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—— Abstract

We show that the problem of whether a query is equivalent to a query of tree-width k is decidable,
for the class of Unions of Conjunctive Regular Path Queries with two-way navigation (UC2RPQs).
A previous result by Barcel6, Romero, and Vardi [5] has shown decidability for the case k = 1, and
here we show that decidability in fact holds for any arbitrary k > 1. The algorithm is in 2EXPSPACE,
but for the restricted but practically relevant case where all regular expressions of the query are of
the form a* or (a1 + -+ + a,) we show that the complexity of the problem drops to II5.

We also investigate the related problem of approximating a UC2RPQ by queries of small
tree-width. We exhibit an algorithm which, for any fixed number k, builds the maximal under-
approximation of tree-width k£ of a UC2RPQ. The maximal under-approximation of tree-width k& of
a query q is a query ¢ of tree-width k which is contained in ¢ in a maximal and unique way, that is,
such that for every query ¢” of tree-width k, if ¢” is contained in g then ¢’ is also contained in ¢’.
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1 Introduction

Graph databases are abstracted as edge-labeled directed graphs G = (V(G), E(G)), where
nodes of V(G) represent entities and labeled edges E(G) C V(G) x A x V(G) represent
relations between these entities, with A being a fixed finite alphabet. For instance, Figure 1
depicts a graph database, whose nodes are authors and papers, on the alphabet A =
{ , advised}. Edges  —— y indicate that the person x wrote the paper y, while
edges x advised, y indicate that person x was the Ph.D. advisor of person y.

Being a subclass of relational databases, graph databases can be queried by the predom-
inant query language of conjunctive queries, a.k.a. CQs, which consists of the closure under
projection of conjunctions of atoms of the form = % y for some letter a € A. For instance,
the conjunctive query

Nn(@y) =z — 2Ay —— =z

1 This result was achieved by using the knowledge package and its companion tool knowledge-clustering.
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Figure 1 A graph database with eight nodes and eight edges on a two-letter alphabet.

returns, when evaluated on the graph database G defined in Figure 1, all pairs of nodes (u, v)
such that u is a co-author of v. Each variable not appearing in the left-hand side of the
definition of a conjunctive query (in this example, z) is existentially quantified. Note that
every CQ can be seen as a graph database, where each atom is an edge; hence, we sometimes
use graph database terminology for CQs.

The expressive power of CQs is somewhat limited, since CQs cannot express, for example,
transitive closure. Since the ability to navigate paths is of importance in many graph database
scenarios, most modern graph query languages support, as a central querying mechanism,
conjunctive regular path queries, or CRPQs for short. CRPQs are defined analogously to
conjunctive queries, except that their atoms are now of the form x L, y where L is an
arbitrary regular language over the alphabet A. For instance the evaluation of the CRPQ
Yoz, y) = —— 2 N2 Z Ay (advised)™s o7 on G yields every pair of persons (u, v)
such that u is a co-author of a “scientific descendant” of v.

Formally, a CRPQ ~ is defined as a tuple z = (z1,...,2,) of output variables® together
with a conjunction of atoms of the form /\;"=1 z; =% y;, where each L; is a regular language.
The set of all variables occurring in v, namely® {21, ..., 2, }U{21, 91, ., Tm, Ym }, is denoted
by wars(y). Given a database G, we say that (ui,...,u,) satisfies v on G if there is a
mapping f: vars(y) — V(G) such that u; = f(z;) for all 1 <7 < n, and for each 1 < j < m,
there exists a path from f(x;) to f(y;) in G, labelled by a word from L; (if the path is empty,
the labelled word is €). The evaluation of v on G is then the set of all tuples that satisfy ~.
For example, (authors, authors) satisfies 72 on the graph database G of Figure 1 via the
function that maps x to authors, y to authors, z to paper,y, and 2z’ to authors.

The language of CRPQ can be extended to navigate edges in both directions. Consider the
database G* obtained from G by adding, for every edge z < 3 in G, an extra edge y — x.
We obtain a graph database on the alphabet A* = AUA™ where A~ = {a™ | a € A}.
We then define the syntax of a CRPQ with two-way navigation, or C2RPQ, as a CRPQ
on the alphabet A*. Its evaluation is defined as the evaluation of the CRPQ on G*. For
instance, the evaluation of the C2RPQ ~3(x,y) = x AR AN y on the graph database
of Figure 1 returns all pairs of individuals linked by a chain of co-authorship. It includes
(authory, authors) or (author;, author;) but not (author;, authory). If a query has no output
variables we call it Boolean, and its evaluation can either be the set {()}, in which case we say
that G satisfies the query, or the empty set {}. For example, G satisfies y4() =2 —— y
if, and only if, the database contains one author together with the paper they wrote. We
denote the set of atoms of a C2RPQ ~ by Atoms(y), and by ||v| we denote its number of
atoms, i.e., |[Atoms(7)|.

2 For technical reasons (see the definition of expansion) we allow for a variable to appear multiple times.
3 We neither assume disjointness nor inclusion between {z1,...,2,} and {@1,91, ..., Zm,Ym}
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Finally, a union of CQs (UCQs) [resp. union of CRPQs (UCRPQs), resp. union of
C2RPQs (UC2RPQs)] is defined as a finite set of CQs [resp. CRPQs, resp. C2RPQs], whose
tuples of output variables have all the same arity. The evaluation of a union is defined as the
union of its evaluations, for instance:

advised

T5 = 2 (2,y)Vy2(z,y) where va(z,y) =2 —— y and 2 (2,y) == 2Nz y

evaluates to the set of pairs (x,y) such that y is a paper written by either = or their advisor.
Infinitary unions are defined analogously, except that we allow for potentially infinite unions.

For a more detailed introduction to CRPQs, we refer the reader to [10]. For a more
general introduction to different query languages for graph databases — including CRPQs —
see [6], and for a more practical approach, see [1].

Given two UC2RPQ T" and I, we say that I' is contained in I, denoted by I € IV if
for every graph database G, for every tuple u of G, if u satisfies I" on G, then so does I".
The containment problem for UC2RPQs is the problem of, given two UC2RPQs I" and I,
to decide if ' € IV. When T is contained in IV and vice versa, we say that I" and I are
semantically equivalent, denoted by I' = I'V. The evaluation problem for UC2RPQ is the
problem of, given a C2RPQ +, a graph database G and a tuple u of elements of G, whether
u satisfies v on G.

Queries of small tree-width

It is known that the evaluation problem for UC2RPQ is NP-complete, just as for conjunctive
queries [9]. However, queries whose underlying structure looks like a tree — formally, queries
of bounded tree-width — can be evaluated in polynomial time.

Tree-width is a measure of how much a graph differs from a tree, introduced by Arnborg
and Proskurowski [2]. Formally, a tree decomposition of a C2RPQ ~ is a pair (T, v) where T
is a tree and v : V(T') — p(vars(y)) is a function that associates to each node of T, called
bag, a set of variables of v. When x € v(b) we shall say that the bag b € V(T contains the
variable x. Further, it must satisfy the following three properties:

each variable x of v is contained in at least one bag of T

for each atom = < y of v, there is at least one bag of T' that contains both z and y; and

for each variable z of v, the set of bags of T' containing x is a connected subset of V(T').
The width of (T,v) is the maximum of |v(b)| — 1 when b ranges over V(T'). The tree-width of
~ is the minimum of the width of all tree decompositions of v. We denote by Jwy the set of
all C2RPQ of tree-width at most k. The tree-width of a UC2RPQ is simply the maximum
of the tree-width of its C2RPQs. An example of tree decomposition of width 2 is given in
Figure 3 on Page 12. For a gentle introduction to tree-width, see [14, §3.6].

» Proposition 1.1 (Folklore, see e.g. [15, Theorem IV.3]). For each k > 1, the evaluation
problem for UC2RPQs of tree-width at most k is in polynomial time.

In practice, graph databases tend to be huge and often changing, while queries are in
comparison very small. This motivates the following question, given some natural k& > 1:

Given a UC2RPQ T, is it equivalent to a UC2RPQ I" of tree-width at most k?
That is, does it have semantic tree-width at most k7

This problem is called the semantic tree-width k problem. Should it be decidable in a
constructive way — that is, decidable, and if the answer is positive, we can compute a
witnessing IV from I" — | then one could, once and for all, compute I'” from I" and, whenever
one wants to evaluate I" on a database, evaluate I'V instead.

15:3

ICDT 2023



15:4

Approximation & Semantic Tree-Width of CRPQs

» Example 1.2. Consider the following CRPQs, where z = (z9, 21,9, 2):

$0—>1‘1 1’0—0>f£1 x();}i‘l
6(z) = y §'(z) = y
a(bb)* ib ab(bb)* a(bb)* CON )T ab(vb)*
z z

The underlying graph of v(z) being the directed 4-clique, v(Z) has tree-width 3. We claim
that () is equivalent to the UCRPQ 46(%) V ¢’(z), and hence has semantic tree-width 2.
Indeed, given a graph database satisfying v(z) via some mapping u, it suffices to make
a case disjunction on whether the number of b-labelled atoms in the path from pu(y) to
1(z) is even or odd. In the first case, the atom xg S pecomes redundant since we
can deduce the existence of such a path from the conjunction z % y L z, and hence
the database satisfies §(Z) via p. Symmetrically, in the second case, the atom zq LICOMN
becomes redundant, and the database satisfies 6’(z) via u. Thus, v(Z) is contained, and hence

equivalent (the other containment being trivial), to the UCRPQ 6(z) V ¢'(z) of tree-width 2.

For conjunctive queries, the semantic tree-width k& problem can be effectively decided
quite easily — in fact, CQs enjoy the effective existence of unique minimal queries [9, Theorem
12] which happen to also minimize the tree-width. For CRPQs and UC2RPQs, the question
is far more challenging, and it has only been solved for the case kK = 1 by Barcel6, Romero,
and Vardi [5, Theorem 6.1]. We solve the problem for every other k > 1, left open in [5, §7]
[15, §VI-(3)]:

» Theorem 1.3. For each k > 1, the semantic tree-width k problem is decidable. Moreover,
it lies in 2EXPSPACE and is EXPSPACE-hard.

Amusingly, our proof for k¥ > 1 cannot be stretched to capture the case k = 1: the two
approaches seem to be intrinsically incompatible.

» Remark 1.4. To simplify proofs, we assume that all the regular languages are described
via non-deterministic finite automata (NFA) instead of regular expressions, which does not
affect any of our complexity bounds. However, for readability all our examples will be given
in terms of regular expressions.

Moreover, we also show that for any class £ of regular languages over A* satisfying some
mild hypothesis (“closure under sublanguages”), if I' € UC2RPQ(L) has semantic tree-width
k> 1, then I is equivalent to a UC2RPQ(L’) of tree-width at most k, where UC2RPQ(L)
denotes the class of all UC2RPQs whose atoms are all labelled by languages from L. In
other words, if a query can be defined with labels in /', and if this query is equivalent to
a query of small tree-width, then it is also equivalent to a query of small tree-width with
labels in L.

For a NFA A and two states ¢, ¢’ thereof, we denote by A|q, ¢'] the sublanguage of A
recognized when considering ¢ as initial state and {¢’} as set of final states. We say that £
is closed under sublanguages if (i) it contains every language of the form {a}, where a € A is
any (positive) letter such that either a or a~ occur in a word of a language of L, and (ii) for
every language L € . there exists a NFA A, such that every sublanguage AL [q, ¢'] distinct
from & and {e} belongs to L.

To the best of our knowledge, all classes of regular expressions that have been considered
in the realm of regular path queries (see, e.g., [11, §1]) are closed under sublanguages. In
particular, this is the case for the class {{a1 +... +an} | a1,...,a, € A U{a" | a € A},
which will be our focus of study in Section 6. Moreover, even if some class oL is not closed
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under sublanguages, such as for example {(aa)*}, then it is contained is a class closed under
sublanguages — {a,a(aa)*, (aa)*} in this example — , whose size? is polynomial in the size of
the original class. See the full version for more examples.

» Theorem 1.5. Assume that L is closed under sublanguages. For any query I' €
UC2RPQ(L) and k > 1, the following are equivalent:

1. T is equivalent to an infinitary union of conjunctive queries of tree-width at most k;

2. T has semantic tree-width at most k;

3. T is equivalent to a UC2RPQ(L) of tree-width at most k.

The implications (3) = (2) = (1) immediately follow from the definition of the semantic
tree-width. On the other hand, the implications (1) = (2) and (2) = (3) are surprising,
since they are both trivially false when k = 1. We defer the proof of this claim to Section 2
(see Remark 2.5) as we first need a few tools to manipulate CRPQs.

The proofs of both Theorems 1.3 and 1.5 rely on our key lemma (Lemma 3.8), which
states essentially that every UC2RPQ has a computable “maximal under approximation” by
a UC2RPQ of tree-width k. Formally, the key lemma has the following corollary:

» Corollary 3.9. For each k > 1 and for each class L closed under sublanguages, for each
query T' € UC2RPQ(L), there exists T € UC2RPQ(L) of tree-width k such that T" S T,
and for every A € UC2RPQ, if A has tree-width k and A ST, then A S TV. Moreover, T’
is computable from T' in EXPSPACE.

The proof of our key lemma spans over Sections 3-5: in Section 3, we introduce necessary
notions to formally state it, and deduce Theorems 1.3 and 1.5 from it; in Section 4 we
introduce the central notion of tagged tree decompositions of C2RPQs homomorphisms, and

building on it, we finally describe the constructions used to prove the key lemma in Section 5.

Finally, in Section 6, given the high complexity of semantic tree-width k problem, we
focus on the case of CRPQs using some simple regular expressions (SRE), and show that the
complexity of this problem is much lower:

» Theorem 6.1. For k > 1, the semantic tree-width k problem for UCRPQ(SRE) is in II5.

A discussion on differences with Barceld, Romero and Vardi’s contributions and open
questions are left for Section 7.

2 Homomorphisms, refinements, and expansions

Before attacking the statement of our key lemma in Section 3, we first give a few elementary
definitions on C2RPQs in this section. A homomorphism f from a C2RPQ ~y(z1,...,Zm)
to a C2RPQ +'(y1,-..,Ym) is a mapping from vars(y) to vars(y’) such that f(z) L, f(y)
is an atom of 4/ for every atom z = y of v, and further f(z;) = y; for every 7. Such a
homomorphism h is strong onto if for every atom z’ EN 1y’ of 4/ there is an atom x L, y of v
such that f(z) = 2/ and f(y) = y’. We write y = ~/ if there is a homomorphism from = to
~/, and v = ~' if there is a strong onto homomorphism. It is easy to see that if v —— ~'
then 7/ € v, and in the case where v,~" are CQs this is an “if and only if” [9, Lemma 13].

4 Defined as the sum of the number of states of the minimal automaton of the languages of L.
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Some intuitions on maximal under-approximations. Given a conjunctive query =, the
union of all conjunctive queries that are contained in v is semantically equivalent to the
union \/{y" | v 2% ~4'}. Naturally, this statement borders on the trivial since 4/ belongs
to this union. It becomes interesting when we add a restriction: given a class C of CQs (to
which v may not belong) closed under subqueries, then \/{7' € C | v =% ~'} is the maximal
under-approximation® of v by finite unions of conjunctive queries of C%. As a consequence,
we deduce that for each k£ > 1, the maximal under-approximation of a CQ by a finite union
of CQs of tree-width at most k is computable, and hence we can effectively decide if some
CQ is equivalent to a query of tree-width at most k. For more details on approximations of
CQs, see [3].

Unfortunately, these results cannot be straightforwardly extended to conjunctive regular
path queries: intuitively, taking homomorphic images can be understood as “simplifying” the
query (we reduce its number of variables, but this may make the query strictly contained in
the original one). This is because CRPQs have an implicit quantification of variables: for
instance, the CQ y(z,y) =2 % =z LA y can be rewritten as the CRPQ ~/(x,y) =z ab, Y.
Coming back to our previous Example 1.2, another way of seeing that 6(z) € (&) is by
observing that we can obtain §(z) as the result of the following two operations:

in v(z), replace the atom 1 % » with ; % ¢ 2% - where ¢ is a fresh

existentially quantified variable;

identify variables ¢t with 3.7
The last operation consists in taking homomorphic images, and the first one amounts to
making explicit an implicit quantification. We formalize the first operation by introducing
the notion of “refinement” which we will later use, in Section 3, to introduce the notion of
maximal under-approximations for CRPQs. We will come back this example once all these

notions will have been formally defined (cf. Example 3.4).

Refinements. An atom m-refinement of a C2RPQ atom y(z,y) =z EN y where L is given
by the NFA Ay, is any C2RPQ of the form

play)=a D ¢ L2y Ity Iny (1)
where 1 <n <m, ty,...,t,—1 are fresh (existentially quantified) variables, and L1, ..., L,
are such that there exists a sequence (qo,- . ., gn) of states of Ay, such that ¢o is initial, g, is

final, and for each 4, L; is either of the form (i) AL[qi, gi+1], or (ii) {a} if the letter a € A
belongs to AL [q;, qiv1], or (iii) {a='} if a=! € A~ belongs to A|[q;,qir1]. Additionally, if
¢ € L, the equality atom “z = y” is also an atom m-refinement (see the full version for more
details on these), Thus, an atom m-refinement can be either of the form (1) or “z = y”. By

convention, t —» t' is a shorthand for ' = ¢. As a consequence, the underlying graph of
an atom m-refinement of the form (1) is not necessarily a directed path. By definition, note
that Ly --- L, C L and hence p € v for any atom m-refinement p of v. An atom refinement
is an atom m-refinement for some m.

5 A formalization of what “maximal under-approximation” means is given in Remark 3.2.

5 The proof is straightforward: by definition, this union is finite (a finite CQ has only finitely many
homomorphic images), and is contained in . Moreover, if ¥ € € is contained in ~, then there exists a
homomorphism f: v — +'. Then v Lom f(v) and f(v) € C since it is a subquery of 4/ € C and C is
closed under subqueries. We conclude by noting that 4’ is contained in f(7).

We actually obtain two atoms from y to z: one label by b* and one by b(bb)*, but since b(bb)* C bT we

can discard the b™ atom preserving the query semantics.
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» Definition 2.1. Given an atom refinement p = x —5 t; =2 ... L=t ¢ Loy g of

y==x L, y as in (1), define a contraction of p between t; and t;, where 0 <i,j < n and
j>i+1, is any C2RPQ of the form:

L L L n
p'zx—1>t1—2>...—>ti t; Lita, ...—1>tn1—>y

such that K = A|q;, q;]. Then every contraction p’ of p is a refinement of v, and p € p' < 7.
Informally, we will abuse the notation and write [L; - -- L;] to denote the language K — even
if this language does not only depend on L;---L;.

» Example 2.2. Let v(z,y) =« {aa?)", y be a C2RPQ atom, where (aa™)* is implicitly
represented by its minimal automaton. Then p(z,y) is a refinement of refinement length
seven of y(x,y) and p'(z,y) is a contraction of p(x,y), where:

playy) = S ¢y D g, L0l g oy, L0y (e Ve oy,
Play) =z & 4 L0,y Loy,

On the other hand, p”(z,y) =2 % t; < y is not a contraction of p(z,y).

An me-refinement of a C2RPQ ~v(z) = A, z: Ly y; is any query resulting from: 1)
replacing every atom by one of its m-refinements, and 2) should some m-refinements be
equality atoms, collapsing equal variables and getting rid of equalities, in a rather standard
way — more details are given in the full version. A refinement is an m-refinement for some
m. Note that any atom m-refinements is, by definition, also an atom m’-refinements when
m < m’: as a consequence, in the refinement of a CQRPQ the atom refinements need not
have the same length. For instance, both p(z,z) = = Srandp(z,y) =2 St Sy Sy
are refinements of y(z,y) = x a y < x. For a given C2RPQ 7, let RefS™(7) be the set of
all m-refinements of +, and Ref(7y) be the set of all its refinements. Given a refinement p(z)
of 4(Z), its refinement length is the least integer m such that p(zZ) € RefS™(y). Note that
if the automaton representing a language L has more than one final state, for instance the
minimal automaton for L = a* + bT, then x L, y is not a refinement of itself. However, it
will always be equlvalent to a umon of refinements: in this example, x LAREMN 1y is equivalent
to the union of z —> y and x LA y, which are both refinements of the original C2RPQ.

Expansions. Remember that a C2RPQ whose languages are {a} or {a~ } for a € A is in effect

a CQ. The expansions of a C2RPQ + is the set Exp(y) of all CQs which are refinements of ~.

In other words, an expansion of v is any CQ obtained from ~ by replacing each atom 2 = Y
by a path z — y for some word w € L. For instance, (zyy) =2z Bt Sty BHts Ly
is an expansion of p(z,y) =z (aaT), Y.

Any C2RPQ is equivalent to the infinitary union of its expansions. In light of this, the
semantics for UC2RPQ can be rephrased as follows. Given a UC2RPQ I' and a graph
database G, the evaluation of T" over G, denoted by I'(G), is the set of tuples ¥ of nodes for

h.um

which there is £ € Exp(I") such that £ — (G,v). Similarly, containment of UC2RPQs can
also be characterized in terms of expansions:

» Proposition 2.3 (Folklore, see e.g. [12, Proposition 3.2] or [8, Theorem 2]). Let I'y and I'y
be UC2RPQs. Then the following are equivalent

'y CIy;

for every & € Exp(Ty1), & S Ta;

for every & € Exp(L'y) there is & € Exp(I'y) such that &5~ & .

15:7
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~ ~ ab)*a
(ab)*_ to <L t1 ) x’

2w, 2) = (\ /T pla,z) = mfljy\ /

t1¥/)2l
a

Figure 2 On the left-hand side, a CRPQ ~ of tree-width 2. On the right-hand side, a refinement
p of «v, whose refinement length is three, which is also of tree-width 2.

Hence, every expansion of 7 is also a refinement of . Moreover, if p is a refinement of ~,
then p € v, and ~ is semantically equivalent to the infinitary union of all its refinements,
and to the infinitary union of all its expansions.

Our approach to proving Theorems 1.3 and 1.5 and the key lemma heavily rely on
refinements. One crucial property that these objects satisfy is that they preserve tree-width
k, unless k = 1. This is the main reason why our approach cannot capture the case k =1,
solved by Barcelé, Romero and Vardi [5].

> Fact 2.4. Let k > 1 and let v be a C2RPQ of tree-width at most k. Then any refinement
of v has tree-width at most k.

This fact is illustrated on a example in Figure 2.

Proof sketch. The underlying graph of a refinement of v is obtained from the underlying
graph of v by either contracting some edges (when dealing with equality atoms), or by
replacing a single edge by a path of edges (where the non-extremal nodes are new nodes).
Both operations preserve the property “having tree-width at most k” when k£ > 1. Details
are given in the full version. <

For k = 1, the property fails: for instance the CRPQ ~v(z) =« a—> z has tree-width at
most 1 (in fact it has tree-width 0), but its refinement p(z) = =z 2= t; = ty 2>  has
tree-width two.

Before introducing maximal under-approximations, we can now show that the statement
of Theorem 1.5 is indeed false for k = 1.

» Remark 2.5. (1) # (2) when k = 1: consider the CRPQ ~(z,y) = « LN yAYy bz of
tree-width 1, and hence of semantic tree-width 1, and observe that it is not equivalent to any
infinitary union of conjunctive queries of tree-width 1 — this can be proven by considering,
for example, the expansion © = z = y Ay L 2 of ~v(x,y) and applying Proposition 2.3.

(2) # (3) when & = 1: By [5, Propomtlon 6.4] the CRPQ of semantic tree-width 1
Yz Er & 2 S yae LN y=x ba a4 s not equivalent to any UCRPQ of tree-width 1.
Hence, the implication is false when £ is the class of regular languages over A* that do not
use any letter of the form a~.

3 Maximal under-approximations of bounded tree-width

In this section, we state our key technical result, Lemma 3.8. Essentially, we follow the same
structure as Theorem 1.5: given a C2RPQ v and an integer k > 1, we start by consider its
maximal under-approximation by infinitary unions of conjunctive queries of tree-width &
(Definition 3.1), and then show that this query can in fact be expressed as a UC2RPQ of
tree-width k£ whose atoms are obtained by taking sublanguages from « (Lemma 3.8).

For the definitions of this section, let us fix any class C of C2RPQ queries.
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» Definition 3.1 (Maximal under-approximation). Let v be a C2RPQ. The maximal under-
approximation of v by infinitary unions of C-queries, is Appe(y) = {a € C|a S ~}.

For intuition, we refer the reader to paragraph “An intuition on maximal under-
approximations” at the beginning of Section 2.

» Remark 3.2. Observe that Appe(y) is an infinitary union of C-queries, that Appe(y) € 7,
and that for every infinitary union of C-queries A, if A € ~, then A € Appe(7) (i.e., it is
the unique maximal under-approximation). Similarly, the maximal under-approximation of a
UC2RPQ is simply the union of the maximal under-approximations of the C2RPQs thereof.

Unfortunately, the fact that a query « is part of this union, o € Appe(y), does not
yield any useful information on the shape of o — we merely know that o € ~y. The rest of
this subsection is dedicated to introducing another infinitary union of C-queries, namely
App(v) € Appe(y), in which queries a@ € Appg(y) come together with a witness — a
homomorphism — of their containment in ~.

» Definition 3.3. The mazimal under-approximation of v by infinitary unions of
homomorphically-smaller C-queries is

Appg(7) = {a € €| Fp € Ref(v), 3f: p = . (2)

For instance, let C be the class of all CRPQs and let y(z,y) = = LN y = z a,
z Ay - x be the CRPQ which asks for all pairs of nodes that belong to the same non-
empty cycle of a’s®. Then v'(z,y) =2 = y % 2z %= = is an element of Appf(7) since
there is a strong onto homomorphism from the refinement

pz,y) = (z Ly S e S aay S Y z) € Ref(v(z,y))
to v/ (x,y), mapping z and 2’ to z.

» Example 3.4 (Example 1.2, cont'd). Both 6(Z) and §'(Z) are semantically equivalent
.. * _ . _ a{bb)t .

to queries in AppZ,,(7(7)). Indeed, starting from (Z), we can refine 2o —— z into

T =t U7, . Denote by p(z) the query obtained. Then merge variables ¢ and y: this

new query 0. (Z) is equivalent to ¢'(Z).

app
$046>$1 x046>m1 aio—c}.’lh
N / N / NN
p(x) =t Yy Sapp(T) = Y §'(z) = Yy
(bbﬁ\\) bt ab(bb)* @) ()bt ab(bb)* O] ab(bb)*
z z z

Clearly, Appg () — whose queries are informally called approzimations — is included, and
thus semantically contained, in Appe(y), since p € v and « € p in (2). In fact, under some
assumptions on C, the converse containment also holds.

» Observation 3.5. If C is closed under expansions, then for any C2RPQ -y, we have
Appe(7) = Appe(7)-

Proof. This follows immediately from Proposition 2.3 — note that in the definition of Appy(7)
we work with strong onto homomorphisms, but we can always restrict homomorphisms to
their image to make them strong onto, without changing the expressiveness of the query. <«

8 There exists CRPQs with fewer variables that expresses the same property, but this is irrelevant here.
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Observe then, by Fact 2.4, that the class Jwy of all C2RPQs of tree-width at most & is
closed under refinements and hence under expansions, provided that & is greater or equal
to 2. As an immediate consequence, we have:

» Corollary 3.6. For k > 2, for all C2RPQ v, Appg,, (7) = App7,, (7).

» Example 3.7 (Counter-example for k£ = 1). Consider the followings queries:

(ba‘)* /
Z—> Z (ab)+
W) = o] e [ ad s = a2y
— C
T — y

c

We claim that Appg,,(v) € App,,(7) since 6(z,y) € Appg,,(7) but é(z,y) € AppZ,, (7).
Details are given in the full version.

By definition, AppZ,, (7) is an infinitary union of C2RPQs. We show that, in fact,
App7,, (7) is always equivalent to a finite union of C2RPQs. This is done by bounding the
length of the refinements occurring in the definition of App%,, (7). For a natural m, let

hom,

AppyS™(T) = {a € C | Fp € RefS™(7), 3f: p ““» a}. Our main technical lemma is then
the following:

» Lemma 3.8 (Key lemma). For k > 1 and C2RPQ vy, we have Appg,, (7) = App;{ié(ﬂ,
where £ = O(||y||? - (k + 1)llI+1),

» Corollary 3.9. For each k > 1 and for each class L closed under sublanguages, for each
query T' € UC2RPQ(L), there exists T' € UC2RPQ(L) of tree-width k such that TV S T,
and for every A € UC2RPQ, if A has tree-width k and A €T, then A S T”. Moreover, T’
is computable from T' in EXPSPACE.

Using Lemma 3.8 as a black box — which will be proven in Section 5 — , we can now give
a proof of Theorems 1.3 and 1.5. The upper bound of Theorem 1.3 follows directly from
Corollary 3.9: to test whether a query T is of semantic tree-width k, it suffices to test the
containment I' € TV, where I is the maximal under-approximation given by Corollary 3.9.
The containment problem being in EXPSPACE [12, 8], we obtain:

» Lemma 3.10. Fork > 1, the semantic tree-width k problem for UC2RPQ is in 2EXPSPACE.

An EXPSPACE lower bound follows by a straightforward adaptation from the EXPSPACE
lower bound for the case k =1 [5, Proposition 6.2].

» Lemma 3.11. The semantic tree-width k problem is EXPSPACE-hard, even if restricted to
Boolean CRPQs.

We can now rely on the equivalence Apps,, (7) = App}’fk_e (7) to prove Theorem 1.5.
Proof of Theorem 1.5. The implications (3) = (2) = (1) are straightforward: they follow
directly from Fact 2.4. For (1) = (3), note that (1) implies that I' = Appg,, (I'), and by
Lemma 3.8, Appg,, (I') = A =V ¢ Appg—;fke” (7), so T' is equivalent to the latter. Since
queries of A are obtained as homomorphic images of refinements of I'; all of which are labelled
by sublanguages of JL', and since [ is closed under sublanguages, it follows that hence I is
equivalent to a UC2RPQ(L) of tree-width k. <
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We are left with the proof of Lemma 3.8, which will take the next two sections. Since
Appg,, (7) = App,, () by Corollary 3.6 and since App}};sz(v) is a subset of Appg,, (7),
we only need to show that App%,, (v) & App}};iz(v). Formally, this means that for all

hom,

a € Jwy, if there exists p € Ref(y) and f: p —» «, then there exists o’ € Twy, such that

o € o and there exists p € RefS’(y) and f": p/ 2% o/. We prove this by “massaging” the
homomorphism f: p —» a, by looking where each atom refinement of ~ is sent on « relative
to a “well-behaved” tree decomposition of a of width k. Next, we introduce the notion of

tagged tree decomposition to have a precise handle on this information.

4 Intermezzo: tagged tree decompositions

» Definition 4.1. Let f: p — « be a homomorphism between two C2RPQs. A tagged tree
decomposition of f is a triple (T,v,t) where (T, V) is a tree decomposition of «, and t is a
mapping t: Atoms(y) — V(T'), called tagging, such that v(t(e)) contains both f(x) and f(y)
for each atom e = x = y € Atoms(7).

In other words, t gives, for each atom of 7, a witnessing bag that contains it, in the sense
that it contains the image by f of the atom source and target. By definition, given a tree
decomposition (7, v) of a and a homomorphism f: p — «, there is always one way (usually
many) of extending (7, v) into a tagged tree decomposition of f.

> Fact 4.2. Let (T,v,t) be a tagged tree decomposition of some homomorphism f: p — «.
Let 7" be the smallest connected subset of T induced by the image of t. Then (77, V|7, t) is
still a tagged tree decomposition of f, whose width is at most the width of (T, v,t).

We extend the notion of tagging to paths: a formal definition can be found in the full
version, and the notion is illustrated in Figure 3. In the context of a (nice) tagged tree
decomposition (T,v,t) of f: p 2 «, given a path 7 of p, say T LR 1 L NN Tn
(in blue in Figure 3a), the path induced by 7, denoted t[x], is informally defined as the
following “path” in T' x «, seen as a sequence of pairs from V(T) x vars(«):

it starts with the bag t(zg EEN z1) of T and the variable f(zg) of «; and it continues

with (t(zo EER x1), f(x1)) (corresponding to the first blue edge in by of Figure 3a);

it then follows the shortest path in 7' (unique, since it is a tree) that goes to the

bag t(z1 EEN x9), while staying in f(z1) in « (in Figure 3a, it follows the blue path:

(b, w2), (b3, w2)) and it traverses the atom z; == x5 (i.e., we go to (b3, 3));

it continues in the same way for all other atoms of the path, ending up with the bag

t(zp—_1 An, Z,) and the variable f(x,) of a.

By construction, note that the constructed sequence (b;, 2;); is such that z; € v(b;). Moreover,
given a bag b of T and a variable z of «, we say that t[r] leaves b at z when z = z; and
b = b; for some ¢, and either b; 1 is undefined, or distinct from b. For example, in Figure 3a,
7[m] leaves by at x; and leaves by at 1 and at x4. We say that an induced path is cyclic if it
contains three positions ¢ < j < ¢/ such that ¢ and ¢’ contain the same bag but j contains a
different bag (the one in Figure 3a is cyclic because it passes twice by the bag b).

For technical reasons — the proof of Claim 5.2 — , we need to use the classical notion of nice
tree decomposition (see e.g. [13, Definition 13.1.4, page 149]), which is a tree decomposition
(T, v) such that any bag b that is not a leaf either: 1) has exactly two children by, by such
that v(b1) = v(b) = v(bs), or 2) has exactly one child ¥, and v(b') is obtained from v(b) by
either adding a single vertex, or by removing a single vertex. A C2RPQ has tree-width k
if and only if it has a nice tree decomposition of width at most k [13, Lemma 13.1.2, page
149]. In the context of a nice tree decomposition of width k, a full bag is any bag of size
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Figure 3 a) Non-acyclic path induced by some path in p (left-hand side), in a tagged tree
hom

decomposition (right-hand side) of f: p — « in the case where o = p and f is the identity
homomorphism id,: p Lomy p.
b) Suppose that the path in p is the image of an atom refinement of 4. Then the cycle in the induced

path can be avoided by adding an atom x; LLERTRZIN 24 to p, obtaining the path of p’, whose

induced path is acyclic.

k + 1. Note that any non-branching path — i.e. a path whose non-extremal bags have degree
2 — in a nice tree decomposition with n bags must have at least [n/2| bags which are not
full. Finally, we define a nice tagged tree decomposition of f: p — « to be a tagged tree
decomposition of f that is also a nice tree decomposition of a.

5 Proof of the key lemma

We can now start to describe the constructions used to prove Lemma 3.8. We call a trio to a
triple (a, p, f) such that a € Twy, p € Ref(y) and f is a strong onto homomorphism from ~
to a. For clarity, we will denote such a trio by simply “f: p 2 «”. Using this terminology,

hom,

in order to prove Lemma 3.8, we must show that for every trio f: p —» «, there exists
another trio f': p/ “» o/ such that a € o/ and p’ € RefS*(y). Our first construction, which
will ultimately allow us to bound the size of atom refinements, shows that we can assume

w.l.o.g. that they induce acyclic paths in a nice tagged tree decomposition of f.

> Claim 5.1. For any trio f: p 2 «, there exists a trio f: p/ ““» o and a nice tagged
tree decomposition (T7,v’,t’) of width at most & of f’ such that a € o/, ||| < ||p|| and
every atom refinement of p’ induces an acyclic path in the tree 7", in which case we say that
(T",v',t) is locally acyclic .

The construction behind Claim 5.1 is quite simple, and is described and proven in
Section 5, and illustrated in Figure 3.
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Informal proof of Claim 5.1. Start with a trio f: p — «, and let (T,v t) be a nice tagged
tree decomposfmon of f. Consider an atom refinement m = zg L, 21 Loy o Ly Zp in p
of some atom = y (with z9 = and z, = y), and assume that it induces a cyclic path in
T, as in Figure 3a. It means that some variables z; and z; are mapped by f to the same bag
of T, somewhere along the path induced by 7. It suffices then to contract p by replacing

the atoms z; —tty ... Li, z; by a single atom z; [iarLyl, z; (in Figure 3, z; = 1 and
zj = x4). We thus obtaln a new refinement p’ of v. Then define o/ be simply adding an
atom f(z;) ——% Lipaly, f(z;), see Figure 3b. The definitions of f’ and (7”,v’,t’) are then

straightforward — potentially, @’ should be restricted to the image of f’: p’ — o’ so that f’
is still strong onto. Crucially, @ € ', and o’ still has tree-width at most k since we picked
f(z) and f(z;) so that they belonged to the same bag of T <

Ultimately, Claim 5.1 will allow us to give a bound on the number of leaves of a nice tagged
tree decomposition of a trio. The following claim — which is significantly more technical than
the foregoing — will give us a bound on the height of a decomposition.

hom,

> Claim 5.2. Let f: p — « be a trio and (7, v,t) be a locally acychc nice tagged tree

- o

decomposition of width at most k& of f. Then there is a trio f': p’ — o’ and a nice tagged

tree decomposition (7”,v’,t’) of width at most k of f’ such that:

a o

(T",v',t) is locally acyclic w.r.t. f’, and

the size of the longest non-branching path in 7" is at most O(||y|| - (k 4 1)I71I+1),

To prove Claim 5.2, we will try to find, in a long non-branching path, some kind of
shortcut. The piece of information that is relevant to finding this shortcut is what we call
the profile of a bag.

» Definition 5.3. Given a trio f: p —» o and a nice tagged tree decomposition (T,v,t) of
f, for each bag b of T, we say that:
b is “atomic ” if there is at least one atom e € t71(b) and at least one variable x of e such
that x € vars(y), i.e., the atom e is not in the “middle” part of an atom refinement;
otherwise, when b is non-atomic, we assign to each variable z € v(b) C V(«a) a type

type, = {x L, y atom of v | the path induced by the atom refinement
L )
of x = y in p leaves b at z};

then the profile of b is the multiset of the types of z where z ranges over v(b).

The rest of the proof consists in two parts: first, we show that if two non-atomic bags
b and b’ occurring in some non-branching path of T have the same profile, then we can
essentially replace the path between b and b’ by a path of constant length (Subclaim 5.4):
while this construction is quite elementary, it motivates the intricate definition of the profile
of a bag; then, we show that in every non-branching path, if it is sufficiently long, then we
can find b and b’ satisfying the aforementioned property: this part simply relies on a basic
combinatorial argument (see the full version for details).

> Subclaim 5.4.  Suppose there are two bags b and b’ such that: (i) they contain at most
nodes (i.e., not full bags), (ii) they have the same profile, (iii) there is a non-branching path
in T between these bags, and (iv) no bags of the path between b and &’ (both included) are
atomic. Then, there exists a trio f': p/ % o and a nice tagged tree decomposition of f’ of
width at most k that can be obtained by replacing the non-branching path between b and b’
in the nice tagged tree-decomposition of f: p % a by another non-branching path of at

most 2k + 1 bags, such that o € o’
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Figure 4 A long non-branching path in the tree decomposition of width 2 of an approximation a.
There are two non-full bags in the path with the same profile, and thus the query « can be simplified
to o by applying contractions to the atom refinements involved.

The basic idea behind Subclaim 5.4 is that we the definition of profile was carefully
design so that we could contract every refinements between b and b’, while preserving every
desirable properties on the trio. The construction is illustrated in Figure 4, and both an
informal proof and a formal proof can be found in the full version. We can now describe key
steps in the proof of Claim 5.2. A formal proof can also be found in the full version.

hom,

Proof sketch of Claim 5.2. We claim that, starting from a trio f: p —» « and a locally
acyclic nice tagged tree decomposition of f, if we can find a long non-branching path, then
an elementary argument (see the full version) yields the existence of two bags b and b’ on
this path, satisfying the assumptions of Subclaim 5.4, and sufficiently far apart that the
construction described in Subclaim 5.4 strictly shortens the path between b and b’. Overall,
the iterative application of this construction, which preserves both the niceness and the local
acyclicity of the tagged tree decomposition, and only produces bigger approximations (in
the sense of containment), yields a trio f: p’ 2™y o with a locally acyclic nice tagged tree
decomposition of width at most k£, whose non-branching paths are all “small”, and such that
a . <

Finally, our main lemma follows from Claims 5.1 and 5.2.

Proof of Lemma 3.8. In order to show Appg, (7) S Appys‘(y) — the other containment

being trivial — , pick a trio f: p — a. Applying Claim 5.1 and then Claim 5.2 yields the
existence of a trio f': p’ — o together with a nice tagged tree decomposition (T7,v’,t’) of
f! such that a € o and (77, v’,t’) is locally acyclic, and any non-branching path in 7" has
length at most O(||v|| - (k + 1)I"1).

Moreover, we can assume w.l.0.g., by applying Fact 4.2, that every leaf of T’ is tagged
by at least one atom of p’. The local acyclicity of 7" implies that if b be a leaf of 7', and
T=2x i> 11 i> Q t,_1 —= y is an atom refinement in p’ of some atom z £> Y
of 7y, then if b is tagged by one atom of 7 this atom must either be zq L, 21 O Zp_1 Lo, Zn
by local acyclicity — see e.g. Figure 3 for a visual proof. The number of such atoms in p’
being bounded by 2||v||, we conclude that T has at most 27| leaves.
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Then, observe that a tree with at most p leaves and whose non-branching paths have
length at most ¢ is of height at most? p- ¢ — 1. We conclude that the height of T” is
(||'y||2 (k+1)!711), Using again the local acyclicity of T, observe that the refinement length

of p’ is at most twice the height of 7", and hence p’ € Refge( ) where £ = O(||y||?- (k+1)I"1).

In other words, o’ € App%sf(7). Hence, we have shown that for all & € Appy,, (7), there
exists o’ € App}’fke('y) such that o € o/. <

6  Queries over simple regular expressions

A simple regular expression, or SRE, is a regular expression the form a* for some letter a € A
or of the form a; + - - - + a,, for some ay,...,a,, € A.

Let UCRPQ(SRE) be the set of all UCRPQ whose languages are expressed via SRE
expressions. Observe that UCRPQ(SRE) is semantically closed under concatenation, that
is, concatenations of SRE expressions can be also expressed in the language For example,
v(z,y) == a’(atb) b7, y is equivalent to v/ (z,y) = = 2z Az LAL N NP AN y. One
interest of UCRPQ(SRE) comes from the fact that it is used widely in practice, as recent
studies on SPARQL query logs on Wikidata, DBpedia and other sources show that this kind
of regular expressions cover a majority of the queries investigated, e.g., 75% of the “property
paths” (C2RPQ atoms) of the corpus of 1.5M queries of [7, Table 15]. An additional interest
comes from the fact that the containment problem for UCRPQ(SRE) is much better behaved
than for general UCRPQs, since it is in IT5 [11, Corollary 5.2], that is, just one level up the
polynomial hierarchy compared to the CQ containment problem, which is in NP [9], and in
sharp contrast with the costly ExPSPACE-complete CRPQ containment problem [8, 12].

We devote this section to showing the following result.

» Theorem 6.1. For k > 1, the semantic tree-width k problem for UCRPQ(SRE) is in II5.

Observe that simple regular expressions are closed under sublanguages. Hence, in the light
of Theorem 1.5, the maximal under-approximation of a UCRPQ(SRE) query by infinitary

unions of CQs of tree-width k is always equivalent to a UCRPQ(SRE) query of tree-width k.

We will explain how the construction of the maximal under-approximation of the previous
section can be exploited to improve the complexity from 2EXPSPACE down to IT5.

6.1 Summary queries

We will first show that the maximal under-approximation of tree-width k£ of a UC2RPQ
can be expressed as a union of polynomial sized “summary” queries. Each summary query
represents a union of exponentially-bounded C2RPQs sharing some common structure. These
are normal UC2RP(Q queries extended with some special kind of atoms, called “path-I
approximations”. Intuitively, a path-l approximation is a maximal under-approximation
of tree-width [ of queries of the form A; z; Li, y; such that x; # y; for all 4,5. Path-{
approximations may require an exponential size when represented as UCRPQs. Formally, a
path-l approximation is a query of the form “P;(X,Y,~)” where: (i) X, Y, are two disjoint
sets of variables of size at most I, (ii) (2) is a conjunction of atoms A, ,,, Ai(zi,y;) where
z contains all variables of X UY, (iii) each 4; is a C2RPQ atom of the form z; — y; or
Yi EN x; such that x; is in X and y; is in Y. We give its semantics in terms of infinitary

9 The length of a path being its number of nodes, and with the convention that the height of a single
node is zero.

15:15

ICDT 2023



15:16

Approximation & Semantic Tree-Width of CRPQs

Il/g_ T [t aa To
XO c C
*U *‘/ g
D) = a: Za
4 i
n Y2 / N
Yy Y

,W(Z

Figure 5 The query P,({z1,z2}, {y1,y2},7) (where [ = 2) on the left contains the approximation
«a, witnessed by the path decomposition on the right.

unions of CQs. A query like the one before is defined to be equivalent to the (infinitary)
union of all queries a(z) € Appg,, (7) that admit a path decomposition of width I having
the bag X at the root and Y at the leaf — where a path decomposition is defined to be any
tree decomposition whose underlying tree is a path. See Figure 5 for an example.

We now simply define a k-summary query as a C2RPQ extended with path-l approximation
atoms for any | < k, with the expected semantics. The important property of summary
queries is that they are exponentially more succinct than the UC2RPQ counterpart for
expressing maximal under-approximations, as the next lemma shows.

» Proposition 6.2. For cvery class oL closed under sublanguages, and for every C2RPQ(L)
¥, Appgy,, (7) can be expressed as a union of polynomial-sized k-summary queries having only
C2RPQ(L) atoms. Further, one can test in NP if a summary query is part of this union.
We call App?fk(v) to any such a union of summary queries.

Informal proof. As corollary of the proof of Lemma 3.8, we can assume to have Appg,, (7)
expressed as a union of C2RPQ(L) with a nice tree decomposition of width k with a
linear number of leaves, and hence it suffices to replace non-branching paths with path-I
approximations. Concretely, for any such C2RPQ « having a witnessing tree decomposition
with a long non-branching path, the tree must contain a sub-path whose every bag is non-
atomic, and such that it starts and ends in bags of size at most k (by the niceness property).
Such a non-atomic non-branching path can be “compressed” by replacing the subquery
corresponding to the path with a corresponding path-I approximation query. The resulting
summary query will contain « and in turn be contained in 7. Simultaneously applying
such replacement to all non-atomic non-branching paths of maximal length then yields a
polynomial sized summary query.

Further, given a k-summary query o, one can test in NP whether there exists an element
of Appf‘jwk(v) that leads to such summary query by the process just mentioned. This is done
by first checking that o is of the “right shape” (essentially a query of tree-width & when
disregarding the path-I approximation atoms), and that it is contained in v via a polynomial
refinement p € Ref(v) and a strong onto homomorphism to the query resulting from replacing
P;(X,Y,0) atoms with ¢ in o. <

6.2 Semantic tree-width problem

With the previous results in place, we now show that the semantic tree-width k problem is
in 11§ for UCRPQ(SRE), for every k > 1.

» Theorem 6.1. For k > 1, the semantic tree-width k problem for UCRPQ(SRE) is in IT5.

Proof. It suffices to show the statement for any CRPQ(SRE) ~. Remember that v is of
semantic tree-width k if, and only if, v € AppZ? (7). The first ingredient to this proof is the
fact that this containment has a polynomial counter-example property:

W



D. Figueira and R. Morvan

> Claim 6.3. If vy 4 App;ifk('y) then there is a polynomial-sized expansion ¢ of v such that
§ < Appy, (7)-

This is because any path zp — --- % 2, in an expansion ¢ of v such that m > |||
and £ € App?fk(’y) can be “pumped” to an even longer path of any length greater than
m obtaining another expansion ¢’ such that {" S AppZy (7). This implies that a minimal
counterexample must be of polynomial size.

The second ingredient is that testing whether CQ is a counterexample is in NP.

> Claim 6.4. The problem of testing, given a CQ v, whether v C App;ip (7), is in NP.

Wi

Informal proof. We first guess a polynomial-sized k-summary query 6,i, and test in NP that

it is part of App?‘fk(v) by Proposition 6.2. We now guess a valuation p : vars(d,p) — vars(y)

and test that it is a homomorphism & ~ ~, where ¢ is an expansion of the CRPQ resulting
from discarding the path-/ approximation atoms of d,;,, which can be done in NL. It remains
to check that each atom Pl(X,Y,S) of & has an expansion & such that h : € 2 ~ for
a homomorphism such that h(z) = p(z) for all z € X UY. This can be done via an
NL algorithm using [ 4+ 1 pointers to traverse the width-/ nice path decomposition of é ,
simultaneously guessing é , the expansion of v which homomorphically maps to 5 , and the

valuation of h. 4

As a consequence of the two claims, we obtain a ¥ algorithm for non-containment
of v € App;i‘fk('y). We first guess an expansion £ of v of polynomial size, and we then
test & & Appgfk(v) in CONP. This gives a IT5 algorithm for the semantic tree-width k
problem. <

7 Discussion

We have studied the definability and approximation of UC2RPQ queries by queries of bounded
tree-width and shown that the maximal under-approximation in terms of an infinitary union
of conjunctive queries of tree-width k& > 1 can be always effectively expressed as a UC2RPQ
of tree-width k (Corollary 3.9). However, while the semantic tree-width 1 problem as shown
to be EXPSPACE-complete [5, Theorem 6.1, Proposition 6.2], we have left a gap between our
lower and upper bounds in Theorem 1.3.

> Question 7.1. For k > 1, is the semantic tree-width k problem EXPSPACE-complete?

We also do not know whether the II5 bound on the semantic tree-width &k problem for
UCRPQ(SRE) has a matching lower bound. The known lower bound for the UCRPQ(SRE)
containment problem [11, Theorem 5.1] does not seem to be useful to be used in a reduction,
since it necessitates queries of arbitrary high tree-width.

It is worth stressing that in [5] two-way navigation plays a crucial part to prove the
existence of the maximal under-approximation by a UC2RPQ of tree-width 1 [5, Theorem 5.2],

but this feature plays no role whatsoever in our proof — see Theorem 1.5 and Remark 2.5.

Moreover, Jwy, queries enjoy the very nice property of being closed under refinement when
k > 1 but not when k = 1 — see Example 3.7 — which forces Barcel6, Romero, and Vardi to
introduce the notion of “pseudoacyclicity” [5, §5.2.1], namely the greatest subclass of Tw;

closed under refinement, while we can directly work with the rather comfortable App%,, (7).

On the other hand, graphs of tree-width k£ > 1 being combinatorially less trivial than
graphs of tree-width 1, our proof must carefully handle this information, using tagged tree
decompositions of Section 4. Similarly to [5, Theorem 6.3] for the case k = 1, our results
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implies that for each k& > 1 the evaluation problem for UC2RPQs T" of semantic tree-width k
is fixed-parameter tractable (FPT) in the size of the query, i.e. in O(|G|**! - f(|T|)) for a
computable function f, where G is the database given as input. This improves the dependence
on the size of the database, namely O(|G|***2. f(|T'|)), proven by Romero, Barcelé and Vardi
[15, Corollary IV.12].

> Question 7.2 (Also mentionned in [15, §IV-(4))]). Does every r.e. class of CRPQs with
FPT evaluation has bounded semantic tree-width?

Finally, as a consequence of the existence of a minimal equivalent CQ [9, Theorem 12|, a
CQ is equivalent to a CQ of tree-width at most k if, and only if, it is equivalent to a finite
union of CQs of tree-width at most k. Example 1.2 suggests that this is false for CRPQs.
Both for k =1 (see [5, §6.5]) and k > 2, we do not if the problem of whether a given CRPQ
is equivalent to a single CRPQ of tree-width at most & is decidable. More generally, while we
know that there exists CRPQs 71, v2 such that v; V ¥; is not equivalent to a single CRPQ'°,
we have a very limited understanding of how much union adds to the expressive power of
CRPQs. This begs the following question:

> Question 7.3. Is the problem of whether a given UCRPQ (resp. UC2RPQ) is equivalent
to a single CRPQ (resp. C2RPQ) decidable?
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