc.gatech.edu
mailto:ogihara@cs.miami.edu
https://doi.org/10.4230/LIPIcs.ICDT.2023.21
https://arxiv.org/abs/2110.07753
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 On Efficient Range-Summability of IID RVs in Multiple Dimensions

is required to return S[l, u) ≜
∑u−1

i=l Xi(ω), the sum of the realizations of all underlying RVs
in the range. This requirement is called the consistency requirement, which is one of the two
essential requirements for the ERS oracle. We will show that such an ERS oracle can be
efficiently implemented using hash functions. With such an implementation, the outcome ω

corresponds to the seeds of these hash functions.
The other essential requirement is correct distribution, which has two aspects. The first

aspect is that the underlying RVs X0, X1, · · · , X∆−1 each has the same target (marginal)
distribution X. The second aspect is that these RVs should satisfy certain independence
guarantees. Ideally, it is desired for these RVs to be mutually independent, but this comes at
a high storage cost as we will elaborate shortly. In practice, another type of independence
guarantee, namely k-wise independence (in the sense that any subset of k underlying RVs
are independent), is good enough for most applications when k ≥ 4. We will show that our
solution for ERS in d > 1 dimensions can provide k-wise independence guarantee at a small
storage cost of O(logd ∆) for an arbitrarily large k.

A straightforward but naive way to answer a range-sum query, say over [l, u), is simply
to sum up the realization of every underlying RV Xl(ω), Xl+1(ω), · · · , Xu−1(ω) in the query
range. This solution, however, has a time complexity of O(∆) when u− l is O(∆). In contrast,
an efficient solution should be able to do so with only O(polylog(∆)) time complexity. Indeed,
all existing ERS solutions [2, 5, 21, 6, 15] have O(log ∆) time complexity.

1.1 Related Work on 1D-ERS
There are in general two families of solutions to the ERS problem in 1D, following two different
approaches. The first approach is based on error correction codes (ECC). Solutions taking this
approach include BCH3 [21], EH3 [5], and RM7 [2]. This approach has two drawbacks. First,
it works only when the target distribution X is Rademacher (Pr[X = 1] = Pr[X = 0] = 0.5,
aka. single-step random walk). Second, although it guarantees 3-wise (in the case of BCH3
and EH3) or 7-wise (in the case of RM7) independence among the underlying RVs, almost
all empirical independence beyond that is destroyed. In addition, RM7 is very slow in
practice [21].

The second approach is based on a data structure called dyadic simulation tree (DST),
which we will describe in Subsection 3.1. The DST-based approach was first briefly mentioned
in [6] and later fully developed in [15]. The DST-based approach is better than the ECC-based
approach in two aspects. First, it supports a wider range of target distributions including
Gaussian, Cauchy, Rademacher [15], and Poisson (see Appendix C of [14]). Second, it
provides stronger independence guarantees at a low computational cost. For example, when
implemented using the tabulation hashing scheme [24], it guarantees 5-wise independence at
a much lower computational cost than RM7 [15]. We will describe a nontrivial generalization
of this result to 2D in Section 4.

1.2 ERS in Higher Dimensions
In this work, we formulate the ERS problems in d > 1 dimensions (dD), which we denote as
dD-ERS, and propose the first-ever solutions to dD-ERS. A dD-ERS problem is similarly
defined on a d-dimensional universe [0, ∆)d that contains ∆d integral points. Each dD
point i⃗ ∈ [0, ∆)d is associated with an RV X⃗i, and every such RV has the same target
(marginal) distribution X. Here, for ease of presentation, we assume ∆ is the same on each
dimension and is a power of 2, but our solutions can work without these two assumptions.
Let l⃗ = (l1, l2, · · · , ld)T and u⃗ = (u1, u2, · · · , ud)T be two dD points in [0, ∆)d such that

J. Meng, H. Wang, J. Xu, and M. Ogihara 21:3

lj < uj for each dimension j = 1, 2, · · · , d. We define [⃗l, u⃗) as the dD rectangular range
“cornered” by these two points in the sense [⃗l, u⃗) ≜ [l1, u1) × [l2, u2) × · · · × [ld, ud), where ×
is the Cartesian product.

A dD-ERS problem calls for the following oracle. At initialization, the oracle chooses
an outcome ω that mathematically determines the realization X⃗i(ω) for each i⃗ ∈ [0, ∆)d.
Thereafter, given any dD range [⃗l, u⃗), the oracle needs to return in O(polylog(∆)) time
S [⃗l, u⃗) ≜

∑
i⃗∈[⃗l,u⃗) X⃗i(ω), the sum of the realizations of all underlying RVs in this dD range.

Unless otherwise stated, the vectors that appear in the sequel are assumed to be column
vectors. We write them in boldface and with a rightward arrow on the top like in “x⃗”.

Several 1D-ERS solutions have been proposed as an essential building block for efficient
solutions to several database problems. In two such database problems that we will describe
in Section 2, their 1D solutions, both proposed in [7], can be readily generalized to dD if
their underlying 1D-ERS oracles can be generalized to dD. In fact, in [16], authors stated
explicitly that the only missing component for their solutions of the 1D database problems to
be generalized to 2D was an efficient 2D-ERS oracle where X is the Rademacher distribution.
However, until this paper, no solution to any dD-ERS problem for d > 1 has been proposed.

1.3 Our dD-ERS Solutions
In this paper, we propose novel solutions to the two dD-ERS problems wherein the target
distributions are Gaussian and Poisson respectively. We refer to these two problems as dD
Gaussian-ERS and dD Poisson-ERS, respectively. Both solutions generalize the corresponding
DST-based 1D-ERS solutions to higher dimensions and have a low time complexity of
O(logd ∆) per range-sum query. Our dD Gaussian-ERS solution, in particular, is based on
the Haar wavelet transform (HWT), since DST is equivalent to HWT when (and only when)
the target distribution X is Gaussian, as will be shown in Subsection 3.2.

Furthermore, we identify a sufficient condition that, if satisfied by the target distribution
X, guarantees that the corresponding DST-based 1D-ERS solution can be generalized to a
dD-ERS solution. We prove (see Appendix A of [14]) that Gaussian and Poisson are two
“nice” distributions that satisfy this sufficient condition. We will also show that, for all such
“nice” distributions (including those we might discover in the future), this generalization
process (from 1D to dD) follows a universal algorithmic framework that can be characterized
as the Cartesian product of d DSTs. We will also provide strong evidence that X “being nice”
is likely necessary for this DST generalization (from 1D to dD) to be feasible (see Section 5).

Unfortunately, so far we have not found any “nice” distribution other than Gaussian and
Poisson. Hence dD-ERS for other target distributions remains an open problem, and is likely
not solvable by the (generalized) DST approach. We emphasize this is not a shortcoming of
the DST approach: That we have obtained computationally efficient solutions in the cases
of Gaussian and Poisson is already a pleasant surprise, as the dD-ERS problem has been
open for nearly two decades. Furthermore, we will show that our dD Gaussian-ERS solution
leads to computationally efficient solutions to both aforementioned database problems (to be
described in Section 2), by answering their calls for a dD Gaussian-ERS or equivalent oracle.

Our dD Gaussian-ERS and Poisson-ERS solutions both support two different types of
independence guarantees, at different storage costs. The first type is the ideal case in which
the ∆d underlying RVs are mutually independent. As will be shown in Section 3, we can
achieve this ideal case by paying O(T logd ∆) storage cost, where T is the total number of
range-sum queries to be answered (i.e., O(logd ∆) storage cost per range query). The second
type is also quite strong: The ∆d underlying RVs are k-wise independent, where the constant
k can be arbitrarily large. In Section 4, we propose a k-wise independence scheme that can

ICDT 2023

21:4 On Efficient Range-Summability of IID RVs in Multiple Dimensions

provide the second type of guarantees by employing O(logd ∆) k-wise independent hash
functions. Its storage cost is quite small: only O(logd ∆) for storing the seeds of these hash
functions. We emphasize that the issue of how strong this independence guarantee (among
the underlying RVs) needs to be affects only the storage cost of our Gaussian-ERS and
Poisson-ERS solutions, and is orthogonal to all other issues described in earlier paragraphs
such as the O(logd ∆) time complexity of both solutions and the sufficient and likely necessary
condition for a DST-based dD-ERS solution to exist.

This k-wise independence scheme makes our dD-ERS solutions very practically useful
for two reasons. First, such a k-wise independent hash function in practice requires a very
short seed (not longer than a few kilobytes), and each hash operation can be computed in
nanoseconds [3, 19]. Second, most applications of ERS only require the underlying RVs to be
4-wise independent [7, 16].

The contributions of this work can be summarized as follows. First, we provide the first
set of answers to the long-standing open question whether there is an efficient solution to
any dD-ERS problem for d > 1. Second, our Gaussian-ERS solution solves a long-standing
open problem in data streaming that we will describe next. Third, our k-wise independence
theory and hashing scheme make our dD ERS solutions very practically useful.

The rest of the paper is organized as follows. In Section 2, we describe two applications
of our dD Gaussian-ERS solutions. In Section 3, we first describe our HWT-based Gaussian-
ERS scheme in 1D, and then generalize it to 2D and dD. In Section 4, we describe our k-wise
independence theory and scheme. In Section 5, we propose a sufficient and likely necessary
condition on the target distribution for the DST approach to be generalized to dD. Finally,
we conclude the paper in Section 6.

2 Applications of dD Gaussian-ERS

In this section, we introduce two important applications of our dD Gaussian-ERS solution.

2.1 Fast Approximate Wavelet Tracking
The first application is to the problem of fast approximate wavelet tracking (FAWT) on data
streams [7, 4]. We first introduce the FAWT problem in 1D [7], or 1D-FAWT for short. In
this problem, the precise system state is comprised of a ∆-dimensional vector s⃗, each scalar
of which is a counter. The precise system state at any moment of time is determined by
a data stream, in which each data item is an update to one such counter (called a point
update) or all counters in a 1D range (called a range update). In 1D-FAWT, s⃗ is considered a
∆-dimensional signal vector that is constantly “on the move” caused by the updates in the
data stream. Let r⃗ be the (∆-dimensional) vector of HWT coefficients of s⃗. Clearly, r⃗ is also
a “moving target”. We denote as r⃗t the snapshot of r⃗ at a time t. In 1D-FAWT, the goal is
to closely track (the precise value of) r⃗ over time using a sketch, in the sense that at moment
t, we can recover from the sketch an estimate r⃗′

t of r⃗t, such that ∥⃗rt − r⃗′
t∥2 is small. An

acceptable solution should use a sketch whose size (space complexity) is only O(polylog(∆)),
and be able to maintain the sketch with a computation time cost of O(polylog(∆)) per point
or range update.

The first solution to 1D-FAWT was proposed in [7]. It requires the efficient computation
of an arbitrary scalar in Hx⃗, where H is the ∆ × ∆ Haar matrix (to be defined in Subsub-
section 3.2.1) and x⃗ is a ∆-dimensional vector of 4-wise independent Rademacher RVs. A
key step of this computation is to compute a range-sum of 4-wise independent Rademacher
RVs (in 1D), that is used therein as a Tug-of-War (ToW) sketch [1] for “sketching” the L2

J. Meng, H. Wang, J. Xu, and M. Ogihara 21:5

difference (approximation error) between the signal vector and its FAWT approximation. An
aforementioned ECC-based ERS solution is used therein to tackle this Rademacher-ERS
problem. Authors of [16] stated that if they could find a solution to this Rademacher-ERS
problem in dD, then the 1D-FAWT solution in [7] would become a dD-FAWT solution. The
first solution to dD-FAWT, proposed in [4], explicitly bypassed this ERS problem.

We note that the 1D-FAWT solution above continues to work, and its time and space
complexities remain the same, if we replace the x⃗ with a ∆-dimensional vector of 4-wise inde-
pendent standard Gaussian RVs. This is because, with this replacement, the aforementioned
ToW sketch becomes a Gaussian Tug-of-War (GToW) sketch (which maps a data item to a
Gaussian RV instead of a Rademacher RV) [10], and ToW and GToW are known to have the
same (ϵ, δ) accuracy bound [1, 10] for sketching the L2 norm of a data stream (used here for
sketching the aforementioned L2 difference). Based on this insight, our dD Gaussian-ERS
solution can be used to construct a dD-FAWT solution as follows. We simply change, in the
contingent dD-FAWT solution proposed in [7], the distribution of all ∆d underlying 4-wise
independent RVs from Rademacher to Gaussian. With this replacement, this contingent
solution will finally work, provided we can solve the resulting dD Gaussian-ERS problem.
The latter problem is solved by our k-wise (with k = 4 here) independence scheme, to
be described in Section 4. The resulting dD-FAWT solution has the same time and space
complexity of O(logd ∆) as that proposed in [4] for achieving the same accuracy guarantee.

2.2 Range-Sum Queries over Data Cube
Our second application is to the problem of approximately answering range-sum queries
over a data cube [8] that is similarly “on the move” propelled by the (point or range)
updates that arrive in a stream. This problem can be formulated as follows. The precise
system state is comprised of ∆d counters, namely σ⃗i for i ∈ [0, ∆)d, that are “on the move”.
Given a range [⃗l, u⃗) at moment t, the goal is to approximately compute the sum of counter
values in this range C [⃗l, u⃗) ≜

∑
i⃗∈[⃗l,u⃗) σ⃗i(t), where σ⃗i(t) is the value of the counter σ⃗i at

moment t. A desirable solution to this problem in dD should satisfy three requirements
(in which multiplicative terms related to the desired (ϵ, δ) accuracy bound are ignored).
First, any range-sum query is answered in O(polylog(∆)) time. Second, its space complexity
is O(polylog(∆)). Third, every point or range update to the system state is processed in
O(polylog(∆)) time. It has been a long-standing open question whether there is a solution
to this problem that satisfies all three requirements when d > 1. For example, solutions
producing exact answers (to the range queries) [9, 22, 11] all require O(∆d log ∆) space and
hence do not satisfy the second requirement; and Haar+ tree [12] works only on static data,
and hence does not satisfy the third requirement.

In 1D, a solution that satisfies all three requirements (with d = 1) was proposed in [7, 6].
It involves 1D-ERS computations on 4-wise independent underlying RVs where the target
distribution is either Gaussian or Rademacher, which are tackled using a DST-based (in [6])
or a ECC-based (in [7]) 1D-ERS solution, respectively. As shown in [7, 6], this range-sum
query solution can be readily generalized to dD if the ERS computations above can be
performed in dD. This gap is again filled by our k-wise (k = 4) independence scheme for dD
Gaussian-ERS, resulting in the first dD solution that satisfies all three requirements, all with
O(logd ∆) (time or space) complexity (ignoring ϵ and δ terms).

In the resulting dD solution, we maintain O(log(1/δ)/ϵ2) (independent instances of)
sketches that each “sketches” the content (counter values) of the data cube. Here we describe
only one such sketch, which we denote as A, since these sketches are statistically and
functionally identical. At any time t, A(t) should track the current system state, namely

ICDT 2023

21:6 On Efficient Range-Summability of IID RVs in Multiple Dimensions

(σ⃗i(t))’s, as follows: A(t) ≜
∑

i⃗∈[0,∆)d σ⃗i(t)X⃗i. Here X⃗i for i ∈ [0, ∆)d are (realizations of)
a set of ∆d 4-wise independent standard Gaussian underlying RVs that have one-to-one
correspondences with the set of ∆d counters as follows: Each X⃗i is associated with a counter
σ⃗i. If we implement these ∆d RVs using (an instance of) our dD Gaussian-ERS solution,
then we can keep the value of A(t) up-to-date, with a time complexity of O(logd ∆) per
point or range update (to the system state). Then, given a query range [⃗l, u⃗) at time t,
we estimate the range-sum of counters C [⃗l, u⃗) from the sketch A(t) using A(t) · S [⃗l, u⃗) as
the estimator. These O(log(1/δ)/ϵ2) estimators, one obtained from each sketch, are then
combined to produce a final estimation that has the following accuracy guarantee (that is
the same as in the 1D case). With probability at least 1 − δ, the final estimation deviates
from the actual value of C [⃗l, u⃗) by at most ϵ

√
V [⃗l, u⃗)∥σ∥2, where V [⃗l, u⃗) ≜

∏d
j=1(uj − lj)

is the number of counters in the query range, and ∥σ(t)∥2 ≜
(∑

i⃗∈[0,∆)d σ2
i⃗
(t)

)1/2
is the

L2 norm of the system state. Since each sketch uses an independent dD Gaussian-ERS
scheme instance, our dD solution satisfies all three aforementioned requirements, all with
O(logd ∆ log(1/δ)/ϵ2) time and space complexity.

2.3 A Closer Comparison with Related Work
In this section, per referees’ requests, we provide an in-depth comparison of this work with
prior works on 1D-FAWT [7, 6], on dD-FAWT [4], and on 1D data cube [6].

We start with explaining how the dD-FAWT solution proposed in [4] manages to avoid
confronting the dD-ERS problem. The dD-FAWT solution [4] maintains ToW sketches for
groups of wavelet coefficients in the wavelet domain. As explained earlier, each ToW sketch
“measures” the L2 norm (and hence the total energy by squaring) of such a group. By
the property of HWT, each point or range update to the system state in the time domain
translates into O(logd ∆) updates to the sketches the wavelet domain; we also use this property
in our solution to keep its time complexity below O(logd ∆) as shown in Subsection 3.4. To
solve the dD-FAWT using these sketches in the wavelet domain, we need only to identify the
groups that are (hierarchical) “L2 heavy hitters” [4]. In [4], a binary search tree built on
these sketches is used to search for such “L2 heavy hitters” in O(log ∆ · log log ∆) time. Since
this dD-FAWT solution [4] does not involve computing the range sums of the Rademacher
RVs underlying the ToW sketches, it does not need to formulate or solve any ERS problem.

As we will elaborate in Section 3, our dD Gaussian-ERS solution works in the same way
as the dD-FAWT solution proposed in [4], by shifting the (representations of) input streams
and the range queries from the time domain to the wavelet domain. Hence, arguably had
dD-FAWT solution proposed in [4] used the Gaussian ToW (GToW) instead of the ToW
sketch, this shift would have resulted in a dD-FAWT solution containing the bulk of our dD
Gaussian-ERS solution as an embedded module. However, such an embedded module is still
“two hops away” from our dD Gaussian-ERS solution as follows. First, since the objective of
and the intuition behind this shift in [4] were to avoid rather than to solve the ERS problem,
it would not be easy for the authors of [4] to realize that the embedded module can be
extended to a standalone dD Gaussian-ERS solution. Second, without our aforementioned
k-wise independence theory and construction, the embedded module does not yet guarantee
4-wise independence among underlying Gaussian RVs that is needed for dD-FAWT.

On a related note, should we try to extend the 1D-FAWT solution proposed in [7],
which maintains the ToW sketches in the time domain, to dD without the aforementioned
Rademacher-by-Gaussian replacement, the underlying Rademacher RVs would have to be
efficiently range-summable to keep the time complexity of each point or range update to

J. Meng, H. Wang, J. Xu, and M. Ogihara 21:7

the sketches low. However, this appears to be a tall order for now: For d > 1, no ECC-
based Rademacher-ERS solution has ever been found as explained earlier, and a DST-based
Rademacher-ERS solution is unlikely to exist, as we will show in Section 5.

A referee asked whether the 1D data cube solution proposed in [7, 6] can be extended
to dD using the same aforementioned ERS avoidance strategy of maintaining the sketches
in the wavelet domain as used in [4]. In retrospect, this solution approach would work, but
unlikely to be taken since it is counterintuitive and still “two hops away” (from the right
solution) as explained above. Indeed, authors of [7, 6] unsurprisingly took the much more
intuitive approach of maintaining sketches in the time domain and as a result had to confront
the dD Gaussian or Rademacher-ERS problem as explained in Subsection 2.2.

Now we highlight a key difficulty that we believe has prevented authors of [7, 6, 16] from
solving the dD-ERS problem and extending their FAWT and data cube solutions from 1D
to dD: The Rademacher or Gaussian RVs underlying the sketches need to be both 4-wise
independent and efficiently range-summable, and conventional wisdom (until our work) has it
that a magic hash function family is needed to achieve both. Authors of [7, 16] tried to extend
a magic hash function family, that induces such Rademacher RVs in 1D, to dD. However, as
explained earlier, a dD Rademacher-ERS solution is unlikely to exist. Authors of [6] proposed
the 1D-DST that laid the foundation of this work and our prior work [15]. A key innovation
of [6] is that the 1D-ERS is achieved via a 1D-DST instead of a magic hash function. However,
their DST-based 1D Gaussian-ERS solution still relies on a magic hash function, called
Nisan’s PRG (Pseudorandom Generator) [18], to provide 4-wise independence among the
underlying Gaussian RVs. The use of Nisan’s PRG [18] however restricts the applicability
and the extensibility of the 1D-DST approach, since Nisan’s PRG provides independence
guarantees only for memory-constrained applications such as data streaming [10]. It is also
not clear whether the 1D-DST approach powered by Nisan’s PRG can be extended to dD. In
comparison, in our dD-ERS solutions, both dD-ERS and 4-wise independence are provided
by the specially engineered dD-DST. As a result, a magic hash function family is no longer
needed, since the hash values produced by a hash function are no longer required to be
efficiently range summable.

Finally, we state a key difference between this work and [7, 6, 16, 4] with respect to
wavelets. In this work, ERS is the end and wavelets is the means, whereas in [7, 6, 16] it is
the other way around. In [4], wavelets is the end, but [4] cleverly avoids using ERS as the
means as just explained.

3 Our Solution to dD Gaussian-ERS

In this section, we describe our dD Gaussian-ERS solution that answers a range-sum query in
O(logd ∆) time. To explain this solution with best clarity, for now we require it to provide the
aforementioned ideal guarantee that the ∆d underlying RVs are mutually independent, with
the understanding that this requirement affects only the space complexity of our solution. In
the next section, this requirement will be relaxed to these RVs being k-wise independent,
and as a result, the space complexity of our solution is reduced to O(logd ∆).

Our solution can be summarized as follows. Let x⃗ denote the ∆d underlying standard
Gaussian RVs, namely X⃗i for i⃗ ∈ [0, ∆)d, arranged (in the dictionary order of i⃗) into a
∆d-dimensional vector. Then, after the dD Haar wavelet transform (HWT) is performed
on x⃗, we obtain another ∆d-dimensional vector w⃗ whose scalars are the HWT coefficients
of x⃗. Our solution builds on the following two observations. The first observation is that
scalars in x⃗ are i.i.d. standard Gaussian RVs if and only if scalars in w⃗ are (see Theorem 2).

ICDT 2023

21:8 On Efficient Range-Summability of IID RVs in Multiple Dimensions

S[0, 4)

S[0, 2)

X0 X1

S[2, 4)

X2 X3

(a) A general DST.

23:1

2Y0

Y0 + Y1

Y0/2 + Y1/2 + Y2/
√

2 Y0/2 + Y1/2 − Y2/
√

2

Y0 − Y1

Y0/2 − Y1/2 + Y3/
√

2 Y0/2 − Y1/2 − Y3/
√

2

CVIT 2016

(b) A Gaussian-DST.

Figure 1 Illustrations of a general DST and a Gaussian-DST with ∆ = 4.

The second observation is that the answer to any dD range-sum query can be expressed as a
weighted sum of O(logd ∆) scalars (HWT coefficients) in w⃗ (see Lemma 10). Our algorithm
is simply to generate and remember only these O(logd ∆) HWT coefficients (that participate
in this range-sum query). Our solution satisfies the correct distribution requirement (with
mutual independence guarantee) by the first observation. Since the first observation is true
only when the target distribution is Gaussian, this HWT-based solution does not work for
any other target distribution.

In the following, we first introduce the concept of the dyadic simulation tree (DST) in 1D
in Subsection 3.1. Then, we show that 1D DST is equivalent to 1D HWT in the Gaussian
case and present our HWT-based Gaussian-ERS algorithm for 1D, in Subsection 3.2. Finally,
we describe our HWT-based Gaussian-ERS algorithms for 2D and dD in Subsection 3.3
and Subsection 3.4, respectively.

3.1 A Brief Introduction to DST

In this section, we briefly introduce the concept of the DST, which as mentioned earlier was
proposed in [15] as a general solution approach to the one-dimensional (1D) ERS problems
for arbitrary target distributions.

We say that [l, u) is a 1D dyadic range if there exist integers j ≥ 0 and m ≥ 0 such that
l = j · 2m and u = (j + 1) · 2m. We call the sum on a dyadic range a dyadic range-sum.
Note that any underlying RV Xi is also a dyadic range-sum (on the dyadic range [i, i + 1)).
Let each underlying RV Xi have standard Gaussian distribution N (0, 1). In the following,
we focus on how to compute a dyadic range-sum, since any (general) 1D range can be
“pieced together” using at most 2 log2 ∆ dyadic ranges [21]. We illustrate the process of
computing dyadic range-sums using a “small universe” example (with ∆ = 4) shown in
Figure 1a. To begin with, the total sum of the universe S[0, 4) sitting at the root of the tree
is generated directly from its distribution N (0, 4). Then, S[0, 4) is split into two children, the
half-range-sums S[0, 2) and S[2, 4), such that RVs S[0, 2) and S[2, 4) sum up to S[0, 4), are
(mutually) independent, and each has distribution N (0, 2). This is done by generating the
RVs S[0, 2) and S[2, 4) from a conditional (upon S[0, 4)) distribution that will be specified
shortly. Afterwards, S[0, 2) is split in a similar way into two i.i.d. underlying RVs X0 and
X1, and so is S[2, 4) (into X2 and X3). As shown in Figure 1a, the four underlying RVs are
the leaves of the DST.

We now specify the aforementioned conditional distribution used for each split. Suppose
the range-sum to split consists of 2n underlying RVs, and that its value is equal to z. The
lower half-range-sum Sl (the left child in Figure 1a) is generated from the following conditional
pdf (or pmf):

f(x | z) = ϕn(x)ϕn(z − x)/ϕ2n(z), (1)

J. Meng, H. Wang, J. Xu, and M. Ogihara 21:9
23:1

W −1
0

W 0
0

W 1
0

W 1
1

⎛
⎜⎜⎝

Y0
Y1
Y2
Y3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2

1/
√

2 −1/
√

2 0 0
0 0 1/

√
2 −1/

√
2

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

X0
X1
X2
X3

⎞
⎟⎟⎠

CVIT 2016

Figure 2 An illustration of the HWT formula y⃗ = H4x⃗.

where ϕn(·) is the pdf (or pmf) of X∗n, the nth convolution power of the target distribution,
and ϕ2n(·) is the pdf (or pmf) of X∗2n. Then, the upper half-range-sum (the right child)
is defined as Su ≜ z − Sl. It was shown in [15] that splitting a (parent) RV using this
conditional distribution guarantees that the two resulting RVs Sl and Su are i.i.d. This
guarantee holds regardless of the target distribution. However, computationally efficient
procedures for generating an RV Sl with distribution f(x | z) are found only when the target
distribution is one of the few “nice” distributions: Gaussian, Cauchy, and Rademacher as
shown in [15], and Poisson as shown in Appendix C of [14].

Among them, Gaussian distribution has a nice property that an RV Sl with distribution
f(x | z) can be generated as a linear combination of z and a “fresh” standard Gaussian RV
Y as Sl ≜ z/2 +

√
n/2 · Y , since if we plug Gaussian pdfs ϕn(·) and ϕ2n(·) into (1), f(x | z)

is precisely the pdf of N (z/2, n/2). Here, Y being “fresh” means it is independent of all
other RVs.

This linearly decomposable property has a pleasant consequence that every dyadic
range-sum generated by this 1D Gaussian-DST can be recursively decomposed to a linear
combination of some i.i.d. standard Gaussian RVs, as illustrated in Figure 1b. In this
example, let Y0, Y1, Y2 and Y3 be four i.i.d. standard Gaussian RVs. The total sum of the
universe S[0, 4) is written as 2Y0, because they have the same distribution N (0, 4). Then,
it is split into two half-range-sums S[0, 2) ≜ Y0 + Y1 and S[2, 4) ≜ Y0 − Y1 using the linear
decomposition above with z = 2Y0 and a fresh RV Y1. Finally, S[0, 2) and S[2, 4) are similarly
split into the four underlying RVs using fresh RVs Y2 and Y3, respectively.

3.2 HWT Representation of 1D Gaussian-DST
In this section, we show that when the target distribution is Gaussian, a DST is mathematically
equivalent to a Haar wavelet transform (HWT) in the 1D case. We will also show that this
equivalence carries over to higher dimensions. Note that this equivalence does not apply
to any target distribution other than Gaussian, and hence the HWT representation cannot
replace the role of DST in general. In the following, we describe in Subsubsection 3.2.2 our
HWT-based 1D Gaussian-ERS solution that has O(log ∆) time complexity, after making
some mathematical preparations in Subsubsection 3.2.1.

3.2.1 Mathematical Preliminaries
It is not hard to verify that, if we apply HWT (to be specified soon) to the four underlying
RVs shown in Figure 1b, namely X0 = Y0/2 + Y1/2 + Y2/

√
2, X1 = Y0/2 + Y1/2 − Y2/

√
2,

X2 = Y0/2 − Y1/2 + Y3/
√

2, and X3 = Y0/2 − Y1/2 − Y3/
√

2, then the four HWT coefficients
we obtain are precisely Y0, Y1, Y2, Y3, respectively. In other words, we have y⃗ = H4x⃗, where
x⃗ ≜ (X0, X1, X2, X3)T , y⃗ ≜ (Y0, Y1, Y2, Y3)T , and H4 is the 4 × 4 Haar matrix H4. This
example is illustrated as a matrix-vector multiplication in Figure 2.

The above example in which ∆ = 4 can be generalized to an arbitrary universe size ∆
(that is a power of 2) as follows. In general, HWT is defined as w⃗ = H∆x⃗, where w⃗ and x⃗
are both ∆-dimensional vectors, and H∆ is a ∆ × ∆ Haar matrix. To simplify notations,

ICDT 2023

21:10 On Efficient Range-Summability of IID RVs in Multiple Dimensions

we drop the subscript ∆ in the sequel. In wavelet terms, x⃗ is called a discrete signal vector
and w⃗ is called the HWT coefficient vector. Clearly, the ith HWT coefficient is the inner
product between x⃗ and the ith row of H, for i = 0, 1, · · · , ∆ − 1. In the wavelet theory, we
index each HWT coefficient as W m

j (instead of Wi) for m = −1, 0, 1, · · · , log2 ∆ − 1 and
j = 0, 1, · · · , 2m+ − 1 (where m+ ≜ max{0, m}) in the dictionary order of (m, j), and refer
to the corresponding row (transposed into a column vector) in H that computes W m

j as the
HWT vector ψ⃗m

j . Hence we have W m
j ≜ ⟨x⃗, ψ⃗m

j ⟩ by definition. In wavelet terms, parameter
m is called scale and parameter j is called location. In Figure 2, the 4 HWT coefficients and
4 HWT vectors from top to bottom are on 3 different scales (−1, 0, and 1) and are “assigned”
3 different colors accordingly.

We define the indicator vector of a 1D range R, denoted as 1R, as a ∆-dimensional 0-1
vector, the ith scalar of which takes value 1 if i ∈ R and 0 otherwise, for i = 0, 1, · · · , ∆ − 1.
Throughout this paper, the indicator vectors are the only vectors that are not written in
boldface with a rightward arrow on the top. We now specify the HWT vectors. Every HWT
vector ψ⃗m

j is normalized such that ∥ψ⃗m
j ∥2 = 1. The first HWT vector ψ⃗−1

0 ≜ ∆−1/2 · 1[0,∆)
is special: Its corresponding coefficient W −1

0 reflects the scaled (by ∆−1/2) range-sum of the
entire universe, whereas every other HWT coefficient is the (scaled) difference of two range-
sums. Every other HWT vector ψ⃗m

j , for m = 0, 1, · · · , log2 ∆ − 1 and j = 0, 1, · · · , 2m − 1,
corresponds to the dyadic range Im

j ≜ [j∆/2m, (j + 1)∆/2m) in the sense the latter serves as
the support of the former: ψ⃗m

j is defined by setting the first half of Im
j to the value

√
2m/∆,

the second half of Im
j to the value −

√
2m/∆, and the rest of the universe [0, ∆) \ Im

j to the
value 0. Note that ψ⃗m

j has the same number of scalars with value
√

2m/∆ as those with value
−

√
2m/∆, so ⟨ψ⃗m

j ,1Im
j

⟩ = 0. From the definition above, H is known to be orthonormal [17],
so the following theorem can be applied to it.

▶ Theorem 1 ([13]). Let M be an n × n matrix. If M is orthonormal, then it has the
following two properties:
1. MT = M−1, and MT is also orthonormal.
2. Given any two n-dimensional vectors x⃗, y⃗, we have ⟨x⃗, y⃗⟩ = ⟨M x⃗, M y⃗⟩.

Let w⃗ be a ∆-dimensional vector of i.i.d. standard Gaussian RVs. We mathematically
define the vector of underlying RVs x⃗ = (X0, X1, · · · , X∆−1)T as x⃗ ≜ HT w⃗. Hence, we have
w⃗ = Hx⃗ by the first property in Theorem 1. The underlying RVs defined this way are i.i.d.
standard Gaussian, by the following theorem.

▶ Theorem 2 (Proposition 3.3.2 in [25]). Let x⃗ = Mw⃗ where M is an orthonormal matrix.
Then x⃗ is a vector of i.i.d. standard Gaussian RVs if and only if w⃗ is.

3.2.2 Our HWT-based Algorithm for 1D-ERS
Given any range [l, u), we compute its range-sum S[l, u) as ⟨w⃗, H1[l,u)⟩, which is the sum
of the HWT coefficients in w⃗ weighted by the scalars in H1[l,u). This weighted sum can
be computed in O(log ∆) time, because, by Theorem 3, the ∆-dimensional vector H1[l,u)
contains only O(log ∆) nonzero scalars (weights), and by Remark 5, for each such scalar,
its index can be located and its value computed in O(1) time. We refer to the O(log ∆)
corresponding scalars in w⃗ whose weights are nonzero as participating HWT coefficients in
the sequel.

To provide the aforementioned ideal guarantee of mutual independence (among the ∆
underlying RVs), for each such participating HWT coefficient (which is a standard Gaussian
RV), we generate the RV and remember its realization (in memory) if it has never been

J. Meng, H. Wang, J. Xu, and M. Ogihara 21:11

generated before (say for answering an earlier range-sum query), or retrieve its realization
from memory otherwise. The space complexity of this algorithm is O(min{T log ∆, ∆}),
since each of the T range-sum queries involves O(log ∆) participating HWT coefficients.
This algorithm satisfies the aforementioned consistency requirement, because ⟨w⃗, H1[l,u)⟩ =
⟨Hx⃗, H1[l,u)⟩ = ⟨x⃗,1[l,u)⟩ = Xl + Xl+1 + · · · + Xu−1. The second equation above is by the
second property in Theorem 1.

▶ Theorem 3. Given any range [l, u) ⊆ [0, ∆), H1[l,u) contains at most 2 log2 ∆ + 2 nonzero
scalars.

Theorem 3 is a straightforward corollary of Lemma 4, since H has only log2 ∆ + 1 scales.

▶ Lemma 4. Given any range [l, u) ⊆ [0, ∆), H1[l,u) contains at most 2 nonzero scalars on
each scale.

Proof. On scale m = −1, there is only one HWT coefficient anyway, so the claim trivially
holds. We next prove the claim for any fixed m ≥ 0. For each HWT vector ψ⃗m

j , j =
0, 1, · · · , 2m − 1, we denote the corresponding HWT coefficient as rm

j ≜ ⟨ψ⃗m
j ,1[l,u)⟩. It is

not hard to verify that the relationship between the range [l, u) and the dyadic range Im
j

must be one of the following three cases.
1. Im

j and [l, u) are disjoint. In this case, rm
j = 0.

2. Im
j ⊆ [l, u). In this case, rm

j = ⟨ψ⃗m
j ,1Im

j
⟩ = 0 as explained in the second last sentence

above Theorem 1.
3. Otherwise, Im

j partially intersects [l, u). This case may happen only to at most two
(Im

j)’s: the one that covers l and the one that covers u − 1. In this case, rm
j can be

nonzero. ◀

▶ Remark 5. Each scalar rm
j (in H1[l,u)) that may be nonzero can be identified and computed

in O(1) time as follows. Note rm
j may be nonzero only in the case (3) above, in which j

is equal to either ⌊l2m/∆⌋ or ⌊(u − 1)2m/∆⌋. As a result, if rm
j ̸= 0, its value can be

computed in two steps [22]. First, intersect [l, u) with the first half and the second half of
Im

j , respectively. Second, scale the size of the first intersection minus the size of the second
by

√
2m/∆, as was explained by the third last sentence above Theorem 1.

The following lemma is a special case of Lemma 4 where l = u − 1. This lemma holds,
because in case (3) above, for m = −1, 0, 1, · · · , log2 ∆ − 1, there exists a unique dyadic
interval Im

j that covers l (namely, the one with j = ⌊l2m/∆⌋).

▶ Lemma 6. Given any l ∈ [0, ∆), H1{l} has exactly one nonzero scalar on each scale.

3.3 Range-Summable Gaussian RVs in 2D
In the following, we describe in Subsubsection 3.3.2 our 2D Gaussian-ERS solution that
has O(log2 ∆) time complexity, after making some mathematical preparations in Subsubsec-
tion 3.3.1.

3.3.1 Mathematical Preliminaries
Like in the 1D case, our 2D Gaussian-ERS solution builds on the 2D-HWT w⃗ = H⊗2x⃗. Here
the vector x⃗ is comprised of the ∆2 underlying RVs X⃗i for i⃗ ∈ [0, ∆)2, listed in the dictionary
order; and the vector w⃗ is comprised of the resulting ∆2 2D-HWT coefficients. The ∆2 × ∆2

2D-HWT matrix H⊗2 is the self Kronecker product (defined next) of the ∆ × ∆ 1D-HWT
matrix H.

ICDT 2023

21:12 On Efficient Range-Summability of IID RVs in Multiple Dimensions

▶ Definition 7. Let A be a p × q matrix and B be a t × v matrix. Then their Kronecker
product A ⊗ B is the following pt × qv matrix.

A ⊗ B ≜

a11B · · · a1qB
...

. . .
...

ap1B · · · apqB

 .

We now state two theorems concerning the Kronecker product.

▶ Theorem 8 (Theorem 13.3 in [13]). Let P, Q, R, T be four matrices such that the matrix
products P · R and Q · T are well-defined. Then (P ⊗ Q) · (R ⊗ T) = (P · R) ⊗ (Q · T).

▶ Theorem 9 (Corollary 13.8 in [13]). The Kronecker product of two orthonormal matrices is
also orthonormal.

Now we describe the ∆2 2D HWT coefficients and the order in which they are listed in w⃗.
Recall that in the 1D case, each HWT coefficient takes the form W m

j , where m is the scale,
and the j is the location. In the 2D case, each dimension has its own pair of scale and location
parameters that is independent of the other dimension. For convenience of presentation, we
refer to these two dimensions as vertical (the first) and horizontal (the second), respectively.
We denote the vertical scale and location pair as m1 and j1, and the horizontal pair as
m2 and j2. Each HWT coefficient takes the form W m1,m2

j1,j2
. In the 2D case, there are

(log2 ∆ + 1)2 scales, namely (m1, m2) for m1, m2 = −1, 0, 1, · · · , log2 ∆ − 1. At each scale
(m1, m2), there are nm1,m2 ≜ 2m+

1 +m+
2 locations, namely (j1, j2) for j1 = 0, 1, · · · , 2m+

1 − 1
and j2 = 0, 1, · · · , 2m+

2 − 1.
We now give a 2D example in which ∆ = 4. In this 2D example, there are ∆2 = 16

HWT coefficients. To facilitate the “color coding” of different scales, we arrange the 16
HWT coefficients into a 4 × 4 matrix W shown in Figure 3. W is the only matrix that
we write in boldface in order to better distinguish it from its scalars (W m1,m2

j1,j2
)’s. Figure 3

contains three differently colored rows of heights 1, 1, and 2 respectively, that correspond to
vertical scales m1 = −1, 0, 1 respectively, and contains three differently colored columns that
correspond to the three horizontal scales. Their “Cartesian product” contains 9 “color cells”
that correspond to the 9 different scales (values of (m1, m2)). For example, the cell colored
in pink corresponds to scale (1, 1) and contains 4 HWT coefficients W 1,1

0,0 , W 1,1
0,1 , W 1,1

1,0 , W 1,1
1,1 .

The vector w⃗ is defined from W by flattening its 16 scalars in the row-major order, as shown
at the bottom of Figure 3.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

W −1,−1
0,0 W −1,0

0,0 W −1,1
0,0 W −1,1

0,1

W 0,−1
0,0 W 0,0

0,0 W 0,1
0,0 W 0,1

0,1

W 1,−1
0,0 W 1,0

0,0 W 1,1
0,0 W 1,1

0,1

W 1,−1
1,0 W 1,0

1,0 W 1,1
1,0 W 1,1

1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
W −1,−1

0,0 W −1,0
0,0 W −1,1

0,0 W −1,1
0,1 W 0,−1

0,0 W 0,0
0,0 W 0,1

0,0 W 0,1
0,1 W 1,−1

0,0 W 1,0
0,0 W 1,1

0,0 W 1,1
0,1 W 1,−1

1,0 W 1,0
1,0 W 1,1

1,0 W 1,1
1,1

)

Figure 3 The 2D-HWT coefficients, arranged both as a matrix W and as a flattened vector w⃗T .

Like in the 1D case, let w⃗ be a vector of ∆2 i.i.d. standard Gaussian RVs. As explained
earlier, the vector x⃗ of ∆2 underlying RVs are mathematically defined as x⃗ ≜ (H⊗2)T w⃗. The
RVs in x⃗ are i.i.d. standard Gaussian by Theorem 2, because H⊗2 is an orthonormal matrix
by Theorem 9.

J. Meng, H. Wang, J. Xu, and M. Ogihara 21:13

3.3.2 Our HWT-Based Algorithm for 2D-ERS
Our 2D-ERS algorithm (that guarantees mutual independence among the underlying RVs) is
similar to the 1D-ERS algorithm described earlier. Given any 2D range [⃗l, u⃗) ≜ [l1, u1) ×
[l2, u2), where l⃗ = (l1, l2)T and u⃗ = (u1, u2)T , we compute its range-sum S [⃗l, u⃗) as
⟨w⃗, H⊗2

1[⃗l,u⃗)⟩. Here the 2D indicator vector 1[⃗l,u⃗) is defined as the result of flattening
the following ∆ × ∆ matrix in row-major order: For i⃗ ∈ [0, ∆)2, the i⃗th scalar in the matrix
takes value 1 if i⃗ ∈ [⃗l, u⃗) and takes value 0 otherwise. This return value ⟨w⃗, H⊗2

1[⃗l,u⃗)⟩ can be
computed in O(log2 ∆) time, since it involves generating, and computing the weighted sum
of, O(log2 ∆) participating HWT coefficients according to Lemma 10. The space complexity
is O(min{T log2 ∆, ∆2}) for remembering the realizations of the O(log2 ∆) participating
HWT coefficients (per query) like that explained earlier in the 1D case. Our 2D-ERS
algorithm meets the consistency requirement, because ⟨w⃗, H⊗2

1[⃗l,u⃗)⟩ = ⟨H⊗2x⃗, H⊗2
1[⃗l,u⃗)⟩ =

⟨x⃗,1[⃗l,u⃗)⟩ =
∑

(i1,i2)∈[⃗l,u⃗) Xi1,i2 .

▶ Lemma 10. For any 2D range [⃗l, u⃗) ⊆ [0, ∆)2, H⊗2
1[⃗l,u⃗) has O(log2 ∆) nonzero scalars.

Proof. It is not hard to verify 1[⃗l,u⃗) = 1[l1,u1) ⊗ 1[l2,u2). By Theorem 8, H⊗2
1[⃗l,u⃗) =

(H ⊗ H) · (1[l1,u1) ⊗ 1[l2,u2)) = (H1[l1,u1)) ⊗ (H1[l2,u2)). By Theorem 3, both H1[l1,u1) and
H1[l2,u2) have O(log ∆) nonzero scalars, so their Kronecker product has O(log2 ∆) nonzero
scalars. ◀

3.4 Generalization to Higher Dimensions
Our HWT-based Gaussian-ERS solution, just like HWT itself, can be naturally generalized
to higher dimensions as follows. In dimension d > 2, we continue to have the inverse HWT
formula x⃗ ≜ MT w⃗, where x⃗ is the vector of ∆d underlying RVs (arranged in dictionary
order of i⃗), w⃗ is the vector of their HWT coefficients (that are i.i.d. standard Gaussian RVs),
and M is the ∆d × ∆d HWT matrix in dD. Here M ≜ H ⊗ · · · ⊗ H︸ ︷︷ ︸

d

, where H is the 1D

Haar matrix described above. Since M is orthonormal by Theorem 9, the RVs in x⃗ are i.i.d.
standard Gaussian by Theorem 2.

In our dD-ERS algorithm (that guarantees mutual independence among the underlying
RVs), given a dD range [⃗l, u⃗) ≜ [l1, u1) × [l2, u2) × · · · × [ld, ud), its range-sum S [⃗l, u⃗) can be
computed as ⟨w⃗, M1[⃗l,u⃗)⟩, because ⟨w⃗, M1[⃗l,u⃗)⟩ = ⟨M x⃗, M1[⃗l,u⃗)⟩ = ⟨x⃗,1[⃗l,u⃗)⟩ =

∑
i⃗∈[⃗l,u⃗) X⃗i.

The weighted sum ⟨w⃗, M1[⃗l,u⃗)⟩ can be computed in O(logd ∆) time, because the weight vector
M1[⃗l,u⃗) = M ·(1[l1,u1)⊗1[l2,u2)⊗· · ·⊗1[ld,ud)) = (H1[l1,u1))⊗(H1[l2,u2))⊗· · ·⊗(H1[ld,ud)) has
only O(logd ∆) nonzero scalars (weights) by Theorem 3 and the property of Kronecker product.
Hence, we need to generate and remember only O(logd ∆) corresponding participating HWT
coefficients. As a result, our dD-ERS algorithm has O(min{T logd ∆, ∆d}) space complexity.

4 k-wise Independence Theory

In this section, in all subsequent paragraphs, we assume d = 2 (2D) for notational simplicity.
All our statements and proofs can be readily generalized to higher dimensions. Recall that,
for guaranteeing mutual independence among the ∆d underlying RVs, our HWT-based dD
Gaussian-ERS needs to remember (the realization of) every participating HWT coefficient
that was generated for answering a past range-sum query, which can lead to high storage
overhead when the number of queries T is large. In this section we propose a k-wise

ICDT 2023

21:14 On Efficient Range-Summability of IID RVs in Multiple Dimensions

independence theory and scheme that guarantees that the ∆d underlying Gaussian RVs
are k-wise independent. It does so by using O(logd ∆) k-wise independent hash functions
(described next) instead. This scheme has the same time complexity of O(logd ∆) as the
idealized Gaussian-ERS solution, and a much smaller space complexity of O(logd ∆), for
storing the seeds of O(logd ∆) k-wise independent hash functions. This scheme significantly
extends its 1D version proposed in [15]. Finally, we note this scheme works also for our
Poisson-ERS solution. We however will not explain how it works in this paper, since doing so
would involve drilling down to the messy and lengthy detail of the Cartesian product of d > 1
DSTs (since we cannot use the relatively clean and simple dD HWT in the Poisson case).

A k-wise independent hash function h(·) has the following property: Given an arbitrary
set of k distinct keys i1, i2, · · · , ik, their hash values h(i1), h(i2), · · · , h(ik) are independent.
Such hash functions are very computationally efficient when k is a small number such as
k = 2 (roughly 2 nanoseconds per hash) and k = 4 (several nanoseconds per hash) [3, 23, 19].
Typically, the hash values are (uniform random) integers. We can map them to Gaussian
RVs using a deterministic function g(·) such as the Box-Muller transform [20].

Recall (from Figure 3) that the ∆2 HWT coefficients in the vector w⃗ are on (log2 ∆ + 1)2

different scale pairs, namely (m1, m2) for m1, m2 = −1, 0, 1, · · · , log2 ∆ − 1. Our scheme uses
(log2 ∆ + 1)2 independent k-wise independent hash functions that we denote as hm1,m2(·), for
m1, m2 = −1, 0, 1, · · · , log2 ∆ − 1. During the initialization phase, we uniformly randomly
seed these (log2 ∆ + 1)2 hash functions; once seeded, they are fixed thereafter as usual.
As mentioned earlier, these seeds correspond to the outcome ω that fixes (mathematically
defines) the HWT coefficient vector w⃗.

Our scheme can be stated literally in one sentence: Each such (seeded and fixed) hm1,m2(·)
is solely responsible for hash-generating any HWT coefficient on scale (m1, m2) that is
participating (as defined earlier) in answering a range-sum query. In other words, for any scale
m1, m2 = −1, 0, 1, · · · , log2 ∆ − 1, and location j1 = 0, 1, · · · , 2m+

1 − 1, j2 = 0, 1, · · · , 2m+
2 − 1,

the value of the HWT coefficient W m1,m2
j1,j2

is mathematically defined as g(hm1,m2(j1, j2)),
where g(·) is the aforementioned deterministic function (that maps an integer to a Gaussian
RV). Hence our scheme has a much lower space complexity of O(log2 ∆), for remembering
the seeds of the O(log2 ∆) hash functions.

The following theorem states that our scheme achieves its intended objective of ensuring
that the ∆2 underlying RVs mathematically defined by it are k-wise independent. In this
theorem and proof, we denote the vector of ∆2 HWT coefficients and the vector of ∆2

underlying RVs both mathematically defined by our k-wise scheme as v⃗ and z⃗, respectively.
We do so to distinguish this vector pair from the original vector pair w⃗ and x⃗ that are
mathematically defined by the idealized scheme (that guarantees mutual independence).
Recall that z⃗ = MT v⃗ and x⃗ = MT w⃗, where M = H⊗2 is the 2D HWT matrix, and that x⃗
is comprised of i.i.d. standard Gaussian RVs.

▶ Theorem 11. The vector z⃗ is comprised of k-wise independent standard Gaussian RVs.

Proof. It suffices to prove that any k distinct scalars in z⃗ – say the (i1)th, (i2)th, · · · , (ik)th

scalars – are i.i.d. standard Gaussian. Let z⃗′ be the k-dimensional vector comprised of these
k scalars. Let (MT)′ be the k × ∆2 matrix formed by the (i1)th, (i2)th, · · · , (ik)th rows in
MT . Then, we have z⃗′ = (MT)′v⃗. Now let the random vector x⃗′ be defined as (MT)′w⃗.
Then x⃗′ is comprised of k i.i.d. standard Gaussian RVs, as its scalars are a subset of those of
x⃗. Hence, to prove that the scalars in z⃗′ are i.i.d. standard Gaussian RVs, it suffices to prove
the claim that z⃗′ has the same distribution as x⃗′.

We prove this claim using Proposition 12. To this end, we first write z⃗′ and x⃗′ each as the
sum of N = (log2 ∆+1)2 independent random vectors. Recall that in Subsection 3.3, we have
classified the HWT coefficients in w⃗ and v⃗, and the columns of MT (called HWT vectors

J. Meng, H. Wang, J. Xu, and M. Ogihara 21:15

there) into N different (m1, m2) scales (colors in Figure 3). Recall that nm1,m2 scalars in w⃗
and v⃗, and accordingly nm1,m2 columns of MT , have scale (m1, m2). Let w⃗m1,m2 and v⃗m1,m2

be the nm1,m2 -dimensional vectors comprised of the coefficients classified to scale (m1, m2) in
w⃗ and v⃗, respectively. Let (MT)′

m1,m2
be the k × nm1,m2 matrix comprised of the columns

of (MT)′ classified to scale (m1, m2). Then, we have z⃗′ =
∑

(m1,m2)(MT)′
m1,m2

v⃗m1,m2 and
x⃗′ =

∑
(m1,m2)(MT)′

m1,m2
w⃗m1,m2 , where both summations are over all N scales. The N

summands in the RHS of the first equation are independent random vectors, because for
each scale (m1, m2) ∈ [−1, log2 ∆)2, all scalars in v⃗m1,m2 are generated by the same per-scale
hash function hm1,m2(·), which is independent of all N − 1 other per-scale hash functions.
The same can be said about the N summands in the RHS of the second equation, since w⃗
is comprised of i.i.d. RVs by design. To prove this claim using Proposition 12, it remains
to prove the fact that for each scale (m1, m2) ∈ [−1, log2 ∆)2, the pair of random vectors
(MT)′

m1,m2
v⃗m1,m2 and (MT)′

m1,m2
w⃗m1,m2 have the same distribution.

This fact can be proved as follows. Note that for each scale (m1, m2) ∈ [−1, log2 ∆)2,
each row in (MT)′

m1,m2
has exactly one nonzero scalar, since the corresponding row in

MT , or equivalently the corresponding column in M , has exactly one nonzero scalar at
each scale (m1, m2), due to Lemma 13. Therefore, although the number of columns in
(MT)′

m1,m2
can be as many as O(∆2), at most k of them (one for each row), say the

(α1)th, (α2)th, · · · , (αk)th columns, contain nonzero scalars. Then, (MT)′
m1,m2

v⃗m1,m2 is a
function of only the (α1)th, (α2)th, · · · , (αk)th scalars in v⃗m1,m2 , and these k scalars are i.i.d.
Gaussian RVs since they are all generated by the same k-wise independent hash function
hm1,m2(·). Note that (MT)′

m1,m2
w⃗m1,m2 is the same function of the (α1)th, (α2)th, · · · , (αk)th

scalars in w⃗m1,m2 , which are i.i.d. Gaussian RVs by design. Hence, (MT)′
m1,m2

v⃗m1,m2 has
the same distribution as (MT)′

m1,m2
w⃗m1,m2 . ◀

▶ Proposition 12. Suppose random vectors x⃗ and z⃗ each is the sum of N independent
random vectors as follows: x⃗ = x⃗1 + x⃗2 + · · · + x⃗N and z⃗ = z⃗1 + z⃗2 + · · · + z⃗N . Then, x⃗ and
z⃗ have the same distribution if each pair of components x⃗i and z⃗i have the same distribution,
for i = 1, 2, · · · , N .

▶ Lemma 13. Any column of M = H⊗2, which is equal to H⊗2
1{⃗i} for some i⃗ = (i1, i2)T ,

has exactly one nonzero scalar on each 2D scale (m1, m2).

Proof. The 2D indicator vector can be decomposed to the Kronecker product of two 1D
indicator vectors as 1{⃗i} = 1{i1} ⊗ 1{i2}, so H⊗2

1{⃗i} = (H1{i1}) ⊗ (H1{i2}) by Theorem 8.
The claim above follows from Lemma 6, which implies that H1{i1} and H1{i2} each has
exactly one nonzero scalar on each 1D scale. ◀

5 Multidimensional Dyadic Simulation

As explained in Subsection 3.1, in one dimension (1D), any dyadic range-sum S[l, u), no
matter what the target distribution is, can be computed by performing O(log ∆) binary splits
along the path from the root S[0, ∆) to the node S[l, u) along the dyadic simulation tree
(DST). Since we have just computationally efficiently generalized the Gaussian-DST approach
(equivalent to the HWT-based approach in the 1D Gaussian case) to any dimension d ≥ 2,
we wonder whether we can do the same for all target distributions. By “computationally
efficiently”, we mean that a generalized solution should be able to compute any dD range-sum
in O(logd ∆) time like in the Gaussian case.

Unfortunately, it appears hard, if not impossible, to generalize the DST approach to dD
for arbitrary target distributions. We have identified a sufficient condition on the target
distribution for such an efficient generalization to exist. We prove the sufficiency by proposing

ICDT 2023

21:16 On Efficient Range-Summability of IID RVs in Multiple Dimensions

a DST-based universal algorithmic framework (described in Appendix C of [14]) that solves
the dD-ERS problem for any target distribution satisfying this condition. Unfortunately, so
far only two distributions, namely Gaussian and Poisson, are known to satisfy this condition,
as is elaborated in Appendix A of [14]. We also describe in Appendix B of [14] two example
distributions that do not satisfy this sufficient condition, namely Cauchy and Rademacher.
In the following, we specify this condition and explain why it is “almost necessary”.

For ease of presentation, in the following, we fix the number of dimensions d at 2. We
assume all underlying RVs, Xi1,i2 for (i1, i2) in the 2D universe [0, ∆)2, are i.i.d. with a
certain target distribution X. This assumption is appropriate for our reasoning below about
the time complexity of a 2D ERS solution, since as shown earlier this time complexity is not
affected by the strength of the independence guarantee provided, in the cases of Gaussian
and Poisson. In a 2D universe, any 2D range can be considered the Cartesian product of its
horizontal and vertical 1D ranges. We say a 2D range is dyadic if and only if its horizontal
and vertical 1D ranges are both dyadic. Since any general (not necessarily dyadic) 1D range
can be “pieced together” using O(log ∆) 1D dyadic ranges [21], it is not hard to show, using
the Cartesian product argument, that any general 2D range can be “pieced together” using
O(log2 ∆) 2D dyadic ranges. Hence in the following, we focus on the generation of only
2D dyadic range-sums. We assume all underlying RVs, Xi1,i2 for (i1, i2) in the 2D universe
[0, ∆)2, are i.i.d. with a certain target distribution X.

We need to introduce some additional notations. We define each horizontal strip-sum
SH

i ≜ Xi,0 + Xi,1 + · · · + Xi,∆−1 for i ∈ [0, ∆) as the sum of range [i, i + 1) × [0, ∆), and
each vertical strip-sum SV

i ≜ X0,i + X1,i + · · · + X∆−1,i for i ∈ [0, ∆) as the sum of range
[0, ∆) × [i, i + 1). We denote as S the total sum of all underlying RVs in the universe, i.e.,
S ≜

∑∆−1
i1=0

∑∆−1
i2=0 Xi1,i2 =

∑∆−1
i=0 SH

i =
∑∆−1

i=0 SV
i .

Now we are ready to state this sufficient condition. For ease of presentation, we break it
down into two parts. The first part, stated in the following formula, states that the vector
of vertical strip-sums and the vector of horizontal strip-sums in [0, ∆)2 are conditionally
independent given the total sum S.

(SV
0 , SV

1 , · · · , SV
∆−1) ⊥⊥ (SH

0 , SH
1 , · · · , SH

∆−1) | S. (2)

The second part is that this conditional independence relation holds for the two corresponding
vectors in any 2D dyadic range (that is not necessarily a square). Intuitively, this condition
says that how a 2D dyadic range-sum is split horizontally is conditionally independent (upon
this 2D range-sum) of how it is split vertically. Roughly speaking, this condition implies that
the 1D-DST governing the horizontal splits is conditionally independent of the other 1D-DST
governing the vertical splits. Hence, our DST-based universal algorithmic framework for
2D can be viewed as the Cartesian product of the two 1D-DSTs, as will be elaborated in
Appendix C of [14].

In the following, we offer some intuitive evidence why this condition is likely neces-
sary. Without loss of generality, we consider the generation of an arbitrary horizontal
strip-sum SH

i1
conditional on the vector of vertical strip-sums (SV

0 , SV
1 , · · · , SV

∆−1). Sup-
pose (2) does not hold, which means (SH

0 , SH
1 , · · · , SH

∆−1) is not conditionally independent of
(SV

0 , SV
1 , · · · , SV

∆−1) given S. Then the distribution of SH
i1

is arguably parameterized by the
values (realizations) of all ∆ vertical strip-sums SV

0 , SV
1 , · · · , SV

∆−1, since SH
i1

and any vertical
strip-sum SV

i2
for i2 ∈ [0, ∆) are in general dependent RVs by Theorem 14 (See Appendix D

of [14] for its nontrivial proof). Hence, unless some magic happens (which we cannot rule
out rigorously), to generate (realize) the RV SH

i1
, conceivably we need to first realize all ∆

RVs (SV
0 , SV

1 , · · · , SV
∆−1), the time complexity of which is Ω(∆).

▶ Theorem 14. For any (i1, i2) in [0, ∆)2, SH
i1

and SV
i2

are dependent RVs unless the target
distribution X satisfies Pr[X = c] = 1 for some constant c.

J. Meng, H. Wang, J. Xu, and M. Ogihara 21:17

6 Conclusion

In this work, we propose novel solutions to dD-ERS for RVs that have Gaussian or Poisson
distribution. Our solutions are the first ones that compute any multi-dimensional range-
sum in polylogarithmic time. Our dD Gaussian-ERS scheme solves the long-standing open
problem of efficiently answering approximate range-sum queries over a multidimensional data
cube. We develop a novel k-wise independence theory that provides both high computational
efficiencies and strong provable independence guarantees. Finally, we show that when the
underlying distribution satisfies a sufficient and likely necessary condition, its DST-based
1D-ERS solution can be generalized to higher dimensions.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing, STOC ’96, pages 20–29, New York, NY, USA, 1996. Association for Computing
Machinery. doi:10.1145/237814.237823.

2 A. R. Calderbank, A. Gilbert, K. Levchenko, S. Muthukrishnan, and M. Strauss. Improved
range-summable random variable construction algorithms. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pages 840–849, USA, 2005.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?
id=1070432.1070550.

3 J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

4 Graham Cormode, Minos Garofalakis, and Dimitris Sacharidis. Fast approximate wavelet
tracking on streams. In Yannis Ioannidis, Marc H. Scholl, Joachim W. Schmidt, Florian Matthes,
Mike Hatzopoulos, Klemens Boehm, Alfons Kemper, Torsten Grust, and Christian Boehm,
editors, Advances in Database Technology – EDBT 2006, pages 4–22, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. doi:10.1007/11687238_4.

5 Joan Feigenbaum, Sampath Kannan, Martin J. Strauss, and Mahesh Viswanathan. An
approximate L1-difference algorithm for massive data streams. SIAM Journal on Computing,
32(1):131–151, 2002. doi:10.1137/S0097539799361701.

6 Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrishnan, and Martin J.
Strauss. Fast, small-space algorithms for approximate histogram maintenance. In Proceedings
of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages
389–398, New York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/
509907.509966.

7 Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin J. Strauss. One-pass wavelet
decompositions of data streams. IEEE Trans. on Knowl. and Data Eng., 15(3):541–554, March
2003. doi:10.1109/TKDE.2003.1198389.

8 J. Gray, A. Bosworth, A. Lyaman, and H. Pirahesh. Data cube: a relational aggregation
operator generalizing GROUP-BY, CROSS-TAB, and SUB-TOTALS. In Proceedings of the
Twelfth International Conference on Data Engineering, pages 152–159, 1996. doi:10.1109/
ICDE.1996.492099.

9 Nabil Ibtehaz, M. Kaykobad, and M. Sohel Rahman. Multidimensional segment trees can
do range updates in poly-logarithmic time. Theoretical Computer Science, 854:30–43, 2021.
doi:10.1016/j.tcs.2020.11.034.

10 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, May 2006. doi:10.1145/1147954.1147955.

11 Mehrdad Jahangiri, Dimitris Sacharidis, and Cyrus Shahabi. SHIFT-SPLIT: I/O efficient
maintenance of wavelet-transformed multidimensional data. In Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’05, pages 275–286, New
York, NY, USA, 2005. Association for Computing Machinery. doi:10.1145/1066157.1066189.

ICDT 2023

https://doi.org/10.1145/237814.237823
http://dl.acm.org/citation.cfm?id=1070432.1070550
http://dl.acm.org/citation.cfm?id=1070432.1070550
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1007/11687238_4
https://doi.org/10.1137/S0097539799361701
https://doi.org/10.1145/509907.509966
https://doi.org/10.1145/509907.509966
https://doi.org/10.1109/TKDE.2003.1198389
https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.1016/j.tcs.2020.11.034
https://doi.org/10.1145/1147954.1147955
https://doi.org/10.1145/1066157.1066189

21:18 On Efficient Range-Summability of IID RVs in Multiple Dimensions

12 Panagiotis Karras and Nikos Mamoulis. The Haar+ tree: A refined synopsis data structure.
In 2007 IEEE 23rd International Conference on Data Engineering, pages 436–445, 2007.
doi:10.1109/ICDE.2007.367889.

13 Alan J. Laub. Matrix analysis – for scientists and engineers. SIAM, 2005. URL: http:
//bookstore.siam.org/ot91/.

14 Jingfan Meng, Huayi Wang, Jun Xu, and Mitsunori Ogihara. On efficient range-summability of
IID random variables in two or higher dimensions (extended version). CoRR, abs/2110.07753,
2021. arXiv:2110.07753.

15 Jingfan Meng, Huayi Wang, Jun Xu, and Mitsunori Ogihara. A Dyadic Simulation Approach to
Efficient Range-Summability. In Dan Olteanu and Nils Vortmeier, editors, 25th International
Conference on Database Theory (ICDT 2022), volume 220 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 17:1–17:18, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICDT.2022.17.

16 S. Muthukrishnan and Martin Strauss. Maintenance of multidimensional histograms. In
Paritosh K. Pandya and Jaikumar Radhakrishnan, editors, FST TCS 2003: Foundations of
Software Technology and Theoretical Computer Science, pages 352–362, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg. doi:10.1007/978-3-540-24597-1_30.

17 Yves Nievergelt. Multidimensional Wavelets and Applications, pages 36–72. Birkhäuser Boston,
Boston, MA, 1999. doi:10.1007/978-1-4612-0573-9_2.

18 Noam Nisan. Pseudorandom generators for space-bounded computation. Comb., 12(4):449–461,
1992. doi:10.1007/BF01305237.

19 Mihai Pundefinedtraşcu and Mikkel Thorup. The power of simple tabulation hashing. J. ACM,
59(3), June 2012. doi:10.1145/2220357.2220361.

20 Christian P. Robert and George Casella. Monte Carlo Statistical Methods, page 43. Springer
New York, 2004. doi:10.1007/978-1-4757-4145-2_2.

21 Florin Rusu and Alin Dobra. Pseudo-random number generation for sketch-based estimations.
ACM Trans. Database Syst., 32(2):11–es, June 2007. doi:10.1145/1242524.1242528.

22 Rolfe R. Schmidt and Cyrus Shahabi. Propolyne: A fast wavelet-based algorithm for progressive
evaluation of polynomial range-sum queries. In Christian S. Jensen, Simonas Šaltenis, Keith G.
Jeffery, Jaroslav Pokorny, Elisa Bertino, Klemens Böhn, and Matthias Jarke, editors, Advances
in Database Technology – EDBT 2002, pages 664–681, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg. doi:10.1007/3-540-45876-X_41.

23 Mikkel Thorup and Yin Zhang. Tabulation based 4-universal hashing with applications to
second moment estimation. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’04, pages 615–624, USA, 2004. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=982792.982884.

24 Mikkel Thorup and Yin Zhang. Tabulation based 5-universal hashing and linear probing.
In Proceedings of the Meeting on Algorithm Engineering and Expermiments, ALENEX ’10,
pages 62–76, USA, 2010. Society for Industrial and Applied Mathematics. doi:10.1137/1.
9781611972900.7.

25 Roman Vershynin. Random Vectors in High Dimensions, pages 38–69. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, 2018. doi:10.1017/
9781108231596.006.

https://doi.org/10.1109/ICDE.2007.367889
http://bookstore.siam.org/ot91/
http://bookstore.siam.org/ot91/
http://arxiv.org/abs/2110.07753
https://doi.org/10.4230/LIPIcs.ICDT.2022.17
https://doi.org/10.1007/978-3-540-24597-1_30
https://doi.org/10.1007/978-1-4612-0573-9_2
https://doi.org/10.1007/BF01305237
https://doi.org/10.1145/2220357.2220361
https://doi.org/10.1007/978-1-4757-4145-2_2
https://doi.org/10.1145/1242524.1242528
https://doi.org/10.1007/3-540-45876-X_41
http://dl.acm.org/citation.cfm?id=982792.982884
https://doi.org/10.1137/1.9781611972900.7
https://doi.org/10.1137/1.9781611972900.7
https://doi.org/10.1017/9781108231596.006
https://doi.org/10.1017/9781108231596.006

The Consistency of Probabilistic Databases with
Independent Cells
Amir Gilad #

Duke University, Durham, NC, USA

Aviram Imber #

Technion – Israel Institute of Technology, Haifa, Israel

Benny Kimelfeld #

Technion – Israel Institute of Technology, Haifa, Israel

Abstract
A probabilistic database with attribute-level uncertainty consists of relations where cells of some
attributes may hold probability distributions rather than deterministic content. Such databases arise,
implicitly or explicitly, in the context of noisy operations such as missing data imputation, where we
automatically fill in missing values, column prediction, where we predict unknown attributes, and
database cleaning (and repairing), where we replace the original values due to detected errors or
violation of integrity constraints. We study the computational complexity of problems that regard
the selection of cell values in the presence of integrity constraints. More precisely, we focus on
functional dependencies and study three problems: (1) deciding whether the constraints can be
satisfied by any choice of values, (2) finding a most probable such choice, and (3) calculating the
probability of satisfying the constraints. The data complexity of these problems is determined by
the combination of the set of functional dependencies and the collection of uncertain attributes. We
give full classifications into tractable and intractable complexities for several classes of constraints,
including a single dependency, matching constraints, and unary functional dependencies.

2012 ACM Subject Classification Information systems → Data management systems

Keywords and phrases Probabilistic databases, attribute-level uncertainty, functional dependencies,
most probable database

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.22

Related Version Full Version: https://arxiv.org/abs/2212.12104

Funding The work of Amir Gilad was supported by NSF awards IIS-1703431, IIS-1552538, and
IIS-2008107. The work of Aviram Imber and Benny Kimelfeld was supported by the Israel Science
Foundation (ISF), Grant 768/19, and the German Research Foundation (DFG) Project 412400621
(DIP program).

1 Introduction

Various database tasks amount to reasoning about relations where attribute values are
uncertain. To name a few, systems for data cleaning may detect errors and suggest alternative
fixes with different confidence scores [15, 27, 28], approaches to data repair may suggest
alternative values due to the violation of integrity constraints (e.g., key constraints and
more general functional dependencies) [2, 34], and algorithms for missing-data imputation
may suggest a probability distribution over possible completions of missing values [3, 24].
Such uncertainty is captured as a probabilistic database in the so called attribute-level
uncertainty [29] (as opposed to the commonly studied tuple-level uncertainty [8]).

We refer to a relation of a probabilistic database in the attribute-level uncertainty as a Cell-
Independent Relation (CIR). A CIR is a probabilistic database with a single relation, where
the content of a cell is a distribution over possible values, and different cells are probabilistically

© Amir Gilad, Aviram Imber, and Benny Kimelfeld;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 22; pp. 22:1–22:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:agilad@cs.duke.edu
mailto:aviram.imber@cs.technion.ac.il
mailto:bennyk@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.ICDT.2023.22
https://arxiv.org/abs/2212.12104
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 The Consistency of Probabilistic Databases with Independent Cells

tid room ?specialist time
1 41 Bart(0.5) | Lisa(0.5) 5 PM
2 163 Bart(0.7) | Lisa(0.3) 5 PM
3 41 Bart(0.2) | Maggie(0.8) 5 PM

(a) CIR U1 with uncertain specialist.

F1 := {?specialist time → room}
F2 := {?specialist time → room ,

room time → ?specialist}

(b) Sets F1 and F2 of functional dependencies.

tid room ?specialist time
1 41 Lisa 5 PM
2 163 Bart 5 PM
3 41 Maggie 5 PM

tid room ?specialist time
1 41 Bart 5 PM
2 163 Lisa 5 PM
3 41 Bart 5 PM

(c) Samples r (left) and r′ (right) of U1.

Figure 1 Running example: CIR, FDs, and samples.

independent. The CIR is the correspondent of a relation in the Tuple-Independent Database
(TID) under the tuple-level uncertainty, where the existence of each tuple is uncertain (while
its content is certain), and different tuples are probabilistically independent [29]. In contrast,
the tuples of a CIR always exist, but their content is uncertain. For illustration, Figure 1a
depicts a CIR with uncertain information about specialists attending rooms (e.g., since their
attendance is determined by noisy sensors). Some attributes (here room and business) are
certain and have deterministic values. The uncertain attributes (e.g., ?specialist) are marked
by a question mark and their cells have several options for values. We later explain how this
distinction has a crucial impact on the complexity of CIRs.

A natural scenario, studied by previous work for the TID model [12, 21], considers a
probabilistic database in the presence of a given set of integrity constraints, and specifically,
Functional Dependencies (FDs). Such a scenario gives rise to several interesting computational
challenges, and we focus here on three basic ones. In the problem of possible consistency,
the goal is to test for the existence of a possible world (with a nonzero probability) that
satisfies the FDs. The problem of the most probable database (“MPD” [12]) is that of finding
a possible world that satisfies the FDs and has the highest probability. In the problem of
computing the probability of consistency, the goal is to calculate the above probability exactly
(beyond just deciding whether it is nonzero), that is, the probability that (a random sample
of) the given CIR satisfies the underlying FDs. We investigate the computational complexity
of these three problems for the CIR model. Our results provide classifications of tractability
for different classes of FDs. Importantly, we show that, for the studied classes, the complexity
of these problems is determined by two factors: (1) the location of the uncertain attributes in
the FDs (left or right side), and (2) the combination of the FDs in the given set of constraints.

The three problems relate to each other in the following manner. To solve MPD, we
need to be able to solve the possible consistency problem. The analysis of the probability of
consistency sheds light on the possible consistency problem (is it fundamentally harder to
compute the probability than to just determine whether it is nonzero?), but its importance
goes beyond that. As we explain in Section 4, computing this probability is useful to any type
of constraint over CIRs, as the tractability of this probability implies that we can efficiently
sample correctly from the conditional space of consistent samples.

Our study adopts the standard yardstick of data complexity [33], where we fix the
relational schema and the set of functional dependencies. The schema mentions not only
what attributes are in the header of the relation, but also which attribute is certain and

A. Gilad, A. Imber, and B. Kimelfeld 22:3

which attribute is uncertain. The complexity of the problems can be different for different
combinations of schema and constraints, and we aim for a detailed understanding of which
combinations are tractable and which are not.

▶ Example 1. Consider again the CIR U1 in Figure 1a along with the FD set F1 of Figure 1b,
consisting of a single FD. The FD says that, at a specific time, a specialist can be found
in only one location. Figure 1c shows a consistent sample r of U1 whose probability is
Pr(r) = 0.5 · 0.7 · 0.8 = 0.28. In particular, this probability is nonzero and, so, U1 is possibly
consistent. This sample has a maximal probability among the consistent samples; therefore,
r is a most probable database for U1. Now, consider the FD set F2 shown in Figure 1b,
where the first FD is the one of F1 and the second states that no two specialists should be in
the same room at the same time. The sample r in Figure 1c is no longer consistent, but r′

(in the same figure) is a consistent sample and also a most probable database. In fact, r′ is
the only consistent sample in this case, so the probability of consistency for F2 turns out to
be that of r′. ⌟

In contrast to the state of affairs for the attribute-level uncertainty, much is known about
the complexity of MPD in the case of tuple-level uncertainty (i.e., finding the most likely
instance of a tuple-independent probabilistic database conditioned on conformance to a set of
FDs). As we explain later in the discussion on related work, past research has established a
full classification of the complexity of the sets of FDs into tractable and intractable instances
of MPD. In this work, we aim to bring our understanding of attribute-level uncertainty closer
to tuple-level uncertainty.

Results. We would like to understand the complexity of every scenario defined by a schema
and set of FDs, and in particular, establish a dichotomy that charts the exact conditions
that cast each problem tractable. This, however, remains open for future investigation. Yet,
we make considerable progress towards that. We establish classification results on several
classes of functional dependencies:

Singleton FDs (i.e., FD sets with a single FD);
Matching constraints (i.e., FD sets of the form {X → Y, Y → X} for arbitrary X and Y);
Arbitrary sets of unary FDs (i.e., FDs with a single attribute on the left side).

Each classification consists of three internal classifications – one for each of the three problems
we study (possible consistency, most probable database, and the probability of consistency).
In every case, finding a most probable database turns out to be tractable whenever possible
consistency is tractable. There are cases where the probability of consistency is intractable
in contrast to the tractability of the most probable database, but we did not find any case
where the other direction holds (and we will be surprised if such a case exists). We also
establish some general conclusions beyond these classes. For example, in Theorem 14 (of
Section 5) we claim that if we make no assumption that some attributes are certain, then
possible consistency is hard for every nontrivial set of FDs.

▶ Example 2. Reconsider the CIR U1 in Figure 1a along with the FD set F1 of Figure 1b,
consisting of a single FD. Our classification shows that, in general, finding a solution to the
possible consistency problem for such an FD, with uncertain attributes on the left side, is
NP-complete. Now, reconsider the FD set F2 shown in Figure 1b, where the first FD is
the one of F1. Thus, F1 ⊂ F2, however, interestingly, our results show that for sets with
the structure of F2, finding an MPD (and, hence, also solving possible consistency) is in
polynomial time. Intuitively, the additional FD in F2 constrains the uncertain attribute

ICDT 2023

22:4 The Consistency of Probabilistic Databases with Independent Cells

on the left side of the first FD, making the problem tractable. Finally, computing the
probability of consistency for sets with the structure of F1 and F2 is #P-hard (or more
precisely FP#P-complete). ⌟

Related work. In the case of tuple-independent databases, Gribkoff, Van den Broeck, and
Suciu [12] established a dichotomy in the complexity of MPD for sets of unary FDs. This
dichotomy has been generalized by Livshits, Kimelfeld and Roy [21] to a full classification
over all sets of FDs, where they also established that the problem is equivalent to finding a
cardinality repair of an inconsistent database. Carmeli et al. [5] showed that two tractable
cases, namely a single FD and a matching constraint, remain tractable even if the FDs are
treated as soft constraints (where every violation incurs a cost).

A most probable database is the same as the “Most Likely Intention” (MLI) in the
framework of Probabilistic Unclean Databases (PUD) of De Sa et al. [28], in the special
case where the intention model demands hard constraints and the realization model applies
random changes to cells independently in what they refer to as parfactor/update PUD. They
showed that finding an MLI of a parfactor/update PUD generalizes the problem of finding
an update repair of an inconsistent database with a minimum number of value changes.
In turn, finding a minimal update repair has been studied in the literature and several
complexity results are known for special cases of FDs, such as hardness (e.g., for the FD set
{A→ B, B → C} due to Kolahi and Lakshmanan [18]) and tractability (e.g., for lhs-chains
such as {A→ B, AD → C} due to Livshits et al. [21]). There are, though, substantial
differences between finding a most probable consistent sample of a CIR and finding an
optimal update repair of an inconsistent database, at least in the variations where complexity
results are known. First, they allow to select any value (from an infinite domain) for a cell,
in contrast to the distributions of the CIR that can limit the space of allowed values; indeed,
this plays a major role in past repair algorithms (e.g., Proposition 5.6 of [21] and Algorithm
FindVRepair of [18]). Second, they allow to change the value of any attribute and do not
distinguish between uncertain attributes (where changes are allowed) and certain ones, as we
do here; this is critical since, again, without such assumptions the problem is intractable for
every nontrivial set of FDs (Theorem 14).

The problem of possible consistency does not have a nontrivial correspondence in the
tuple-independent database model since, there, if there is any consistent sample then the
subset that consists of all deterministic tuples (i.e., ones with probability one) is such a
sample. The probability of consistency might be reminiscent of the problem of repair counting
that was studied for subset repairs [4, 22]. Besides the fact that subset repairs are about
tuple-level uncertainty (and no probabilities are involved), here we do not have any notion of
maximality (while a repair is required to be a maximal consistent subset).

A CIR can be easily translated into a relation of a block-independent-disjoint (BID)
probabilistic database [26]. In a BID, every relation is partitioned into independent blocks
of mutually exclusive tuples, each associated with a probability. This model has also been
studied under the terms dirty database [2] and x-tuples [6, 23,25]. This translation implies
that every upper bound for BIDs applies to CIRs, and the contrapositive: every hardness
result that we establish (e.g., for the most probable database) extends immediately to BIDs;
yet, it does not imply the other direction. Moreover, we are not aware of any positive results
on inference over BIDs regarding integrity constraints. In addition, the translation from a
CIR to a BID loses the information of which attributes are certain and which are uncertain,
and as aforesaid, if we allow every attribute to be uncertain then the problem is hard for
every nontrivial set of FDs (Theorem 14).

A. Gilad, A. Imber, and B. Kimelfeld 22:5

Organization. The remainder of the paper is organized as follows. We begin with preliminary
definitions and notation (Section 2). We then define the CIR data model (Section 3) and
the computational problems that we study (Section 4). Next, we describe our analysis for
the case of singleton and matching dependencies (Section 5), and then the case of unary
functional dependencies (Section 6). Lastly, we give concluding remarks (Section 7). Missing
proofs can be found in the full version of the paper [10].

2 Preliminaries

We begin with preliminary definitions and notation.

Relations. We assume countably infinite sets Val of values and Att of attributes. A relation
schema is a finite set R = {A1, . . . , Ak} of attributes. An R-tuple is a function t : R→ Val
that maps each attribute A ∈ R to a value that we denote by t[A]. A relation r is associated
with a relation schema, denoted Att(r), a finite set of tuple identifiers, denoted tids(r), and
a mapping from tids(r) to Att(r)-tuples. (Note we allow for duplicate tuples, as we do not
assume that the tuples of different identifiers are necessarily different.) We say that r is a
relation over the relation schema Att(r). We denote by r[i] the tuple that r maps to the
identifier i. Hence, r[i][A] is the value that tuple i has for the attribute A. As an example,
Figure 1c (left) depicts a relation r with Att(r) = {room, ?specialist, time} (for now, the
question mark in ?specialist should be ignored.) Here, tids(r) = {1, 2, 3} and r[1][room] = 41.

Suppose that X is a set of attributes. We denote by πXr the projection of r onto
X. More precisely, πXr is the relation r′ such that Att(r′) = X, tids(r′) = tids(r), and
r′[i][A] = r[i][A] for every A ∈ Att(r) ∩X. Observe that in our notation, (πXr)[i] is the
projection of tuple i to X. As a shorthand notation, we write r[i][X] instead of (πXr)[i]. For
example, in Figure 1c we have r[2][room ?specialist] = (163, Bart).

Functional dependencies. A functional dependency, or FD for short, is an expression of
the form X → Y where X and Y are finite sets of attributes. We say that X → Y is over a
relation schema R if R contains all mentioned attributes, that is, X ∪ Y ⊆ R. A relation r

satisfies the FD X → Y over Att(r) if every two tuples that agree on X also agree on Y .
In our notation, we say that r satisfies X → Y if for every two tuple identifiers i and i′ in
tids(r) it holds that r[i][Y] = r[i′][Y] whenever r[i][X] = r[i′][X]. A relation r satisfies a set
F of FDs over Att(r), denoted r |= F , if r satisfies every FD in F .

We use the standard convention that in instances of X and Y we may remove curly
braces and commas. To compactly denote a set of FDs, we may also intuitively combine
multiple FD expressions and change the direction of the arrows. For example, the notation
A↔ B ← CD is a shorthand notation of {A→ B, B → A, CD → B}.

An FD X → Y is unary if X consists of a single attribute, and it is trivial if Y ⊆ X (i.e.,
it is satisfied by every relation). A matching constraint (as termed in past work [5]) is a
constraint of the form X ↔ Y , that is, the set {X → Y, Y → X}.

The closure F + of a set F of FDs is the set of all FDs that are implied by F (or,
equivalently, can be inferred by repeatedly applying the axioms of Armstrong). For example,
F + includes all of the trivial FDs. The closure X+

F of a finite set X of attributes is the set of
all attributes A such that X → A is in F +. Two finite attribute sets X and Y are equivalent
(w.r.t. F) if X+

F = Y +
F , or in other words, X → Y and Y → X are both in F +. By a slight

abuse of notation, we say that two attributes A and B are equivalent if {A} and {B} are

ICDT 2023

22:6 The Consistency of Probabilistic Databases with Independent Cells

tid business ?spokesperson ?location
1 S. Propane Mangione(0.6) | Strickland(0.4) Arlen(0.6) | McMaynerberry(0.4)
2 Mega Lo Mart Mangione(0.45) | Thatherton(0.55) Arlen(0.5) | McMaynerberry(0.5)
3 Mega Lo Mart Mangione(0.4) | Buckley(0.6) Arlen(0.55) | McMaynerberry(0.45)

4 Get In Get Out Peggy(1.0) Arlen(0.35) | McMaynerberry(0.3) |
Dallas(0.35)

Figure 2 CIR U2 with spokesperson and location as the uncertain attributes.

equivalent. Finally, if F is a set of FDs, then we denote by Att(F) the set of all attributes
that occur in either the left or right sides of rules in F .

Probability distributions. We restrict our study in this paper to finite probability spaces
(Ω, π) where Ω is a nonempty finite set of samples and π : Ω→ [0, 1] is a probability function
satisfying

∑
o∈Ω π(o) = 1. The support of δ = (Ω, π), denoted supp(δ), is the set of samples

o ∈ Ω such that π(o) > 0. We denote by Prδ(o) the probability π(o). We may write just
Pr(o) when δ is clear from the context.

3 Cell-Independent Relations

A Cell-Independent Relation, or CIR for short, is similar to an ordinary relation, except that
in certain attributes the values may be probabilistic; that is, instead of an ordinary value,
each of them contains a probability distribution over values. One could claim that the model
should allow every attribute to have uncertain values. However, knowing which attributes
are certain has a major impact on the complexity of operations over CIRs. Formally, a CIR
U is defined similarly to a relation, with the following differences:

The schema of U , namely Att(U), has marked attributes where uncertain values are
allowed. We denote a marked attribute using a leading question mark, as in ?A, and the
set of marked attributes by ?Att(U). (Note that ?Att(U) is a subset of Att(U).)
For every i ∈ tids(U) and marked attribute ?A ∈ ?Att(U), the cell U [i][?A] is a probability
distribution over Val.

By interpreting cells as probabilistically independent, a CIR U represents a probability
distribution over ordinary relations. Specifically, a sample of U is a relation that is obtained
from U by sampling a value for each uncertain cell. More formally, a sample of U is a relation
r such that Att(r) = Att(U), tids(r) = tids(U), and for every i ∈ tids(r) and unmarked
attribute A we have that r[i][A] = U [i][A].

The probability PrU (r) of a sample r of U is the product of the probabilities of the values
chosen for r:

PrU (r) =
∏

i∈tids(U)

∏
?A∈?Att(U)

PrU [i][?A](r[i][?A])

Note that PrU [i][?A](r[i][?A]) is the probability of the value r[i][?A] (i.e., the value that tuple
i of r has for the attribute ?A) according to the distribution U [i][?A] (i.e., the distribution
that tuple i of U has for the attribute ?A).

▶ Example 3. Figures 1a and 2 depict examples U1 and U2, respectively, of CIRs. U1 has
been discussed in Example 1 and U2 describes a CIR that stores businesses along with their
spokespeople and headquarters locations. Some information in U2 is noisy (e.g., since the

A. Gilad, A. Imber, and B. Kimelfeld 22:7

rows are scraped from Web pages), and particularly the identity of the spokesperson and the
business location. U1 has a single uncertain attribute, namely ?specialist, and U2 has two
uncertain attributes, namely ?spokesperson and ?location. In particular, we have:

Att(U1) = {room, ?specialist, time} ?Att(U1) = {?specialist}

Distributions over values are written straightforwardly in the examples. For example, the
distribution U1[2][?specialist] is the uniform distribution that consists of Bart and Lisa, each
with probability 0.5.

The relations r and r′ of Figure 1c are samples of U1. By the choices made in r, the
probability PrU (r) is 0.5·0.7·0.8. Note that the probability of r is smaller than the probability
of the sample where the specialists are Lisa, Bart and Maggie, for instance, respectively. ⌟

Simplified notation. In the analyses that we conduct in later sections, we may simplify the
notation when defining a CIR U . When Att(U) = {A1, . . . , Ak}, we may introduce a new
tuple t[i] with t[i][Aℓ] = aℓ simply as (a1, . . . , ak), assuming that the attributes are naturally
ordered alphabetically by their symbols. For example, if Att(U) = {A, B, C}, then (a, b, c)
corresponds to the tuple that maps A, B and C to a, b and c, respectively. We can also use
a distribution δ instead of a value aℓ. In particular, we write b1| . . . |bt to denote a uniform
distribution among the values b1, . . . , bt.

▶ Example 4. Continuing Example 3, in the simplified notation the tuple U1[2] can be written
as (163, Bart|Lisa, 5 pm) since the attributes are ordered lexicographically and, again, the
distribution happens to be uniform. ⌟

Consistency of CIRs

Let F be a set of FDs and let U be a CIR, both over the same schema. A consistent sample of
U is a relation r ∈ supp(U) such that r |= F . We say that U is possibly consistent if at least
one consistent sample exists. By the probability of consistency, we refer to the probability
Prr∼U (r |= F) that a random sample of U satisfies F . As a shorthand notation, we denote
this probability by PrU (F). Note that U is possibly consistent if and only if PrU (F) > 0. A
consistent sample r is a most probable database (using the terminology of Gribkoff, Van den
Broeck and Suciu [12]) if Pr(r) ≥ Pr(r′) for every other consistent sample r′.

▶ Example 5. Consider the CIR U1 of Figure 1a. Let F1 be that of Figure 1b, saying that
at a specific time, a specialist can be found in only one location. Figure 1c (left) shows a
consistent sample r of U1. Then Pr(r) = 0.5 · 0.7 · 0.8 = 0.28. In particular, this probability
is nonzero, hence U1 is possibly consistent. The reader can verify that r has a maximal
probability among the consistent samples (and, in fact, among all samples); therefore, r is a
most probable database for U1. To calculate the probability of consistency, we will take the
complement of the probability of inconsistency. An inconsistent sample can be obtained in
two ways: (1) selecting Lisa in both the first and second tuples, or (2) selecting Bart in the
second tuple and in at most one of the first and the third (which we can compute as the
complement of the product of the probabilities of selecting the others). Therefore,

PrU1(F1) = 1−
(
0.3 · 0.5 + 0.7 · (1− 0.5 · 0.8)

)
.

Now suppose that we use F2 of Figure 1b saying that, in addition to F1, a room can host
only one specialist at a specific time. In this case, r is no longer a consistent sample since
Room 41 hosts different specialists at 5 PM, namely Lisa and Maggie. The reader can verify

ICDT 2023

22:8 The Consistency of Probabilistic Databases with Independent Cells

that the only consistent sample now is r′ of Figure 1c. In particular, U1 remains possible
consistent, the sample r′ is the most probable database, and the probability of consistency is
the probability of r′, namely 0.5 · 0.3 · 0.2. ⌟

4 Consistency Problems

We study three computational problems in the paper, as in the following definition.

▶ Definition 6. Fix a schema R and a set F of FDs over R. In each of the following
problems, we are given as input a CIR U over R:
1. Possible consistency: determine whether PrU (F) > 0.
2. Most probable database: find a consistent sample with a maximum probability.
3. Probability of consistency: calculate PrU (F).

Observe that these problems include the basics of probabilistic inference: maximum
likelihood computation and marginal probability calculation. An MPD can be viewed as
an optimal completion of missing values, or an optimal correction of values suspected of
being erroneous, assuming the independence of cells (as a prior distribution) and conditioned
on satisfying the constraints (as a posterior distribution). A necessary condition for the
tractability of the most probable database is possible consistency, where we decide whether at
least one consistent sample exists. The problem of computing the probability of consistency
can be thought of as a basic problem that sheds light on possible consistency. For example,
if possible consistency is decidable in polynomial time in some case, is it because we can,
generally, compute the probability of consistency or because there is something fundamentally
easier with feasibility? We will see cases that feature both phenomena.

A more technical reason for computing the probability of consistency is that it provides
the ability to sample soundly from the conditional probability distribution (the posterior).
More precisely, an efficient algorithm for computing the probability of consistency can be
used to devise an efficient randomized algorithm that produces a consistent sample r with
the probability PrU (r | r |= F). The idea is quite simple and applies to every condition F

over databases, regardless of being FDs (and was used in different settings, e.g., [7]).
As aforesaid, the second and third problems are at least as hard as the first one: finding

a most probable database of U requires knowing whether U is possibly consistent, and
calculating the exact probability is at least as hard as determining whether it is nonzero.
There is no reason to believe a-priori that the complexities of the second and third problems
are comparable. Yet, our analysis will show that the third has the same or higher complexity
in the situations that we study.

4.1 Complexity Assumptions
In our complexity analysis, we will restrict the discussion to uncertain cells that are finite
distributions represented explicitly by giving a probability for each value in the support.
Note that if all uncertain cells of U have a finite distribution, then U has a finite set of
samples. Yet, its size can be exponential in the number of rows of U (and also in the number
of columns of U , though we will treat this number as fixed as we explain next), even if each
cell distribution is binary (i.e., has only two nonzero options). Every probability is assumed
to be a rational number that is represented using the numerator and the denominator.

We will focus on the data complexity of problems, which means that we will make the
assumption that the schema R of the CIR and the set F of FDs are both fixed. Hence, every
combination (R, F) defines a separate computational problem, and different pairs (R, F) can
potentially have different complexities.

A. Gilad, A. Imber, and B. Kimelfeld 22:9

Table 1 Complexity of the consistency problems for a binary schema. “Possibility” refers to
possible consistency, “MPD” refers to the most probable database problem, and “Probability” refers
to the probability of consistency.

FDs Possibility MPD Probability Results
A→ ?B PTime PTime PTime Proposition 7
?A→ B NP-complete NP-hard FP#P-complete Lemma 10
A↔ ?B PTime PTime FP#P-complete Prop. 8 (PTime), 9 (FP#P-c.)
?A↔ ?B NP-complete NP-hard FP#P-complete Lemma 11

4.2 Preliminary Observations

In the following sections, we study the complexity of the three consistency problems that we
defined in Definition 6. Before we move on to the actual results, let us state some obvious
general observations.

Possible consistency is in NP, since we can verify a “yes” instance U in polynomial time
by verifying that a relation r is a consistent sample.
If possible consistency is NP-complete for some schema R and set F of FDs, then it is
NP-hard to find a most probable database, and it is NP-hard to compute the probability
of consistency.
We will show that the probability of consistency can be #P-hard, or more precisely
FP#P-complete.1 Membership in FP#P of the probability of consistency is based on our
assumption that probabilities are represented as rational numbers, and it can be shown
using standard techniques (e.g., [1, 11]) that we do not repeat here.

We will take the above for granted and avoid repeating the statements throughout the paper.

5 Singleton and Matching Constraints

In this section, we investigate the complexity of the three problems we study in two special
cases: a singleton constraint {X → Y } and a matching constraint X ↔ Y (as it has been
termed in past work [5]). We give full classifications of when such constraints are tractable
and intractable for the three problems. We note that we leave open the classification of the
entire class of FD sets, but we provide it for the general case of unary FDs in Section 6.

We begin with the case of a binary schema, where every set of FDs is equivalent to either
a singleton or a matching constraint.

5.1 The Case of a Binary Schema

Throughout this section, we assume that the schema is {A, B}. The complexity of the
different cases of FDs is shown in Table 1. To explain the entries of the table, let us begin
with the tractable cases.

1 Recall that FP#P is the class of functions that are computable in polynomial time with an oracle to a
problem in #P (e.g., counting the number of satisfying assignments of a propositional formula). This
class is considered intractable, and above the polynomial hierarchy [30].

ICDT 2023

22:10 The Consistency of Probabilistic Databases with Independent Cells

5.1.1 Algorithms
In this section, we show algorithms for A→ ?B and for A↔ ?B.

For A → ?B, we need to determine a value b for each value a of the attribute A. The
idea is that we do so independently for each a. Let VA be the active domain of the attribute
A of U , and VB be the set of all values in the supports of the distributions of B. Formally:

VA := {U [i][A] | i ∈ tids(U)} VB :=
⋃
{supp(U [i][B]) | i ∈ tids(U)}

A consistent sample r selects a value ba ∈ VB for each a ∈ VA, and then PrU (r) =∏
a∈VA

p(a, ba) where p(a, b) is given by:

p(a, b) :=
∏

i:U [i][A]=a

PrU [i][B](b)

Therefore, to find a most probable database, we consider each a ∈ VA independently, and
find a b ∈ VB that maximizes p(a, b). This b will be used for the tuples with the value a in
A. In addition, we have the following formula that gives us immediately a polynomial-time
algorithm (via a direct computation) for the probability of consistency:

PrU ({A→ B}) =
∏

a∈VA

∑
b∈VB

p(a, b)

Where
∑

b∈VB
p(a, b) is the probability that the tuples with the value a for A agree on their

B attribute. In summary, we have established the following.

▶ Proposition 7. All three problems in Definition 6 are solvable in polynomial time for
A→ ?B.

Next, we discuss A ↔ ?B. Let U be a CIR. A consistent sample r of U entails the
matching of each A value a to each B value b, so that no two a values occur with the same b,
and no two bs occur with the same a. Therefore, we can solve this problem using an algorithm
for minimum-cost perfect matching, as follows. Let VA, VB and p(a, b) be as defined earlier
in this section for A→ ?B. We construct a complete bipartite graph G as follows.

The left-side vertex set is VA and the right-side vertex set is VB .
The cost of every edge (a, b) is (− log p(a, b)); we use this weight as as our goal is to
translate a maximum product into a minimum sum.2

Note that |VA| and |VB | are not necessarily of the same cardinally. If |VA| > |VB |, then U

has no consistent sample at all. If |VA| < |VB |, then we add to the left side of the graph
dummy vertices a′ that are connected to all VB vertices using the same cost, say 1. With this
adjustment, we can now find a most probable database by finding a minimum-cost perfect
matching in G (e.g., with the Hungarian method [19]). In summary, we have established the
following.

▶ Proposition 8. For A↔ ?B, a most probable database can be found in polynomial time.

It turns out that the third problem, the probability of consistency, is intractable. We
show it in the next section.

2 We assume that the computational model for finding a minimum-cost perfect matching can handle
the representation of logarithms, including log 0 = −∞. As an alternative, we could use directly an
algorithm for maximizing the product of the edges in the perfect matching [31].

A. Gilad, A. Imber, and B. Kimelfeld 22:11

5.1.2 Hardness
We now discuss the hardness results of Table 1. We begin with A↔ ?B. Recall that possible
consistency and the most probable database are solvable in polynomial time (Proposition 8).
The probability of consistency, however, is hard.

▶ Proposition 9. For A↔ ?B, it is FP#P-complete to compute the probability of consistency.

Proof. We show a reduction from the problem of counting the perfect matchings of a bipartite
graph (which is the same as calculating the permanent of a 0/1-matrix). This problem is
known to be #P-complete [32]. We are given a bipartite graph G = (VL, VR, E) such that
|VL| = |VR| and the goal is to compute the number of perfect matchings that G has. We
construct a CIR U as follows. For each vertex v ∈ VL we collect the set Nv ⊆ VR of neighbors
of v. Let Nv = {u1, . . . , uℓ}. We add to U the tuple (v, u1| . . . |uℓ).

Observe that every consistent sample induces a perfect matching (due to A↔ ?B), and
vice versa. Hence, the number of consistent samples of U is the same as the number of
perfect matchings of G. Since we used only uniform probabilities, every sample of U has
the same probability, namely 1/(

∏
v∈VL

|Nv|). Therefore, the number of perfect matchings is
PrU (A↔ ?B) ·

∏
v∈VL

|Nv|. ◀

The next two lemmas address the case of ?A→ B and the case of ?A↔ ?B, respectively.
We begin with ?A→ B.

▶ Lemma 10. For ?A→ B:
1. Possible consistency is NP-complete.
2. It is FP#P-complete to compute the probability of consistency.

Proof. We prove each part separately.

Part 1. We show a reduction from non-mixed satisfiability (NM-SAT), where each clause
contains either only positive literals (“positive clause”) or only negative literals (“negative
clause”). This problem is known to be NP-complete [13].

We are given a formula c1 ∧ · · · ∧ cm over x1, . . . , xn. We construct an uncertain table as
follows. For each positive ci = y1 ∨ · · · ∨ yℓ we have in the table the tuple

(y1| . . . |yℓ, true) ,

that is, a tuple with a distinct identifier i such that U [i][A] is a uniform distribution
over {y1, . . . , yℓ} and U [i][B] is the value true. Similarly, for each negative clause ci =
¬y1 ∨ · · · ∨ ¬yℓ we have in the table the tuple

(y1| . . . |yℓ, false) .

Hence, for each positive clause we need to select one satisfying variable, for each negative
clause we need to select one satisfying variable, and we cannot select the same variable to
satisfy both a positive and a negative clause. This immediately implies the correctness of
the reduction.

Part 2. To prove Part 2, we use a reduction from counting the perfect matchings, similarly
to the proof of Proposition 9, except that now we reverse the order of the attributes: Instead
of adding the tuple (v, u1| . . . |uℓ), we add the tuple (u1| . . . |uℓ, v). The reader can easily verify
that each consistent sample again encodes a unique perfect matching, and vice versa. ◀

ICDT 2023

22:12 The Consistency of Probabilistic Databases with Independent Cells

We now move on to ?A↔ ?B.

▶ Lemma 11. For ?A↔ ?B:
1. Possible consistency is NP-hard.
2. It is FP#P-complete to compute the probability of consistency.

Proof. We prove each part separately.

Part 1. We need to show the NP-hardness of possible consistency. We show a reduction
from standard SAT, where we are given a formula φ = c1 ∧ · · · ∧ cm over x1, . . . , xn, and we
construct a CIR U over {A, B} as follows. For each clause c = d1 ∨ · · · ∨ dℓ we add to U the
tuple

(c, ⟨c, d1⟩| . . . |⟨c, dℓ⟩) .

Note that the values of U are clauses c and pairs ⟨c, d⟩ where d is a literal. In addition to
these tuples, we collect every two pairs ⟨c, d⟩ and ⟨c′, d′⟩ such that d and d′ are in conflict,
that is, if d = x then d′ = ¬x and if d = ¬x then d′ = x. For each such pair, we add to U

the tuple

(⟨c, d⟩|⟨c′, d′⟩, ⟨c, d⟩|⟨c′, d′⟩) .

This completes the reduction. Next, we prove the correctness of the reduction, that is, φ is
satisfiable if and only if U is possibly consistent.

For the “only if” direction, suppose that τ is a satisfying truth assignment for φ. We
construct a consistent sample r as follows. For every tuples of the form (c, ⟨c, d1⟩| . . . |⟨c, dℓ⟩),
we choose for B a value ⟨c, di⟩ such that τ(di) = true. In the case of tuples of the form
(⟨c, d⟩|⟨c′, d′⟩, ⟨c, d⟩|⟨c′, d′⟩), we choose the pair ⟨c′, d′⟩ such that τ(d′) = false for both
attributes A and B. We need to show that r satisfies ?A↔ ?B. It is easy to see why the
left attribute determines the right attribute, and so, ?A→ ?B holds. Regarding ?B → ?A,
we need to verify that we do not have any conflicting tuples (c, ⟨c, d⟩) and (⟨c′, d′⟩, ⟨c′, d′⟩)
where c = c′ and d = d′. This is due to the fact that τ(d) = true and τ(d′) = false.

For the “if” direction, suppose that r is a consistent sample. We define a satisfying truth
assignment τ as follows. Suppose that r contains (c, ⟨c, d⟩). Then r necessarily contains
(⟨c′, d′⟩, ⟨c′, d′⟩) for every c′ that contains the negation d′ of d. Therefore, r does not contain
any (c′, ⟨c′, d′⟩) where d′ contradicts d. So, we choose τ such that τ(d) = true. If needed,
we complete τ to the remaining variables arbitrarily. From the construction of τ it holds
that every clause c is satisfied. This completes the proof of Part 1.

Part 2. Note that this part follows immediately from Proposition 9, since every instance of
A↔ ?B can be viewed as an instance of ?A↔ ?B where all A values are known. ◀

We have now completed all results of Table 1. We will use these results for the extension
to singleton, matching, and unary constraints.

5.2 Beyond Binary Schemas
We generalize the results for the binary case to the more general case where the FD set is
either a singleton or a matching constraint and the schema can have more than two attributes.

A. Gilad, A. Imber, and B. Kimelfeld 22:13

▶ Theorem 12. Let X and Y be sets of attributes such that X ̸⊆ Y and Y ̸⊆ X, and at
least one attribute in X ∪ Y is uncertain.
1. In the case of X → Y : If X consists of only certain attributes, then all three problems

are solvable in polynomial time; otherwise, possible consistency is NP-complete and the
probability of consistency is FP#P-complete.

2. In the case of X ↔ Y : If either X or Y consists of only certain attributes, then a most
probable database can be found in polynomial time; otherwise, possible consistency is
NP-hard. In any case, the probability of consistency is FP#P-complete.

Proof sketch. For the first part, the tractability side is via a reduction to the case of A→ ?B,
which is tractable due to Proposition 7. The hardness side is due to a straightforward reduction
from ?A→ B, where hardness is stated in Lemma 10. For the second part, the tractability
side is via a reduction to the case of A↔ ?B, which is tractable due to Proposition 8. The
hardness of possible consistency relies on the cases of ?A→ B and ?A↔ ?B from Lemma 10
and Lemma 11, respectively. ◀

▶ Example 13. Consider again the CIR U1 of Figure 1a, and the following two constraints:
F1 := {?specialist time→ room} and F2 := F1 ∪ {room time→ ?specialist}. For F1, all three
problems are hard, since the left hand side of the FD contains the uncertain attribute
?specialist. For F2, a most probable database can be found in polynomial time, since F2 is
equivalent to room time ↔ ?specialist time, where one side (the left side) consists of only
certain attributes. However, the probability of consistency remains FP#P-hard. ⌟

Note that in Theorem 12, the assumption that X ̸⊆ Y and Y ̸⊆ X does not lose generality,
for the following reason. If X ⊆ Y , then the FD X → Y is equivalent to X → Y \X, the
FD Y → X is trivial, and the matching constraint X ↔ Y is equivalent to the singleton
{X → Y } (which is covered in Part 1).

From Theorem 12 we can conclude that when all attributes are uncertain, possible
consistency is hard, unless the FDs are all trivial (and then all three problems are clearly
solvable in polynomial time); this is under the reasonable (and necessary) assumption that
F has no consensus FDs, that is, the left hand side of every FD is nonempty [21]. We
later discuss this assumption. This emphasizes the importance of having a data model that
distinguishes between certain and uncertain attributes.

▶ Theorem 14. Let F be a nontrivial set of FDs over a relation schema R where all attributes
are uncertain, none being a consensus FD. Then possible consistency is NP-complete.

The proof selects between a reduction from MPD with the FD ?A→ B (Lemma 10) and
a reduction from MPD with the matching constraint ?A↔ ?B (Lemma 11), depending on
the structure of F .

We note that the assumption that F has no consensus FDs is necessary. For example, for
F = {∅ → ?A}, which is nontrivial, we can find a most probable database by considering
every possible value a for ?A, computing the probability of selecting a in all distributions,
and finally using the value with the maximal probability.

From Theorem 14 we immediately conclude the hardness of the three problems on
every nontrivial set of FDs in the block-independent-disjoint (BID) model of probabilistic
databases [26], due to the translation mentioned in the Introduction.

ICDT 2023

22:14 The Consistency of Probabilistic Databases with Independent Cells

6 General Sets of Unary Functional Dependencies

In Section 5.1, we studied the complexity of the three problems in the case of a binary schema,
and we gave a full classification of the different possible sets of FDs. In this section, we
extend these results to a general classification (dichotomy) for every set of unary FDs, that
is, FDs with a single attribute on the left side. Our result uses a decomposition technique
that we devise next.

6.1 Reduction by Decomposition
In this section, we devise a decomposition technique that allows us to reduce our computational
problems from one set of FDs into multiple smaller subsets of the set. This technique is
stated in the next theorem. After the theorem, we show several consequences that illustrate
the use of the technique. Later, we will use these consequences to establish a full classification
of complexity for the sets of unary FDs.

▶ Theorem 15. Let F be a set of FDs over a relation schema R. Suppose that F = F1 ∪ F2
and that all attributes in Att(F1) ∩ Att(F2) are certain (unmarked). Each of the three
problems (in Definition 6) can be solved in polynomial time if its version with Fj and Att(Fj)
is solvable in polynomial time for both j = 1 and j = 2.

Proof sketch. Let Uj = πAtt(Fj)U for j = 1, 2. We show the following:
1. U is possibly consistent w.r.t. F if and only if U1 and U2 are possibly consistent w.r.t. F1

and F2, respectively.
2. MPDs of U1 and U2 can be easily combined to produce an MPD of U .
3. PrU (F) = PrU1(F1) · PrU2(F2).
The full details are provided in [10]. ◀

An immediate conclusion from Theorem 15 is that we can eliminate the FDs that involve
only certain attributes if we know how to deal with the remaining FDs.

▶ Corollary 16. Let F be a set of FDs over a relation schema R. Let X → Y be an FD in
F , and suppose that all attributes in X and Y are certain. Then each of the three problems
(in Definition 6) is polynomial-time reducible to its version with R and F \ {X → Y }.

▶ Remark 17. Eliminating the FDs over the certain attributes is not always beneficial, since
these FDs might be needed for applying a polynomial-time algorithm. As an example,
consider the following set of FDs: {?A→ B , B → C , C → ?A}. As we will show later, for
this set of FDs we can find a most probable database in polynomial time. However, we will
also show that possible consistency is NP-hard for the subset {?A→ B , C → ?A}. Hence,
B → C is needed for the polynomial-time algorithm. ⌟

The following consequence of Theorem 15 identifies a general tractable case: the problems
are solvable in polynomial time if uncertain attributes do not appear in the left side of the
FDs (but they can appear in the right side or outside of the FDs).

▶ Theorem 18. Let F be a set of FDs. If the left side of every FD includes only certain
attributes, then each of the three problems (in Definition 6) is solvable in polynomial time.

Proof sketch. Assume, without loss of generality, that each FD in F contains a single
attribute on the right side. For every A ∈ Att(F), let FA be the subset of F that contains all
FDs with A being the right side (i.e., all FDs of the form X → A). Then F = ∪A∈Att(F)FA.

A. Gilad, A. Imber, and B. Kimelfeld 22:15

Note that sets FA and FB, where A ≠ B, share only certain attributes. This is true since
our assumption implies that an uncertain attribute ?A can appear only in F?A. Hence, we
can apply Theorem 15 repeatedly and conclude that we need a polynomial-time solution for
each F?A. In the full version [10], we show that we can obtain that using a similar concept
to the algorithm for A→ ?B from Section 5.1.1. ◀

6.2 Classification
We now state the precise classification of the complexity of the problems in the case of
unary FDs. The statement uses the following terminology. Let F be a set of unary FDs.
Recall that two attributes A and B and are equivalent if they have the same closure, that
is, {A}+

F = {B}+
F . An attribute A is called a sink if {A}+

F = {A}, that is, A does not
appear in the left hand side of any nontrivial FD. In this section, we will prove the following
classification (trichotomy) result, which is also illustrated in Figure 3.

▶ Theorem 19. Let F be a set of unary FDs over a relation schema R. Then following hold.
1. If every uncertain attribute is either a sink or equivalent to a certain attribute, then a

most probable database can be found in polynomial time; otherwise, possible consistency
is NP-complete.

2. If every uncertain attribute is a sink, then the probability of consistency can be calculated
in polynomial time; otherwise, it is FP#P-complete.

The following examples illustrate the instantiation of the theorem to specific scenarios.

▶ Example 20. We give several examples for the case of a ternary schema {A, B, C}. Consider
the following sets of FDs:

F1 := {A→ B → ?C} F2 := {A→ ?B → C} F3 := {A↔ ?B → C}

Theorem 19 tells us the following. All three problems are solvable in polynomial time in
the case of F1, since the uncertain attribute ?C is a sink. In the case of F2, we can see that
?B is neither a sink nor equivalent to any certain attribute; hence, all three problems are
intractable for F2. In the case of F3, the attribute ?B is not a sink but is equivalent to the
certain attribute A. Hence, the probability of consistency for F3 is FP#P-complete, but we
can find a most probable database in polynomial time. ⌟

Next, we illustrate Theorem 19 on our running example.

▶ Example 21. Consider again the CIR U2 of Figure 2. Consider the following constraints.
1. business→ ?spokesperson?location
2. ?spokesperson→ ?location
3. business↔ ?spokesperson→ ?location
For the first constraint, all three problems are tractable since both ?spokesperson and ?location
are sinks. For the second constraint, all three problems are intractable since ?spokesperson
is neither a sink nor equivalent to any certain attribute. For the third constraint, a most
probable database can be found in polynomial time since ?spokesperson is equivalent to the
certain business and ?location is a sink, but the probability of consistency is FP#P-complete
since ?spokesperson is not a sink. ⌟

In the remainder of this section, we prove each of the two parts of Theorem 19 separately.

ICDT 2023

22:16 The Consistency of Probabilistic Databases with Independent Cells

Unary FD Sets

Probabilityx
x
x Possibility

All sink
Possibility
MPD
Probability✓

✓
✓

All sink or Certain≡

Possibility
MPD
Probabilityx

✓
✓

MPD

Figure 3 Classification of the complexity of consistency problems for sets of unary FDs. (See
Table 1 for the naming of the problems.) “All sink” refers to the case where every uncertain attribute
is sink, and “All sink or Certain≡” refers to the case where every uncertain attribute is either a sink
or equivalent to a certain attribute.

6.2.1 Part 1 of Theorem 19 (Possible Consistency and MPD)
We first prove the tractability side of Part 1 of the theorem.

▶ Lemma 22. Let F be a set of unary FDs over a schema R. If every uncertain attribute is
either a sink or equivalent to a certain attribute, then a most probable database can be found
in polynomial time.

Proof sketch. The idea is to define a set F?A of FDs for every uncertain attribute ?A ∈
?Att(U), and a set F ′ of FDs where all left-side attributes are certain, such that F is
equivalent to F ′ ∪

⋃
?A∈?Att(U) F?A. Then, we repeatedly apply Theorem 15 to reduce the

original problem to instances that are solvable in polynomial time by Proposition 8 and
Theorem 18. ◀

For the hardness side of Part 1 of Theorem 19, we will need the following lemma, which
generalizes the case of ?A↔ ?B from Lemma 11.

▶ Lemma 23. Let R = {?A1, . . . , ?Ak} consist of k > 1 uncertain attributes, and suppose
that F is a set of FDs stating that all attributes in R are equivalent. Then possible consistency
is NP-complete.

The next lemma states the hardness side of Part 1 of Theorem 19.

▶ Lemma 24. Let F be a set of unary FDs over a schema R. If there is an uncertain
attribute that is neither a sink nor equivalent to a certain attribute, then possible consistency
is NP-complete.

Proof sketch. Let ?A be an attribute that is neither a sink nor equivalent to a certain
attribute. Let X be the closure of ?A and X ′ be X \ {?A}. Observe the following. First, X ′

must be nonempty since ?A is not a sink. Second, if any attribute in X ′ implies ?A then it
is equivalent to ?A, and then it is necessarily uncertain. We consider two cases:
1. No attribute in X ′ implies ?A.
2. Some attribute in X ′ implies ?A.
For the first case, we show a reduction from ?A → B, where possible consistency is NP-
complete due to Lemma 10. For the second case, let ?B1, . . . , ?Bℓ be the set of all attributes in
X ′ that imply ?A. As said above, each ?Bj must be uncertain. Then all of ?B1, . . . , ?Bℓ, ?A

are equivalent. We show a reduction from the problem of Lemma 23 where k = ℓ + 1. ◀

A. Gilad, A. Imber, and B. Kimelfeld 22:17

6.2.2 Part 2 of Theorem 19 (Probability of Consistency)
We now move on to Part 2. The tractability side follows immediately from Theorem 18, since
if all uncertain attributes are sinks, then all left-side attributes are certain (up to trivial FDs
?A → ?A that can be ignored). Hence, it remains to prove the hardness side of Part 2 of
Theorem 19. We start with the following lemma, where we use a reduction from the case of
A↔ ?B, where probability of consistency is FP#P-complete by Proposition 9, to establish
hardness for a more general case.

▶ Lemma 25. Let F be a set of unary FDs over a schema R. If at least one uncertain attribute
is equivalent to a certain attribute, then the probability of consistency is FP#P-complete.

We can now complete the proof of the hardness side of Part 2.

▶ Lemma 26. Let F be a set of unary FDs over a schema R. If there is at least one uncertain
attribute that is not a sink, then the probability of consistency is FP#P-complete.

Proof sketch. Let ?A be an uncertain attribute that is not a sink. Let Y = (?A)+
F \ {?A}.

Note that Y is nonempty, since ?A is not a sink. If any attribute B in Y functionally
determines ?A, then we can use this attribute as a certain attribute (even if it is uncertain)
and use Lemma 25, since ?A is equivalent to B. Otherwise, suppose that no attribute in
Y determines ?A. For this case, we show (in [10]) a reduction from ?A → B, where the
probability of consistency is FP#P-hard according to Lemma 10. ◀

6.2.3 Recap
We can now complete the proof of Theorem 19. For Part 1, the tractability side is given
by Lemma 22, and the hardness is given by Lemma 24. As for Part 2, the tractability side
follows immediately from Theorem 18, and the hardness side is stated in Lemma 26.

7 Conclusions

We defined the concept of a CIR and studied the complexity of three problems that relate
to consistency under FDs: possible consistency, finding a most probable database, and the
probability of consistency. A seemingly minor feature of the definition of a CIR is the
distinction between certain and uncertain attributes; yet, this distinction turns out to be
crucial for detecting tractable cases. We gave classification results for several classes of FD
sets, including a single FD, a matching constraint, and arbitrary sets of unary FDs. We also
showed that if all attributes are allowed to be uncertain, then the first two problems are
intractable for every nontrivial set of FDs.

This work leaves many problems for future investigation. Within the model, we have
not yet completed the classification for the whole class of FD sets, where the problem
remains open. Recall that a full classification is known for the most probable database for
tuple-independent databases [21]. Moreover, as we hit hardness already for simple cases
(e.g., ?A → B), it is important to identify realistic properties of the CIR that reduce the
complexity of the problems and allow for efficient algorithms.

Going beyond the framework of this paper, we plan to study additional types of constraints
that are relevant to data cleaning [9], such as conditional FDs, denial constraints, and foreign-
key constraints (where significant progress has been recently made in the problem of consistent
query answering [14]). Another useful direction is to consider soft or approximate versions
of the constraints, where it suffices to be consistent to some quantitative extent [5,16,20].

ICDT 2023

22:18 The Consistency of Probabilistic Databases with Independent Cells

Finally, we have made the assumption of probabilistic independence among the cells as this
is the most basic setting to initiate this research. To capture realistic correlations in the
database noise, it is important to extend this work to data models that allow for (learnable)
probabilistic dependencies, such as Markov Logic [17].

References
1 Serge Abiteboul, T.-H. Hubert Chan, Evgeny Kharlamov, Werner Nutt, and Pierre Senellart.

Aggregate queries for discrete and continuous probabilistic XML. In ICDT, ACM International
Conference Proceeding Series, pages 50–61. ACM, 2010.

2 Periklis Andritsos, Ariel Fuxman, and Renée J. Miller. Clean answers over dirty databases: A
probabilistic approach. In ICDE, page 30, 2006.

3 Felix Bießmann, Tammo Rukat, Philipp Schmidt, Prathik Naidu, Sebastian Schelter, Andrey
Taptunov, Dustin Lange, and David Salinas. Datawig: Missing value imputation for tables. J.
Mach. Learn. Res., 20:175:1–175:6, 2019.

4 Marco Calautti, Ester Livshits, Andreas Pieris, and Markus Schneider. Counting database
repairs entailing a query: The case of functional dependencies. In PODS, pages 403–412. ACM,
2022.

5 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi. Database
repairing with soft functional dependencies. In ICDT, volume 186 of LIPIcs, pages 16:1–16:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

6 Reynold Cheng, Jinchuan Chen, and Xike Xie. Cleaning uncertain data with quality guarantees.
Proc. VLDB Endow., 1(1):722–735, 2008.

7 Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Incorporating constraints in probabilistic
XML. ACM Trans. Database Syst., 34(3):18:1–18:45, 2009.

8 Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. In
VLDB, pages 864–875. Morgan Kaufmann, 2004.

9 Wenfei Fan and Floris Geerts. Foundations of Data Quality Management. Synthesis Lectures
on Data Management. Morgan & Claypool Publishers, 2012.

10 Amir Gilad, Aviram Imber, and Benny Kimelfeld. The consistency of probabilistic databases
with independent cells, 2022. doi:10.48550/arXiv.2212.12104.

11 Erich Grädel, Yuri Gurevich, and Colin Hirsch. The complexity of query reliability. In PODS,
pages 227–234. ACM Press, 1998.

12 Eric Gribkoff, Guy Van den Broeck, and Dan Suciu. The most probable database problem. In
BUDA, 2014. URL: http://www.sigmod2014.org/buda.

13 Venkatesan Guruswami. Inapproximability results for set splitting and satisfiability problems
with no mixed clauses. In APPROX, volume 1913 of LNCS, pages 155–166. Springer, 2000.

14 Miika Hannula and Jef Wijsen. A dichotomy in consistent query answering for primary keys
and unary foreign keys. In PODS, pages 437–449. ACM, 2022.

15 Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, and Theodoros Rekatsinas. HoloDetect:
Few-shot learning for error detection. In SIGMOD Conference, pages 829–846. ACM, 2019.

16 Abhay Kumar Jha, Vibhor Rastogi, and Dan Suciu. Query evaluation with soft-key constraints.
In PODS, pages 119–128. ACM, 2008.

17 Abhay Kumar Jha and Dan Suciu. Probabilistic databases with markoviews. Proc. VLDB
Endow., 5(11):1160–1171, 2012.

18 Solmaz Kolahi and Laks V. S. Lakshmanan. On approximating optimum repairs for functional
dependency violations. In ICDT, volume 361 of ACM, pages 53–62. ACM, 2009.

19 Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

20 Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. Approximate denial
constraints. Proc. VLDB Endow., 13(10):1682–1695, 2020.

https://doi.org/10.48550/arXiv.2212.12104
http://www.sigmod2014.org/buda

A. Gilad, A. Imber, and B. Kimelfeld 22:19

21 Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. Computing optimal repairs for functional
dependencies. ACM Trans. Database Syst., 45(1):4:1–4:46, 2020. doi:10.1145/3360904.

22 Ester Livshits, Benny Kimelfeld, and Jef Wijsen. Counting subset repairs with functional
dependencies. J. Comput. Syst. Sci., 117:154–164, 2021.

23 Dany Maslowski and Jef Wijsen. A dichotomy in the complexity of counting database repairs.
J. Comput. Syst. Sci., 79(6):958–983, 2013.

24 Chris Mayfield, Jennifer Neville, and Sunil Prabhakar. ERACER: a database approach for
statistical inference and data cleaning. In SIGMOD Conference, pages 75–86. ACM, 2010.

25 Luyi Mo, Reynold Cheng, Xiang Li, David W. Cheung, and Xuan S. Yang. Cleaning uncertain
data for top-k queries. In ICDE, pages 134–145, 2013.

26 Christopher Ré and Dan Suciu. Materialized views in probabilistic databases for information
exchange and query optimization. In Proc. VLDB Endow., pages 51–62, 2007.

27 Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. HoloClean: Holistic data
repairs with probabilistic inference. PVLDB, 10(11):1190–1201, 2017.

28 Christopher De Sa, Ihab F. Ilyas, Benny Kimelfeld, Christopher Ré, and Theodoros Rekatsinas.
A formal framework for probabilistic unclean databases. In ICDT, volume 127 of LIPIcs,
pages 6:1–6:18, 2019.

29 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

30 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991.

31 Frank S.C. Tseng, Wei-Pang Yang, and Arbee L.P. Chen. Finding a complete matching
with the maximum product on weighted bipartite graphs. Computers & Mathematics with
Applications, 25(5):65–71, 1993.

32 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201,
1979.

33 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In STOC,
pages 137–146. ACM, 1982.

34 Jef Wijsen. Database repairing using updates. ACM Trans. Database Syst., 30(3):722–768,
2005.

ICDT 2023

https://doi.org/10.1145/3360904

Consistent Query Answering for Primary Keys and
Conjunctive Queries with Counting
Aziz Amezian El Khalfioui #

Research fellow FNRS
University of Mons, Mons, Belgium

Jef Wijsen #

University of Mons, Mons, Belgium

Abstract
The problem of consistent query answering for primary keys and self-join-free conjunctive queries
has been intensively studied in recent years and is by now well understood. In this paper, we
study an extension of this problem with counting. The queries we consider count how many times
each value occurs in a designated (possibly composite) column of an answer to a full conjunctive
query. In a setting of database repairs, we adopt the semantics of [Arenas et al., ICDT 2001] which
computes tight lower and upper bounds on these counts, where the bounds are taken over all repairs.
Ariel Fuxman defined in his PhD thesis a syntactic class of queries, called Cforest, for which this
computation can be done by executing two first-order queries (one for lower bounds, and one for
upper bounds) followed by simple counting steps. We use the term “parsimonious counting” for this
computation. A natural question is whether Cforest contains all self-join-free conjunctive queries
that admit parsimonious counting. We answer this question negatively. We define a new syntactic
class of queries, called Cparsimony, and prove that it contains all (and only) self-join-free conjunctive
queries that admit parsimonious counting.

2012 ACM Subject Classification Information systems → Relational database query languages;
Theory of computation → Incomplete, inconsistent, and uncertain databases; Theory of computation
→ Logic and databases

Keywords and phrases Consistent query answering, primary key, conjunctive query, aggregation,
counting

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.23

Related Version Extended Version: https://doi.org/10.48550/arXiv.2211.04134 [25]

1 Introduction

The problem of consistent query answering (CQA) [2, 4, 5, 37] with respect to primary
keys is by now well understood for self-join-free conjunctive queries: a dichotomy between
tractable and intractable queries has been established, and it is known which queries have a
consistent first-order rewriting [29, 32]. It remains a largely open question to extend these
complexity results to queries with aggregation. In this paper, we look at a simple form of
aggregation: counting the number of times each (possibly composite) value occurs in the
answer to a conjunctive query. Although this problem has been studied since the early years
of CQA [18], a fine-grained characterization of its complexity remains open.

Formally, let q be a full (i.e., quantifier-free) self-join-free conjunctive query. We define
a counting query as follows. We designate a tuple z⃗ of distinct variables of q, called the
grouping variables, and let w⃗ be a tuple of the variables in q that are not in z⃗. The variables
of q, which are all free, are made explicit by denoting q as q(z⃗, w⃗). We are interested in
a query that, on a given database instance db, returns all tuples (c⃗, i) with c⃗ a tuple of

© Aziz Amezian El Khalfioui and Jef Wijsen;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aziz.amezianelkhalfioui@umons.ac.be
mailto:jef.wijsen@umons.ac.be
https://orcid.org/0000-0001-8216-273X
https://doi.org/10.4230/LIPIcs.ICDT.2023.23
https://doi.org/10.48550/arXiv.2211.04134
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 CQA for Primary Keys and CQs with Counting

constants, of the same arity as z⃗, and with i a positive integer that is the number of distinct
tuples d⃗, of the same arity as w⃗, satisfying (c⃗, d⃗) ∈ q(db). This counting query will be
denoted cnt(q, z⃗).

For example, consider the database schema of Fig. 1, which is intended to store the unique
gender and department of each employee, and the unique building of each department. Ignore
for now that the database instance of Fig. 1 is inconsistent (as it stores two departments
for Anny, and two buildings for IT). Let q0(x, y, z) = E(x, ‘F’, y) ∧ D(y, z), where x, y, z are
variables and ‘F’ denotes a constant. Then, on a consistent database instance, cnt(q0, z)
would return the number of female employees working in each building. In SQL, cnt(q0, z)
can be encoded as follows:

SELECT Building, COUNT(*) AS CNT
FROM E, D
WHERE E.Dept = D.Dept AND Gender = ’F’
GROUP BY Building

On the database instance of Fig. 1, this query will return (A, 4) and (B, 3). These answers
are however not meaningful because they suffer from double-counting due to inconsistencies.
We describe next a more meaningful semantics that was introduced in [2].

First, following [1], we define a repair of a database instance as a maximal subinstance
that satisfies all primary-key constraints. In this paper, we consider no other constraints than
primary keys. Then, following the approach of [2], more meaningful answers are obtained by
returning, for every value c⃗ for the grouping variables z⃗, tight lower and upper bounds on the
corresponding counts over all repairs. This new query is denoted by cqacnt(q, z⃗). Thus, an
answer (c⃗, [m, n]) to this new query means that on every repair, our original query cnt(q, z⃗)
returns a tuple (c⃗, i) with m ≤ i ≤ n, and, moreover, these bounds m and n are tight. By
tight, we mean that for every j ∈ {m, n}, there is a repair on which cnt(q, z⃗) returns (c⃗, j).

For example, the database instance of Fig. 1 has four repairs, because there are two choices
for Anny’s department, and two choices for the building of the IT department. Note that in
Fig. 1, blocks of conflicting tuples are separated by dashed lines. The query cnt(q0, z) returns
different answers on each repair: there are two repairs where the answer is {(A, 3), (B, 1)};
there is one repair where the answer is {(A, 1), (B, 3)}; and there is one repair where the
answer is {(A, 2), (B, 2)}. The latter set of answers, for example, is obtained in the repair
that assigns Anny to department HR, and IT to building B. The query cqacnt(q0, z) would
thus return {(A, [1, 3]), (B, [1, 3])}.

In this paper, we are concerned about the complexity of computing cqacnt(q, z⃗). In
general, there exist self-join-free conjunctive queries q such that, for some choice of the
grouping variables z⃗, cqacnt(q, z⃗) cannot be solved in polynomial time (under standard
complexity assumptions). This follows from earlier research showing that there are self-join-
free conjunctive queries q′(z⃗) for which the following problem is coNP-complete: given c⃗

and db, determine whether q′(c⃗) is true in every repair of db. The latter problem obviously
reduces to counting: q′(c⃗) is true in every repair of db if and only if cqacnt(q, z⃗) returns
(c⃗, [m, n]) on db for some m ≥ 1, where q is the full query obtained from q′ by dropping
quantification.

In his PhD thesis [18], Fuxman showed that for some q and z⃗, the answer to cqacnt(q, z⃗)
can be computed by executing first-order queries followed by simple counting steps. To
illustrate his approach, consider the following query in SQL:

SELECT Building, COUNT(DISTINCT Emp) AS CNT
FROM E, D
WHERE E.Dept = D.Dept AND Gender = ’F’
GROUP BY Building

A. Amezian El Khalfioui and J. Wijsen 23:3

E Emp Gender Dept
Suzy F HR
Anny F HR
Anny F IT
Grety F IT
Lucy F MIS

D Dept Building
HR A
IT A
IT B
MIS B

Figure 1 Example database. Primary keys are underlined.

On our example database of Fig. 1, this query returns {(A, 3), (B, 3)}. We observe that the
returned counts match the upper bounds previously found for cqacnt(q0, z). Importantly,
it can be shown that this is not by accident: on every database instance, the latter SQL
query will return the correct upper bounds for cqacnt(q0, z). Note that the latter query
uses COUNT(DISTINCT Emp), which means that duplicates are removed, which is a standard
practice in relational algebra.

We now explain how to obtain the lower bounds for our example query. To this end,
consider the following query:

SELECT Building, Emp
FROM E, D
WHERE E.Dept = D.Dept AND Gender = ’F’

Following [1], we define the consistent answer to such a query as the intersection of the query
answers on all repairs. For our example database, the consistent answer is the following
table, which we call C:

C Emp Building
Suzy A
Lucy B

Note that Anny does not occur in the consistent answer, because (Anny, A) is false in some
repair, and so is (Anny, B). From [29], it follows that computing the consistent answers to the
latter SQL query is in FO (i.e., the class of problems that can be solved by a first-order query),
using a technique known as consistent first-order rewriting. The lower bounds {(A, 1), (B, 1)}
are now found by executing the following query on C (and, again, this is not by accident):

SELECT Building, COUNT(DISTINCT Emp) AS CNT
FROM C
GROUP BY Building

Since C can be expressed in SQL, we can actually construct a single SQL query that computes
the lower bounds in cqacnt(q0, z).

In general, if q(z⃗, w⃗) is a full self-join-free conjunctive query for which cqacnt(q, z⃗) can
be computed as previously described, then we will say that the query obtained from q by
existentially binding the variables in w⃗ (i.e., by binding the variables that are not grouping
variables) admits parsimonious counting. Thus, our example showed that ∃x∃y E(x, ‘F’, y) ∧
D(y, z) admits parsimonious counting. A formal definition of parsimonious counting will
be given later on (Definition 8). In this introduction, we content ourselves by saying that
parsimonious counting, if possible, computes cqacnt(q, z⃗) by executing two first-order queries
(one for lower bounds, and one for upper bounds), followed by simple counting steps.

The main contribution of our paper can now be described. In his doctoral dissertation [18],
Fuxman defined a class of self-join-free conjunctive queries, called Cforest, and showed the
following.

ICDT 2023

23:4 CQA for Primary Keys and CQs with Counting

▶ Theorem 1 ([18]). Every query in Cforest admits parsimonious counting.

The class Cforest has been used in several studies on consistent query answering. It
was an open question whether Cforest contains all self-join-free conjunctive queries that
admit parsimonious counting. We will answer this question negatively in Section 8. More
fundamentally, we introduce a new syntactic class, called Cparsimony, which includes Cforest
and contains all (and only) self-join-free conjunctive queries that admit parsimonious counting.
That is, we prove the following theorem.

▶ Theorem 2 (Main theorem). For every self-join-free conjunctive query q, it holds that q

admits parsimonious counting if and only if q is in Cparsimony.

Moreover, a new and simpler proof for Theorem 1 will follow in Section 8.
The remainder of this paper is organized as follows. Section 2 discusses related work.

Section 3 introduces preliminary constructs and notations. Section 4 introduces the semantic
notion of parsimonious counting. Section 5 introduces our new syntactic class of queries,
called Cparsimony, which restricts self-join-free conjunctive queries. Section 6 shows that every
query in Cparsimony admits parsimonious counting, and Section 7 shows that Cparsimony
contains every self-join-free conjunctive query that admits parsimonious counting. Section 8
shows that Cforest is strictly included in Cparsimony, and provides a new proof for Theorem 1.
Section 9 concludes the paper. Several helping lemmas and proofs are available in [25].

2 Related Work

Consistent query answering (CQA) started by a seminal paper in 1999 co-authored by Arenas,
Bertossi, and Chomicki [1], who introduced the notions of repair and consistent answer. Two
years later, the same authors introduced the range semantics (with lower and upper bounds)
for queries with aggregation [2, 3][4, Chapter 5], which has been commonly adopted ever since.
In particular, it was adopted in the PhD thesis [18] of Fuxman, who provided Theorem 1
(albeit using different terminology) and its proof, and used this result in the implementation
of the ConQuer system [19]. ConQuer aims at computations in first-order logic with counting
(coined “parsimonious counting” in the current paper), which can be encoded in SQL. This is
different from AggCAvSAT [15], a recent system by Dixit and Kolaitis, which uses powerful
SAT solvers for computing range semantics, and thus can solve queries that are beyond the
computational power of ConQuer. Aggregation queries were also studied in the context of
CQA in [6].

Consistent query answering for self-join-free conjunctive queries q and primary keys has
been intensively studied. Its decision variant, which was coined CERTAINTY(q) in 2010 [36],
asks whether a Boolean query q is true in every repair of a given database instance. A
systematic study of its complexity for self-join-free conjunctive queries had started already
in 2005 [21], and was eventually solved in two journal articles by Koutris and Wijsen [29, 32],
as follows: for every self-join-free Boolean conjunctive query q, CERTAINTY(q) is either in
FO, L-complete, or coNP-complete, and it is decidable, given q, which case applies. This
complexity classification extends to non-Boolean queries by treating free variables as constants.
Other extensions beyond this trichotomy deal with foreign keys [23], more than one key
per relation [31], negated atoms [30], or restricted self-joins [28]. For unions of conjunctive
queries q, Fontaine [17] established interesting relationships between CERTAINTY(q) and
Bulatov’s dichotomy theorem for conservative CSP [7].

The counting variant of CERTAINTY(q), denoted ♯CERTAINTY(q), asks to count the
number of repairs that satisfy some Boolean query q. This counting problem is fundamentally
different from the range semantics in the current paper. For self-join-free conjunctive queries,

A. Amezian El Khalfioui and J. Wijsen 23:5

♯CERTAINTY(q) exhibits a dichotomy between FP and ♯P-complete under polynomial-time
Turing reductions [33]. This dichotomy has been shown to extend to queries with self-joins if
primary keys are singletons [34], and to functional dependencies [11]. Calautti, Console, and
Pieris present in [8] a complexity analysis of these counting problems under weaker reductions,
in particular, under many-one logspace reductions. The same authors have conducted
an experimental evaluation of randomized approximation schemes for approximating the
percentage of repairs that satisfy a given query [9]. Other approaches to making CQA more
meaningful and/or tractable include operational repairs [10, 12] and preferred repairs [26, 35].

Recent overviews of two decades of theoretical research in CQA are [5, 37]. It is worthwhile
to note that theoretical research in CERTAINTY(q) has stimulated implementations and
experiments in prototype systems [14, 16, 19, 20, 24, 27].

3 Preliminaries

We assume that every relation name R is associated with an arity, which is a positive integer.
We assume that all primary-key positions precede all non-primary-key positions. We say that
R has signature [n, k] if R has arity n and primary-key positions 1, . . . , k.

If R has signature [n, k] and s1, . . . , sn are variables or constants, then R(s1, . . . , sn) is
an R-atom (or simply atom), which will often be denoted as R(s1, . . . , sk, sk+1, . . . , sn) to
distinguish between primary-key and non-primary-key positions. Two atoms R1(s⃗1, t⃗1) and
R2(s⃗2, t⃗2) are said to be key-equal if R1 = R2 and s⃗1 = s⃗2. A fact is an atom in which no
variable occurs. A database instance (or simply database) is a finite set of facts. A database
instance db is consistent if it does not contain two distinct key-equal facts. A repair of db
is a ⊆-maximal consistent subset of db.

If s⃗ is a tuple of variables or constants, then |s⃗| denotes the arity of s⃗, and vars(s⃗) denotes
the set of variables occurring in s⃗. By an abuse of notation, if we use a tuple z⃗ of variables
at places where a set of variables is expected, we mean vars(z⃗). For an atom F = R(s⃗, t⃗), we
define Key(F) := vars(s⃗), notKey(F) := vars(⃗t) \ vars(s⃗), and vars(F) := vars(s⃗) ∪ vars(⃗t). For
example, if F = R(c, x, x, y, y, z, c), then Key(F) = {x, y} and notKey(F) = {z}, where c is
a constant.

Conjunctive Queries. A conjunctive query q is a first-order formula of the form:

∃w⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
, (1)

where the variables of w⃗ are bound, and the other variables are free. Such a query is also
denoted by q(z⃗) with z⃗ a tuple composed of the free variables. We write vars(q) for the
set of variables that occur in q, and can assume vars(q) = vars(w⃗) ∪ vars(z⃗) without loss
of generality. We say that q is full if all variables of vars(q) are free. We say that q is
self-join-free if i ̸= j implies Ri ̸= Rj . The quantifier-free part R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)
of q is denoted body(q). By slightly overloading notation, we also use body(q) for the set
{R1(x⃗1, y⃗1), . . . , Rn(x⃗n, y⃗n)}. We write free(q) for the set of free variables in q.

If a self-join-free conjunctive query q is understood, and we use a relation name R at
places where an atom is expected, then we mean the unique R-atom of q. If c⃗ is a tuple of
constants of arity |z⃗| and db a database instance, then db |= q(c⃗) denotes that q(c⃗) is true
in db using standard first-order semantics. If db |= q(c⃗), we also write c⃗ ∈ q(db), and we
say that c⃗ is an answer to q on db.

We now introduce operators for turning bound variables into free variables, or vice versa,
and for instantiating free variables.

ICDT 2023

23:6 CQA for Primary Keys and CQs with Counting

Making bound variables free. Let q be a conjunctive query with free(q) = z⃗. Let x⃗ be
a tuple of (not necessarily all) bound variables in q (hence x⃗ ∩ z⃗ = ∅). We write
∄x⃗ [q] for the conjunctive query q′ such that free(q′) = z⃗ ∪ x⃗ and body(q′) = body(q).
Informally, ∄x⃗ [q] is obtained from q by omitting the quantification ∃x⃗. For example, if
q(z) = ∃x∃y R(x, y) ∧ R(y, z), then ∄x [q] = ∃y R(x, y) ∧ R(y, z).

Binding free variables. Let q be a conjunctive query, and x⃗ a tuple of (not necessarily all)
free variables of q. Then ∃x⃗ [q] denotes the query with the same body as q, but whose set
of free variables is free(q) \ x⃗.

Instantiating free variables. Let q be a conjunctive query, and z⃗ a tuple of distinct free
variables of q. Let c⃗ be a tuple of constants of arity |z⃗|. Then q[z⃗→c⃗] is the query obtained
from q by replacing, for every i ∈ {1, 2, . . . , |z⃗|}, each occurrence of the ith variable in z⃗

by the ith constant in c⃗.

Consistent Query Answering. Let q(z⃗) be a conjunctive query. We write db |=cqa q(c⃗) if
for every repair r of db, we have r |= q(c⃗). If db |=cqa q(c⃗), we also say that c⃗ is a consistent
answer to q on db. A consistent first-order rewriting of q(z⃗) is a first-order formula φ(z⃗)
such that for every database instance db and every tuple c⃗ of constants of arity |z⃗|, we have
db |=cqa q(c⃗) if and only if db |= φ(c⃗). Note incidentally that the set of integrity constraints
is always implicitly understood to be the primary keys associated with the relation names
that occur in the query.

Query Graph. The query graph of a conjunctive query q(z⃗) is an undirected graph whose
vertices are the bound variables of q. There is an edge between x and y if x ̸= y and x, y

occur together in some atom of body(q).

Attack Graph. The following is a straightforward extension of attack graphs [29] to deal
with free variables.

Let q(z⃗) be a self-join-free conjunctive query. If S is a subset of body(q), then q \ S

denotes the query obtained from q by removing from q all atoms in S. Every variable of
q \ S that is free in q remains free in q \ S; and every variable of q \ S that is bound in q

remains bound in q \ S.
We define K(q) as the set of functional dependencies that contains ∅ → free(q) and

contains, for every atom F in q, the functional dependency Key(F) → vars(F). Note that
since K(q) contains ∅ → free(q), we have that K(q) |= ∅ → y if and only if K(q) |= free(q) → y,
for each y ∈ vars(q). If F is an atom of q, then F +,q is the set that contains every variable
y ∈ vars(q) such that either y ∈ free(q) or K(q \ {F}) |= Key(F) → y (or both).

It is known that in the study of consistent query answering for self-join-free conjunct-
ive queries, we often do not need a special treatment of free variables, because comput-
ing consistent answers to q(z⃗) has the same time complexity as the decision problem
CERTAINTY(q(z⃗)[z⃗→c⃗]) with c⃗ a sequence of pairwise distinct fresh constants. The ad-
dition of functional dependencies ∅ → free(q) has the same effect as treating variables in
free(q) as constants. In the following example, we omit curly braces and commas when
denoting sets of variables. For example, {z1, z2} is denoted z1z2.

▶ Example 3. Let q = ∃u∃v∃x∃y R(u, x) ∧ S(x, z1, y) ∧ T (y, v, z2) ∧ U(y, u). We have
free(q) = z1z2. Then, q \ {T}1 is the query ∃u∃v∃x∃y R(u, x) ∧ S(x, z1, y) ∧ U(y, u), whose
only free variable is z1. Note incidentally that since v does not occur in the latter query, the

1 Recall that we use T as a shorthand for the T -atom of q.

A. Amezian El Khalfioui and J. Wijsen 23:7

quantification ∃v can be dropped. We have K(q \ {T}) = {∅ → z1, u → x, xz1 → y, y → u}.
Note that ∅ → z1 belongs to the latter set because z1 is free in q \ {T}. The set of variables
that are functionally dependent on Key(T) relative to K(q \ {T}) is uxyz1. Finally, we obtain
T +,q = uxyz1z2. Note that the latter set contains the variable z2 that is free in q. ⌟

We say that an atom F of q attacks a variable x occurring in q, denoted F
q
⇝ x, if there

exists a sequence ⟨x1, x2, . . . , xn⟩ of bound variables of q (n ≥ 1) such that:
1. if two variables are adjacent in the sequence, then they occur together in some atom of q;
2. x1 ∈ notKey(F) and xn = x; and
3. for every ℓ ∈ {1, . . . , n}, xℓ ̸∈ F +,q.
Such a sequence will be called a witness of F

q
⇝ x. We say that an atom F of q attacks

another atom G of q, denoted F
q
⇝ G, if F ̸= G and F attacks some variable of vars(G).

It is now easily verified that if F attacks G, then F also attacks a variable in Key(G). A
variable or atom that is not attacked, is called unattacked (where q is understood from the
context). The attack graph of q is a directed graph whose vertices are the atoms of q; there
is a directed edge from F to G if F

q
⇝ G. A directed edge in the attack graph is called an

attack. Koutris and Wijsen [29] showed the following.

▶ Theorem 4 ([29]). A self-join-free conjunctive query q(z⃗) has a consistent first-order
rewriting if and only if its attack graph is acyclic.

An attack from F to G is weak if K(q) |= Key(F) → Key(G); otherwise it is strong. By a
component of an attack graph, we always mean a maximal weakly connected component.

Let q be a self-join-free conjunctive query. Whenever the relationship K(q) |= Z → w

holds true, then there exists a sequential proof of it, as defined next.

Sequential Proof. Let q(z⃗) be a self-join-free conjunctive query, and Z ⊆ vars(q). Let
⟨F1, F2, . . . , Fn⟩ be a (possibly empty) sequence of atoms in body(q) such that for every
i ∈ {1, . . . , n}, Key(Fi) ⊆ free(q)∪Z ∪

(⋃i−1
j=1 vars(Fj)

)
. Such a sequence is called a sequential

proof of K(q) |= Z → w, for every w ∈ free(q) ∪ Z ∪
(⋃n

j=1 vars(Fj)
)

. A sequential proof of
K(q) |= Z → w is called minimal if ⟨F1, . . . , Fn−1⟩ is not a sequential proof of K(q) |= Z → w.

4 Parsimonious Counting

Consider a conjunctive query q(z⃗) = ∃w⃗ B, with B a quantifier-free conjunction of atoms
(called the body). We introduce a query that takes a database instance db as input and
returns, for every tuple c⃗ ∈ q(db), the number of valuations for w⃗ that make the query true.

▶ Definition 5 (cnt(q, z⃗)). Let q(z⃗, w⃗) be a full conjunctive query, in which notation it
is understood that z⃗ and w⃗ are disjoint, duplicate-free tuples of variables. cnt(q, z⃗) is the
query that takes as input a database instance db and returns every tuple (c⃗, i) for which the
following hold:
1. c⃗ a tuple of constants of arity |z⃗|; and
2. i is a positive integer such that i is the number of distinct tuples d⃗, of arity |w⃗|, satisfying

db |= q(c⃗, d⃗).
A maximal set of answers to q(db) that agree on z⃗ will also be called a z⃗-group (where
q and db are implicitly understood). Thus, cnt(q, z⃗) counts the number of tuples in each
z⃗-group.

The following definition introduces range consistent query answers as introduced in [2].

ICDT 2023

23:8 CQA for Primary Keys and CQs with Counting

▶ Definition 6 (cqacnt(q, z⃗)). Let q(z⃗, w⃗) be a full conjunctive query, in which notation it
is understood that z⃗ and w⃗ are disjoint, duplicate-free tuples of variables. cqacnt(q, z⃗) is the
query that takes as input a database instance db and returns every tuple (c⃗, [m, n]) for which
the following hold:
1. for every repair r of db, there exists d⃗ such that r |= q(c⃗, d⃗);
2. there is a repair of db on which cnt(q, z⃗) returns (c⃗, m);
3. there is a repair of db on which cnt(q, z⃗) returns (c⃗, n); and
4. if cnt(q, z⃗) returns (c⃗, i) on some repair of db, then m ≤ i ≤ n.
If (c⃗, [m, n]) is an answer to cqacnt(q, z⃗) on db, then we will say that it is a range-consistent
answer. Note that if (c⃗, [m, n]) is a range-consistent answer, then, by definition, c⃗ is a
consistent answer to q(z⃗), hence m ≥ 1.

The following proposition states that computing cqacnt(q(z⃗, w⃗), z⃗) can be NP-hard, even
if the query ∃w⃗ [q] has a consistent first-order rewriting.

▶ Proposition 7. There exists a self-join-free conjunctive query q(z⃗) that has a consistent
first-order rewriting such that cqacnt(body(q), z⃗) is NP-hard to compute.

Proof sketch. In 3-DIMENSIONAL MATCHING (3DM), we are given a set M ⊆ A1 ×A2 ×A3,
where A1, A2, A3 are disjoint sets having the same number n of elements. We are asked
whether M contains a matching, that is, a subset M ′ ⊆ M such that |M ′| = n and no two
elements of M ′ agree in any coordinate. The problem 3DM is NP-complete [22].

Consider the query q(z) = ∃x1∃x2∃x3∃y Z(z) ∧
∧3

i=1
(
Ri(xi, y) ∧ Si(xi, y)

)
. The edge-set

of q’s attack graph is empty. Therefore, q’s attack graph is acyclic. By Theorem 4, q(z)
has a consistent first-order rewriting. Let M ⊆ A1 × A2 × A3 be an instance of 3DM. Let
dbM be the database instance that contains Z(c) and includes, for every a1a2a3 in M ,⋃3

i=1{Ri(ai, a1a2a3), Si(ai, a1a2a3)}. Moreover, dbM includes
⋃3

i=1{Ri(⊥i, ⊤), Si(⊥i, ⊤)},
where ⊥1, ⊥2, ⊥3, ⊤ are fresh constants not in A1 ∪ A2 ∪ A3. Clearly, dbM is first-order
computable from M . It can now be verified that M has a matching if and only if for some ℓ,
cqacnt(body(q), z) returns (c, [ℓ, n + 1]) on dbM . ◀

Note that the foregoing proof can be easily adapted from 3DM to 2DM. That is, the query
q(z) = ∃x1∃x2∃y Z(z)∧

∧2
i=1

(
Ri(xi, y) ∧ Si(xi, y)

)
has a consistent first-order rewriting, but

computing cqacnt(body(q), z) is as hard as 2DM.
We now introduce the semantic notion of parsimonious counting, which was illustrated

by the running example in Section 1. Informally, for a query q(z⃗) that admits parsimo-
nious counting, it will be the case that on every database instance db, the answers to
cqacnt(body(q), z⃗) can be computed by a first-order query followed by a simple counting
step.

▶ Definition 8 (Parsimonious counting). Let q be a conjunctive query with free(q) = z⃗.2 Let x⃗

be a (possibly empty) sequence of distinct bound variables of q(z⃗). We say that q admits
parsimonious counting on x⃗ if the following hold (let q′(z⃗, x⃗) = ∄x⃗ [q]):
(A) q(z⃗) has a consistent first-order rewriting;
(B) q′(z⃗, x⃗) has a consistent first-order rewriting (call it φ(z⃗, x⃗)); and
(C) for every database instance db, the following conditions (Ca) and (Cb) are equivalent:

2 We will commonly write q(z⃗) to make explicit that free(q) = z⃗.

A. Amezian El Khalfioui and J. Wijsen 23:9

(a) (c⃗, [m, n]) is an answer to cqacnt(body(q), z⃗) on db;
(b) m ≥ 1 and both the following hold:

(i) m is the number of distinct tuples d⃗, of arity x⃗, such that db |= φ(c⃗, d⃗); and
(ii) n is the number of distinct tuples d⃗ such that db |= q′(c⃗, d⃗).

We say that q admits parsimonious counting if it admits parsimonious counting on some
sequence x⃗ of bound variables.

Significantly, since Definition 8 contains a condition that must hold for every database
instance db, it does not give us an efficient procedure for deciding whether a given self-join-free
query q(z⃗) admits parsimonious counting.

We now give some examples. From the proof of Proposition 7 and the paragraph after
that proof, it follows that under standard complexity assumptions, for k ≥ 2,

qk(z) := ∃x1 · · · ∃xk∃y Z(z) ∧
k∧

i=1

(
Ri(xi, y) ∧ Si(xi, y)

)
does not admit parsimonious counting, even though qk(z) has a consistent first-order rewriting.
The following example shows a query q(z) that does not admit parsimonious counting, but
for which cqacnt(body(q), z) can be computed in first-order logic with a counting step that
is slightly more involved than what is allowed in parsimonious counting.

▶ Example 9. Let q(z) = ∃x∃y R(z, x) ∧ S(x, y) and q∗(z, x, y) = R(z, x) ∧ S(x, y). We first
argue that q(z) does not admit parsimonious counting. Let db be the following database
instance:

R z x

c1 a

c2 a

c2 b

S x y

a d

a e

b f

It can be verified that on this database instance, cqacnt(q∗, z) must return (c1, [2, 2]) and
(c2, [1, 2]). We next show the answer to q∗ on db:

q∗(db) z x y

c1 a d

c1 a e

c2 a d

c2 a e

c2 b f

The correct upper bound of 2 in (c2, [1, 2]) could only be obtained by counting, within the
c2-group, the number of distinct ⟨x⟩-values. However, such a counting would conclude an
incorrect upper bound of 1 for the c1-group. It is now correct to conclude that q(z) does not
admit parsimonious counting.

The lower and upper bounds can be obtained from q∗(db) by a counting step that is only
slightly more involved than what is allowed in parsimonious counting. First, construct the
following relation where R̃(cj , v | n) means that cnt(q∗, z) returns (cj , n) on a repair that
contains R(cj , v).

R̃ z x

c1 a 2
c2 a 2
c2 b 1

ICDT 2023

23:10 CQA for Primary Keys and CQs with Counting

These counts can be obtained from q∗(db) by counting the number of distinct y-values
within each zx-group. Next, the lower and upper bounds are obtained as the minimal and
maximal counts within each z-group.

Note incidentally that for q0(z) := ∃x∃y R(z, x) ∧ T (z, x) ∧ S(x, y), which is obtained
from q(z) by adding T (z, x), we have that q0 admits parsimonious counting. The change
occurs because if db |=cqa q0(c), then there exists a unique value a such that db |=
∀x (R(c, x) → x = a) and db |= ∀x (T (c, x) → x = a). That is, the only blocks that can
contribute to cqacnt(body(q0), z) have cardinality 1. This means that range semantics
reduces to counting on a consistent database instance. ⌟

5 The Class Cparsimony

The notion of parsimonious counting is a semantic property defined for conjunctive queries.
A natural question is to syntactically characterize the class of conjunctive queries that admit
parsimonious counting. In this paper, we will answer this question under the restriction
that queries are self-join-free. This is the best we can currently hope for, because consistent
query answering for primary keys and conjunctive queries with self-joins is a notorious open
problem for which no tools are known (e.g., attack graphs are not helpful in the presence
of self-joins). We now define our new syntactic class Cparsimony, which uses the following
notion of frozen variable.

▶ Definition 10 (Frozen variable). Let q(z⃗) be a self-join-free conjunctive query. We say that
a bound variable y of q(z⃗) is frozen in q if there exists a sequential proof of K(q) |= ∅ → y

such that F
q

̸⇝ y for every atom F that occurs in the sequential proof. We write frozen(q)
for the set of all bound variables of vars(q) that are frozen in q. A bound variable that is not
frozen in q is called nonfrozen in q.

▶ Example 11. Let q(z) = ∃x R(z, x) ∧ S(z, x). We have R
q

̸⇝ x. Therefore, ⟨R(z, x)⟩ is a
sequential proof of K(q) |= ∅ → x that uses no atom attacking x. Hence, x is frozen. Note
here that z is free, hence K(q) |= ∅ → z by definition. ⌟

▶ Definition 12 (The class Cparsimony). We define Cparsimony as the set of self-join-free
conjunctive queries q(z⃗) satisfying the following conditions:

(I) the attack graph of q(z⃗) is acyclic and contains no strong attacks; and
(II) there is a tuple x⃗ of bound variables of q(z⃗) such that:

(1) every component3 of q(z⃗)’s attack graph contains an unattacked atom R such that
K(q) |= x⃗ → Key(R); and

(2) for every atom R in body(q(z⃗)), every (possibly empty) path in the query graph
of q(z⃗) between a variable of notKey(R) and a variable of x⃗ uses a variable in
Key(R) ∪ frozen(q).

We will say that such an x⃗ is an id-set for q(z⃗). We will say that an id-set x⃗ is minimal if
any sequence obtained from x⃗ by omitting one or more variables is no longer an id-set.

Informally, id-sets x⃗ will play the role of x⃗ in Definition 8: they identify the values that
have to be counted within each z⃗-group to obtain range-consistent answers.

3 Whenever we use the term component, we mean a maximal weakly connected component.

A. Amezian El Khalfioui and J. Wijsen 23:11

R(x, y1) S(x, y2)

T (y1, y2, y3, z)

P (v, w)

y1

y2

y3 x

v

w

Figure 2 Attack graph (left) and query graph (right) of q(z) = ∃x∃y1∃y2∃y3∃v∃w R(x, y1) ∧
S(x, y2) ∧ T (y1, y2, y3, z) ∧ P (v, w).

We now illustrate Definition 12 by some examples. Then Proposition 17 implies that every
query q(z⃗) in Cparsimony has a unique minimal id-set that can be easily constructed from
q(z⃗)’s attack graph. Finally, Proposition 18 settles the complexity of checking membership
in Cparsimony.

▶ Example 13. In the paragraph following the proof of Proposition 7, we introduced the
query q(z) = ∃x1∃x2∃y Z(z) ∧

∧2
i=1

(
Ri(xi, y) ∧ Si(xi, y)

)
. The edge-set of q(z)’s attack

graph is empty. No variable is frozen. According to condition II1 in Definition 12, every
id-set (if any) must contain x1. However, no id-set can contain x1, because for the atom
R2(x2, y), the edge {y, x1} in the query graph is a path between a variable of notKey(R2)
and x1 that uses no variable of Key(R2). We conclude that q(z) is not in Cparsimony. ⌟

▶ Example 14. The query q(z) = ∃x∃y∃v R(x, y) ∧ S(y, v) ∧ T (v, y) ∧ P1(z, y) ∧ P2(z, y)
belongs to Cparsimony. The attack graph of q(z) has a single attack from S to T . The query
graph of q(z) has two undirected edges: {x, y} and {y, v}. The variable y is frozen, because
⟨P1(z, y)⟩ is a sequential proof of K(q) |= ∅ → y (note here that z is free), and P1

q

̸⇝ y.
It can be verified that ⟨x⟩ is an id-set. Note that ⟨y, x⟩ is a path in the query graph

between y ∈ notKey(T) and x that uses no variable of Key(T) = {v}. However, that path
uses the frozen variable y. ⌟

▶ Example 15. Let q(z) = ∃x∃y1∃y2∃y3∃v∃w R(x, y1) ∧ S(x, y2) ∧ T (y1, y2, y3, z) ∧ P (v, w).
The attack graph and the query graph of q(z) are shown in Fig. 2. We now argue that
q(z) is in Cparsimony. First, the attack graph of q is acyclic and contains no strong attacks.
We next argue that xv is an id-set for q. The attack graph of q(z) has two components.
Condition II1 in Definition 12 is obviously satisfied for x⃗ = xv since K(q) |= xv → v and
K(q) |= xv → x. It is easily verified that condition II2 is also verified. In particular, for the
atom T (y1, y2, y3, z), every path between y3 and x uses either y1 or y2. ⌟

▶ Example 16. Let q(z) = ∃x∃y R1(x, y, z) ∧ R2(x, y) ∧ S1(y, x) ∧ S2(y, x). The attack graph
of q(z) contains no edges and, thus, is acyclic and has four components. It can be verified
that no variable is frozen. We claim that q(z) is not in Cparsimony, because it has no id-set.
Indeed, from condition II1 in Definition 12, it follows that every id-set must contain either
x or y (or both). For the atom S1(y, x), the empty path is a path between a variable in
notKey(S1) to x that uses no variable in Key(S1). It follows by condition II2 that no id-set
can contain x. From R2(x, y), by similar reasoning, we conclude that no id-set can contain y.
It follows that q(z) has no id-set. ⌟

ICDT 2023

23:12 CQA for Primary Keys and CQs with Counting

▶ Proposition 17. Let q(z⃗) be a query in Cparsimony, and let x⃗ be a minimal id-set for it.
Let N =

⋃
{notKey(R) | R ∈ q}. Let V be a ⊆-minimal subset of vars(q) that includes, for

every unattacked atom R of q, every bound variable of Key(R) \ N . Then,
1. V = vars(x⃗); and
2. whenever R, S are unattacked atoms that are weakly connected in q(z⃗)’s attack graph,

Key(R) ∩ x⃗ = Key(S) ∩ x⃗.

▶ Proposition 18. The following decision problem is in quadratic time: Given a self-join-free
conjunctive query q(z⃗), decide whether or not q(z⃗) belongs to Cparsimony.

6 The Class Cparsimony Admits Parsimonious Counting

In this section, we show the if-direction of Theorem 2, which is the following theorem.

▶ Theorem 19. Every self-join-free conjunctive query in Cparsimony admits parsimonious
counting.

We use a number of helping lemmas and constructs. The following lemma says that if x⃗

is an id-set of a query q(z⃗) in Cparsimony, then for a consistent database db, the answers
to cnt(body(q), z⃗) can be obtained by counting the number of distinct x⃗-values within
each z⃗-group, while variables not in x⃗ · z⃗ can be ignored.

▶ Lemma 20. Let q(z⃗, x⃗, w⃗) be a full self-join free conjunctive query, in which notation it
is understood that z⃗, x⃗ and w⃗ are disjoint, duplicate-free tuples of variables. Assume that
the query ∃x⃗w⃗ [q] belongs to Cparsimony and that x⃗ is an id-set for it. Let db be a consistent
database instance. For all tuples a⃗ and b⃗ of constants, of arities |z⃗| and |x⃗| respectively, for
all tuples c⃗1 and c⃗2 of arity |w⃗|, if db |= q(⃗a, b⃗, c⃗1) and db |= q(⃗a, b⃗, c⃗2), then c⃗1 = c⃗2.

We now present the notion of optimistic repair, which was originally introduced by
Fuxman [18]. Informally, a repair r of a database db is an optimistic repair with respect
to a conjunctive query q(z⃗) if every tuple that is an answer to q(z⃗) on db is also an answer
to q(z⃗) on r. The converse obviously holds true because conjunctive queries are monotone
and repairs are subsets of the original database instance.

▶ Definition 21 (Optimistic repair). Let q(x⃗) be a conjunctive query. Let db be a database
instance. We say that a repair r of db is an optimistic repair with respect to q(x⃗) if for
every tuple a⃗ of constants, of arity |x⃗|, db |= q(⃗a) implies r |= q(⃗a) (the converse implication
is obviously true).

The following lemma gives a sufficient condition for the existence of optimistic repairs.

▶ Lemma 22. Let q(z⃗) be a self-join free conjunctive query in Cparsimony, and let x⃗ be a
minimal id-set for it. Let q′(z⃗, x⃗) be the query ∄x⃗ [q]. Let db be a database instance, and c⃗ a
tuple of constants, of arity |z⃗|, such that db |=cqa q(c⃗). Then, db has an optimistic repair
with respect to q′

[z⃗→c⃗].

We now present the notion of pessimistic repair, also borrowed from [18]. Informally, a
repair of a database db is a pessimistic repair with respect to a conjunctive query q(z⃗) if
every answer to q(z⃗) on r is a consistent answer to q(z⃗) on db. The converse trivially holds
true.

▶ Definition 23 (Pessimistic repair). Let q(x⃗) be a conjunctive query. Let db be a database
instance. We say that a repair r of db is a pessimistic repair with respect to q(x⃗) if for every
tuple a⃗ of constants, of arity |x⃗|, if r |= q(⃗a), then db |=cqa q(⃗a).

A. Amezian El Khalfioui and J. Wijsen 23:13

The following lemma gives a sufficient condition for the existence of pessimistic repairs.

▶ Lemma 24. Let q(z⃗) be a self-join free conjunctive query in Cparsimony, and let x⃗ be a
minimal id-set for it. Let db be a database instance, and c⃗ a tuple of constants, of arity |z⃗|,
such that db |=cqa q(c⃗). Then, db has a pessimistic repair with respect to q′

[z⃗→c⃗].

The following example illustrates the preceding constructs and lemmas.

▶ Example 25. Let q(z) = ∃x∃y∃v R(x, y) ∧ S(y, v, z) ∧ T (y, v). Let db be the following
database instance:

R x y

a1 b1

a2 b2

a3 b2

a4 b3

S y v z

b1 c1 g1

b2 c2 g1

b2 c2 g2

b3 c3 g2

T y v

b1 c1

b2 c2

b3 c3

Clearly, db has two repairs, which are r1 := db\{S(b2, b2, g2)} and r2 := db\{S(b2, b2, g1)}.
We first determine the answers to cqacnt(body(q), z) on db in a naive way without

using parsimonious counting, but by enumerating repairs. To this end, let q∗(z, x, y, v) =
R(x, y) ∧ S(y, v, z) ∧ T (y, v). We have:

q∗(r1) = {(g1, a1, b1, c1), (g1, a2, b2, c2), (g1, a3, b2, c2), (g2, a4, b3, c3)}
q∗(r2) = {(g1, a1, b1, c1), (g2, a2, b2, c2), (g2, a3, b2, c2), (g2, a4, b3, c3)}

The value g1 occurs in 3 tuples of q∗(r1), and in one tuple of q∗(r2). On the other hand,
g2 occurs in one tuple of q∗(r1), and in 3 tuples of q∗(r2). It follows that (g1, [1, 3]) and
(g2, [1, 3]) are the answers to cqacnt(body(q), z) on db.

It can be verified that q(z) ∈ Cparsimony with an id-set x⃗ = ⟨x⟩. We next compute
cqacnt(body(q), z) on db by means of parsimonious counting. To this end, let q′(z, x) =
∄x [q], and let φ(z, x) be a consistent first-order rewriting for q′(z, x). If we execute these
queries on db, we obtain:4

q′(db) = {(g1, a1), (g1, a2), (g1, a3), (g2, a2), (g2, a3), (g2, a4)}
φ(db) = {(g1, a1), (g2, a4)}

As stated in Theorem 19, the set q′(db) yields the upper bound 3 for g1 and g2, and the set
φ(db) yields the lower bound 1 for g1 and g2. It is important to understand that parsimonious
counting obtains these bounds directly on db, without computing any repair.

We elaborate this example further to illustrate the constructs of optimistic and pessimistic
repairs. We have:

q′(r1) = {(g1, a1), (g1, a2), (g1, a3), (g2, a4)}
q′(r2) = {(g1, a1), (g2, a2), (g2, a3), (g2, a4)}

Note that the consistent answer to q′(z, x) on db (i.e., the set φ(db) used previously) is
equal to q′(r1) ∩ q′(r2) = {(g1, a1), (g2, a4)}. We see that r1 is an optimistic repair with
respect to q′(z, x)[z→g1], and a pessimistic repair with respect to q′(z, x)[z→g2]. On the other
hand, r2 is an optimistic repair with respect to q′(z, x)[z→g2], and a pessimistic repair with
respect to q′(z, x)[z→g1]. ⌟

4 φ(db) is a shorthand for the set of all tuples (c, d) such that db |= φ(c, d).

ICDT 2023

23:14 CQA for Primary Keys and CQs with Counting

Proof of Theorem 19. Let q(z⃗) ∈ Cparsimony. We have to prove that q(z⃗) admits parsimo-
nious counting. Since q(z⃗) ∈ Cparsimony, we can assume an id-set x⃗ for q(z⃗). It suffices to
show that conditions A, B, and C in Definition 8 are satisfied for this choice of x⃗. As in
Definition 8, let q′(z⃗, x⃗) = ∄x⃗ [q].

Since q(z⃗) is in Cparsimony, it has an acyclic attack graph. It follows from Theorem 4
that q(z⃗) has a consistent first-order rewriting. Thus, condition A in Definition 8 is satisfied.
It is known [29] that the attack graph of q′(z⃗, x⃗) is a subgraph of the attack graph of q(z⃗).
Informally, no new attacks are introduced when bound variables are made free. It follows
that q′(z⃗, x⃗) has an acyclic attack graph, and therefore, by Theorem 4, a consistent first-order
rewriting. Thus, condition B in Definition 8 is satisfied. In the remainder of the proof,
we show that condition C in Definition 8 is satisfied. To this end, let db be an arbitrary
database instance.

Let c⃗ be a tuple of constants such that db |=cqa q(c⃗). Let D be the active domain
of db. Let f be a function that maps every subset s of db to the cardinality of the set
{a⃗ ∈ D|x⃗| | s |= q′(c⃗, a⃗)}. Clearly, for every repair r of db, we have r ⊆ db and hence, since
conjunctive queries are monotone, f(r) ≤ f(db). Moreover, since repairs are consistent,
it follows by Lemma 20 that for every repair r of db, if (c⃗, i) is an answer to the query
cnt(body(q), z⃗) on r, then i = f(r).

By Lemma 22, we can assume an optimistic repair o of db with respect to q′(z⃗, x⃗)[z⃗→c⃗].
By Definition 21 of optimistic repair, for every tuple a⃗ of constants, of arity |x⃗|, we have
o |= q′(c⃗, a⃗) if and only if db |= q′(c⃗, a⃗). It follows f(o) = f(db). Consequently, for
every repair r of db, f(r) ≤ f(o). It follows that for some lower bound m, we have that
(c⃗, [m, f(db)] is an answer to cqacnt(body(q), z⃗) on db.

By Lemma 24, we can assume a pessimistic repair p of db with respect to q′(z⃗, x⃗)[z⃗→c⃗].
Let φ(z⃗, x⃗) be a consistent first-order rewriting of q′(z⃗, x⃗). By Definition 23 of pessimistic
repair, the following hold:

p |= q(c⃗, a⃗) if and only if db |= φ(c⃗, a⃗). Therefore, f(p) is the cardinality of the set
S := {a⃗ ∈ D|x⃗| | db |= φ(c⃗, a⃗)}.
for every repair r of db, f(p) ≤ f(r).

It follows that there is an upper bound n such that that (c⃗, [|S|, n]) is an answer to
cqacnt(body(q), z⃗) on db. Putting everything together, we obtain that (c⃗, [|S|, f(db)])
is an answer to cqacnt(body(q), z⃗) on db. From this, it is correct to conclude that condi-
tion C in Definition 8 is satisfied. This concludes the proof. ◀

7 Completeness of the Class Cparsimony

In this section, we show the only-if-direction of Theorem 2, which is the following theorem.

▶ Theorem 26. Every self-join-free conjunctive query that admits parsimonious counting
belongs to Cparsimony.

The following three lemmas state some properties of queries q(z⃗) that admit parsimonious
counting on some x⃗.

▶ Lemma 27. Let q(z⃗) be a self-join-free conjunctive query. If q(z⃗) admits parsimonious
counting, then the attack graph of q(z⃗) is acyclic.

▶ Lemma 28. Let q(z⃗) be a self-join-free conjunctive query. Let x⃗ be a (possibly empty)
sequence of bound variables of q(z⃗). If q(z⃗) admits parsimonious counting on x⃗, then the
attack graph of q′(z⃗, x⃗) has no strong attack.

A. Amezian El Khalfioui and J. Wijsen 23:15

▶ Lemma 29. Let q(z⃗) be self-join-free conjunctive query whose attack graph is acyclic.
Let x⃗ be a (possibly empty) sequence of bound variables of q(z⃗). If q(z⃗) admits parsimonious
counting on x⃗, then x⃗ satisfies condition II1 in Definition 12.

The following two lemmas, and their corollary, concern condition II2 in Definition 12.

▶ Lemma 30. Let q(z⃗) be a self-join-free conjunctive query. Let x⃗ be a (possibly empty)
sequence of bound variables of q(z⃗), and let q′(z⃗, x⃗) = ∄x⃗ [q]. Let c⃗ a tuple of constants of
arity |z⃗|. If q(z⃗) admits parsimonious counting on x⃗, then for every database instance db, if
db |=cqa q(c⃗), then db has an optimistic repair with respect to q′

[z⃗→c⃗].

Proof. Assume that q(z⃗) admits parsimonious counting on x⃗. Let db be a database instance
such that db |=cqa q(c⃗). Let (c⃗, [m, n]) be an answer to cqacnt(body(q), z⃗) on db. Define

D := {d⃗ ∈ D|x⃗| | db |= q′(c⃗, d⃗)}, (2)

where D be the active domain of db. By our hypothesis that q(z⃗) admits parsimonious
counting on x⃗, it follows by condition C in Definition 8 that

n = |D|. (3)

By Definition 6, we can assume a repair r of db such that (c⃗, n) is an answer to cnt(body(q), z⃗)
on r. Since r is consistent, we have that (c⃗, [n, n]) is an answer to cqacnt(body(q), z⃗) on r.
Define

R := {d⃗ ∈ D|x⃗| | r |= q′(c⃗, d⃗)}. (4)

By our hypothesis that q(z⃗) admits parsimonious counting on x⃗, it follows by condition C in
Definition 8 that

n = |R|. (5)

Since conjunctive queries are monotone and r ⊆ db, it follows R ⊆ D. Since |R| = |D| by (3)
and (5), it follows R = D. From D ⊆ R, it follows that r is an optimistic repair with respect
to q′(z⃗, x⃗)[z⃗→c⃗]. ◀

▶ Lemma 31. Let q(z⃗), x⃗, q′(z⃗, x⃗), and c⃗ be as in the statement of Lemma 30. Assume
that x⃗ violates condition II2 in Definition 12. Then, there exists a database db such that
db |=cqa q(c⃗), but db has no optimistic repair with respect to q′

[z⃗→c⃗].

▶ Corollary 32. Let q(z⃗) be a self-join-free conjunctive query. Let x⃗ be a sequence of distinct
bound variables of q(z⃗), and let q′(z⃗, x⃗) = ∄x⃗ [q]. If q(z⃗) admits parsimonious counting on x⃗,
then x⃗ satisfies condition II2 in Definition 12.

Proof. Immediately from Lemmas 30 and 31. ◀

Finally, we need the following result.

▶ Lemma 33. Let q(z⃗) be a self-join-free conjunctive query. Let x⃗ be a sequence of distinct
bound variables of q(z⃗). Let q′(z⃗, x⃗) = ∄x⃗ [q]. Assume that x⃗ satisfies condition II2 in
Definition 12. If the attack graph of q(z⃗) has a strong attack from an atom R to an atom S,
then the attack graph of q′(z⃗, x⃗) has a strong attack from R to S.

Before giving a proof of Theorem 26, we illustrate the preceding results with an example.

ICDT 2023

23:16 CQA for Primary Keys and CQs with Counting

▶ Example 34. Let q(z) = ∃x∃y R(x, z, y) ∧ S(y, x) ∧ T (y, x). We will argue that q(z) is not
in Cparsimony, and then illustrate that it does not admit parsimonious counting.

The only edges in the attack graph of q are (R, S) and (R, T). Assume for the sake of
contradiction that q ∈ Cparsimony. Then, following Proposition 17, the minimal id-set of
q(z⃗) is ⟨⟩. However, since K(q(z)) ≡ {x → y, y → x, ∅ → z}, condition II1 in Definition 12 is
violated for x⃗ = ⟨⟩. We conclude by contradiction that q /∈ Cparsimony.

We now argue, without using Theorem 26, that q(z) does not admit parsimonious counting.
Conditions A and B in Definition 8 of parsimonious counting are satisfied for every choice of
x⃗ in {⟨⟩, ⟨x⟩, ⟨y⟩, ⟨x, y⟩}. However, we will show that condition C is not satisfied. To this
end, let x⃗ be a sequence of bound variables of q(z). Let q′(z, x⃗) = ∄x⃗ [q]. First, suppose that
x⃗ ∈ {⟨x⟩, ⟨x, y⟩}. Consider the following database instance db:

R x z y

a d e

b d e

c d f

S y x

e a

e b

f c

T y x

e a

e b

f c

We have that (d, [1, 2]) is an answer to cqacnt(body(q), z), but it can be easily verified that
|q′(db)| = 3, which is distinct from the upper bound 2.

Assume next that x⃗ ∈ {⟨y⟩, ⟨x, y⟩}. Consider the following database instance db:

R x z y

a d e

a d f

b d g

S y x

e a

f a

g b

T y x

e a

f a

g b

Now we have that (d, [2, 2]) is an answer to cqacnt(body(q), z), but |q′(db)| = 3.
The only remaining case to be considered is x⃗ = ⟨⟩. In that case q′ = q. Consider the

following database instance db:

R x z y

a d e

b d f

S y x

e a

f b

T y x

e a

f b

Since db is a consistent database instance, the only repair of db is db itself. We have that
(d, [2, 2]) is an answer to cqacnt(body(q), z) on db. It can be easily verified that |q′(db)| = 1,
which is distinct from the upper bound 2.

Finally, we claim (without proof) that 2-DIMENSIONAL MATCHING (2DM) can be
first-order reduced to computing cqacnt(body(q), z). Therefore, since 2DM is NL-hard [13],
q(z) cannot admit parsimonious counting under standard complexity assumptions. ⌟

Proof of Theorem 26. Assume that q(z⃗) admits parsimonious counting. Then, q(z⃗) has a
tuple x⃗ of bound variables such that for the query q′(z⃗, x⃗) := ∄x⃗ [q], the conditions A, B,
and C in Definition 8 are satisfied. From conditions A and B, it follows by Theorem 4 that
q(z⃗) and q′(z⃗, x⃗) have acyclic attack graphs. By Lemma 29, condition II1 in Definition 12 is
satisfied for x⃗. By Corollary 32, condition II2 in Definition 12 is satisfied by x⃗. By Lemma 28,
the attack graph of q′(z⃗, x⃗) has no strong attack. By Lemma 33, it is now correct to conclude
that the attack graph of q(z⃗) has no strong attack either, and thus condition I in Definition 12
is satisfied. Since we have shown that q(z⃗) satisfies all conditions in Definition 12, we conclude
q(z⃗) ∈ Cparsimony. ◀

A. Amezian El Khalfioui and J. Wijsen 23:17

8 Comparison with the Class Cforest

In this section, we introduce Cforest and show Cforest ⊊ Cparsimony without making use of
Theorem 1. Theorem 1 then follows by Theorem 19.

▶ Definition 35 (Cforest). Let q(z⃗) be a self-join-free conjunctive query. The Fuxman graph
of q is a directed graph whose vertices are the atoms of q. There is a directed edge from
an atom R to an atom S if R ̸= S and notKey(R) contains a bound variable that also
occurs in S. The class Cforest contains all (and only) self-join free conjunctive queries q(z⃗)
whose Fuxman graph is a directed forest satisfying, for every directed edge from R to S,
Key(S) \ free(q) ⊆ notKey(R).

▶ Theorem 36. Cforest is a strict subset of Cparsimony.

9 Conclusion and Future Work

In his PhD thesis, Fuxman [18] defined a syntactically restricted class of self-join-free
conjunctive queries, called Cforest, and showed that for every query in Cforest, consistent
answers are first-order computable, and range-consistent answers are computable in first-order
logic followed by a simple aggregation step. Our notion of “parsimonious counting” captures
the latter computation for counting. Later, Koutris and Wijsen [29] syntactically characterized
the class of all self-join-free conjunctive queries with a consistent first-order rewriting, which
strictly includes Cforest. However, it remained an open problem to syntactically characterize
the class of all self-join-free conjunctive queries that admit parsimonious counting. In this
paper, we determined the latter class, named it Cparsimony, and showed that it strictly
includes Cforest.

We now list some open problems for future research. In Definition 8 of parsimonious
counting, we required that q(z⃗) has a consistent first-order rewriting. It is known [32] that
there are self-join-free conjunctive queries, without consistent first-order rewriting, that have
a consistent rewriting in Datalog. We could relax Definition 8 by requiring the existence
of a consistent rewriting in Datalog, rather than in first-order logic. It is an open question
to syntactically characterize the self-join-free conjunctive queries that admit parsimonious
counting under such a relaxed definition.

Another open question is to characterize the complexity of cqacnt(q(z⃗, w⃗), z⃗) for every
full self-join-free conjunctive query q and choice of free variables z⃗. It is easily verified that
the complexity of computing the answers to cqacnt(q(z⃗, w⃗), z⃗) is higher than computing the
consistent answers to q′(z⃗) := ∃w⃗ [q] (because of the lower bound in range semantics). It
remains an open question to characterize this complexity if q′(z⃗) is not in Cparsimony, even
if it has a consistent first-order rewriting.

The notion of parsimonious counting does not require conjunctive queries to be self-
join-free. An ambitious open problem is to syntactically characterize the class of all (i.e.,
not necessarily self-join-free) conjunctive queries that admit parsimonious counting. This
problem is largely open, because it is already a notorious open problem to syntactically
characterize the class of conjunctive queries that have a consistent first-order rewriting.

Another open question is to extend the results in the current paper to other aggregation
operators than COUNT, including MAX, MIN, SUM, and AVG.

ICDT 2023

23:18 CQA for Primary Keys and CQs with Counting

References
1 Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query answers in

inconsistent databases. In PODS, pages 68–79. ACM Press, 1999.
2 Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Scalar aggregation in FD-inconsistent

databases. In ICDT, volume 1973 of Lecture Notes in Computer Science, pages 39–53. Springer,
2001.

3 Marcelo Arenas, Leopoldo E. Bertossi, Jan Chomicki, Xin He, Vijay Raghavan, and Jeremy P.
Spinrad. Scalar aggregation in inconsistent databases. Theor. Comput. Sci., 296(3):405–434,
2003.

4 Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis Lectures
on Data Management. Morgan & Claypool Publishers, 2011.

5 Leopoldo E. Bertossi. Database repairs and consistent query answering: Origins and further
developments. In PODS, pages 48–58. ACM, 2019.

6 Leopoldo E. Bertossi, Loreto Bravo, Enrico Franconi, and Andrei Lopatenko. The complexity
and approximation of fixing numerical attributes in databases under integrity constraints. Inf.
Syst., 33(4-5):407–434, 2008.

7 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans.
Comput. Log., 12(4):24:1–24:66, 2011.

8 Marco Calautti, Marco Console, and Andreas Pieris. Counting database repairs under primary
keys revisited. In PODS, pages 104–118. ACM, 2019.

9 Marco Calautti, Marco Console, and Andreas Pieris. Benchmarking approximate consistent
query answering. In PODS, pages 233–246. ACM, 2021.

10 Marco Calautti, Leonid Libkin, and Andreas Pieris. An operational approach to consistent
query answering. In PODS, pages 239–251. ACM, 2018.

11 Marco Calautti, Ester Livshits, Andreas Pieris, and Markus Schneider. Counting database
repairs entailing a query: The case of functional dependencies. In PODS, pages 403–412. ACM,
2022.

12 Marco Calautti, Ester Livshits, Andreas Pieris, and Markus Schneider. Uniform operational
consistent query answering. In PODS, pages 393–402. ACM, 2022.

13 Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. Constant depth reducibility. SIAM
J. Comput., 13(2):423–439, 1984.

14 Akhil A. Dixit and Phokion G. Kolaitis. A SAT-based system for consistent query answering.
In SAT, volume 11628 of Lecture Notes in Computer Science, pages 117–135. Springer, 2019.

15 Akhil A. Dixit and Phokion G. Kolaitis. Consistent answers of aggregation queries via SAT.
In ICDE, pages 924–937. IEEE, 2022.

16 Zhiwei Fan, Paraschos Koutris, Xiating Ouyang, and Jef Wijsen. LinCQA: Faster consistent
query answering with linear time guarantees. CoRR, abs/2208.12339, 2022. arXiv:2208.12339.

17 Gaëlle Fontaine. Why is it hard to obtain a dichotomy for consistent query answering? ACM
Trans. Comput. Log., 16(1):7:1–7:24, 2015.

18 Ariel Fuxman. Efficient query processing over inconsistent databases. PhD thesis, University
of Toronto, 2007.

19 Ariel Fuxman, Elham Fazli, and Renée J. Miller. ConQuer: Efficient management of inconsist-
ent databases. In SIGMOD Conference, pages 155–166. ACM, 2005.

20 Ariel Fuxman, Diego Fuxman, and Renée J. Miller. ConQuer: A system for efficient querying
over inconsistent databases. In VLDB, pages 1354–1357. ACM, 2005.

21 Ariel Fuxman and Renée J. Miller. First-order query rewriting for inconsistent databases. In
ICDT, volume 3363 of Lecture Notes in Computer Science, pages 337–351. Springer, 2005.

22 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

23 Miika Hannula and Jef Wijsen. A dichotomy in consistent query answering for primary keys
and unary foreign keys. In PODS, pages 437–449. ACM, 2022.

http://arxiv.org/abs/2208.12339

A. Amezian El Khalfioui and J. Wijsen 23:19

24 Aziz Amezian El Khalfioui, Jonathan Joertz, Dorian Labeeuw, Gaëtan Staquet, and Jef Wijsen.
Optimization of answer set programs for consistent query answering by means of first-order
rewriting. In CIKM, pages 25–34. ACM, 2020.

25 Aziz Amezian El Khalfioui and Jef Wijsen. Consistent query answering for primary keys and
conjunctive queries with counting. CoRR, abs/2211.04134, 2022. arXiv:2211.04134.

26 Benny Kimelfeld, Ester Livshits, and Liat Peterfreund. Counting and enumerating preferred
database repairs. Theor. Comput. Sci., 837:115–157, 2020.

27 Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. Efficient querying of inconsistent
databases with binary integer programming. Proc. VLDB Endow., 6(6):397–408, 2013.

28 Paraschos Koutris, Xiating Ouyang, and Jef Wijsen. Consistent query answering for primary
keys on path queries. In PODS, pages 215–232. ACM, 2021.

29 Paraschos Koutris and Jef Wijsen. Consistent query answering for self-join-free conjunctive
queries under primary key constraints. ACM Trans. Database Syst., 42(2):9:1–9:45, 2017.

30 Paraschos Koutris and Jef Wijsen. Consistent query answering for primary keys and conjunctive
queries with negated atoms. In PODS, pages 209–224. ACM, 2018.

31 Paraschos Koutris and Jef Wijsen. First-order rewritability in consistent query answering with
respect to multiple keys. In PODS, pages 113–129. ACM, 2020.

32 Paraschos Koutris and Jef Wijsen. Consistent query answering for primary keys in datalog.
Theory Comput. Syst., 65(1):122–178, 2021.

33 Dany Maslowski and Jef Wijsen. A dichotomy in the complexity of counting database repairs.
J. Comput. Syst. Sci., 79(6):958–983, 2013.

34 Dany Maslowski and Jef Wijsen. Counting database repairs that satisfy conjunctive queries
with self-joins. In ICDT, pages 155–164. OpenProceedings.org, 2014.

35 Slawek Staworko, Jan Chomicki, and Jerzy Marcinkowski. Prioritized repairing and consistent
query answering in relational databases. Ann. Math. Artif. Intell., 64(2-3):209–246, 2012.

36 Jef Wijsen. On the first-order expressibility of computing certain answers to conjunctive
queries over uncertain databases. In PODS, pages 179–190. ACM, 2010.

37 Jef Wijsen. Foundations of query answering on inconsistent databases. SIGMOD Rec.,
48(3):6–16, 2019.

ICDT 2023

http://arxiv.org/abs/2211.04134

A Simple Algorithm for Consistent Query
Answering Under Primary Keys
Diego Figueira #

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, France

Anantha Padmanabha #

DI ENS, ENS, CNRS, PSL University, Paris, France
Inria, Paris, France

Luc Segoufin #

INRIA, ENS-Paris, PSL University, France

Cristina Sirangelo #

Université Paris Cité, CNRS, Inria, IRIF, F-75013, Paris, France

Abstract
We consider the dichotomy conjecture for consistent query answering under primary key constraints.
It states that, for every fixed Boolean conjunctive query q, testing whether q is certain (i.e. whether
it evaluates to true over all repairs of a given inconsistent database) is either polynomial time or
coNP-complete. This conjecture has been verified for self-join-free and path queries.

We propose a simple inflationary fixpoint algorithm for consistent query answering which, for a
given database, naively computes a set ∆ of subsets of database repairs with at most k facts, where
k is the size of the query q. The algorithm runs in polynomial time and can be formally defined as:
1. Initialize ∆ with all sets S of at most k facts such that S |= q.
2. Add any set S of at most k facts to ∆ if there exists a block B (i.e., a maximal set of facts

sharing the same key) such that for every fact a ∈ B there is a set S′ ∈ ∆ contained in S ∪ {a}.
The algorithm answers “q is certain” iff ∆ eventually contains the empty set. The algorithm correctly
computes certainty when the query q falls in the polynomial time cases of the known dichotomies for
self-join-free queries and path queries. For arbitrary Boolean conjunctive queries, the algorithm is
an under-approximation: the query is guaranteed to be certain if the algorithm claims so. However,
there are polynomial time certain queries (with self-joins) which are not identified as such by the
algorithm.

2012 ACM Subject Classification Theory of computation → Database query languages (principles)

Keywords and phrases consistent query answering, primary keys, conjunctive queries

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.24

Related Version Full Version: https://arxiv.org/abs/2301.08482

Funding Work supported by ANR QUID, grant ANR-18-CE40-0031.
Anantha Padmanabha: ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

1 Introduction

A database often comes with integrity constraints. The constraints are helpful in many ways,
for instance in order to help optimizing query evaluation. When the database violates its
integrity constraints we are faced with several possibilities. A first possibility is to clean
the data until all integrity constraints are satisfied. This task is not easy as it is inherently
non-deterministic: there could be many equally good ways to “repair” a database. A repair
can be understood as a minimal way to change the database in order to satisfy the constraints.

© Diego Figueira, Anantha Padmanabha, Luc Segoufin, and Cristina Sirangelo;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 24; pp. 24:1–24:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diego.figueira@labri.fr
mailto:anantha.padmanabha@inria.fr
mailto:luc.segoufin@inria.fr
mailto:cristina@irif.fr
https://doi.org/10.4230/LIPIcs.ICDT.2023.24
https://arxiv.org/abs/2301.08482
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 A Simple Algorithm for Consistent Query Answering Under Primary Keys

Another possibility is to keep the database in its inconsistent state, postponing the
problem until a query is asked to the database. In order to evaluate the query, the classical
solution is to consider all possible repairs of the database and to output all the answers on
the database D which are “certain”, i.e., those answers that are in the output of the query
when evaluated on every repair of D [2]. However, this method usually has an impact on
the complexity of the query evaluation problem. The impact will of course depend on the
type of integrity constraints and on the definition of a repair, but most often the worst case
complexity increases by a factor at least exponential in the size of the database, as there
could be exponentially many ways to repair a database.

Depending on the integrity constraints, what is a “good” notion of repair may be
controversial. In this paper we consider primary key constraints, which are arguably the
most common kind of integrity constraints in databases. For primary keys, there is a
unanimously accepted notion of repair. Primary key constraints identify, for each relation, a
set of attributes which are considered to be the relation key. An inconsistent database is
therefore a database that has distinct tuples within a relation sharing the same key. For
such constraints, the standard notion of a repair is any maximal subset of the database
satisfying all the primary key constraints. This amounts to keeping exactly one among all
tuples having the same key in each relation. A simple analysis shows that there can be
exponentially many repairs for a given database, and therefore a naive evaluation algorithm
would have to evaluate the query on each of these exponentially many repairs.

We consider Boolean conjunctive queries which can be evaluated efficiently over all
databases, in polynomial time in data complexity. With the certain answer semantics
described above, a query is certain on an inconsistent database if it is true on all its repairs.
The data complexity of certain answers for conjunctive queries over inconsistent databases in
the presence of primary key constraints is therefore in coNP since, in order to test whether
the query is not certain, it is enough to guess a subset of the database which is a repair
and which makes the query false. Further, it has been observed that for some conjunctive
queries the certain answering problem is coNP-hard [4] while, for other queries, the certain
answering problem can be solved in polynomial time. The main conjecture for inconsistent
databases in the presence of primary keys is that there are no intermediate cases: for any
conjunctive query, the certain answering problem is either solvable in polynomial time or is
complete for coNP.

The conjecture has been proved for self-join-free Boolean conjunctive queries [8]. These
are queries on which there are no two atoms using the same relation. It has been also proved
for path queries [7]. However, the conjecture remains open for arbitrary conjunctive queries
(with self-joins).

In this paper we revisit the two cases above where the conjecture is known to hold:
self-join-free queries and path queries.

Contributions. Our main contribution is the design of a simple fixpoint algorithm for
computing certain answers of queries over inconsistent databases in the presence of primary
key constraints. For every k ≥ 1, we describe a fixpoint algorithm parameterized by k. The
algorithm is always an under-approximation of the certain answers: on Boolean queries, when
it outputs “yes” then the query is certain, i.e., it is true on all repairs of the database. But
there could false negatives: queries which are certain on which the algorithm outputs “no”.

Our main result shows that for all self-join-free queries and path queries whose certain
answering problem is computable in polynomial time there is a number k (namely, the number
of atoms of the query) such that this simple algorithm correctly computes the certain answer.
In other words, if for all k our algorithm gives a false negative answer for a self-join-free or
path query it is because the query has a coNP-complete certain answering problem.

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:3

A natural question is then to wonder whether our algorithm always correctly computes
the certain answering problem on all queries for which this problem is polynomial time
computable. We answer negatively to this question, by exhibiting a conjunctive query (with
self-joins) whose certain answers can be solved in polynomial time, but for all k the algorithm
fails to give a correct answer.

Though our greedy fixpoint computation algorithm is simple, the proof of correctness is
not. In the case of self-join-free queries, we provide a semantic condition and show that when
the condition holds, the fixpoint gives always the correct answer, by setting the parameter k

to be the number of atoms of the query. The proof is by contradiction: if the algorithm fails
to give the correct answer, we use the fixpoint definition of the algorithm in order to produce
(chase) an infinite sequence of distinct facts of the database, contradicting its finiteness.
When the semantic condition does not hold, we show that it implies the condition of [8]
characterizing those queries having a coNP-complete certain answers problem.

The situation is simpler for the case of path queries, as we show that for a suitable k

(again the number of atoms of the query), our fixpoint algorithm can simulate the polynomial
time algorithm of [7] for computing certain answers for q, assuming that certain answering
for q is polynomial time solvable.

Related work. Our work is very much inspired by the results of Koutris and Wijsen [9, 8].
For self-join-free queries, the authors prove the polynomial-time case via a long sequence of
reductions eventually producing a simple query whose certain answers can be solved efficiently.
When unfolding the sequence of reductions this gives a complicated polynomial time algorithm
with a complex proof of correctness. We have basically simplified the algorithm and pushed
all the difficulty into the proof of correctness. Our algorithm is simple, but the proof of
correctness is arguably as complex as theirs. Further, our algorithm does not give, a priori,
the optimal LogSpace complexity result of [9] as we know that some of the path queries
that can be solved with our algorithm are PTime complete [7]. The semantic condition that
we provide for characterizing the polynomial case in the self-join-free case can be effectively
tested, but not efficiently, unlike the simple syntactic characterization of [8] based on the
so-called “attack graph” of the query.

In the case of path queries, [7] also provides a simple fixpoint algorithm for solving the
polynomial cases. Though it seems that their algorithm is different in spirit from ours,
the two algorithms have some similarities that we use in order to “simulate” their fixpoint
computation using ours.

All missing details can be found in the appendix of the long version of this paper [3].

2 Preliminaries

A database is a finite relational structure. A relational signature is a finite set of
relation symbols associated with an arity. A finite relational structure D over a relational
signature σ is composed of: a finite set, the domain of D, and a function associating to each
symbol R of σ a relation R(D) of the appropriate arity over the domain of D.

An R-fact of a database D over a signature σ is a term of the form R(ā) where R is a
symbol of σ and ā a tuple in R(D). A fact is an R-fact for some R, R is then the symbol
associated to the fact and ā the tuple associated to the fact. A database can then be viewed
as a finite collection of facts. By the size of a database we mean the number of facts it
contains. Assuming σ is fixed, which we will implicitly do in this paper, this is equivalent to
the usual notion of size for a database, up to some polynomial function.

ICDT 2023

24:4 A Simple Algorithm for Consistent Query Answering Under Primary Keys

A primary key constraint over a signature σ is a special case of a functional dependency
designating for a relation symbol R of σ a certain set of indices (columns) of R as a primary
key. A database satisfies the primary key constraint if for every relation R over σ, whenever
two R-facts agree on the key indices they must be equal. In a set of primary key constraints,
each relation of σ has a unique primary key constraint. As all the sets of constraints we
consider are primary key constraints we will henceforth omit the “primary” prefix. We use
the letter Γ to denote the corresponding set of key constraints.

Given two facts u and v and a set Γ of key constraints, we say that u and v are Γ-
equivalent, denoted by u ∼Γ v, if u and v have the same associated symbol R and agree on
the key of R as specified by Γ. Γ-equivalence is an equivalence relation and the equivalence
classes are called Γ-blocks. We will omit Γ in our notations whenever it is clear from the
context. A database is then a finite collection of blocks, each block being a finite collection
of equivalent facts. When writing a query q we will always underline in an atom R(x̄) the
positions that are part of the key of R as specified by Γ. This will avoid describing explicitly
Γ. For instance R(x y) says that the position of the variable x (i.e., the first position) is the
key for the binary relational symbol R; and R′(yz x) says that the positions of the variables
y and z form the key for the ternary relational symbol R′.

If a database D satisfies the key constraints Γ, denoted by D |= Γ, then each block of D

has size one. If not, then a repair of D is a subset of the facts of D such that each block of
D has exactly one representative in the repair. In particular a repair always satisfies the key
constraints. Notice that there could be exponentially many repairs of a given database D.

In this paper a query is a Boolean conjunctive query. We view a query over a relational
signature σ as a collection of atoms where an atom is a term R(x̄) where R is a relation
symbol and x̄ is a tuple of variables of the appropriate arity. The query being Boolean, all
variables are implicitly existentially quantified. We will consider atoms of a conjunctive
query to be ordered in an arbitrary but fixed order. A database D satisfies a query q having
atoms A1, . . . , Ak, denoted by D |= q, if there is a mapping µ from the variables of q to the
elements of the domain of D such that the fact µ(Ai) ∈ D for all i. In this case the sequence
(µ(A1), . . . , µ(Ak)) of (not necessarily distinct) facts of D is called a solution to q in D.
Different mappings yield different solutions. The set of solutions to q in D is denoted by
q(D). We will also write D |= q(ū) to denote that the sequence of facts ū is a solution to q

in D. If ū = (u1, . . . , uk) is a solution to q we also say that ui matches Ai in this solution,
and that any subsequence ui1 , . . . , uil

matches Ai1 , . . . , Ail
.

We say that a query q is certain for a database D if all repairs of D satisfy q. We study
the complexity of determining whether a query is certain for a database D. We adopt the
data complexity point of view. For each query q and set of key constraints Γ, we denote by
certainΓ(q) (or simply certain(q) when Γ is understood from the context) the problem
of determining, given a database D, whether q is certain for D. Clearly the problem is in
coNP as one can guess a (polynomial sized) repair and test whether it does not satisfy q. It
is known that for some queries q the problem certain(q) is coNP-complete [4]. However,
there are queries q for which certain(q) is in PTime or even expressible in first-order logic
(denoted by FO in the sequel) [6, 10].

The following dichotomy has been conjectured (cf [4, 1]):

▶ Conjecture 1 (Dichotomy conjecture). For each query q, the problem certain(q) is either
in PTime or coNP-complete.

The conjecture has been proved in the case of self-join-free queries [8] and of path
queries [7]; however, it remains open in the general case. A Boolean conjunctive query
is self-join-free if all its atoms involve different relational symbols. A path query is a

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:5

Boolean conjunctive query with n + 1 distinct variables x0, x1, · · ·xn and n atoms A1 · · ·An

such that each Ai = Ri(xi−1, xi) for some symbol Ri of σ of arity two. The query may
contain self-joins, i.e. Ri = Rj for some i ̸= j.

▶ Example 2. Consider the following example queries taken from [6, 7]. For the self-join-free
query q1 : R1(x y)∧R2(y z) (recall that all variables are implicitly existentially quantified), it is
easy to see that the problem certain(q1) can be solved in polynomial time [6]. Actually, it can
be expressed by the first-order formula ∃xyz R1(xy) ∧R2(yz) ∧ ∀y′(R1(xy′)→ ∃z′R2(y′z′)).

For the self-join-free query q2 : R1(x y) ∧ R2(y x) and the path query q′
2 : R(x1 x2) ∧

X(x2 x3) ∧ R(x3 x4) ∧ Y (x4 x5) ∧ R(x5 x6) ∧ Y (x6 x7), it has been shown, in [10] and [7]
respectively, that certain(q2) and certain(q′

2) can be solved in polynomial time but cannot
be expressed in first-order logic. Our algorithm works for q1, q2 and q′

2.
Finally, for the self-join-free query q3 : R1(x y) ∧ R2(z y) and the path query q′

3 :
R(x1 x2) ∧X(x2 x3) ∧R(x3 x4) ∧X(x4 x5) ∧R(x5 x6) ∧ Y (x6 x7) ∧R(x7 x8) ∧ Y (x8 x9),
both certain(q3) and certain(q′

3) are known to be coNP-complete [4, 7].

3 Polynomial-time algorithm

To solve certain(q), we describe a family of algorithms Certk(q), where k ≥ 1 is a parameter.
For a fixed k and query q, Certk(q) takes a database as input and runs in time polynomial
in the size of the database, in such a way that Certk(q) is always an under-approximation
of certain(q), i.e., whenever Certk(q) says “yes” then q is certain for the input database.
However, Certk(q) could give false negative answers.

In Section 4 we will show that for self-join-free queries either Certk(q) computes certain(q)
(where k is the number of atoms occurring in q) or certain(q) is complete for coNP. In
Section 5 we show an analogous result for path queries.

The algorithm inductively computes sets of facts maintaining the invariant that every
repair containing one of these sets makes the query true. The algorithm returns “yes” if the
empty set is eventually derived (since all repairs contain the empty set).

We now describe the algorithm. Assume q, Γ and k are fixed. Let D be a database. A
k-set over D is a set S of facts of D of size at most k such that no two elements of S are
Γ-equivalent. In other words a k-set is a subset of a repair of D of size at most k. We
denote by Certk(q) the following algorithm. On a database input D, the algorithm Certk(q)
computes inductively a set ∆k(q, D) of k-sets over D while maintaining the invariant:

If S ∈ ∆k(q, D) and r is a repair of D containing S, then r |= q. (Inv)

Initially ∆k(q, D) contains all k-sets S such that S |= q. In other words, we start with
all solutions to q in all repairs of D. Clearly, this satisfies the invariant (Inv). Now we
iteratively add a k-set S to ∆k(q, D) if there exists a block B of D such that for every fact
u ∈ B there exists S′ ⊆ S ∪ {u} such that S′ ∈ ∆k(q, D). Again, it is immediate to verify
that the invariant (Inv) is maintained.

This is an inflationary fixpoint algorithm and notice that the initial and inductive steps
can be expressed in FO. If n is the number of facts of D, the fixpoint is reached in at most nk

steps. In the end, Certk(q) returns “yes” iff the empty set belongs to ∆k(q, D). Equivalently,
Certk(q) returns “yes” if there is a block B of D such that for all facts u of B the set {u}
belongs to ∆k(q, D). We write D |= Certk(q) to denote the fact that Certk(q) returns “true”
upon input D. Altogether we have shown:

▶ Proposition 3. For all q, Γ, k, Certk(q) runs in time polynomial in the size of its input
database D and, whenever D |= Certk(q) then q is certain for D.

ICDT 2023

24:6 A Simple Algorithm for Consistent Query Answering Under Primary Keys

In order to simplify the notations, as we will mostly consider this case, we write ∆(q, D)
and Cert(q) to denote ∆k(q, D) and Certk(q) respectively, where k is the number of atoms
of q. Also, for a fact u, we write u ∈ ∆k(q, D) instead of {u} ∈ ∆k(q, D).

▶ Example 4. Consider again the query q2 : R1(x y) ∧ R2(y x) from Example 2. Let
k = 2 and consider the execution of Cert2(q2). Initially, ∆2(q2, D) contains all pairs of facts
{R1(ab), R2(ba)} such that both R1(ab) and R2(ba) are in D. The first iterative step adds
to ∆2(q2, D) (i) all singletons {R1(ab)} such that R2(ba) is a fact of D whose block contains
only R2(ba), and (ii) analogously all {R2(ab)} such that the block of R1(ba) is a singleton.
And so it continues.

We show that Cert2(q2) computes certain(q2). In other words, for q2, Cert2(q2) is not
an under approximation but an exact computation of certainty.

Observe that, for every repair r and fact α therein, there is at most one other fact α′ in
r such that {α, α′} |= q2. This is because in any repair the first atom of q2 determines the
second atom and vice-versa. This “mutual determinacy” is, in fact, what makes Cert2(q2) a
complete procedure, as we shall see next.

In view of Proposition 3, it remains to show that if q2 is certain for D then ∆2(q2, D)
contains the empty set.

Let r be a repair of D. By |q(r)| we denote the number of solutions to q in r, i.e., the
cardinality of q(r). We say that a repair r is minimal if there is no repair s such that
|q(s)| < |q(r)|. We prove the following claim.

▷ Claim. If r is a minimal repair and R1(ab), R2(ba) are facts of r then R1(ab) ∈ ∆2(q2, D).

Towards a contradiction, assume that R1(ab) ̸∈ ∆2(q2, D). We shall construct an infinite
sequence u1, u2, . . . of distinct facts of D, contradicting the finiteness of D. We construct,
at the same time, an infinite sequence v1, v2, . . . of facts of D and an infinite sequence of
minimal repairs r1, r2, . . . maintaining the following invariant:
1. the ui’s are pairwise distinct;
2. ui ̸∈ ∆2(q2, D);
3. if ui = R1(cd) then vi = R2(dc) and if ui = R2(cd) then vi = R1(dc);
4. ui+1 ∼ vi and ui+1 ̸= vi;
5. ri is minimal and contain each uj , j ≤ i together with vi.

Initially r1 = r, u1 = R1(ab) and v1 = R2(ba) and the invariant conditions are met, the
second item being our initial hypothesis.

Consider step i. Consider the block Bi of vi. As ui ̸∈ ∆2(q2, D) we know that Bi must
contain an element ui+1 such that both ui+1 ̸∈ ∆2(q2, D) and {ui, ui+1} ̸∈ ∆2(q2, D). In
particular ui+1 ∼ vi but ui+1 ̸= vi and items 2 and 4 of our inductive hypothesis are met.
Towards the first item of our inductive hypothesis, if ui+1 = uj then by item 5 the repair ri

would contain two equivalent facts, vi and ui+1 = uj , which is not possible since we have
already established that ui+1 ̸= vi.

Consider the repair ri+1 resulting from replacing vi with ui+1. Let vi+1 be the dual fact
of ui+1 as required by the third item of the invariant. As uivi forms a solution to q in ri and
ri is minimal, we must have vi+1 ∈ ri+1. Finally notice that ri+1 is minimal as its solutions
to q are exactly the same as for ri except for uivi that has been removed and ui+1vi+1 that
has been added (by the mutual determinacy of the atoms of q2).

Here is a depiction of how the ui’s and vi’s are defined, where the full and hollow arrows
correspond to R1 and R2 respectively.

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:7

<latexit sha1_base64="iO7OS9gG2KmYVriLOhOQkUenNUU=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYhV2JaidAQstEzAXSJYwOzlJxsxemJkV4pLOzsZCEVsfwIexs/RNnFwKTfxh4OP/z2HOOV4kuNK2/WWlFhaXllfSq5m19Y3Nrez2TlWFsWRYYaEIZd2jCgUPsKK5FliPJFLfE1jz+pejvHaHUvEwuNGDCF2fdgPe4YxqY5VpK5uz8/ZYZB6cKeQuHu6/rz72klIr+9lshyz2MdBMUKUajh1pN6FScyZwmGnGCiPK+rSLDYMB9VG5yXjQITk0Tpt0QmleoMnY/d2RUF+pge+ZSp/qnprNRuZ/WSPWnXM34UEUawzY5KNOLIgOyWhr0uYSmRYDA5RJbmYlrEclZdrcJmOO4MyuPA/Vk7xzmi+UC7niEUyUhn04gGNw4AyKcA0lqAADhEd4hhfr1nqyXq23SWnKmvbswh9Z7z+h8JB0</latexit>a
<latexit sha1_base64="KwZiepZD+LmRGetR/NeQHzzUhN4=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgUV2FGgroz4MZlAuYByRB6OjVJm54H3T1CGPIFblwoEpf+hb/hzr+xJ8lCEy80HO6toqvKiwVX2ra/rZXVtfWNzdxWfntnd2+/cHDYUFEiGdZZJCLZ8qhCwUOsa64FtmKJNPAENr3hbZY3H1EqHoX3ehSjG9B+yH3OqDZWzesWinbJnoosgzOH4s3nJNN7tVv46vQilgQYaiaoUm3HjrWbUqk5EzjOdxKFMWVD2se2wZAGqNx0OuiYnBqnR/xImhdqMnV/d6Q0UGoUeKYyoHqgFrPM/C9rJ9q/dlMexonGkM0+8hNBdESyrUmPS2RajAxQJrmZlbABlZRpc5u8OYKzuPIyNC5KzmWpXCsXK2cwUw6O4QTOwYErqMAdVKEODBCe4AVerQfr2XqzJrPSFWvecwR/ZH38AOE+kWI=</latexit>

b

<latexit sha1_base64="c5JBVie7nWWm6C8f1rhRVJCnT00=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buq1u4vK/XzPI4inMApXIAH11CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAA/I2I</latexit>u1

<latexit sha1_base64="cd1bD4ZYqfap37P9xOS5/19EKA4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkR9Vjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3voZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Xqg9X5dpFHkcBTuEMLsGDG6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gACgo2J</latexit>v1
<latexit sha1_base64="vXmHqwjH7KgI6VP8ID/iOg/HSNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndVrd1fVurneRxFOIFTuAAPrqEOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AECgI2J</latexit>u2

<latexit sha1_base64="CrOCIDG4bOpKaMnwLnKnDX4jMyM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkR9Vjw4rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbuuVB+uyrWLPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AEEBo2K</latexit>v2
<latexit sha1_base64="uJ6x1m+CdQu/zfZvijJsGBLbf3A=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Vjw4rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9pL2LXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPEzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs1qxbuqVO8vy7WzPI4CHMMJnIMH11CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEEBI2K</latexit>u3

<latexit sha1_base64="qNm7Y1ssUE9zjFXrOpZqKqf/bn8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF48Y5ZHAhswOszBhdnYz00tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkM72Z+c8S1EbF6wnHC/Yj2lQgFo2ilx1H3slssuWV3DrJKvIyUIEOtW/zq9GKWRlwhk9SYtucm6E+oRsEknxY6qeEJZUPa521LFY248SfzU6fkzCo9EsbalkIyV39PTGhkzDgKbGdEcWCWvZn4n9dOMbz1J0IlKXLFFovCVBKMyexv0hOaM5RjSyjTwt5K2IBqytCmU7AheMsvr5JGpexdlysPV6XqeRZHHk7gFC7Agxuowj3UoA4M+vAMr/DmSOfFeXc+Fq05J5s5hj9wPn8ABYqNiw==</latexit>v3
<latexit sha1_base64="oir8yhRe+Fozc7z/kdL1LbZV6eo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4Kkkp6rHgxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSQ9qv9Utlt+LOQVaJl5My5Gj0S1+9QczSiCtkkhrT9dwE/YxqFEzyabGXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2naEPwll9eJa1qxbuqVO9r5fpFHkcBTuEMLsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gAFiI2L</latexit>u4

<latexit sha1_base64="6dpTBNYh8fhYsXO6Ru/R+Uta+Z4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IruEqEcSLx4xyiMBQmaHWZgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dfiyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx026eGS6F4AwVK3o41p6Evecsf38391oRrIyL1hNOY90I6VCIQjKKVHif9ar9YcsvuAmSdeBkpQYZ6v/jVHUQsCblCJqkxHc+NsZdSjYJJPit0E8NjysZ0yDuWKhpy00sXp87IhVUGJIi0LYVkof6eSGlozDT0bWdIcWRWvbn4n9dJMLjtpULFCXLFlouCRBKMyPxvMhCaM5RTSyjTwt5K2IhqytCmU7AheKsvr5NmpexdlysP1VLtMosjD2dwDlfgwQ3U4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8HDo2M</latexit>v4
<latexit sha1_base64="jcfd9+CqEiFSs6jwXp8ajKG0c44=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYFA8hd3g6xjw4jGieUCyhNlJbzJkdnaZmRXCkk/w4kERr36RN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9pL3LXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPEzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs1qxbuqVO8vyrWzPI4CHMMJnIMH11CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEHDI2M</latexit>u5

<latexit sha1_base64="PUUKpQFfCr/2PiEXIiAZcGqekX4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrvE15HEi0eM8khgQ2aHWZgwO7uZ6SUhhE/w4kFjvPpF3vwbB9iDgpV0UqnqTndXkEhh0HW/ndza+sbmVn67sLO7t39QPDxqmDjVjNdZLGPdCqjhUiheR4GStxLNaRRI3gyGdzO/OeLaiFg94TjhfkT7SoSCUbTS46h71S2W3LI7B1klXkZKkKHWLX51ejFLI66QSWpM23MT9CdUo2CSTwud1PCEsiHt87alikbc+JP5qVNyZpUeCWNtSyGZq78nJjQyZhwFtjOiODDL3kz8z2unGN76E6GSFLlii0VhKgnGZPY36QnNGcqxJZRpYW8lbEA1ZWjTKdgQvOWXV0mjUvauy5WHy1L1PIsjDydwChfgwQ1U4R5qUAcGfXiGV3hzpPPivDsfi9ack80cwx84nz8Iko2N</latexit>v5

<latexit sha1_base64="1uo2C1ZBGunPReO6jA1pQtyoiII=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIviqSRF1GPBi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9USk0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcY3wYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1r6q1+8tK/TyPowgncAoX4MM11OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALX9jyM=</latexit>. . .

This concludes the construction of the infinite sequence, showing that R1(ab) ∈ ∆2(q2, D)
for any minimal repair containing both R1(ab) and R2(ba).

To conclude that Cert2(q2) returns the correct answer, consider a minimal repair r of D.
As q2 is certain for D, we must have r |= q and this is witnessed by two facts R1(ab) and
R2(ba) of r. Let B be the block of R1(ab). Let us show that all facts of B are in ∆2(q2, D)
and hence ∅ ∈ ∆2(q2, D). Let R1(ab′) be such a fact and consider the repair r′ obtained by
replacing R1(ab) with R1(ab′). As r is minimal it follows immediately that r′ is minimal and
must contain R2(b′a) (again, this is ensured by the mutual determinacy of q2). From the
claim it follows that R1(ab′) ∈ ∆2(q2, D), as desired.

Observe that Certk does not always compute the certain answers. For instance, the query
q3 from Example 2 is so that certain(q3) is coNP-complete, and hence Certk(q3) must
have false negatives for all k, assuming coNP ̸= PTime (proving this without relying on
complexity theoretic assumptions remains plausible, and would not impact our results).

4 Self-join-free queries

In this section we consider the case of self-join-free queries. We exhibit a condition named
PCond (for Polynomial-time Condition) and show that any self-join-free query q satisfy-
ing PCond is such that Cert(q) computes certain(q). When PCond fails, we show that
certain(q) is coNP-hard.

We start by defining PCond, which will require some extra definitions. Fix, for the rest
of this section, a set Γ of primary key constraints. Let D be a database and r a repair of D.
For a fact u of r, and for an equivalent fact v ∼ u from D, we denote by r[u→ v] the repair
obtained from r by replacing the fact u with v.

Consider a self-join-free query q with k atoms. Recall that we write D |= q(ū) when ū is
a solution to q in D. As q is self-join-free, for each fact a in a solution ū there is a unique
atom of q that a can match, namely the only fact of q having the same relation symbol as a.
Hence, the order on ū and on the atoms of q is not relevant. With some abuse of notation
we will therefore often treat a solution ū, or the sequence of atoms of q, as a set rather than
a sequence; we will often use different orders among the facts of a same solution, placing up
front the most relevant facts. In particular we shall write, for a tuple ū of facts, ū ∈ ∆(q, D)
to denote that the k-set formed by the facts of ū belongs to ∆(q, D).

Let A be an atom of q whose associated symbol is R. We denote by vars(A) the set of
variables of A and by key(A) the set of variables of A occurring in a position belonging to the
primary key of R. For instance key(R(x y)) is {x}, key(R′(yz x)) is {y, z} and key(R′′(xzx y))
is {x, z}.

Given a set X of variables of q and a sequence A1 . . . An of atoms of q, we say that
X A1 . . . An is a Γ-derivation from X to An in q if for each 1 ≤ i ≤ n we have that

key(Ai) ⊆ X ∪
⋃

1≤j<i

vars(Aj).

If X = vars(A0), for some atom A0 of q, we also say that the Γ-derivation is from A0 to
An, and we also write it as A0A1 . . . An. We say that an atom A′ is Γ-determined by the
atom A if there exists a Γ-derivation from A to A′. Moreover, A and A′ are mutually Γ-
determined if A′ is Γ-determined by A and A is Γ-determined by A′. This is an equivalence

ICDT 2023

24:8 A Simple Algorithm for Consistent Query Answering Under Primary Keys

relation among atoms. A set S of atoms of q is said stable if each pair of facts of S are
mutually Γ-determined. Note that a stable set is not necessarily an equivalence class of
Γ-determinacy, it may also be a subset of it. As usual, we will omit Γ when it is clear from
the context. The key property relating Γ-determinacy and query solutions is given by the
lemma:

▶ Lemma 5. Let q be a self-join-free query. Let D be a database instance and r, r′ be two
repairs of D. Let A1 . . . An be a Γ-derivation in q from atom A1 to An. Let r |= q(ᾱa1 . . . anβ̄),
and r′ |= q(ᾱ′a′

1 . . . a′
nβ̄′) where for each i, ai and a′

i match Ai and ᾱβ̄ and ᾱ′β̄′ match the
rest of the atoms of q. If a1 = a′

1 and ai ∈ r′ for each i < n, then 1) ai = a′
i for each i < n

and 2) an ∼ a′
n (and therefore an = a′

n if moreover an ∈ r′).

We are now ready to define PCond. A Γ-sequence τ of q is a sequence τ = S1S2 · · ·Sn

where each Si is a stable set of atoms of q, and the Si’s form a partition of q. In this context,
we denote by S≤i the set

⋃
j≤i Sj .

Let τ = S1S2 · · ·Sn be a Γ-sequence of q. Let 1 ≤ i < n and let A be an atom of Si+1.
We say that the query q satisfies PCondτ (A) and write q |= PCondτ (A) if the following is
true for all databases D, all repairs r of D and all solutions ᾱuβ̄ and ᾱ′u′β̄′ to q in D such
that ᾱ and ᾱ′ match S≤i and u and u′ match A:

If

r |= q(ᾱuβ̄),
u ∼ u′, and
r[u→ u′] |= q(ᾱ′u′β̄′)

 then
{

r |= q(ᾱ′uδ̄) and
r[u→ u′] |= q(ᾱu′δ̄′)

}
for some sequences δ̄ and δ̄′.

We write q |= PCondτ (i) if q satisfies PCondτ (A) for all A of Si+1, and we write
q |= PCondτ if q satisfies PCondτ (i) for all 1 ≤ i < n. Since the condition is restricted to
indices i < n, PCondτ trivially holds for any τ having only one stable set. Finally, we write
q |= PCond if there is a Γ-sequence τ of q such that q |= PCondτ . Again, if q has only one
Γ-determinacy class (for instance the query q2 of Example 4) then q |= PCond in a trivial
way.

Our goal is to show that q |= PCond implies that Cert(q) computes certain(q). This is
the main technical result of this section and is proved by Theorem 7. In Theorem 13 we will
conclude the self-join-free case by showing that when PCond fails, then the certainty of the
query is hard. Before we prove those results, some examples are in order.

▶ Example 6. We recall the three queries from Example 2. The query q2 = R1(x y)∧R2(y x)
satisfies PCond since it has only one maximal stable set.

The query q1 = R1(x y) ∧ R2(y z) has two stable sets: R1(x y) determines R2(y z)
but the converse is false. For τ = {R2(y z)}{R1(x y)} we have q ̸|= PCondτ because
we have q1(R2(bc)R1(ab)) and q1(R2(b′c)R1(ab′)) but not q1(R2(bc)R1(ab′)). However for
τ = {R1(x y)}{R2(y z)} it is easy to verify that q1 |= PCondτ . Hence, q1 |= PCond.

The query q3 = R1(x y) ∧R2(z y) has also two stable sets, but no possible sequence τ

makes PCondτ true. This is because (i) q3(R1(ab) R2(cb)) and q3(R1(a′b′) R2(cb′)) hold,
but not q3(R1(ab) R2(cb′)), and (ii) q3(R2(ab) R1(cb)) and q3(R2(a′b′) R1(cb′)) hold, but
not q3(R2(ab) R1(cb′)). Therefore, q3 ̸|= PCond.

▶ Theorem 7. Let q be a self-join-free query. If q |= PCond, then Cert(q) computes
certain(q).

Suppose q has k atoms. Let τ = S1 · · ·Sn be a Γ-sequence of q such that q |= PCondτ . We
need to show that Cert(q) = Certk(q) computes precisely certain(q).

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:9

We start with some extra notations. Recall that q(r) denotes the set of solutions to q

in a repair r; we additionally denote by q≤i(r) the projection of q(r) on the first i sets of τ .
More precisely

q≤i(r) = {v̄ | ∃ū ∈ q(r) s.t. v̄ is the subset of ū matching S≤i},

and if v̄ ∈ q≤i(r) we write equivalently r |= q≤i(v̄). Let D be a database and r a repair of D.
We say that r is i-minimal if there is no repair r′ such that q≤i(r′) ⊊ q≤i(r). We say that a
fact u of a database D is i-compatible, if it matches some atom of Si. We will need the
limit case when i = 0. In that case S0 is the empty set, as well as S≤0 (and hence PCondτ (0)
is always true), q≤0(r) contains only the empty sequence ε for all r, and therefore all repairs
are 0-minimal. The proof of the theorem will make use of an induction based on the following
invariant property of the database, for each 0 ≤ i ≤ n:

Indi = For all i-minimal repair s and facts ū s.t. s |= q≤i(ū), we have ū ∈ ∆(q, D).

▶ Lemma 8. Given q, D and a Γ-sequence τ for q, for every 0 ≤ i < n, if Indi+1 and
PCondτ (i), then Indi.

We first show how this statement already implies Theorem 7.

Proof of Theorem 7. From Proposition 3, we know that if D is a database such that
D |= Cert(q) then all repairs of D satisfy q. It remains to show the converse.

Assume all repairs satisfy q and that q |= PCondτ for some sequence τ of length n,
which means that PCondτ (i) holds for all i. Observe that Indn holds true by the base
case definition of ∆(q, D). Hence by n repeated applications of Lemma 8 we obtain that
Ind0 holds true. Now take any repair r. By definition r is 0-minimal and by hypothesis it
satisfies the query q. By Ind0 it follows that the empty set (denoted by the empty tuple) is
in ∆(q, D), and hence D |= Cert(q). ◀

We are now left with the proof of Lemma 8, which is the main technical content of the
section. Towards this, we define a stronger version of i-minimality. For 1 ≤ i < n, we say
that an i-minimal repair s is strong if there exists no repair s′ such that q≤i(s′) = q≤i(s) and
|q≤i+1(s′)| < |q≤i+1(s)|. Note that a strong i-minimal repair is in particular (i + 1)-minimal.

▷ Claim 9. If there exists an i-minimal repair s such that s |= q≤i(ū), then there exists a
strong i-minimal repair s′ such that s′ |= q≤i(ū).

For a given database D, for a repair r of D, we denote by r|i+1 the set of facts of r which
are not (i + 1)-compatible. A sequence p̄ of facts of the database is connected with respect
to D′ ⊆ D if for every repair r containing p̄ and D′, and for every two consecutive facts a b

of p̄, if r |= q(ᾱ, a, β̄) for some ᾱ, β̄, then b ∈ ᾱβ̄. Note that if p̄ is the empty tuple (or a
tuple of size 1), then p̄ is trivially connected with respect to every D′ ⊆ D.

Proof of Lemma 8. By contradiction, suppose the statement of the lemma is false. Then,
there is some i such that Indi+1 and PCondτ (i) holds, but for some i-minimal repair s and
tuple ū we have

s |= q≤i(ū) but ū ̸∈ ∆(q, D). (h1)

From Claim 9, we can assume that s is strong i-minimal. We will build an infinite
sequence of pairwise distinct facts p1, p2, . . . from D, contradicting the finiteness of D. We
also maintain another sequence of repairs r1, r2, We set r0 = s and p̄0 to be the empty
fact sequence. And for all l > 0, we define p̄l = p1, . . . pl.

ICDT 2023

24:10 A Simple Algorithm for Consistent Query Answering Under Primary Keys

The sequence is constructed by induction with the following invariant for every l ≥ 0,
assuming p̄ = p̄l and r = rl:
(a) p̄ contains only (i + 1)-compatible facts of D;
(b) the elements of p̄ are pairwise distinct;
(c) p̄ is connected with respect to r|i+1;
(d) r is strong i-minimal, r |= q≤i(ū) and, if p̄ is not empty and v is the last fact of p̄, then

r |= q(ūvδ̄), for some δ̄;
(e) ūc̄ ̸∈ ∆(q, D), where c̄ is the maximal suffix of p̄ satisfying r′ |= q(ūc̄β̄) for some β̄ and

strong i-minimal repair r′ containing p̄ and r|i+1.
Note that the invariant (b) leads to a contradiction when l is larger than the size of D.

Base case. When l = 0, we have r0 = s and p̄ is the empty sequence. Hence (a), (b) and (c)
are trivially true by emptiness of p̄; (d) holds since s |= q≤i(ū) (note that we have assumed s

to be strong i-minimal); finally (e) holds with empty c̄ since ū /∈ ∆(q, D) by (h1).

Inductive step. Assume we have r = rl−1 and p̄ = p1, . . . pl−1 (possibly empty) satisfying
the five properties above. Consider the maximal suffix c̄ concerned by property (e). That is,
for some β̄ and strong i-minimal repair r′ containing p̄ and r|i+1 we have:

ūc̄ ̸∈ ∆(q, D) and r′ |= q(ūc̄β̄) (h2)

First let β̄ = d1d2, . . . dt. Since ūc̄ ̸∈ ∆(q, D), by definition of ∆(q, D) there exists some
d′

1 ∼ d1 such that ūc̄d′
1 ̸∈ ∆(q, D). This again implies that there exists some d′

2 ∼ d2 such
that ūc̄d′

1d′
2 ̸∈ ∆(q, D). Since k is the number of atoms in q, we can continue this to obtain

β̄′ = d′
1d′

2, . . . d′
t where d′

i ∼ di but ūc̄β′ contains no k-set in ∆(q, D). Also note that β̄′

matches all atoms of q not already matched by ūc̄.
Further, we show that c̄ cannot match the entire set Si+1. Suppose, by means of

contradiction, that r′ |= q≤i+1(ūc̄). As r′ is strong i-minimal, it is (i + 1)-minimal. Hence,
since Indi+1 holds by hypothesis, ūc̄ ∈ ∆(q, D), which is in contradiction with (h2). Then,

r′ ̸|= q≤i+1(ūc̄). (h3)

This means that, since r′ |= q(ūc̄β̄) by (h2), and c̄ matches a subset of Si+1, there must
be an atom C of Si+1 that is not matched by any fact of c̄. Consider the atom A of Si+1
matching the last element of c̄. If instead c̄ is empty, choose A as an arbitrary atom of Si+1.

Since A and C are both in Si+1, which is stable, there exists a Γ-derivation σ from A to
C. (Notice that σ may contain atoms outside Si+1.) Consider the first atom B of σ which is
in Si+1 and which is not matched by any fact of c̄. The following depiction may help to see
the situation:

<latexit sha1_base64="inUFFAkEwJeluKkHrnIea+cI8/0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisaD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrtR/6mTj3pv1y1a25c5BV4uWkCjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JqVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrouZd1bz7y2q9ksdRhBOowBl4cA11uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx++Go8V</latexit>

Si+1

<latexit sha1_base64="JbI+jGsMoy+BDbe2ESMwaeCYREU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIVC9CwYvHCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjf3O0+oNI/lo5km6Ed0JHnIGTVW6vQDqgi7HZSrbs1dgKwTLydVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny3OnZFzqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwhs/4zJJDUq2XBSmgpiYzH8nQ66QGTG1hDLF7a2EjamizNiESjYEb/XlddK+rHn1mvdwVW1U8jiKcAYVuAAPrqEB99CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QOQto73</latexit>

c̄ =

<latexit sha1_base64="yZTuhs8l3Es5ns0Tdqsqmt8D6fo=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LC2ip5KIqBeh4MVjBfsBTSiT7aZdutmE3Y1QSv+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6aCa+O6305hbX1jc6u4XdrZ3ds/KB8etXSSKcqaNBGJ6oSomeCSNQ03gnVSxTAOBWuHo7uZ335iSvNEPppxyoIYB5JHnKKxku+HqIgfMoNnt71y1a25c5BV4uWkCjkavfKX309oFjNpqECtu56bmmCCynAq2LTkZ5qlSEc4YF1LJcZMB5P5zVNyapU+iRJlSxoyV39PTDDWehyHtjNGM9TL3kz8z+tmJroJJlymmWGSLhZFmSAmIbMASJ8rRo0YW4JUcXsroUNUSI2NqWRD8JZfXiWti5p3VfMeLqv1Sh5HEU6gAufgwTXU4R4a0AQKKTzDK7w5mfPivDsfi9aCk88cwx84nz/6lJDl</latexit>

�̄0 =
<latexit sha1_base64="uPHfoatuzKyBZlQT8EqVR3kWb1E=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqBeh4MVjBfsBTSib7aZdutmE3YlQQn+GFw+KePXXePPfuG1z0OqDgcd7M8zMC1MpDLrul1NaW9/Y3CpvV3Z29/YPqodHHZNkmvE2S2SieyE1XArF2yhQ8l6qOY1Dybvh5Hbudx+5NiJRDzhNeRDTkRKRYBSt1PdDqokfcqQ3g2rdbbgLkL/EK0gdCrQG1U9/mLAs5gqZpMb0PTfFIKcaBZN8VvEzw1PKJnTE+5YqGnMT5IuTZ+TUKkMSJdqWQrJQf07kNDZmGoe2M6Y4NqveXPzP62cYXQe5UGmGXLHloiiTBBMy/58MheYM5dQSyrSwtxI2ppoytClVbAje6st/See84V02vPuLerNWxFGGE6jBGXhwBU24gxa0gUECT/ACrw46z86b875sLTnFzDH8gvPxDZawkLQ=</latexit>

�̄ =
<latexit sha1_base64="qHM6ZTpRpdEAsyGGTXn1BUY0Y28=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rXvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AvTmMzA==</latexit>

b

<latexit sha1_base64="DRy5xqXbxs5qW7+FEWk1WZepPyg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LC2ip5KIqMeCF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EJz1y1W35s5BVomXkyrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyalVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhjZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV3UvKuad39ZrVfyOIpwAhU4Bw+uoQ530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5Ax2qjP0=</latexit>

b0

<latexit sha1_base64="jvg/mT9FOiGmxXWotAxLFddaI8A=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR9Vjx4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq3PZLFbfqzkFWiZeTCuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVS9q6rXuKzUynkcBTiFMpyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBizWMqw==</latexit>

A
<latexit sha1_base64="yhrlTBXmjcTrq82WCeVNuJMG2JE=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq3PZLFbfqzkFWiZeTCuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVS9q6rXuKzUynkcBTiFMpyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBjLmMrA==</latexit>

B
<latexit sha1_base64="wJjZgb1ed2LDC+oedrzaHyffwcs=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR9VjoxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8GkPvc7T6g0j+WDmSboR3QkecgZNVZq1gelilt1FyDrxMtJBXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDOz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20r6reTdVrXldq5TyOApxDGS7Bg1uowT00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ajj2MrQ==</latexit>

C

<latexit sha1_base64="kTdqQVeXo3MH6nTDuCHtblUZ9+Q=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LC2Cp5IUUS9CwYvHCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjf3O0+oNI/lo5km6Ed0JHnIGTVW6vQDqkh6OyhX3Zq7AFknXk6qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkr9VGNC2YSOsGeppBFqP1ucOyPnVhmSMFa2pCEL9fdERiOtp1FgOyNqxnrVm4v/eb3UhDd+xmWSGpRsuShMBTExmf9OhlwhM2JqCWWK21sJG1NFmbEJlWwI3urL66Rdr3lXtfrDZbVRyeMowhlU4AI8uIYG3EMTWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w+sYo8K</latexit>

ū =

<latexit sha1_base64="YbPXGvV36RCFl5NilHO2JQgSNtk=">AAAB6nicbVBNS8NAEJ34WetX1aOXpUXwVJIi6rHgxWOl9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmd3O/88S1EbF6xGnC/YiOlAgFo2ilZnMgBqWKW3UXIOvEy0kFcjQGpa/+MGZpxBUySY3peW6CfkY1Cib5rNhPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieOtnQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTtCF4qy+vk3at6l1Xaw9XlXo5j6MA51CGS/DgBupwDw1oAYMRPMMrvDnSeXHenY9l64aTz5zBHzifPyDcjZo=</latexit>

Si

<latexit sha1_base64="1uBe4Mc9LxaRs+fuRKTpytMhiKM=">AAAB7nicbVBNS8NAEJ34WetX1aOXpUUQhJIUUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dtbWNza3tgs7xd29/YPD0tFxS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLFS+6Gf8YvatF+quFV3DrJKvJxUIEejX/rqDWKWRigNE1Trrucmxs+oMpwJnBZ7qcaEsjEdYtdSSSPUfjY/d0rOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCW/8jMskNSjZYlGYCmJiMvudDLhCZsTEEsoUt7cSNqKKMmMTKtoQvOWXV0mrVvWuqrX7y0q9nMdRgFMowzl4cA11uIMGNIHBGJ7hFd6cxHlx3p2PReuak8+cwB84nz+/8Y8X</latexit>

Si+2
<latexit sha1_base64="mmMq4Nsa8eQxgO0s7IJ3+Uee0tc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5IUUY8FLx4rmrbQhrLZTtqlm03Y3Qgl9Dd48aCIV3+QN/+N24+Dtj4YeLw3w8y8MBVcG9f9dgobm1vbO8Xd0t7+weFR+fikpZNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8O/PbT6g0T+SjmaQYxHQoecQZNVbyH/q5N+2Xq27NnYOsE29JqrBEs1/+6g0SlsUoDRNU667npibIqTKcCZyWepnGlLIxHWLXUklj1EE+P3ZKzq0yIFGibElD5urviZzGWk/i0HbG1Iz0qjcT//O6mYlugpzLNDMo2WJRlAliEjL7nAy4QmbExBLKFLe3EjaiijJj8ynZELzVl9dJq17zrmr1+8tqo7KMowhnUIEL8OAaGnAHTfCBAYdneIU3RzovzrvzsWgtOMuZU/gD5/MHkEiObg==</latexit>

S1

<latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · ·

<latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · · <latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · ·

<latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · ·

<latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · ·

<latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · ·<latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · · <latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · ·

In the picture directed edges connecting atoms of the query represent the successor
relation in the Γ-derivation from A to C.

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:11

Let b be the fact of β̄ matching B and b′ ∼ b be the fact matching B in β̄′. We show that

b ̸∈ p̄. (h4)

Suppose b is in p̄, by connectedness of p̄ with respect to r|i+1, this implies that the suffix
b̄ of p̄ starting with b is part of the solution ūc̄β̄, that is, r′ |= q(ūb̄γ̄) for some γ̄. By
construction, b is not in c̄, thus it must occur before c̄ in p̄ and hence b̄ strictly contains c̄.
This contradicts the maximality of c̄ imposed by (e), thus proving that (h4) holds. Note that
this also implies b′ ̸∈ p̄, otherwise if b′ ∈ p̄, we have that b′ ∼ b are both in r′, thus b = b′ ∈ p̄,
contradicting (h4).

Assign pl = b′, so we have p̄′ = p̄ · pl and let rl = r′[b→ b′]. (To avoid many subscripts,
let rl = s′). Observe that

s′ contains p̄′ and r|i+1. (h5)

In fact s′ contains p̄, as observed earlier, and s′ contains b′ by construction; moreover s′

contains r′
|i+1 which contains r|i+1 by (e). We now show that p̄′ and s′ have all the desired

properties.
(a) By construction b′ is (i + 1)-compatible.
(b) The elements of p̄′ are pairwise distinct, as b′ ̸∈ p̄.
(c) By our choice of b we show that p̄′ is connected with respect to s′

|i+1. Without loss of
generality assume that p̄′ has at least size 2 (otherwise it is trivially connected). Therefore, p̄

is not empty. Since s′
|i+1 contains r|i+1 by (h5), the connectedness property of p̄ with respect

to r|i+1 implies that for every repair containing p̄′ and s′
|i+1 and for every pair of consecutive

facts a b in p̄, every solution in s′ containing a also contains b.
It remains to show the same property for the last fact a of p̄. Consider a repair t containing

p̄′ and s′
|i+1 and suppose t |= q(γ̄aδ̄) for some γ̄ and δ̄. We have to show b′ ∈ γ̄δ̄. Let σAB

be the prefix of the Γ-derivation σ going from A to B. (Notice that, since p is not empty
A ̸= B.) By property (d) of p̄, since p̄ is not empty, a is the last fact in c̄. Recall that by (h2)
r′ |= q(ūc̄β̄); thus in this solution the atom A is matched by a. So we can apply Lemma 5 to
r′ and t with solutions (ūc̄β̄) and (γ̄aδ̄) respectively, and Γ-derivation σAB . The hypotheses
of Lemma 5 are satisfied since:

in both solutions A is matched by a;
by construction of B, for each atom D strictly preceding B in σAB, the fact matching
D in (ūc̄β̄) is either in c̄ or in r′

|i+1, both contained in t (in fact t ⊇ p̄′ ⊇ p̄ ⊇ c̄ and
t ⊇ s′

|i+1 ⊇ r′
|i+1).

We conclude, by Lemma 5, that the facts matching B in the two solutions are equivalent,
i.e., the fact matching B in (γ̄aδ̄) is equivalent to b (which is the fact matching B in ūc̄β̄).

In t the unique fact equivalent to b is b′ (since b′ ∈ p̄′ ⊆ t), thus the fact matching B in
(γ̄aδ̄) is b′. We have thus proved that any solution in t containing the last fact a of p also
contains b′.
(d) The following claim together with strong i-minimality of r′ and r′ |= q(ūbγ̄) for some γ̄,
shows that

(I) s′ is also strong i-minimal,
(II) s′ |= q≤i(ū), and

(III) s′ |= q(ūb′δ̄) for some δ̄.

▷ Claim 10. Assume PCondτ (i). Let s be a strong i-minimal repair such that s |= q(ᾱaβ̄)
where ᾱ matches S≤i and a is (i + 1)-compatible. Then for any a′ ∼ a we have that
s′ = s[a 7→ a′] is strong i-minimal and s′ |= q(ᾱa′δ̄) for some δ̄.

ICDT 2023

24:12 A Simple Algorithm for Consistent Query Answering Under Primary Keys

(e) Let ē be the maximal suffix of p̄′ such that, for a strong i-minimal repair t containing p̄′

and s′
|i+1 we have t |= q(ūēδ̄) for some δ̄. Since s′ |= q(ūb′δ̄′) for some δ̄′ by item (III) above,

ē cannot be empty. Then let ē = d̄b′, where d̄ is a suffix of p̄.
Since s′

|i+1 contains r|i+1 by (h5), in particular t is a strong i-minimal repair containing p̄

and r|i+1. Then, by maximality of c̄, d̄ must be a suffix of c̄, implying that ūd̄b′ is a subset of
ūc̄β̄′. Since by definition ūc̄β̄′ does not contain any k-set in ∆(q, D), we have ūd̄b′ ̸∈ ∆(q, D)
as needed.

This completes the proof of Lemma 8. ◀

▶ Remark 11. One can verify from the proof that if q |= PCondτ where in the sequence τ

each set Si contains exactly one atom of q, then the fixpoint computing Cert(q) is bounded,
i.e., Cert(q) can be expressed in FO.

It remains to show that when a self-join-free query q does not satisfy PCond, computing
certain(q) is coNP-hard. Towards this, we build on the dichotomy result of [8] based on
the notion of attack graph. First we recall this notion using our notation.

Let q be a query, let Γ be a set of primary key constraints. Given an atom A of q let

A+ = {B atom of q | there exist a Γ-derivation X B1 . . . Bn

where X = key(A), Bn = B, and for all i, Bi ̸= A}

Let vars(A+) =
⋃

B∈A+ vars(B). Given two atoms A and B of q we say that A attacks
B if there exists a sequence F0, F1, . . . , Fn of atoms of q and x1, x2, . . . , xn of variables not
in vars(A+) such that A = F0, B = Fn and for all i > 0, xi is a variable occurring both in
Fi−1 and Fi. The attack from A to B is said to be weak if B is Γ-determined by A. The
attack graph of q and Γ is the graph whose vertices are the atoms of q and whose edges are
the attacks. A cycle in this graph is weak if all the attacks involved are weak.

The dichotomy result of [8] can be stated as:

▶ Theorem 12 ([8], Theorem 3.2). Let q be a self-join-free query and Γ a set of primary key
constraints. If every cycle in the attack graph of q and Γ is weak, then certain(q) can be
computed in polynomial time; otherwise certain(q) is coNP-complete.

To show that our polynomial time algorithm covers all polynomial-time cases, we prove
that if the attack graph of q and Γ contains only weak cycles, then PCond holds.

▶ Theorem 13. Assume q is a self-join-free query and Γ a set of primary key constraints. If
the attack graph of q and Γ contains only weak cycles then q |= PCond.

5 Path queries

The dichotomy conjecture has also been shown to hold for path queries [7]. Recall that a path
query of length n is a Boolean conjunctive query with n + 1 distinct variables x0, x1, · · · , xn

and n atoms A1, · · · , An such that Ai = Ri(xi−1 xi) for some symbol Ri of σ. The query
may contain self-joins, i.e., there could be Ri = Rj for i ̸= j.

For this section, assume that the relational signature σ contains only symbols of arity
two and that the set Γ of constraints assigns to each symbol R of σ its first component
as a primary key. Note that a path query can be described by a word over σ (e.g., the
word describing q is R1 · · ·Rn ∈ σ∗). For simplicity, we will henceforth blur the distinction
between path queries and words over σ.

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:13

Following [7] we define the language L↬(q) as the regular language defined by the following
finite state automaton Aq with epsilon-transitions (we use s, t, . . . to denote words over σ).
The set of states of Aq is the set of all prefixes of q, including the empty prefix ε, which is
the initial state. There is only one accepting state, which is q. There is a transition reading
R from state s to the state sR. Moreover, there is an ε-transition in Aq from any state sR

to any state tR such that tR is a prefix of s.
The dichotomy result of [7] can be formulated as follows1:

▶ Theorem 14 ([7], Theorem 3.2). Let q be a path query. If q is a factor of all the words in
the language L↬(q), then certain(q) can be evaluated in PTime; otherwise, certain(q) is
coNP-complete.

We will show that, also in this case, Cert(q) captures certain(q) for all polynomial-time
path queries q (recall that Cert(q) denotes Certk(q) with k = |q|).

▶ Theorem 15. Let q be a path query of length n. If q is a factor of all the words in the
language L↬(q), then certain(q) = Cert(q).

The rest of this section is devoted to the proof of Theorem 15. We will make use of
the following fixpoint computation introduced by [7, Fig. 5]. For a fixed path query q and
database instance D, let N(q, D) be the set of pairs ⟨c, s⟩, where c ∈ adom(D) and s is a
prefix of q, computed via the following fixpoint algorithm.

Initialization Step: N(q, D)← {⟨c, q⟩ | c ∈ adom(D)}
Iterative Step: If s is a prefix of q, add ⟨c, s⟩ to N(q, D) if one of the following holds:

1. sR is a prefix of q and there is a fact R(c a) of D such that for every fact R(c b) of D

we have ⟨b, sR⟩ ∈ N(q, D);
2. There is an ε transition from s to t in Aq and there is a fact R(c a) of D such that for

every fact R(c b) of D we have ⟨b, tR⟩ ∈ N(q, D).

Let N(q) be the set of all databases D such that there exists c ∈ adom(D) with ⟨c, ε⟩ ∈
N(q, D).

▶ Lemma 16 ([7], (proof of) Lemma 6.4). For every path query q, if q is a factor of every
word in the language L↬(q), then certain(q) = N(q).

In view of Lemma 16, Theorem 15 is now a direct consequence of the following proposition.

▶ Proposition 17. For every path query q of length n, and assuming every word of L↬(q)
contains q as factor, we have N(q) = Cert(q).

Note that Cert(q) ⊆ N(q) follows from Cert(q) ⊆ certain(q) (Proposition 3) combined
with certain(q) = N(q) (Lemma 16). So we are left with proving N(q) ⊆ Cert(q). Let
D ∈ N(q). We will prove that D ∈ Cert(q).

For all l ≥ 0 let sl be the prefix of q of length l (i.e., s0 = ε and sn = q). For every
database D and fact u = R(a b) in D, let us define trace(u) = R, key(u) = a, and last(u) = b.
For a sequence of (possibly repeating) facts Π = u1, . . . , uk of a database D, we define
last(Π) = last(uk) and trace(Π) = trace(u1) · · · trace(uk) ∈ Σ∗

q . Also, let SΠ = {u1, . . . , uk}
be the set of facts in the sequence. Further, Π is called a valid path if (i) SΠ is a partial

1 Actually, [7] provides a much finer tetrachotomy between FO, NL-complete, PTime-complete and
coNP-complete. Here we restrict our attention to the dichotomy between PTime and coNP-complete.

ICDT 2023

24:14 A Simple Algorithm for Consistent Query Answering Under Primary Keys

repair of D, (ii) for all i < k we have last(ui) = key(ui+1), and (iii) trace(Π) is a prefix of
q. In particular, for any valid path Π of length k, we have trace(Π) = sk. Further, for any
prefix sl of q we write trace(Π) ∼ sl if there exists a run of the automaton Aq on trace(Π)
ending in state sl.

Let D ∈ N(q). Let N i(q, D) and ∆i(q, D) be the fix-point computations of N(q, D) and
∆(q, D) at their ith steps, respectively. To prove that D ∈ Cert(q), we will use the following
claim:

▷ Claim 18. For all i ≥ 0, For c ∈ adom(D) and for all prefix sl of q if ⟨c, sl⟩ ∈ N i(q, D)
then for all valid path Π where last(Π) = c and trace(Π) ∼ sl we have SΠ ∈ ∆i(q, D).

Let us show that the claim implies D ∈ Cert(q). As D ∈ N(q), there exists c ∈ adom(D)
such that ⟨c, ε⟩ ∈ Nm(q, D) for some step m. But note that ⟨c, ε⟩ ∈ Nm(q, D) can only
be produced by application of Rule 1 in the Iteration step (Rule 2 is not possible since ε

transitions do not start at the state ε). This implies that if R is the first relation occurring
in q then there exists a fact of the form R(c a) and for all facts of the form R(c b) in D

we have ⟨b, R⟩ ∈ Nm−1(q, D). For each such b we can apply the claim with the valid path
Π = R(c b), obtaining {R(c b)} ∈ ∆m−1(q, D) for every R(c b). Hence, ∅ ∈ ∆m(q, D) which
implies D ∈ Cert(q).

6 Certk does not capture all polynomial-time queries

We have shown that for all self-join free and path queries whose certainty is solvable in
polynomial time, the algorithm Certk computes certain(q) with k = |q|. A natural question
is whether this extends to all queries for which certainty is solvable in polynomial time. In
this section, we show that this is not the case. There exists query q whose certain answers
can be computed in polynomial time but the algorithm Certk(q) will always have a false
negative for any choice of k.

▶ Theorem 19. Let q4 be the query q4 = R(x yz) ∧ R(z xy). Then certain(q4) is in
polynomial time but cannot be computed by Certk(q4), for any choice of k.

Before proving the theorem we discuss some special properties of the query q4. Note that
q4 contains only two atoms but has self join. For any database D and facts a, b, c ∈ D, we
have that if D |= q4(ab) ∧ q4(ac) then b = c, and if D |= q4(ba) ∧ q4(ca) then b = c. Also, if
D |= q4(ab) ∧ q4(bc) then D |= q4(ca).

Since q4 contains only two atoms, for a database D, it is convenient to describe the set
of solutions to q4 as a graph. More precisely we say that the facts a, b ∈ D are q4-related
if D |= q4(ab) or D |= q4(ba). We define the solution graph of D, denoted by GD to be an
undirected graph whose vertices are the facts of D and pairs of q4-related facts form the
edges. From the properties of q4 it follows that every connected component in GD is always a
clique of size less than or equal to 3. If a clique has exactly three vertices we call it a triangle.

First we show that certain(q4) is in polynomial time by reducing it to bipartite matching.

▶ Lemma 20. certain(q4) is in PTime.

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:15

Proof. Fix an input database D. Without loss of generality, assume that there are no facts
a ∈ D such that D |= q4(aa)2. We reduce certain(q4, D) to a bipartite graph matching
problem. Consider the bipartite graph G = (V1 ∪ V2, E) where V1 is the set of all blocks and
V2 is the set of maximal cliques in GD. Let (v1, v2) ∈ E if the block v1 contains a fact which
is in the clique v2.

Suppose that there is a V1-saturating matching, that is, an injective function f : V1 → V2
such that (v1, f(v1)) ∈ E for every v1 ∈ V1. We construct a repair r where for every block B

of D, we pick the fact (or one of the facts, if there are more than one) which is in f(B). In
this way, no two chosen facts will be in the same clique, and also since there is no solution of
the form q4(aa) in D, no two chosen facts will form a solution to q4. Thus, r ̸|= q4.

Conversely, if q4 is not certain in D, let r be a repair such that r ̸|= q4. For each block
B of D let r(B) be the fact of B belonging to r. Note that, since V2 is a partition of D,
each r(B) belongs to a unique clique in V2. Define f : V1 → V2 such that each block B ∈ V1
is mapped to the clique in V2 where r(B) lies. To verify that f is a witness function of a
V1-saturating matching for G, note that for every B ∈ V1 we have (B, f(B)) ∈ E, as B and
f(B) both contain r(B). Moreover f is injective, otherwise if f maps two distinct blocks
to the same clique, this clique contains at least two elements of r; these two elements are
therefore q4-related, and thus r |= q4.

Thus, to check if D ∈ certain(q4), it is sufficient to check if there is a bipartite matching
of G that saturates V1. This is known to be in PTime [5]. ◀

We now prove that for all k, Certk(q4) does not compute certain(q4). To this end, for
every n ≥ 4 we exhibit a database Dn such that

Dn |= certain(q4) (Proposition 21);
Dn ̸|= Certn−2(q4) (Proposition 22).

Fix some n ≥ 4. The database Dn has n blocks of the form B1, · · · , Bn where each Bi

consists of n− 1 facts denoted b1
i , · · · , bn−1

i . Further, Dn also has (n− 1)(n− 3) blocks of
the form Ej

l for every 1 ≤ j ≤ n− 1 and 1 ≤ l ≤ n− 3, where each Ej
l has two facts denoted

by uj
l and vj

l . The solution graph of Dn is depicted in Figure 1.
Dn is defined in such a way that every fact of Dn is part of a “triangle”. More precisely,

we have the following triangles in the solution graph of Dn: For every 1 ≤ j ≤ n − 1, the
triples {bj

1, bj
2, uj

1} and {bj
n−1, bj

n, vj
n−3} form triangles and for every 1 ≤ l < n− 3 we have a

triangle {vj
l , uj

l+1, bj
l+2}.

▶ Proposition 21. For every n ≥ 2, Dn |= certain(q4).

To see this, note that there are n + (n− 1)(n− 3) blocks in Dn and there are (n− 1)(n− 2)
cliques (all triangles) in the solution graph of Dn. Thus, in the corresponding bipartite graph
(cf. Lemma 20) size of V1 is strictly smaller than the size of V2. Hence, there cannot be a
V1-saturating matching which implies Dn |= certain(q4).

▶ Proposition 22. Let k ≥ 2. Dk+2 ̸|= Certk(q4).

Proof sketch. To prove the proposition, for a set of blocks X = {X1, . . . Xk} of Dk+2, if
W = {a1, . . . ak} is a set of facts where each ai ∈ Xi, then we call W a partial repair of X.
Further, W is called an obstruction set of X if W satisfies some “desired properties”. In

2 If there is a fact a ∈ D such that D |= q(aa) then suppose the block containing a is a singleton set then
clearly D |= certain(q4). Otherwise, D |= certain(q4) iff D \ {a} |= certain(q4), so we can consider
the smaller database instance.

ICDT 2023

24:16 A Simple Algorithm for Consistent Query Answering Under Primary Keys

<latexit sha1_base64="Ock96GzSURcCYgs8rQItxz2kWME=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgFV2VGirqz6MZlRXuBdiiZNNOGZpIhyQhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBTZY3HqnSTIoHM4ypH+GeYCEj2Fjr/rrjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6sU4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflYuVY5gqB4dwBKfgwQVU4BaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4A1SCR5A==</latexit>

B1

<latexit sha1_base64="+qBImYMYvDDUjE3nL3KUf8gODQY=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8EquCpJKerOohuXFe0F2lAm00k7dDIJMxOhhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8CbLm49UKhaJBz2KqRfivmABI1gb6/66W+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjVODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUuasUqycwUx6O4BjOwIULqMIt1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ANakkeU=</latexit>

B2

<latexit sha1_base64="4VEGWlEG1X6TNTbIf1XozHVii64=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaIgMVUJVMBGBQtjEfQitVHluE5r1XEi20Gqoj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJPljUcqFYvEgx7G1AtxT7CAEayNdX/dOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjZOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFcuVo5gqjwcwCGcgAsXUIFbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ANgokeY=</latexit>

B3

<latexit sha1_base64="MwXhCYCUAJiswf/f8yTq5UyXjbE=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgFV2VGirqz6MZlRXuBdiiZNNOGJpkhyQhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XdZQoQmsk4pFqBlhTziStGWY4bcaKYhFw2ggGN1neeKRKs0g+mGFMfYF7koWMYGOt++tOuVMouiV3IrQI3gyKV5/jTG/VTuGr3Y1IIqg0hGOtW54bGz/FyjDC6SjfTjSNMRngHm1ZlFhQ7aeTUUfoxDpdFEbKPmnQxP3dkWKh9VAEtlJg09fzWWb+l7USE176KZNxYqgk04/ChCMToWxv1GWKEsOHFjBRzM6KSB8rTIy9Tt4ewZtfeRHqZyXvvFS+KxcrxzBVDg7hCE7BgwuowC1UoQYEevAEL/DqcOfZGTvv09IlZ9ZzAH/kfPwA2ayR5w==</latexit>

B4

<latexit sha1_base64="R8ROOUhtd992UZlSItIXHSkxxMM=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgFV2VGirqz6MZlRXuBdiiZNNOGZpIhyQhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBTZY3HqnSTIoHM4ypH+GeYCEj2Fjr/rojOoWiW3InQovgzaB49TnO9FbtFL7aXUmSiApDONa65bmx8VOsDCOcjvLtRNMYkwHu0ZZFgSOq/XQy6gidWKeLQqnsEwZN3N8dKY60HkaBrYyw6ev5LDP/y1qJCS/9lIk4MVSQ6UdhwpGRKNsbdZmixPChBUwUs7Mi0scKE2Ovk7dH8OZXXoT6Wck7L5XvysXKMUyVg0M4glPw4AIqcAtVqAGBHjzBC7w63Hl2xs77tHTJmfUcwB85Hz8xo5Ih</latexit>

Bn

<latexit sha1_base64="1Vf2BVSOKlOjqUme3uIBPy+VA84=">AAAB7nicbZDLSgMxFIbPeK31VnXpJlgFN5YZKerOohuXFewF2qFk0kwbmkmGJCOUoQ/hRrAibn0FX8Odb2Om7UJbfwh8/P855JwTxJxp47rfztLyyuraem4jv7m1vbNb2Nuva5koQmtEcqmaAdaUM0FrhhlOm7GiOAo4bQSD2yxvPFKlmRQPZhhTP8I9wUJGsLFW46aTijNv1CkU3ZI7EVoEbwbF68+XTONqp/DV7kqSRFQYwrHWLc+NjZ9iZRjhdJRvJ5rGmAxwj7YsChxR7aeTcUfoxDpdFEplnzBo4v7uSHGk9TAKbGWETV/PZ5n5X9ZKTHjlp0zEiaGCTD8KE46MRNnuqMsUJYYPLWCimJ0VkT5WmBh7obw9gje/8iLUz0veRal8Xy5WjmGqHBzCEZyCB5dQgTuoQg0IDOAJxvDqxM6z8+a8T0uXnFnPAfyR8/ED0gqTnw==</latexit>

Bn�1

<latexit sha1_base64="OTE4BzU97xIJvyBAHZ2qvtDrwXo=">AAAB7nicbZDLSsNAFIZP6q3WW9Slm8EquLEkpag7i25cVrAXaEOZTCft0MkkzEyEEvoQbgQr4tZX8DXc+TZO2i609YeBj/8/hznn+DFnSjvOt5VbWV1b38hvFra2d3b37P2DhooSSWidRDySLR8rypmgdc00p61YUhz6nDb94W2WNx+pVCwSD3oUUy/EfcECRrA2VvOmm4rz8rhrF52SMxVaBncOxevPl0yTWtf+6vQikoRUaMKxUm3XibWXYqkZ4XRc6CSKxpgMcZ+2DQocUuWl03HH6NQ4PRRE0jyh0dT93ZHiUKlR6JvKEOuBWswy87+snejgykuZiBNNBZl9FCQc6Qhlu6Mek5RoPjKAiWRmVkQGWGKizYUK5gju4srL0CiX3ItS5b5SrJ7ATHk4gmM4AxcuoQp3UIM6EBjCE0zg1YqtZ+vNep+V5qx5zyH8kfXxA9OPk6A=</latexit>

Bn�2

<latexit sha1_base64="QeRUV/9RunJIUioabpA+V6PAzv4=">AAAB7HicbZDNSsNAFIVv6l+tf1WXbgar4KokUqo7CyK4rGDaQhvLZDpph04mYWYilNBncOPCKm59B1/DnW/jpO1CWw8MfJxzL3Pv9WPOlLbtbyu3srq2vpHfLGxt7+zuFfcPGipKJKEuiXgkWz5WlDNBXc00p61YUhz6nDb94XWWNx+pVCwS93oUUy/EfcECRrA2lnvz4HSdbrFkl+2p0DI4cyhdfU4yvda7xa9OLyJJSIUmHCvVduxYeymWmhFOx4VOomiMyRD3adugwCFVXjoddoxOjdNDQSTNExpN3d8dKQ6VGoW+qQyxHqjFLDP/y9qJDi69lIk40VSQ2UdBwpGOULY56jFJieYjA5hIZmZFZIAlJtrcp2CO4CyuvAyN87JTLVfuKqXaCcyUhyM4hjNw4AJqcAt1cIEAgyd4gYklrGfrzXqfleasec8h/JH18QP+VZKK</latexit>

E1
1

<latexit sha1_base64="dw3JscUnyc5hE3ZZLcfCy2wqmUM=">AAAB7HicbZDNSsNAFIVv6l+tf1WXbgar4Kokpag7CyK4rGDaQhvLZDpph04mYWYilNBncOPCKm59B1/DnW/jpO1CWw8MfJxzL3Pv9WPOlLbtbyu3srq2vpHfLGxt7+zuFfcPGipKJKEuiXgkWz5WlDNBXc00p61YUhz6nDb94XWWNx+pVCwS93oUUy/EfcECRrA2lnvz4HQr3WLJLttToWVw5lC6+pxkeq13i1+dXkSSkApNOFaq7dix9lIsNSOcjgudRNEYkyHu07ZBgUOqvHQ67BidGqeHgkiaJzSaur87UhwqNQp9UxliPVCLWWb+l7UTHVx6KRNxoqkgs4+ChCMdoWxz1GOSEs1HBjCRzMyKyABLTLS5T8EcwVlceRkalbJzXq7eVUu1E5gpD0dwDGfgwAXU4Bbq4AIBBk/wAhNLWM/Wm/U+K81Z855D+CPr4wf/2ZKL</latexit>

E1
2

<latexit sha1_base64="zeP4JLyhmy+fp2t0zQeY7aycsuM=">AAAB7HicbZDNSsNAFIVv6l+tf1WXbgar4KokWtSdBRFcVjBtoY1lMp20QyeTMDMRSugzuHFhFbe+g6/hzrdx0nahrQcGPs65l7n3+jFnStv2t5VbWl5ZXcuvFzY2t7Z3irt7dRUlklCXRDySTR8rypmgrmaa02YsKQ59Thv+4DrLG49UKhaJez2MqRfinmABI1gby715cDpnnWLJLtsToUVwZlC6+hxneq11il/tbkSSkApNOFaq5dix9lIsNSOcjgrtRNEYkwHu0ZZBgUOqvHQy7AgdG6eLgkiaJzSauL87UhwqNQx9Uxli3VfzWWb+l7USHVx6KRNxoqkg04+ChCMdoWxz1GWSEs2HBjCRzMyKSB9LTLS5T8EcwZlfeRHqp2XnvFy5q5SqRzBVHg7gEE7AgQuowi3UwAUCDJ7gBcaWsJ6tN+t9WpqzZj378EfWxw8BbJKM</latexit>

E1
3

<latexit sha1_base64="L2W9kilW3t72TawkdJ75SfEQUD4=">AAAB8HicbZDLSgMxFIbPeK31VnXpJlgFN5YZKerOggguK9iLtGPJpGkbmmSGJCOUoU/hRkURt76Br+HOtzHTdqGtPwQ+/v8ccs4JIs60cd1vZ25+YXFpObOSXV1b39jMbW1XdRgrQisk5KGqB1hTziStGGY4rUeKYhFwWgv6F2leu6dKs1DemEFEfYG7knUYwcZat5d3XiuRR8VhK5d3C+5IaBa8CeTPP59SPZdbua9mOySxoNIQjrVueG5k/AQrwwinw2wz1jTCpI+7tGFRYkG1n4wGHqID67RRJ1T2SYNG7u+OBAutByKwlQKbnp7OUvO/rBGbzpmfMBnFhkoy/qgTc2RClG6P2kxRYvjAAiaK2VkR6WGFibE3ytojeNMrz0L1uOCdFIrXxXxpH8bKwC7swSF4cAoluIIyVICAgAd4gVdHOY/Om/M+Lp1zJj078EfOxw8CNZRI</latexit>

E1
n�4

<latexit sha1_base64="5NBS8tYMEmvHe9vebgzxiYr6hEM=">AAAB8HicbZDLSgMxFIbP1Futt6pLN4NVcGOZ0aLuLIjgsoK9SDuWTJppQ5PMkGSEMvQp3Kgo4tY38DXc+TZm2i609YfAx/+fQ845fsSo0o7zbWXm5hcWl7LLuZXVtfWN/OZWTYWxxKSKQxbKho8UYVSQqqaakUYkCeI+I3W/f5Hm9XsiFQ3FjR5ExOOoK2hAMdLGur28c9uJODwetvMFp+iMZM+CO4HC+edTqudKO//V6oQ45kRozJBSTdeJtJcgqSlmZJhrxYpECPdRlzQNCsSJ8pLRwEN73zgdOwileULbI/d3R4K4UgPum0qOdE9NZ6n5X9aMdXDmJVREsSYCjz8KYmbr0E63tztUEqzZwADCkppZbdxDEmFtbpQzR3CnV56F2lHRPSmWrkuF8h6MlYUd2IUDcOEUynAFFagCBg4P8AKvlrQerTfrfVyasSY92/BH1scPALCURw==</latexit>

E1
n�3

<latexit sha1_base64="hdxi86DRDul27CFlz37XRf/Gy4c=">AAAB8HicbZDLSgMxFIbP1Futt6pLN4NVcGOZqUXdWRDBZQV7kXYsmTTThiaZIckIZehTuFFRxK1v4Gu4823MtF1o9YfAx/+fQ845fsSo0o7zZWXm5hcWl7LLuZXVtfWN/OZWXYWxxKSGQxbKpo8UYVSQmqaakWYkCeI+Iw1/cJ7mjTsiFQ3FtR5GxOOoJ2hAMdLGurm4LXUScXg06uQLTtEZy/4L7hQKZx+PqZ6qnfxnuxvimBOhMUNKtVwn0l6CpKaYkVGuHSsSITxAPdIyKBAnykvGA4/sfeN07SCU5gltj92fHQniSg25byo50n01m6Xmf1kr1sGpl1ARxZoIPPkoiJmtQzvd3u5SSbBmQwMIS2pmtXEfSYS1uVHOHMGdXfkv1EtF97hYvioXKnswURZ2YBcOwIUTqMAlVKEGGDjcwzO8WNJ6sF6tt0lpxpr2bMMvWe/fAjqUSA==</latexit>

E2
n�3

<latexit sha1_base64="yK/2aJogzoONKg7whjmMOSSa4QE=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EquLHMlKLuLIjgsoK9SDuWTJppQzOZIckIZehTuFFRxK1v4Gu4823MtF1o6w+Bj/8/h5xzvIgzpW3728osLC4tr2RXc2vrG5tb+e2dugpjSWiNhDyUTQ8rypmgNc00p81IUhx4nDa8wUWaN+6pVCwUN3oYUTfAPcF8RrA21u3lXamTiOPyqJMv2EV7LDQPzhQK559PqZ6rnfxXuxuSOKBCE46Vajl2pN0ES80Ip6NcO1Y0wmSAe7RlUOCAKjcZDzxCh8bpIj+U5gmNxu7vjgQHSg0Dz1QGWPfVbJaa/2WtWPtnbsJEFGsqyOQjP+ZIhyjdHnWZpETzoQFMJDOzItLHEhNtbpQzR3BmV56HeqnonBTL1+VC5QAmysIe7MMROHAKFbiCKtSAQAAP8AKvlrQerTfrfVKasaY9u/BH1scPA7+USQ==</latexit>

E2
n�4

<latexit sha1_base64="lKX0WRj34Her5YN85iUjHXhpQ3Y=">AAAB7nicbZDLSgMxFIbP1Futt6pLN8EquCozbVF3FkRwWcFeoB1LJs20oZnMkGSEMvQh3AhWxK2v4Gu4823MtF1o6w+Bj/8/h5xzvIgzpW3728qsrK6tb2Q3c1vbO7t7+f2DhgpjSWidhDyULQ8rypmgdc00p61IUhx4nDa94XWaNx+pVCwU93oUUTfAfcF8RrA2VvPmodRNyuNuvmAX7anQMjhzKFx9vqSa1Lr5r04vJHFAhSYcK9V27Ei7CZaaEU7HuU6saITJEPdp26DAAVVuMh13jE6N00N+KM0TGk3d3x0JDpQaBZ6pDLAeqMUsNf/L2rH2L92EiSjWVJDZR37MkQ5RujvqMUmJ5iMDmEhmZkVkgCUm2lwoZ47gLK68DI1S0TkvVu4qheoJzJSFIziGM3DgAqpwCzWoA4EhPMEEXq3IerberPdZacaa9xzCH1kfP8hMk5k=</latexit>

E2
3

<latexit sha1_base64="YXxvrjfspMhUi/xFv1Z50buWfl8=">AAAB7nicbZDLSsNAFIZP6q3WW9Slm8EquCpJKerOggguK9gLtLFMppN26GQSZiZCCX0IN4IVcesr+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLm49UKhaJez2KqRfivmABI1gbq3nzUO6m5XHXLjolZyq0DO4cilefL5kmta791elFJAmp0IRjpdquE2svxVIzwum40EkUjTEZ4j5tGxQ4pMpLp+OO0alxeiiIpHlCo6n7uyPFoVKj0DeVIdYDtZhl5n9ZO9HBpZcyESeaCjL7KEg40hHKdkc9JinRfGQAE8nMrIgMsMREmwsVzBHcxZWXoVEuueelyl2lWD2BmfJwBMdwBi5cQBVuoQZ1IDCEJ5jAqxVbz9ab9T4rzVnznkP4I+vjB8bHk5g=</latexit>

E2
2

<latexit sha1_base64="AsM196nSB7dBteyA89ODlupKi7s=">AAAB7nicbZDLSsNAFIZP6q3WW9Slm8EquCpJKerOggguK9gLtLFMppN26GQSZiZCCX0IN4IVcesr+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLm49UKhaJez2KqRfivmABI1gbq3nzUO6m7rhrF52SMxVaBncOxavPl0yTWtf+6vQikoRUaMKxUm3XibWXYqkZ4XRc6CSKxpgMcZ+2DQocUuWl03HH6NQ4PRRE0jyh0dT93ZHiUKlR6JvKEOuBWswy87+snejg0kuZiBNNBZl9FCQc6Qhlu6Mek5RoPjKAiWRmVkQGWGKizYUK5gju4srL0CiX3PNS5a5SrJ7ATHk4gmM4AxcuoAq3UIM6EBjCE0zg1YqtZ+vNep+V5qx5zyH8kfXxA8VCk5c=</latexit>

E2
1

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>. . .

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>. . .

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>. . .

<latexit sha1_base64="ylNqoy4oLBqGnSH9jy4/T4h5ccE=">AAAB7HicbZDNSsNAFIVv6l+tf1WXbgar4KokUqq4saALlxVMW2hDmUwn7dDJJMxMhBL6DG5cWMWt7+BruPNtnLRdaOuBgY9z7mXuvX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QUNFiSTUJRGPZMvHinImqKuZ5rQVS4pDn9OmP7zJ8uYjlYpF4kGPYuqFuC9YwAjWxnJvuwJddYslu2xPhZbBmUPp+nOS6bXeLX51ehFJQio04ViptmPH2kux1IxwOi50EkVjTIa4T9sGBQ6p8tLpsGN0apweCiJpntBo6v7uSHGo1Cj0TWWI9UAtZpn5X9ZOdHDppUzEiaaCzD4KEo50hLLNUY9JSjQfGcBEMjMrIgMsMdHmPgVzBGdx5WVonJedarlyXynVTmCmPBzBMZyBAxdQgzuogwsEGDzBC0wsYT1bb9b7rDRnzXsO4Y+sjx8JOpKR</latexit>

Dn :

Figure 1 Solution graph for database Dn. Black dots denote facts, rectangles denote blocs, and
three-pointed edges denote “triangles” in the solution graph of Dn. There are n − 1 facts in each Bi

and two facts in every Ej
k.

particular we will show that if W is an obstruction set then W ̸|= q4. Next we will prove
that for any set of blocks X = {X1, . . . Xk} of Dk+2, we can always pick a partial repair W

of X such that W is an obstruction set.
Now suppose Dk+2 ∈ Certk(q4) then it follows that there has to exist at least one

obstruction set W ∈ ∆k(q4, Dk+2). We pick the minimum i such that there is some
obstruction set in ith step of ∆k(q4, Dk+2) computation. Note that i = 0 is not possible since
obstruction sets do not contain a solution to q4. Thus, to obtain a contradiction, we will
show that if there is an obstruction set in ∆k(q4, Dk+2) at ith step, then there has to exist
an obstruction set in ∆k(q4, Dk+2) in (i− 1)th step. ◀

▶ Theorem 23. Let q4 = R(x yz) ∧R(z xy). Then ¬certain(q4) is complete for bipartite
matching under LogSpace-reductions.

Proof. From the proof of Lemma 20 it follows that we can reduce ¬certain(q4) to bipartite
matching. The reader can verify that the reduction is in LogSpace. We now prove the
other direction.

Given a bipartite graph G = (V1 ∪ V2, E), let V1 = {s1, . . . sn} and V2 = {t1, . . . tm}.
Consider the problem of determining whether there exists a matching that saturates V1. We
will reduce this problem to ¬certain(q4).

For all sj ∈ V1 let N(sj) ⊆ V2 denote the neighbours of sj and similarly for all ti ∈ V2 let
N(ti) ⊆ V1 denote the neighbours of tj .

First note that if there is some sj ∈ V1 such that N(sj) = ∅, then clearly there cannot
be a matching that saturates V1. So assume that for every sj ∈ V1, N(sj) ̸= ∅. Similarly,
if there is some ti ∈ V2 such that N(ti) = ∅, then ti does not contribute to any matching
and hence can be removed from the input. So we can also assume that for every ti ∈ V2,
N(ti) ̸= ∅. Further, suppose there is some ti such that |N(ti)| = 1, let sj be the single
neighbour of ti. In this case, if there exists a matching that saturates V1 then there is a
matching that saturates V1 where sj is matched with ti. So we can remove the pair (sj , ti)
from the input. This means that we can assume that for every ti ∈ V2, |N(ti)| ≥ 2.

Altogether, we have |N(sj)| ≥ 1 for all sj ∈ V1 and |N(ti)| ≥ 2 for all ti ∈ V2. Note that
these properties can be checked in LogSpace.

Now we define the database DG. Note that this construction is very similar to the
construction of Dn that we used to prove Theorem 19.

For every vertex in sj ∈ V1 create a block Bj in DG.
For every sj ∈ V1 and ti ∈ V2, if ti ∈ N(sj) then there is a fact denoted by bi

j in the block
Bj . By assumption N(sj) ≥ 1 and hence every block Bj is non-empty.

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:17

For every ti ∈ V2 if |N(ti)| = l then let si1 , . . . sil
∈ V1 be the neighbours of t. By the

above construction, for every j ≤ l, there is a fact of the form bi
ij

in Bij
that corresponds

to the vertex ti.
Now if l = 2 then define bi

i1
and bi

i2
such that they form a solution to q4. Otherwise, if

l = 3 then define bi
i1

, bi
i2

and bi
i3

such that they pair-wise form a solution to q4 (the three
facts form a triangle).
If l ≥ 4 then create l − 3 new blocks denoted by Ei

1, . . . Ei
l−3 where each Ei

j contains
exactly two facts ui

j and vi
j . Moreover, in the same way as described in the definition

of Dn earlier, define the facts appropriately such that {bi
i1

, bi
i2

, ui
1} and {bi

il−1
, bi

il
, vi

l−3}
form triangles and for every 1 ≤ j < l − 3 we have a triangle {vi

j , ui
j+1, bi

j+2}.
The reader can verify that this is exactly the construction used to define Dn. Again, this
construction is in LogSpace. For each such j and l define U(i, l) = {ui

k | 1 ≤ k ≤ l− 2} and
V (i, l) = {vi

k | l − 1 ≤ k ≤ l − 3}.
Now suppose there is a matching that saturates V1 and let us show that the query is not

certain. Consider the repair r where for each block Bj we pick bi
j if sj is matched with ti.

Further, pick U(i, l) ∪ V (i, l) which gives a partial repair over Ei
1 . . . Ei

l .
If some ti ∈ V2 is not matched with any vertex in V1 then pick U(i, 1) ∪ V (i, 1) which

gives a partial repair over Ei
1 . . . Ei

l . It can be verified that the obtained repair does not
contain any solution.

Finally, suppose there is a repair over DG that falsifies the query then note that if bi
j is

picked in block Bj then for all other blocks Bj′ , the fact bi
j′ cannot be in the repair since

that will make the query true. Also bi
j ∈ Bj only if there is an edge between sj and ti. Hence

we can define the matching that maps every sj ∈ Vi to ti ∈ V2 where bi
j is the fact in the

falsifying repair from the block Bj . ◀

7 Conclusion

We have presented a simple polynomial time algorithm for certain query answering over
inconsistent databases under primary key constraints. The query is always certain when the
algorithm outputs “yes”, but it may produce false negative answers. We showed that for any
self-join-free or path query which is not coNP-hard, the algorithm correctly computes all
certain answers. A similar fixpoint algorithm can be obtained for other kinds of constraints.
It needs a few hypothesis such that being able to check in PTime whether a set of facts
belongs to a repair. However, the analysis of this algorithm under other kinds of constraints
is yet to be studied.

It is clear that when the fixpoint of the algorithm is bounded (i.e., it converges after a
number of steps which is independent of the input database) the certainty of the query can
be expressed in first-order logic, see Remark 11. It turns out that the converse is also true.
Using the characterizations of [8] for self-join-free queries and of [7] for path queries, we can
show that when the certainty can be expressed in first-order logic, then our algorithm is
bounded. This will appear in the journal version of this paper.

As we have shown, our algorithm does not solve all the known cases where certainty
can be solved in polynomial time. Hence, it would be interesting to have a (decidable)
characterization of the queries whose certainty can be solved using our algorithm; we leave
this for future work.

ICDT 2023

24:18 A Simple Algorithm for Consistent Query Answering Under Primary Keys

References
1 Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent databases: algorithms

and complexity. In Ronald Fagin, editor, Database Theory - ICDT 2009, 12th International
Conference, St. Petersburg, Russia, March 23-25, 2009, Proceedings, volume 361 of ACM
International Conference Proceeding Series, pages 31–41. ACM, 2009. doi:10.1145/1514894.
1514899.

2 Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query answers in
inconsistent databases. In Victor Vianu and Christos H. Papadimitriou, editors, Proceedings
of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, May 31 - June 2, 1999, Philadelphia, Pennsylvania, USA, pages 68–79. ACM Press,
1999. doi:10.1145/303976.303983.

3 Diego Figueira, Anantha Padmanabha, Luc Segoufin, and Cristina Sirangelo. A simple
algorithm for consistent query answering under primary keys. arXiv, 2023. arXiv:2301.08482.

4 Ariel Fuxman and Renée J. Miller. First-order query rewriting for inconsistent databases. J.
Comput. Syst. Sci., 73(4):610–635, 2007. doi:10.1016/j.jcss.2006.10.013.

5 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.

6 Phokion G. Kolaitis and Enela Pema. A dichotomy in the complexity of consistent query
answering for queries with two atoms. Inf. Process. Lett., 112(3):77–85, 2012. doi:10.1016/j.
ipl.2011.10.018.

7 Paraschos Koutris, Xiating Ouyang, and Jef Wijsen. Consistent query answering for primary
keys on path queries. In Leonid Libkin, Reinhard Pichler, and Paolo Guagliardo, editors,
PODS’21: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, Virtual Event, China, June 20-25, 2021, pages 215–232. ACM, 2021.
doi:10.1145/3452021.3458334.

8 Paraschos Koutris and Jef Wijsen. Consistent query answering for self-join-free conjunctive
queries under primary key constraints. ACM Trans. Database Syst., 42(2):9:1–9:45, 2017.
doi:10.1145/3068334.

9 Paraschos Koutris and Jef Wijsen. Consistent query answering for primary keys in datalog.
Theory Comput. Syst., 65(1):122–178, 2021. doi:10.1007/s00224-020-09985-6.

10 Jef Wijsen. A remark on the complexity of consistent conjunctive query answering under
primary key violations. Inf. Process. Lett., 110(21):950–955, 2010. doi:10.1016/j.ipl.2010.
07.021.

https://doi.org/10.1145/1514894.1514899
https://doi.org/10.1145/1514894.1514899
https://doi.org/10.1145/303976.303983
http://arxiv.org/abs/2301.08482
https://doi.org/10.1016/j.jcss.2006.10.013
https://doi.org/10.1137/0202019
https://doi.org/10.1016/j.ipl.2011.10.018
https://doi.org/10.1016/j.ipl.2011.10.018
https://doi.org/10.1145/3452021.3458334
https://doi.org/10.1145/3068334
https://doi.org/10.1007/s00224-020-09985-6
https://doi.org/10.1016/j.ipl.2010.07.021
https://doi.org/10.1016/j.ipl.2010.07.021

	p000-Frontmatter
	Preface
	Organization
	External Reviewers
	Contributing Authors
	The ICDT 2023 Test-of-Time Award

	p001-Francis
	1 Introduction
	2 GQL by Example
	3 Syntax of GQL
	4 Semantics
	4.1 Preliminaries
	4.2 Semantics of Path Patterns
	4.3 Semantics of Graph Patterns
	4.4 Semantics of Conditions and Expressions
	4.5 Semantics of Queries

	5 A Few Known Discrepancies with the GQL Standard
	5.1 User-Friendly Syntactic Restrictions
	5.2 Query Evaluation
	5.3 Missing Features

	6 What the Future Holds

	p002-Navarro
	1 Motivation
	1.1 Graph databases
	1.2 Worst-case optimality and the space problem
	1.3 Compact data structures to the rescue

	2 State of the Art in (Graph) Databases
	2.1 Multijoin queries
	2.2 The AGM bound
	2.3 Leapfrog Triejoin
	2.4 The case of graph databases

	3 Compact Data Structures
	3.1 Bitvectors
	3.2 Cardinal trees
	3.3 Quadtrees
	3.4 Wavelet trees
	3.5 The FM-Index

	4 Qdags
	5 The Ring
	6 Now What?

	p003-Seshadhri
	1 Introduction
	2 Triangle counting through graph orientations
	2.1 Graph orientations and degeneracy
	2.2 Degeneracy and graph density
	2.3 Taming real-world heavy tails
	2.4 Practical clique counting

	3 Beyond clique counting
	4 A sublinear application
	5 Conclusion

	p004-Deng
	1 Introduction
	1.1 Problem Definitions and Complexity Parameters
	1.2 Previous Work
	1.3 Our Contributions

	2 Preliminaries
	2.1 Joins on Binary Relations
	2.2 Reduction from Subgraph Enumeration to Binary Joins
	2.3 A Concentration Bound under Partial Dependence

	3 An EM Algorithm for Binary Joins of Bounded Degrees
	3.1 An Algorithmic Framework
	3.2 When M = O(lambda / log^2 lambda)
	3.3 When M = Omega((lambda log lambda)^{2/3})

	4 An EM Algorithm for Arbitrary Binary Joins
	4.1 Residual Joins
	4.2 Simplifying Residual Joins
	4.3 Processing Simplified Residual Joins

	5 Conclusions
	A Proof of Lemma 3
	B Obtaining the Input Relations of Each Q_gamma in Section 3.1
	C Completing the Proof of Lemma 8
	D Proof of Lemma 11

	p005-Raykov
	1 Introduction
	1.1 Prior Work

	2 Notation and Tools
	3 The Algorithm
	3.1 Overview
	3.2 Description
	3.3 Discussing the Preparation Phase

	4 Lower Bounds
	5 Conclusions and Future Work
	A Finding the k-smallest Element in Three AWBBS Trees
	A.1 The Algorithm

	p006-Deng
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions
	1.2.1 Problem 1
	1.2.2 Problem 2

	1.3 Related Work

	2 Preliminaries
	3 Problem 1: Matching Upper and Lower Bounds
	3.1 Lower Bound
	3.2 Upper Bound

	4 Problem 1: Wedges
	5 Problem 2: Arbitrary Subgraphs
	5.1 A Generalization of the AGM Bound
	5.2 Range Join

	6 Problem 2: Triangles
	6.1 The Range Triangle Edges Problem
	6.2 The Small-Delay Triangle Listing Problem
	6.3 Proof of Theorem 6

	7 Problem 2: Near-Constant Delays
	7.1 l-Stars
	7.2 2l-Cycles

	A Correctness of the Reduction in Section 3.1
	B Proof of Lemma 9
	C Proof of Lemma 11
	D Proof of Theorem 5

	p007-Munoz
	1 Introduction
	2 Setting and main problem
	3 Enumerable compact sets with shifts
	4 Evaluation of annotatated automata over SLP-compressed strings
	5 Applications in regular spanners
	6 Constant delay-preserving complex document editing
	7 Future work

	p008-Deeds
	1 Introduction
	2 Problem Statement
	3 The Star Query
	4 The Berge-Acyclic Query
	4.1 The Degree Sequence Bound
	4.2 Connection to the AGM and Polymatroid Bounds

	5 Functional Representation
	6 Conclusions

	p009-Pieris
	1 Introduction
	2 Preliminaries
	3 Subgraph-based Centrality Measures
	4 Characterizing Subgraph-based Centrality Measures
	5 Characterizing Subgraph-based Measures Relative to the Induced Ranking
	6 Monotonic Filtering Functions
	7 Classification
	8 Conclusions

	p010-Merkl
	1 Introduction
	2 Preliminaries
	3 Diversity of Conjunctive Queries
	3.1 Combined and Query Complexity
	3.1.1 Basic Algorithm
	3.1.2 W[1]-Hardness
	3.1.3 Speeding up the Basic Algorithm

	3.2 Data Complexity

	4 Diversity of Unions of Conjunctive Queries
	5 Diversity of Conjunctive Queries with Negation
	6 Conclusion and Future Work

	p011-Khalil
	1 Introduction
	2 Preliminaries
	3 The Shapley Value of Edges
	4 The Complexity of Exact Computation
	4.1 Proof of Hardness

	5 Complexity of Approximation
	5.1 Results
	5.2 Proof of Hardness
	5.3 Proof of Tractability
	5.4 Open Problem: Directed Acyclic Graphs

	6 Shapley Value of Vertices
	6.1 Complexity of Exact Computation
	6.2 Complexity of Approximation
	6.3 Summary

	7 Concluding Remarks

	p012-Riveros
	1 Introduction
	2 Preliminaries
	3 Tree rooting centrality measures
	4 Potential functions
	5 An algorithm to find the root
	6 Consistent rooting
	7 Families of potential functions
	8 Discussion

	p013-Cucumides
	1 Introduction
	2 Preliminaries
	3 Size bounds for CRPQs
	3.1 Motivation: underlying flat CQs
	3.2 Simple CRPQs
	3.3 Bound for arbitrary epsilon-free CRPQs
	3.4 Dealing with epsilon

	4 WCO algorithms for CRPQs
	4.1 WCO algorithms for CRPQs may not exist
	4.2 GenericJoin for CRPQs

	5 Conclusions and future work

	p014-Amarilli
	1 Introduction
	2 Preliminaries and Problem Statement
	3 Basic Techniques: Dissociation, Tight Edges
	4 Minimality and Critical Models
	5 Hardness with a Non-Iterable Critical Model
	6 Hardness when all Critical Models are Iterable
	7 Conclusion

	p015-Figueira
	1 Introduction
	2 Homomorphisms, refinements, and expansions
	3 Maximal under-approximations of bounded tree-width
	4 Intermezzo: tagged tree decompositions
	5 Proof of the key lemma
	6 Queries over simple regular expressions
	6.1 Summary queries
	6.2 Semantic tree-width problem

	7 Discussion

	p016-Keppeler
	1 Introduction
	2 Preliminaries
	3 Obstacles
	4 Basics
	5 Algorithmic Techniques and Algorithms for Basic Array Operations
	6 Algorithms for Database Operations
	7 Query Evaluation
	7.1 Semi-Join Algebra
	7.2 Evaluation of Conjunctive Queries
	7.3 Weakly Worst-Case Optimal Work for Natural Joins

	8 Conclusion

	p017-Kara
	1 Introduction
	2 Preliminaries
	3 Conjunctive Queries with Free Access Patterns
	3.1 Variable Orders
	3.2 Width Measures

	4 CQAP Evaluation
	4.1 Preprocessing
	4.2 Enumeration
	4.3 Updates
	4.4 Discussion

	5 A Dichotomy for CQAPs
	6 Trade-Offs for CQAPs with Hierarchical Fractures
	6.1 Data Partitioning
	6.2 Preprocessing
	6.3 Updates

	7 Related Work
	8 Conclusion

	p018-Feller
	1 Introduction
	2 Preliminaries
	3 A Generic Decidability Argument
	4 Cliquewidth and its Properties
	4.1 Cliquewidth of Countable Instances
	4.2 Finite-Cliquewidth Sets and Decidability
	4.3 Cliquewidth and Treewidth

	5 Comparing FCS and FUS
	5.1 The Case of Single-Headed Rules
	5.2 The Case of Multi-Headed Rules
	5.3 Fus and Expressive Queries

	6 Conclusions and Future Work

	p019-Assadi
	1 Introduction
	2 Preliminaries
	2.1 Time Steps and Bands
	2.2 Indirect handling of r-min and r-max values

	3 A non-trivial extension of GK algorithm for weighted streams
	3.1 Space Analysis
	3.2 An Efficient Implementation of Algorithm

	4 Unweighted Quantiles
	4.1 A Greedy 1/eps log2(eps n) Size Summary
	4.2 The Simplified GK Summary

	p020-Grohe
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Bag Databases
	2.2 UCQs with Bag Semantics

	3 Representation Systems
	4 Expectations and Variances
	4.1 Expected Answer Count
	4.2 Variance of the Answer Count

	5 Answer Count Probabilities
	5.1 Tractable Cases
	5.2 Intractable Cases

	6 Conclusion

	p021-Meng
	1 Introduction
	1.1 Related Work on 1D-ERS
	1.2 ERS in Higher Dimensions
	1.3 Our dD-ERS Solutions

	2 Applications of {d}D Gaussian-ERS
	2.1 Fast Approximate Wavelet Tracking
	2.2 Range-Sum Queries over Data Cube
	2.3 A Closer Comparison with Related Work

	3 Our Solution to {d}D Gaussian-ERS
	3.1 A Brief Introduction to DST
	3.2 HWT Representation of 1D Gaussian-DST
	3.2.1 Mathematical Preliminaries
	3.2.2 Our HWT-based Algorithm for 1D-ERS

	3.3 Range-Summable Gaussian RVs in 2D
	3.3.1 Mathematical Preliminaries
	3.3.2 Our HWT-Based Algorithm for 2D-ERS

	3.4 Generalization to Higher Dimensions

	4 k-wise Independence Theory
	5 Multidimensional Dyadic Simulation
	6 Conclusion

	p022-Gilad
	1 Introduction
	2 Preliminaries
	3 Cell-Independent Relations
	4 Consistency Problems
	4.1 Complexity Assumptions
	4.2 Preliminary Observations

	5 Singleton and Matching Constraints
	5.1 The Case of a Binary Schema
	5.1.1 Algorithms
	5.1.2 Hardness

	5.2 Beyond Binary Schemas

	6 General Sets of Unary Functional Dependencies
	6.1 Reduction by Decomposition
	6.2 Classification
	6.2.1 Part 1 of Theorem 19 (Possible Consistency and MPD)
	6.2.2 Part 2 of Theorem 19 (Probability of Consistency)
	6.2.3 Recap

	7 Conclusions

	p023-AmezianElKhalfioui
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Parsimonious Counting
	5 The Class Cparsimony
	6 The Class Cparsimony Admits Parsimonious Counting
	7 Completeness of the Class Cparsimony
	8 Comparison with the Class Cforest
	9 Conclusion and Future Work

	p024-Figueira
	1 Introduction
	2 Preliminaries
	3 Polynomial-time algorithm
	4 Self-join-free queries
	5 Path queries
	6 Cert_k does not capture all polynomial-time queries
	7 Conclusion

