
A Simple Algorithm for Consistent Query
Answering Under Primary Keys
Diego Figueira #

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, France

Anantha Padmanabha #

DI ENS, ENS, CNRS, PSL University, Paris, France
Inria, Paris, France

Luc Segoufin #

INRIA, ENS-Paris, PSL University, France

Cristina Sirangelo #

Université Paris Cité, CNRS, Inria, IRIF, F-75013, Paris, France

Abstract
We consider the dichotomy conjecture for consistent query answering under primary key constraints.
It states that, for every fixed Boolean conjunctive query q, testing whether q is certain (i.e. whether
it evaluates to true over all repairs of a given inconsistent database) is either polynomial time or
coNP-complete. This conjecture has been verified for self-join-free and path queries.

We propose a simple inflationary fixpoint algorithm for consistent query answering which, for a
given database, naively computes a set ∆ of subsets of database repairs with at most k facts, where
k is the size of the query q. The algorithm runs in polynomial time and can be formally defined as:
1. Initialize ∆ with all sets S of at most k facts such that S |= q.
2. Add any set S of at most k facts to ∆ if there exists a block B (i.e., a maximal set of facts

sharing the same key) such that for every fact a ∈ B there is a set S′ ∈ ∆ contained in S ∪ {a}.
The algorithm answers “q is certain” iff ∆ eventually contains the empty set. The algorithm correctly
computes certainty when the query q falls in the polynomial time cases of the known dichotomies for
self-join-free queries and path queries. For arbitrary Boolean conjunctive queries, the algorithm is
an under-approximation: the query is guaranteed to be certain if the algorithm claims so. However,
there are polynomial time certain queries (with self-joins) which are not identified as such by the
algorithm.

2012 ACM Subject Classification Theory of computation → Database query languages (principles)

Keywords and phrases consistent query answering, primary keys, conjunctive queries

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.24

Related Version Full Version: https://arxiv.org/abs/2301.08482

Funding Work supported by ANR QUID, grant ANR-18-CE40-0031.
Anantha Padmanabha: ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

1 Introduction

A database often comes with integrity constraints. The constraints are helpful in many ways,
for instance in order to help optimizing query evaluation. When the database violates its
integrity constraints we are faced with several possibilities. A first possibility is to clean
the data until all integrity constraints are satisfied. This task is not easy as it is inherently
non-deterministic: there could be many equally good ways to “repair” a database. A repair
can be understood as a minimal way to change the database in order to satisfy the constraints.

© Diego Figueira, Anantha Padmanabha, Luc Segoufin, and Cristina Sirangelo;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 24; pp. 24:1–24:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diego.figueira@labri.fr
mailto:anantha.padmanabha@inria.fr
mailto:luc.segoufin@inria.fr
mailto:cristina@irif.fr
https://doi.org/10.4230/LIPIcs.ICDT.2023.24
https://arxiv.org/abs/2301.08482
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 A Simple Algorithm for Consistent Query Answering Under Primary Keys

Another possibility is to keep the database in its inconsistent state, postponing the
problem until a query is asked to the database. In order to evaluate the query, the classical
solution is to consider all possible repairs of the database and to output all the answers on
the database D which are “certain”, i.e., those answers that are in the output of the query
when evaluated on every repair of D [2]. However, this method usually has an impact on
the complexity of the query evaluation problem. The impact will of course depend on the
type of integrity constraints and on the definition of a repair, but most often the worst case
complexity increases by a factor at least exponential in the size of the database, as there
could be exponentially many ways to repair a database.

Depending on the integrity constraints, what is a “good” notion of repair may be
controversial. In this paper we consider primary key constraints, which are arguably the
most common kind of integrity constraints in databases. For primary keys, there is a
unanimously accepted notion of repair. Primary key constraints identify, for each relation, a
set of attributes which are considered to be the relation key. An inconsistent database is
therefore a database that has distinct tuples within a relation sharing the same key. For
such constraints, the standard notion of a repair is any maximal subset of the database
satisfying all the primary key constraints. This amounts to keeping exactly one among all
tuples having the same key in each relation. A simple analysis shows that there can be
exponentially many repairs for a given database, and therefore a naive evaluation algorithm
would have to evaluate the query on each of these exponentially many repairs.

We consider Boolean conjunctive queries which can be evaluated efficiently over all
databases, in polynomial time in data complexity. With the certain answer semantics
described above, a query is certain on an inconsistent database if it is true on all its repairs.
The data complexity of certain answers for conjunctive queries over inconsistent databases in
the presence of primary key constraints is therefore in coNP since, in order to test whether
the query is not certain, it is enough to guess a subset of the database which is a repair
and which makes the query false. Further, it has been observed that for some conjunctive
queries the certain answering problem is coNP-hard [4] while, for other queries, the certain
answering problem can be solved in polynomial time. The main conjecture for inconsistent
databases in the presence of primary keys is that there are no intermediate cases: for any
conjunctive query, the certain answering problem is either solvable in polynomial time or is
complete for coNP.

The conjecture has been proved for self-join-free Boolean conjunctive queries [8]. These
are queries on which there are no two atoms using the same relation. It has been also proved
for path queries [7]. However, the conjecture remains open for arbitrary conjunctive queries
(with self-joins).

In this paper we revisit the two cases above where the conjecture is known to hold:
self-join-free queries and path queries.

Contributions. Our main contribution is the design of a simple fixpoint algorithm for
computing certain answers of queries over inconsistent databases in the presence of primary
key constraints. For every k ≥ 1, we describe a fixpoint algorithm parameterized by k. The
algorithm is always an under-approximation of the certain answers: on Boolean queries, when
it outputs “yes” then the query is certain, i.e., it is true on all repairs of the database. But
there could false negatives: queries which are certain on which the algorithm outputs “no”.

Our main result shows that for all self-join-free queries and path queries whose certain
answering problem is computable in polynomial time there is a number k (namely, the number
of atoms of the query) such that this simple algorithm correctly computes the certain answer.
In other words, if for all k our algorithm gives a false negative answer for a self-join-free or
path query it is because the query has a coNP-complete certain answering problem.

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:3

A natural question is then to wonder whether our algorithm always correctly computes
the certain answering problem on all queries for which this problem is polynomial time
computable. We answer negatively to this question, by exhibiting a conjunctive query (with
self-joins) whose certain answers can be solved in polynomial time, but for all k the algorithm
fails to give a correct answer.

Though our greedy fixpoint computation algorithm is simple, the proof of correctness is
not. In the case of self-join-free queries, we provide a semantic condition and show that when
the condition holds, the fixpoint gives always the correct answer, by setting the parameter k

to be the number of atoms of the query. The proof is by contradiction: if the algorithm fails
to give the correct answer, we use the fixpoint definition of the algorithm in order to produce
(chase) an infinite sequence of distinct facts of the database, contradicting its finiteness.
When the semantic condition does not hold, we show that it implies the condition of [8]
characterizing those queries having a coNP-complete certain answers problem.

The situation is simpler for the case of path queries, as we show that for a suitable k

(again the number of atoms of the query), our fixpoint algorithm can simulate the polynomial
time algorithm of [7] for computing certain answers for q, assuming that certain answering
for q is polynomial time solvable.

Related work. Our work is very much inspired by the results of Koutris and Wijsen [9, 8].
For self-join-free queries, the authors prove the polynomial-time case via a long sequence of
reductions eventually producing a simple query whose certain answers can be solved efficiently.
When unfolding the sequence of reductions this gives a complicated polynomial time algorithm
with a complex proof of correctness. We have basically simplified the algorithm and pushed
all the difficulty into the proof of correctness. Our algorithm is simple, but the proof of
correctness is arguably as complex as theirs. Further, our algorithm does not give, a priori,
the optimal LogSpace complexity result of [9] as we know that some of the path queries
that can be solved with our algorithm are PTime complete [7]. The semantic condition that
we provide for characterizing the polynomial case in the self-join-free case can be effectively
tested, but not efficiently, unlike the simple syntactic characterization of [8] based on the
so-called “attack graph” of the query.

In the case of path queries, [7] also provides a simple fixpoint algorithm for solving the
polynomial cases. Though it seems that their algorithm is different in spirit from ours,
the two algorithms have some similarities that we use in order to “simulate” their fixpoint
computation using ours.

All missing details can be found in the appendix of the long version of this paper [3].

2 Preliminaries

A database is a finite relational structure. A relational signature is a finite set of
relation symbols associated with an arity. A finite relational structure D over a relational
signature σ is composed of: a finite set, the domain of D, and a function associating to each
symbol R of σ a relation R(D) of the appropriate arity over the domain of D.

An R-fact of a database D over a signature σ is a term of the form R(ā) where R is a
symbol of σ and ā a tuple in R(D). A fact is an R-fact for some R, R is then the symbol
associated to the fact and ā the tuple associated to the fact. A database can then be viewed
as a finite collection of facts. By the size of a database we mean the number of facts it
contains. Assuming σ is fixed, which we will implicitly do in this paper, this is equivalent to
the usual notion of size for a database, up to some polynomial function.

ICDT 2023

24:4 A Simple Algorithm for Consistent Query Answering Under Primary Keys

A primary key constraint over a signature σ is a special case of a functional dependency
designating for a relation symbol R of σ a certain set of indices (columns) of R as a primary
key. A database satisfies the primary key constraint if for every relation R over σ, whenever
two R-facts agree on the key indices they must be equal. In a set of primary key constraints,
each relation of σ has a unique primary key constraint. As all the sets of constraints we
consider are primary key constraints we will henceforth omit the “primary” prefix. We use
the letter Γ to denote the corresponding set of key constraints.

Given two facts u and v and a set Γ of key constraints, we say that u and v are Γ-
equivalent, denoted by u ∼Γ v, if u and v have the same associated symbol R and agree on
the key of R as specified by Γ. Γ-equivalence is an equivalence relation and the equivalence
classes are called Γ-blocks. We will omit Γ in our notations whenever it is clear from the
context. A database is then a finite collection of blocks, each block being a finite collection
of equivalent facts. When writing a query q we will always underline in an atom R(x̄) the
positions that are part of the key of R as specified by Γ. This will avoid describing explicitly
Γ. For instance R(x y) says that the position of the variable x (i.e., the first position) is the
key for the binary relational symbol R; and R′(yz x) says that the positions of the variables
y and z form the key for the ternary relational symbol R′.

If a database D satisfies the key constraints Γ, denoted by D |= Γ, then each block of D

has size one. If not, then a repair of D is a subset of the facts of D such that each block of
D has exactly one representative in the repair. In particular a repair always satisfies the key
constraints. Notice that there could be exponentially many repairs of a given database D.

In this paper a query is a Boolean conjunctive query. We view a query over a relational
signature σ as a collection of atoms where an atom is a term R(x̄) where R is a relation
symbol and x̄ is a tuple of variables of the appropriate arity. The query being Boolean, all
variables are implicitly existentially quantified. We will consider atoms of a conjunctive
query to be ordered in an arbitrary but fixed order. A database D satisfies a query q having
atoms A1, . . . , Ak, denoted by D |= q, if there is a mapping µ from the variables of q to the
elements of the domain of D such that the fact µ(Ai) ∈ D for all i. In this case the sequence
(µ(A1), . . . , µ(Ak)) of (not necessarily distinct) facts of D is called a solution to q in D.
Different mappings yield different solutions. The set of solutions to q in D is denoted by
q(D). We will also write D |= q(ū) to denote that the sequence of facts ū is a solution to q

in D. If ū = (u1, . . . , uk) is a solution to q we also say that ui matches Ai in this solution,
and that any subsequence ui1 , . . . , uil

matches Ai1 , . . . , Ail
.

We say that a query q is certain for a database D if all repairs of D satisfy q. We study
the complexity of determining whether a query is certain for a database D. We adopt the
data complexity point of view. For each query q and set of key constraints Γ, we denote by
certainΓ(q) (or simply certain(q) when Γ is understood from the context) the problem
of determining, given a database D, whether q is certain for D. Clearly the problem is in
coNP as one can guess a (polynomial sized) repair and test whether it does not satisfy q. It
is known that for some queries q the problem certain(q) is coNP-complete [4]. However,
there are queries q for which certain(q) is in PTime or even expressible in first-order logic
(denoted by FO in the sequel) [6, 10].

The following dichotomy has been conjectured (cf [4, 1]):

▶ Conjecture 1 (Dichotomy conjecture). For each query q, the problem certain(q) is either
in PTime or coNP-complete.

The conjecture has been proved in the case of self-join-free queries [8] and of path
queries [7]; however, it remains open in the general case. A Boolean conjunctive query
is self-join-free if all its atoms involve different relational symbols. A path query is a

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:5

Boolean conjunctive query with n + 1 distinct variables x0, x1, · · ·xn and n atoms A1 · · ·An

such that each Ai = Ri(xi−1, xi) for some symbol Ri of σ of arity two. The query may
contain self-joins, i.e. Ri = Rj for some i ̸= j.

▶ Example 2. Consider the following example queries taken from [6, 7]. For the self-join-free
query q1 : R1(x y)∧R2(y z) (recall that all variables are implicitly existentially quantified), it is
easy to see that the problem certain(q1) can be solved in polynomial time [6]. Actually, it can
be expressed by the first-order formula ∃xyz R1(xy) ∧R2(yz) ∧ ∀y′(R1(xy′)→ ∃z′R2(y′z′)).

For the self-join-free query q2 : R1(x y) ∧ R2(y x) and the path query q′
2 : R(x1 x2) ∧

X(x2 x3) ∧ R(x3 x4) ∧ Y (x4 x5) ∧ R(x5 x6) ∧ Y (x6 x7), it has been shown, in [10] and [7]
respectively, that certain(q2) and certain(q′

2) can be solved in polynomial time but cannot
be expressed in first-order logic. Our algorithm works for q1, q2 and q′

2.
Finally, for the self-join-free query q3 : R1(x y) ∧ R2(z y) and the path query q′

3 :
R(x1 x2) ∧X(x2 x3) ∧R(x3 x4) ∧X(x4 x5) ∧R(x5 x6) ∧ Y (x6 x7) ∧R(x7 x8) ∧ Y (x8 x9),
both certain(q3) and certain(q′

3) are known to be coNP-complete [4, 7].

3 Polynomial-time algorithm

To solve certain(q), we describe a family of algorithms Certk(q), where k ≥ 1 is a parameter.
For a fixed k and query q, Certk(q) takes a database as input and runs in time polynomial
in the size of the database, in such a way that Certk(q) is always an under-approximation
of certain(q), i.e., whenever Certk(q) says “yes” then q is certain for the input database.
However, Certk(q) could give false negative answers.

In Section 4 we will show that for self-join-free queries either Certk(q) computes certain(q)
(where k is the number of atoms occurring in q) or certain(q) is complete for coNP. In
Section 5 we show an analogous result for path queries.

The algorithm inductively computes sets of facts maintaining the invariant that every
repair containing one of these sets makes the query true. The algorithm returns “yes” if the
empty set is eventually derived (since all repairs contain the empty set).

We now describe the algorithm. Assume q, Γ and k are fixed. Let D be a database. A
k-set over D is a set S of facts of D of size at most k such that no two elements of S are
Γ-equivalent. In other words a k-set is a subset of a repair of D of size at most k. We
denote by Certk(q) the following algorithm. On a database input D, the algorithm Certk(q)
computes inductively a set ∆k(q, D) of k-sets over D while maintaining the invariant:

If S ∈ ∆k(q, D) and r is a repair of D containing S, then r |= q. (Inv)

Initially ∆k(q, D) contains all k-sets S such that S |= q. In other words, we start with
all solutions to q in all repairs of D. Clearly, this satisfies the invariant (Inv). Now we
iteratively add a k-set S to ∆k(q, D) if there exists a block B of D such that for every fact
u ∈ B there exists S′ ⊆ S ∪ {u} such that S′ ∈ ∆k(q, D). Again, it is immediate to verify
that the invariant (Inv) is maintained.

This is an inflationary fixpoint algorithm and notice that the initial and inductive steps
can be expressed in FO. If n is the number of facts of D, the fixpoint is reached in at most nk

steps. In the end, Certk(q) returns “yes” iff the empty set belongs to ∆k(q, D). Equivalently,
Certk(q) returns “yes” if there is a block B of D such that for all facts u of B the set {u}
belongs to ∆k(q, D). We write D |= Certk(q) to denote the fact that Certk(q) returns “true”
upon input D. Altogether we have shown:

▶ Proposition 3. For all q, Γ, k, Certk(q) runs in time polynomial in the size of its input
database D and, whenever D |= Certk(q) then q is certain for D.

ICDT 2023

24:6 A Simple Algorithm for Consistent Query Answering Under Primary Keys

In order to simplify the notations, as we will mostly consider this case, we write ∆(q, D)
and Cert(q) to denote ∆k(q, D) and Certk(q) respectively, where k is the number of atoms
of q. Also, for a fact u, we write u ∈ ∆k(q, D) instead of {u} ∈ ∆k(q, D).

▶ Example 4. Consider again the query q2 : R1(x y) ∧ R2(y x) from Example 2. Let
k = 2 and consider the execution of Cert2(q2). Initially, ∆2(q2, D) contains all pairs of facts
{R1(ab), R2(ba)} such that both R1(ab) and R2(ba) are in D. The first iterative step adds
to ∆2(q2, D) (i) all singletons {R1(ab)} such that R2(ba) is a fact of D whose block contains
only R2(ba), and (ii) analogously all {R2(ab)} such that the block of R1(ba) is a singleton.
And so it continues.

We show that Cert2(q2) computes certain(q2). In other words, for q2, Cert2(q2) is not
an under approximation but an exact computation of certainty.

Observe that, for every repair r and fact α therein, there is at most one other fact α′ in
r such that {α, α′} |= q2. This is because in any repair the first atom of q2 determines the
second atom and vice-versa. This “mutual determinacy” is, in fact, what makes Cert2(q2) a
complete procedure, as we shall see next.

In view of Proposition 3, it remains to show that if q2 is certain for D then ∆2(q2, D)
contains the empty set.

Let r be a repair of D. By |q(r)| we denote the number of solutions to q in r, i.e., the
cardinality of q(r). We say that a repair r is minimal if there is no repair s such that
|q(s)| < |q(r)|. We prove the following claim.

▷ Claim. If r is a minimal repair and R1(ab), R2(ba) are facts of r then R1(ab) ∈ ∆2(q2, D).

Towards a contradiction, assume that R1(ab) ̸∈ ∆2(q2, D). We shall construct an infinite
sequence u1, u2, . . . of distinct facts of D, contradicting the finiteness of D. We construct,
at the same time, an infinite sequence v1, v2, . . . of facts of D and an infinite sequence of
minimal repairs r1, r2, . . . maintaining the following invariant:
1. the ui’s are pairwise distinct;
2. ui ̸∈ ∆2(q2, D);
3. if ui = R1(cd) then vi = R2(dc) and if ui = R2(cd) then vi = R1(dc);
4. ui+1 ∼ vi and ui+1 ̸= vi;
5. ri is minimal and contain each uj , j ≤ i together with vi.

Initially r1 = r, u1 = R1(ab) and v1 = R2(ba) and the invariant conditions are met, the
second item being our initial hypothesis.

Consider step i. Consider the block Bi of vi. As ui ̸∈ ∆2(q2, D) we know that Bi must
contain an element ui+1 such that both ui+1 ̸∈ ∆2(q2, D) and {ui, ui+1} ̸∈ ∆2(q2, D). In
particular ui+1 ∼ vi but ui+1 ̸= vi and items 2 and 4 of our inductive hypothesis are met.
Towards the first item of our inductive hypothesis, if ui+1 = uj then by item 5 the repair ri

would contain two equivalent facts, vi and ui+1 = uj , which is not possible since we have
already established that ui+1 ̸= vi.

Consider the repair ri+1 resulting from replacing vi with ui+1. Let vi+1 be the dual fact
of ui+1 as required by the third item of the invariant. As uivi forms a solution to q in ri and
ri is minimal, we must have vi+1 ∈ ri+1. Finally notice that ri+1 is minimal as its solutions
to q are exactly the same as for ri except for uivi that has been removed and ui+1vi+1 that
has been added (by the mutual determinacy of the atoms of q2).

Here is a depiction of how the ui’s and vi’s are defined, where the full and hollow arrows
correspond to R1 and R2 respectively.

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:7

<latexit sha1_base64="iO7OS9gG2KmYVriLOhOQkUenNUU=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYhV2JaidAQstEzAXSJYwOzlJxsxemJkV4pLOzsZCEVsfwIexs/RNnFwKTfxh4OP/z2HOOV4kuNK2/WWlFhaXllfSq5m19Y3Nrez2TlWFsWRYYaEIZd2jCgUPsKK5FliPJFLfE1jz+pejvHaHUvEwuNGDCF2fdgPe4YxqY5VpK5uz8/ZYZB6cKeQuHu6/rz72klIr+9lshyz2MdBMUKUajh1pN6FScyZwmGnGCiPK+rSLDYMB9VG5yXjQITk0Tpt0QmleoMnY/d2RUF+pge+ZSp/qnprNRuZ/WSPWnXM34UEUawzY5KNOLIgOyWhr0uYSmRYDA5RJbmYlrEclZdrcJmOO4MyuPA/Vk7xzmi+UC7niEUyUhn04gGNw4AyKcA0lqAADhEd4hhfr1nqyXq23SWnKmvbswh9Z7z+h8JB0</latexit>a
<latexit sha1_base64="KwZiepZD+LmRGetR/NeQHzzUhN4=">AAAB6HicbZDLSgNBEEVrfMb4irp00xgUV2FGgroz4MZlAuYByRB6OjVJm54H3T1CGPIFblwoEpf+hb/hzr+xJ8lCEy80HO6toqvKiwVX2ra/rZXVtfWNzdxWfntnd2+/cHDYUFEiGdZZJCLZ8qhCwUOsa64FtmKJNPAENr3hbZY3H1EqHoX3ehSjG9B+yH3OqDZWzesWinbJnoosgzOH4s3nJNN7tVv46vQilgQYaiaoUm3HjrWbUqk5EzjOdxKFMWVD2se2wZAGqNx0OuiYnBqnR/xImhdqMnV/d6Q0UGoUeKYyoHqgFrPM/C9rJ9q/dlMexonGkM0+8hNBdESyrUmPS2RajAxQJrmZlbABlZRpc5u8OYKzuPIyNC5KzmWpXCsXK2cwUw6O4QTOwYErqMAdVKEODBCe4AVerQfr2XqzJrPSFWvecwR/ZH38AOE+kWI=</latexit>

b

<latexit sha1_base64="c5JBVie7nWWm6C8f1rhRVJCnT00=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buq1u4vK/XzPI4inMApXIAH11CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAA/I2I</latexit>u1

<latexit sha1_base64="cd1bD4ZYqfap37P9xOS5/19EKA4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkR9Vjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3voZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Xqg9X5dpFHkcBTuEMLsGDG6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gACgo2J</latexit>v1
<latexit sha1_base64="vXmHqwjH7KgI6VP8ID/iOg/HSNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndVrd1fVurneRxFOIFTuAAPrqEOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AECgI2J</latexit>u2

<latexit sha1_base64="CrOCIDG4bOpKaMnwLnKnDX4jMyM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkR9Vjw4rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbuuVB+uyrWLPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AEEBo2K</latexit>v2
<latexit sha1_base64="uJ6x1m+CdQu/zfZvijJsGBLbf3A=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Vjw4rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9pL2LXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPEzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs1qxbuqVO8vy7WzPI4CHMMJnIMH11CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEEBI2K</latexit>u3

<latexit sha1_base64="qNm7Y1ssUE9zjFXrOpZqKqf/bn8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF48Y5ZHAhswOszBhdnYz00tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkM72Z+c8S1EbF6wnHC/Yj2lQgFo2ilx1H3slssuWV3DrJKvIyUIEOtW/zq9GKWRlwhk9SYtucm6E+oRsEknxY6qeEJZUPa521LFY248SfzU6fkzCo9EsbalkIyV39PTGhkzDgKbGdEcWCWvZn4n9dOMbz1J0IlKXLFFovCVBKMyexv0hOaM5RjSyjTwt5K2IBqytCmU7AheMsvr5JGpexdlysPV6XqeRZHHk7gFC7Agxuowj3UoA4M+vAMr/DmSOfFeXc+Fq05J5s5hj9wPn8ABYqNiw==</latexit>v3
<latexit sha1_base64="oir8yhRe+Fozc7z/kdL1LbZV6eo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4Kkkp6rHgxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSQ9qv9Utlt+LOQVaJl5My5Gj0S1+9QczSiCtkkhrT9dwE/YxqFEzyabGXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2naEPwll9eJa1qxbuqVO9r5fpFHkcBTuEMLsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gAFiI2L</latexit>u4

<latexit sha1_base64="6dpTBNYh8fhYsXO6Ru/R+Uta+Z4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IruEqEcSLx4xyiMBQmaHWZgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dfiyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx026eGS6F4AwVK3o41p6Evecsf38391oRrIyL1hNOY90I6VCIQjKKVHif9ar9YcsvuAmSdeBkpQYZ6v/jVHUQsCblCJqkxHc+NsZdSjYJJPit0E8NjysZ0yDuWKhpy00sXp87IhVUGJIi0LYVkof6eSGlozDT0bWdIcWRWvbn4n9dJMLjtpULFCXLFlouCRBKMyPxvMhCaM5RTSyjTwt5K2IhqytCmU7AheKsvr5NmpexdlysP1VLtMosjD2dwDlfgwQ3U4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8HDo2M</latexit>v4
<latexit sha1_base64="jcfd9+CqEiFSs6jwXp8ajKG0c44=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYFA8hd3g6xjw4jGieUCyhNlJbzJkdnaZmRXCkk/w4kERr36RN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9pL3LXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPEzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs1qxbuqVO8vyrWzPI4CHMMJnIMH11CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEHDI2M</latexit>u5

<latexit sha1_base64="PUUKpQFfCr/2PiEXIiAZcGqekX4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrvE15HEi0eM8khgQ2aHWZgwO7uZ6SUhhE/w4kFjvPpF3vwbB9iDgpV0UqnqTndXkEhh0HW/ndza+sbmVn67sLO7t39QPDxqmDjVjNdZLGPdCqjhUiheR4GStxLNaRRI3gyGdzO/OeLaiFg94TjhfkT7SoSCUbTS46h71S2W3LI7B1klXkZKkKHWLX51ejFLI66QSWpM23MT9CdUo2CSTwud1PCEsiHt87alikbc+JP5qVNyZpUeCWNtSyGZq78nJjQyZhwFtjOiODDL3kz8z2unGN76E6GSFLlii0VhKgnGZPY36QnNGcqxJZRpYW8lbEA1ZWjTKdgQvOWXV0mjUvauy5WHy1L1PIsjDydwChfgwQ1U4R5qUAcGfXiGV3hzpPPivDsfi9ack80cwx84nz8Iko2N</latexit>v5

<latexit sha1_base64="1uo2C1ZBGunPReO6jA1pQtyoiII=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIviqSRF1GPBi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9USk0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcY3wYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1r6q1+8tK/TyPowgncAoX4MM11OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/ALX9jyM=</latexit>. . .

This concludes the construction of the infinite sequence, showing that R1(ab) ∈ ∆2(q2, D)
for any minimal repair containing both R1(ab) and R2(ba).

To conclude that Cert2(q2) returns the correct answer, consider a minimal repair r of D.
As q2 is certain for D, we must have r |= q and this is witnessed by two facts R1(ab) and
R2(ba) of r. Let B be the block of R1(ab). Let us show that all facts of B are in ∆2(q2, D)
and hence ∅ ∈ ∆2(q2, D). Let R1(ab′) be such a fact and consider the repair r′ obtained by
replacing R1(ab) with R1(ab′). As r is minimal it follows immediately that r′ is minimal and
must contain R2(b′a) (again, this is ensured by the mutual determinacy of q2). From the
claim it follows that R1(ab′) ∈ ∆2(q2, D), as desired.

Observe that Certk does not always compute the certain answers. For instance, the query
q3 from Example 2 is so that certain(q3) is coNP-complete, and hence Certk(q3) must
have false negatives for all k, assuming coNP ̸= PTime (proving this without relying on
complexity theoretic assumptions remains plausible, and would not impact our results).

4 Self-join-free queries

In this section we consider the case of self-join-free queries. We exhibit a condition named
PCond (for Polynomial-time Condition) and show that any self-join-free query q satisfy-
ing PCond is such that Cert(q) computes certain(q). When PCond fails, we show that
certain(q) is coNP-hard.

We start by defining PCond, which will require some extra definitions. Fix, for the rest
of this section, a set Γ of primary key constraints. Let D be a database and r a repair of D.
For a fact u of r, and for an equivalent fact v ∼ u from D, we denote by r[u→ v] the repair
obtained from r by replacing the fact u with v.

Consider a self-join-free query q with k atoms. Recall that we write D |= q(ū) when ū is
a solution to q in D. As q is self-join-free, for each fact a in a solution ū there is a unique
atom of q that a can match, namely the only fact of q having the same relation symbol as a.
Hence, the order on ū and on the atoms of q is not relevant. With some abuse of notation
we will therefore often treat a solution ū, or the sequence of atoms of q, as a set rather than
a sequence; we will often use different orders among the facts of a same solution, placing up
front the most relevant facts. In particular we shall write, for a tuple ū of facts, ū ∈ ∆(q, D)
to denote that the k-set formed by the facts of ū belongs to ∆(q, D).

Let A be an atom of q whose associated symbol is R. We denote by vars(A) the set of
variables of A and by key(A) the set of variables of A occurring in a position belonging to the
primary key of R. For instance key(R(x y)) is {x}, key(R′(yz x)) is {y, z} and key(R′′(xzx y))
is {x, z}.

Given a set X of variables of q and a sequence A1 . . . An of atoms of q, we say that
X A1 . . . An is a Γ-derivation from X to An in q if for each 1 ≤ i ≤ n we have that

key(Ai) ⊆ X ∪
⋃

1≤j<i

vars(Aj).

If X = vars(A0), for some atom A0 of q, we also say that the Γ-derivation is from A0 to
An, and we also write it as A0A1 . . . An. We say that an atom A′ is Γ-determined by the
atom A if there exists a Γ-derivation from A to A′. Moreover, A and A′ are mutually Γ-
determined if A′ is Γ-determined by A and A is Γ-determined by A′. This is an equivalence

ICDT 2023

24:8 A Simple Algorithm for Consistent Query Answering Under Primary Keys

relation among atoms. A set S of atoms of q is said stable if each pair of facts of S are
mutually Γ-determined. Note that a stable set is not necessarily an equivalence class of
Γ-determinacy, it may also be a subset of it. As usual, we will omit Γ when it is clear from
the context. The key property relating Γ-determinacy and query solutions is given by the
lemma:

▶ Lemma 5. Let q be a self-join-free query. Let D be a database instance and r, r′ be two
repairs of D. Let A1 . . . An be a Γ-derivation in q from atom A1 to An. Let r |= q(ᾱa1 . . . anβ̄),
and r′ |= q(ᾱ′a′

1 . . . a′
nβ̄′) where for each i, ai and a′

i match Ai and ᾱβ̄ and ᾱ′β̄′ match the
rest of the atoms of q. If a1 = a′

1 and ai ∈ r′ for each i < n, then 1) ai = a′
i for each i < n

and 2) an ∼ a′
n (and therefore an = a′

n if moreover an ∈ r′).

We are now ready to define PCond. A Γ-sequence τ of q is a sequence τ = S1S2 · · ·Sn

where each Si is a stable set of atoms of q, and the Si’s form a partition of q. In this context,
we denote by S≤i the set

⋃
j≤i Sj .

Let τ = S1S2 · · ·Sn be a Γ-sequence of q. Let 1 ≤ i < n and let A be an atom of Si+1.
We say that the query q satisfies PCondτ (A) and write q |= PCondτ (A) if the following is
true for all databases D, all repairs r of D and all solutions ᾱuβ̄ and ᾱ′u′β̄′ to q in D such
that ᾱ and ᾱ′ match S≤i and u and u′ match A:

If


r |= q(ᾱuβ̄),
u ∼ u′, and
r[u→ u′] |= q(ᾱ′u′β̄′)

 then
{

r |= q(ᾱ′uδ̄) and
r[u→ u′] |= q(ᾱu′δ̄′)

}
for some sequences δ̄ and δ̄′.

We write q |= PCondτ (i) if q satisfies PCondτ (A) for all A of Si+1, and we write
q |= PCondτ if q satisfies PCondτ (i) for all 1 ≤ i < n. Since the condition is restricted to
indices i < n, PCondτ trivially holds for any τ having only one stable set. Finally, we write
q |= PCond if there is a Γ-sequence τ of q such that q |= PCondτ . Again, if q has only one
Γ-determinacy class (for instance the query q2 of Example 4) then q |= PCond in a trivial
way.

Our goal is to show that q |= PCond implies that Cert(q) computes certain(q). This is
the main technical result of this section and is proved by Theorem 7. In Theorem 13 we will
conclude the self-join-free case by showing that when PCond fails, then the certainty of the
query is hard. Before we prove those results, some examples are in order.

▶ Example 6. We recall the three queries from Example 2. The query q2 = R1(x y)∧R2(y x)
satisfies PCond since it has only one maximal stable set.

The query q1 = R1(x y) ∧ R2(y z) has two stable sets: R1(x y) determines R2(y z)
but the converse is false. For τ = {R2(y z)}{R1(x y)} we have q ̸|= PCondτ because
we have q1(R2(bc)R1(ab)) and q1(R2(b′c)R1(ab′)) but not q1(R2(bc)R1(ab′)). However for
τ = {R1(x y)}{R2(y z)} it is easy to verify that q1 |= PCondτ . Hence, q1 |= PCond.

The query q3 = R1(x y) ∧R2(z y) has also two stable sets, but no possible sequence τ

makes PCondτ true. This is because (i) q3(R1(ab) R2(cb)) and q3(R1(a′b′) R2(cb′)) hold,
but not q3(R1(ab) R2(cb′)), and (ii) q3(R2(ab) R1(cb)) and q3(R2(a′b′) R1(cb′)) hold, but
not q3(R2(ab) R1(cb′)). Therefore, q3 ̸|= PCond.

▶ Theorem 7. Let q be a self-join-free query. If q |= PCond, then Cert(q) computes
certain(q).

Suppose q has k atoms. Let τ = S1 · · ·Sn be a Γ-sequence of q such that q |= PCondτ . We
need to show that Cert(q) = Certk(q) computes precisely certain(q).

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:9

We start with some extra notations. Recall that q(r) denotes the set of solutions to q

in a repair r; we additionally denote by q≤i(r) the projection of q(r) on the first i sets of τ .
More precisely

q≤i(r) = {v̄ | ∃ū ∈ q(r) s.t. v̄ is the subset of ū matching S≤i},

and if v̄ ∈ q≤i(r) we write equivalently r |= q≤i(v̄). Let D be a database and r a repair of D.
We say that r is i-minimal if there is no repair r′ such that q≤i(r′) ⊊ q≤i(r). We say that a
fact u of a database D is i-compatible, if it matches some atom of Si. We will need the
limit case when i = 0. In that case S0 is the empty set, as well as S≤0 (and hence PCondτ (0)
is always true), q≤0(r) contains only the empty sequence ε for all r, and therefore all repairs
are 0-minimal. The proof of the theorem will make use of an induction based on the following
invariant property of the database, for each 0 ≤ i ≤ n:

Indi = For all i-minimal repair s and facts ū s.t. s |= q≤i(ū), we have ū ∈ ∆(q, D).

▶ Lemma 8. Given q, D and a Γ-sequence τ for q, for every 0 ≤ i < n, if Indi+1 and
PCondτ (i), then Indi.

We first show how this statement already implies Theorem 7.

Proof of Theorem 7. From Proposition 3, we know that if D is a database such that
D |= Cert(q) then all repairs of D satisfy q. It remains to show the converse.

Assume all repairs satisfy q and that q |= PCondτ for some sequence τ of length n,
which means that PCondτ (i) holds for all i. Observe that Indn holds true by the base
case definition of ∆(q, D). Hence by n repeated applications of Lemma 8 we obtain that
Ind0 holds true. Now take any repair r. By definition r is 0-minimal and by hypothesis it
satisfies the query q. By Ind0 it follows that the empty set (denoted by the empty tuple) is
in ∆(q, D), and hence D |= Cert(q). ◀

We are now left with the proof of Lemma 8, which is the main technical content of the
section. Towards this, we define a stronger version of i-minimality. For 1 ≤ i < n, we say
that an i-minimal repair s is strong if there exists no repair s′ such that q≤i(s′) = q≤i(s) and
|q≤i+1(s′)| < |q≤i+1(s)|. Note that a strong i-minimal repair is in particular (i + 1)-minimal.

▷ Claim 9. If there exists an i-minimal repair s such that s |= q≤i(ū), then there exists a
strong i-minimal repair s′ such that s′ |= q≤i(ū).

For a given database D, for a repair r of D, we denote by r|i+1 the set of facts of r which
are not (i + 1)-compatible. A sequence p̄ of facts of the database is connected with respect
to D′ ⊆ D if for every repair r containing p̄ and D′, and for every two consecutive facts a b

of p̄, if r |= q(ᾱ, a, β̄) for some ᾱ, β̄, then b ∈ ᾱβ̄. Note that if p̄ is the empty tuple (or a
tuple of size 1), then p̄ is trivially connected with respect to every D′ ⊆ D.

Proof of Lemma 8. By contradiction, suppose the statement of the lemma is false. Then,
there is some i such that Indi+1 and PCondτ (i) holds, but for some i-minimal repair s and
tuple ū we have

s |= q≤i(ū) but ū ̸∈ ∆(q, D). (h1)

From Claim 9, we can assume that s is strong i-minimal. We will build an infinite
sequence of pairwise distinct facts p1, p2, . . . from D, contradicting the finiteness of D. We
also maintain another sequence of repairs r1, r2, We set r0 = s and p̄0 to be the empty
fact sequence. And for all l > 0, we define p̄l = p1, . . . pl.

ICDT 2023

24:10 A Simple Algorithm for Consistent Query Answering Under Primary Keys

The sequence is constructed by induction with the following invariant for every l ≥ 0,
assuming p̄ = p̄l and r = rl:
(a) p̄ contains only (i + 1)-compatible facts of D;
(b) the elements of p̄ are pairwise distinct;
(c) p̄ is connected with respect to r|i+1;
(d) r is strong i-minimal, r |= q≤i(ū) and, if p̄ is not empty and v is the last fact of p̄, then

r |= q(ūvδ̄), for some δ̄;
(e) ūc̄ ̸∈ ∆(q, D), where c̄ is the maximal suffix of p̄ satisfying r′ |= q(ūc̄β̄) for some β̄ and

strong i-minimal repair r′ containing p̄ and r|i+1.
Note that the invariant (b) leads to a contradiction when l is larger than the size of D.

Base case. When l = 0, we have r0 = s and p̄ is the empty sequence. Hence (a), (b) and (c)
are trivially true by emptiness of p̄; (d) holds since s |= q≤i(ū) (note that we have assumed s

to be strong i-minimal); finally (e) holds with empty c̄ since ū /∈ ∆(q, D) by (h1).

Inductive step. Assume we have r = rl−1 and p̄ = p1, . . . pl−1 (possibly empty) satisfying
the five properties above. Consider the maximal suffix c̄ concerned by property (e). That is,
for some β̄ and strong i-minimal repair r′ containing p̄ and r|i+1 we have:

ūc̄ ̸∈ ∆(q, D) and r′ |= q(ūc̄β̄) (h2)

First let β̄ = d1d2, . . . dt. Since ūc̄ ̸∈ ∆(q, D), by definition of ∆(q, D) there exists some
d′

1 ∼ d1 such that ūc̄d′
1 ̸∈ ∆(q, D). This again implies that there exists some d′

2 ∼ d2 such
that ūc̄d′

1d′
2 ̸∈ ∆(q, D). Since k is the number of atoms in q, we can continue this to obtain

β̄′ = d′
1d′

2, . . . d′
t where d′

i ∼ di but ūc̄β′ contains no k-set in ∆(q, D). Also note that β̄′

matches all atoms of q not already matched by ūc̄.
Further, we show that c̄ cannot match the entire set Si+1. Suppose, by means of

contradiction, that r′ |= q≤i+1(ūc̄). As r′ is strong i-minimal, it is (i + 1)-minimal. Hence,
since Indi+1 holds by hypothesis, ūc̄ ∈ ∆(q, D), which is in contradiction with (h2). Then,

r′ ̸|= q≤i+1(ūc̄). (h3)

This means that, since r′ |= q(ūc̄β̄) by (h2), and c̄ matches a subset of Si+1, there must
be an atom C of Si+1 that is not matched by any fact of c̄. Consider the atom A of Si+1
matching the last element of c̄. If instead c̄ is empty, choose A as an arbitrary atom of Si+1.

Since A and C are both in Si+1, which is stable, there exists a Γ-derivation σ from A to
C. (Notice that σ may contain atoms outside Si+1.) Consider the first atom B of σ which is
in Si+1 and which is not matched by any fact of c̄. The following depiction may help to see
the situation:

<latexit sha1_base64="inUFFAkEwJeluKkHrnIea+cI8/0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisaD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrtR/6mTj3pv1y1a25c5BV4uWkCjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JqVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrouZd1bz7y2q9ksdRhBOowBl4cA11uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx++Go8V</latexit>

Si+1

<latexit sha1_base64="JbI+jGsMoy+BDbe2ESMwaeCYREU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIVC9CwYvHCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjf3O0+oNI/lo5km6Ed0JHnIGTVW6vQDqgi7HZSrbs1dgKwTLydVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny3OnZFzqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwhs/4zJJDUq2XBSmgpiYzH8nQ66QGTG1hDLF7a2EjamizNiESjYEb/XlddK+rHn1mvdwVW1U8jiKcAYVuAAPrqEB99CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QOQto73</latexit>

c̄ =

<latexit sha1_base64="yZTuhs8l3Es5ns0Tdqsqmt8D6fo=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LC2ip5KIqBeh4MVjBfsBTSiT7aZdutmE3Y1QSv+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6aCa+O6305hbX1jc6u4XdrZ3ds/KB8etXSSKcqaNBGJ6oSomeCSNQ03gnVSxTAOBWuHo7uZ335iSvNEPppxyoIYB5JHnKKxku+HqIgfMoNnt71y1a25c5BV4uWkCjkavfKX309oFjNpqECtu56bmmCCynAq2LTkZ5qlSEc4YF1LJcZMB5P5zVNyapU+iRJlSxoyV39PTDDWehyHtjNGM9TL3kz8z+tmJroJJlymmWGSLhZFmSAmIbMASJ8rRo0YW4JUcXsroUNUSI2NqWRD8JZfXiWti5p3VfMeLqv1Sh5HEU6gAufgwTXU4R4a0AQKKTzDK7w5mfPivDsfi9aCk88cwx84nz/6lJDl</latexit>

�̄0 =
<latexit sha1_base64="uPHfoatuzKyBZlQT8EqVR3kWb1E=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqBeh4MVjBfsBTSib7aZdutmE3YlQQn+GFw+KePXXePPfuG1z0OqDgcd7M8zMC1MpDLrul1NaW9/Y3CpvV3Z29/YPqodHHZNkmvE2S2SieyE1XArF2yhQ8l6qOY1Dybvh5Hbudx+5NiJRDzhNeRDTkRKRYBSt1PdDqokfcqQ3g2rdbbgLkL/EK0gdCrQG1U9/mLAs5gqZpMb0PTfFIKcaBZN8VvEzw1PKJnTE+5YqGnMT5IuTZ+TUKkMSJdqWQrJQf07kNDZmGoe2M6Y4NqveXPzP62cYXQe5UGmGXLHloiiTBBMy/58MheYM5dQSyrSwtxI2ppoytClVbAje6st/See84V02vPuLerNWxFGGE6jBGXhwBU24gxa0gUECT/ACrw46z86b875sLTnFzDH8gvPxDZawkLQ=</latexit>

�̄ =
<latexit sha1_base64="qHM6ZTpRpdEAsyGGTXn1BUY0Y28=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rXvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AvTmMzA==</latexit>

b

<latexit sha1_base64="DRy5xqXbxs5qW7+FEWk1WZepPyg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LC2ip5KIqMeCF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EJz1y1W35s5BVomXkyrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyalVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhjZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV3UvKuad39ZrVfyOIpwAhU4Bw+uoQ530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5Ax2qjP0=</latexit>

b0

<latexit sha1_base64="jvg/mT9FOiGmxXWotAxLFddaI8A=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR9Vjx4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq3PZLFbfqzkFWiZeTCuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVS9q6rXuKzUynkcBTiFMpyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBizWMqw==</latexit>

A
<latexit sha1_base64="yhrlTBXmjcTrq82WCeVNuJMG2JE=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq3PZLFbfqzkFWiZeTCuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVS9q6rXuKzUynkcBTiFMpyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBjLmMrA==</latexit>

B
<latexit sha1_base64="wJjZgb1ed2LDC+oedrzaHyffwcs=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR9VjoxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8GkPvc7T6g0j+WDmSboR3QkecgZNVZq1gelilt1FyDrxMtJBXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDOz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20r6reTdVrXldq5TyOApxDGS7Bg1uowT00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ajj2MrQ==</latexit>

C

<latexit sha1_base64="kTdqQVeXo3MH6nTDuCHtblUZ9+Q=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LC2Cp5IUUS9CwYvHCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjf3O0+oNI/lo5km6Ed0JHnIGTVW6vQDqkh6OyhX3Zq7AFknXk6qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkr9VGNC2YSOsGeppBFqP1ucOyPnVhmSMFa2pCEL9fdERiOtp1FgOyNqxnrVm4v/eb3UhDd+xmWSGpRsuShMBTExmf9OhlwhM2JqCWWK21sJG1NFmbEJlWwI3urL66Rdr3lXtfrDZbVRyeMowhlU4AI8uIYG3EMTWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w+sYo8K</latexit>

ū =

<latexit sha1_base64="YbPXGvV36RCFl5NilHO2JQgSNtk=">AAAB6nicbVBNS8NAEJ34WetX1aOXpUXwVJIi6rHgxWOl9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmd3O/88S1EbF6xGnC/YiOlAgFo2ilZnMgBqWKW3UXIOvEy0kFcjQGpa/+MGZpxBUySY3peW6CfkY1Cib5rNhPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieOtnQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTtCF4qy+vk3at6l1Xaw9XlXo5j6MA51CGS/DgBupwDw1oAYMRPMMrvDnSeXHenY9l64aTz5zBHzifPyDcjZo=</latexit>

Si

<latexit sha1_base64="1uBe4Mc9LxaRs+fuRKTpytMhiKM=">AAAB7nicbVBNS8NAEJ34WetX1aOXpUUQhJIUUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dtbWNza3tgs7xd29/YPD0tFxS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLFS+6Gf8YvatF+quFV3DrJKvJxUIEejX/rqDWKWRigNE1Trrucmxs+oMpwJnBZ7qcaEsjEdYtdSSSPUfjY/d0rOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCW/8jMskNSjZYlGYCmJiMvudDLhCZsTEEsoUt7cSNqKKMmMTKtoQvOWXV0mrVvWuqrX7y0q9nMdRgFMowzl4cA11uIMGNIHBGJ7hFd6cxHlx3p2PReuak8+cwB84nz+/8Y8X</latexit>

Si+2
<latexit sha1_base64="mmMq4Nsa8eQxgO0s7IJ3+Uee0tc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5IUUY8FLx4rmrbQhrLZTtqlm03Y3Qgl9Dd48aCIV3+QN/+N24+Dtj4YeLw3w8y8MBVcG9f9dgobm1vbO8Xd0t7+weFR+fikpZNMMfRZIhLVCalGwSX6hhuBnVQhjUOB7XB8O/PbT6g0T+SjmaQYxHQoecQZNVbyH/q5N+2Xq27NnYOsE29JqrBEs1/+6g0SlsUoDRNU667npibIqTKcCZyWepnGlLIxHWLXUklj1EE+P3ZKzq0yIFGibElD5urviZzGWk/i0HbG1Iz0qjcT//O6mYlugpzLNDMo2WJRlAliEjL7nAy4QmbExBLKFLe3EjaiijJj8ynZELzVl9dJq17zrmr1+8tqo7KMowhnUIEL8OAaGnAHTfCBAYdneIU3RzovzrvzsWgtOMuZU/gD5/MHkEiObg==</latexit>

S1

<latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · ·

<latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · · <latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · ·

<latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · ·

<latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · ·

<latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · ·<latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · · <latexit sha1_base64="zRniFZQGwlRuLWIZ1LxRUA4y7O8=">AAAB7XicbVDLSgMxFL1TX7W+qi7dhBbBVZkpoi4LblxWsA9oh5JJM21sJjMkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuIfeeIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK7f4wRhMMylW35i5A1omXkyrkaA7KXzbI0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bbDsj51YZkjDW9ikkC/V3IqORMdMosJMRxbFZ9ebif14vxfDGz4RKUuSKLT8KU0kwJvPTyVBozlBOLaFMC7srYWOqKUNbUMmW4K2evE7a9Zp3VavfX1YblbyOIpxBBS7Ag2towB00oQUMHuEZXuHNiZ0X5935WI4WnDxzCn/gfP4ApauPFQ==</latexit>· · ·

In the picture directed edges connecting atoms of the query represent the successor
relation in the Γ-derivation from A to C.

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:11

Let b be the fact of β̄ matching B and b′ ∼ b be the fact matching B in β̄′. We show that

b ̸∈ p̄. (h4)

Suppose b is in p̄, by connectedness of p̄ with respect to r|i+1, this implies that the suffix
b̄ of p̄ starting with b is part of the solution ūc̄β̄, that is, r′ |= q(ūb̄γ̄) for some γ̄. By
construction, b is not in c̄, thus it must occur before c̄ in p̄ and hence b̄ strictly contains c̄.
This contradicts the maximality of c̄ imposed by (e), thus proving that (h4) holds. Note that
this also implies b′ ̸∈ p̄, otherwise if b′ ∈ p̄, we have that b′ ∼ b are both in r′, thus b = b′ ∈ p̄,
contradicting (h4).

Assign pl = b′, so we have p̄′ = p̄ · pl and let rl = r′[b→ b′]. (To avoid many subscripts,
let rl = s′). Observe that

s′ contains p̄′ and r|i+1. (h5)

In fact s′ contains p̄, as observed earlier, and s′ contains b′ by construction; moreover s′

contains r′
|i+1 which contains r|i+1 by (e). We now show that p̄′ and s′ have all the desired

properties.
(a) By construction b′ is (i + 1)-compatible.
(b) The elements of p̄′ are pairwise distinct, as b′ ̸∈ p̄.
(c) By our choice of b we show that p̄′ is connected with respect to s′

|i+1. Without loss of
generality assume that p̄′ has at least size 2 (otherwise it is trivially connected). Therefore, p̄

is not empty. Since s′
|i+1 contains r|i+1 by (h5), the connectedness property of p̄ with respect

to r|i+1 implies that for every repair containing p̄′ and s′
|i+1 and for every pair of consecutive

facts a b in p̄, every solution in s′ containing a also contains b.
It remains to show the same property for the last fact a of p̄. Consider a repair t containing

p̄′ and s′
|i+1 and suppose t |= q(γ̄aδ̄) for some γ̄ and δ̄. We have to show b′ ∈ γ̄δ̄. Let σAB

be the prefix of the Γ-derivation σ going from A to B. (Notice that, since p is not empty
A ̸= B.) By property (d) of p̄, since p̄ is not empty, a is the last fact in c̄. Recall that by (h2)
r′ |= q(ūc̄β̄); thus in this solution the atom A is matched by a. So we can apply Lemma 5 to
r′ and t with solutions (ūc̄β̄) and (γ̄aδ̄) respectively, and Γ-derivation σAB . The hypotheses
of Lemma 5 are satisfied since:

in both solutions A is matched by a;
by construction of B, for each atom D strictly preceding B in σAB, the fact matching
D in (ūc̄β̄) is either in c̄ or in r′

|i+1, both contained in t (in fact t ⊇ p̄′ ⊇ p̄ ⊇ c̄ and
t ⊇ s′

|i+1 ⊇ r′
|i+1).

We conclude, by Lemma 5, that the facts matching B in the two solutions are equivalent,
i.e., the fact matching B in (γ̄aδ̄) is equivalent to b (which is the fact matching B in ūc̄β̄).

In t the unique fact equivalent to b is b′ (since b′ ∈ p̄′ ⊆ t), thus the fact matching B in
(γ̄aδ̄) is b′. We have thus proved that any solution in t containing the last fact a of p also
contains b′.
(d) The following claim together with strong i-minimality of r′ and r′ |= q(ūbγ̄) for some γ̄,
shows that

(I) s′ is also strong i-minimal,
(II) s′ |= q≤i(ū), and

(III) s′ |= q(ūb′δ̄) for some δ̄.

▷ Claim 10. Assume PCondτ (i). Let s be a strong i-minimal repair such that s |= q(ᾱaβ̄)
where ᾱ matches S≤i and a is (i + 1)-compatible. Then for any a′ ∼ a we have that
s′ = s[a 7→ a′] is strong i-minimal and s′ |= q(ᾱa′δ̄) for some δ̄.

ICDT 2023

24:12 A Simple Algorithm for Consistent Query Answering Under Primary Keys

(e) Let ē be the maximal suffix of p̄′ such that, for a strong i-minimal repair t containing p̄′

and s′
|i+1 we have t |= q(ūēδ̄) for some δ̄. Since s′ |= q(ūb′δ̄′) for some δ̄′ by item (III) above,

ē cannot be empty. Then let ē = d̄b′, where d̄ is a suffix of p̄.
Since s′

|i+1 contains r|i+1 by (h5), in particular t is a strong i-minimal repair containing p̄

and r|i+1. Then, by maximality of c̄, d̄ must be a suffix of c̄, implying that ūd̄b′ is a subset of
ūc̄β̄′. Since by definition ūc̄β̄′ does not contain any k-set in ∆(q, D), we have ūd̄b′ ̸∈ ∆(q, D)
as needed.

This completes the proof of Lemma 8. ◀

▶ Remark 11. One can verify from the proof that if q |= PCondτ where in the sequence τ

each set Si contains exactly one atom of q, then the fixpoint computing Cert(q) is bounded,
i.e., Cert(q) can be expressed in FO.

It remains to show that when a self-join-free query q does not satisfy PCond, computing
certain(q) is coNP-hard. Towards this, we build on the dichotomy result of [8] based on
the notion of attack graph. First we recall this notion using our notation.

Let q be a query, let Γ be a set of primary key constraints. Given an atom A of q let

A+ = {B atom of q | there exist a Γ-derivation X B1 . . . Bn

where X = key(A), Bn = B, and for all i, Bi ̸= A}

Let vars(A+) =
⋃

B∈A+ vars(B). Given two atoms A and B of q we say that A attacks
B if there exists a sequence F0, F1, . . . , Fn of atoms of q and x1, x2, . . . , xn of variables not
in vars(A+) such that A = F0, B = Fn and for all i > 0, xi is a variable occurring both in
Fi−1 and Fi. The attack from A to B is said to be weak if B is Γ-determined by A. The
attack graph of q and Γ is the graph whose vertices are the atoms of q and whose edges are
the attacks. A cycle in this graph is weak if all the attacks involved are weak.

The dichotomy result of [8] can be stated as:

▶ Theorem 12 ([8], Theorem 3.2). Let q be a self-join-free query and Γ a set of primary key
constraints. If every cycle in the attack graph of q and Γ is weak, then certain(q) can be
computed in polynomial time; otherwise certain(q) is coNP-complete.

To show that our polynomial time algorithm covers all polynomial-time cases, we prove
that if the attack graph of q and Γ contains only weak cycles, then PCond holds.

▶ Theorem 13. Assume q is a self-join-free query and Γ a set of primary key constraints. If
the attack graph of q and Γ contains only weak cycles then q |= PCond.

5 Path queries

The dichotomy conjecture has also been shown to hold for path queries [7]. Recall that a path
query of length n is a Boolean conjunctive query with n + 1 distinct variables x0, x1, · · · , xn

and n atoms A1, · · · , An such that Ai = Ri(xi−1 xi) for some symbol Ri of σ. The query
may contain self-joins, i.e., there could be Ri = Rj for i ̸= j.

For this section, assume that the relational signature σ contains only symbols of arity
two and that the set Γ of constraints assigns to each symbol R of σ its first component
as a primary key. Note that a path query can be described by a word over σ (e.g., the
word describing q is R1 · · ·Rn ∈ σ∗). For simplicity, we will henceforth blur the distinction
between path queries and words over σ.

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:13

Following [7] we define the language L↬(q) as the regular language defined by the following
finite state automaton Aq with epsilon-transitions (we use s, t, . . . to denote words over σ).
The set of states of Aq is the set of all prefixes of q, including the empty prefix ε, which is
the initial state. There is only one accepting state, which is q. There is a transition reading
R from state s to the state sR. Moreover, there is an ε-transition in Aq from any state sR

to any state tR such that tR is a prefix of s.
The dichotomy result of [7] can be formulated as follows1:

▶ Theorem 14 ([7], Theorem 3.2). Let q be a path query. If q is a factor of all the words in
the language L↬(q), then certain(q) can be evaluated in PTime; otherwise, certain(q) is
coNP-complete.

We will show that, also in this case, Cert(q) captures certain(q) for all polynomial-time
path queries q (recall that Cert(q) denotes Certk(q) with k = |q|).

▶ Theorem 15. Let q be a path query of length n. If q is a factor of all the words in the
language L↬(q), then certain(q) = Cert(q).

The rest of this section is devoted to the proof of Theorem 15. We will make use of
the following fixpoint computation introduced by [7, Fig. 5]. For a fixed path query q and
database instance D, let N(q, D) be the set of pairs ⟨c, s⟩, where c ∈ adom(D) and s is a
prefix of q, computed via the following fixpoint algorithm.

Initialization Step: N(q, D)← {⟨c, q⟩ | c ∈ adom(D)}
Iterative Step: If s is a prefix of q, add ⟨c, s⟩ to N(q, D) if one of the following holds:

1. sR is a prefix of q and there is a fact R(c a) of D such that for every fact R(c b) of D

we have ⟨b, sR⟩ ∈ N(q, D);
2. There is an ε transition from s to t in Aq and there is a fact R(c a) of D such that for

every fact R(c b) of D we have ⟨b, tR⟩ ∈ N(q, D).

Let N(q) be the set of all databases D such that there exists c ∈ adom(D) with ⟨c, ε⟩ ∈
N(q, D).

▶ Lemma 16 ([7], (proof of) Lemma 6.4). For every path query q, if q is a factor of every
word in the language L↬(q), then certain(q) = N(q).

In view of Lemma 16, Theorem 15 is now a direct consequence of the following proposition.

▶ Proposition 17. For every path query q of length n, and assuming every word of L↬(q)
contains q as factor, we have N(q) = Cert(q).

Note that Cert(q) ⊆ N(q) follows from Cert(q) ⊆ certain(q) (Proposition 3) combined
with certain(q) = N(q) (Lemma 16). So we are left with proving N(q) ⊆ Cert(q). Let
D ∈ N(q). We will prove that D ∈ Cert(q).

For all l ≥ 0 let sl be the prefix of q of length l (i.e., s0 = ε and sn = q). For every
database D and fact u = R(a b) in D, let us define trace(u) = R, key(u) = a, and last(u) = b.
For a sequence of (possibly repeating) facts Π = u1, . . . , uk of a database D, we define
last(Π) = last(uk) and trace(Π) = trace(u1) · · · trace(uk) ∈ Σ∗

q . Also, let SΠ = {u1, . . . , uk}
be the set of facts in the sequence. Further, Π is called a valid path if (i) SΠ is a partial

1 Actually, [7] provides a much finer tetrachotomy between FO, NL-complete, PTime-complete and
coNP-complete. Here we restrict our attention to the dichotomy between PTime and coNP-complete.

ICDT 2023

24:14 A Simple Algorithm for Consistent Query Answering Under Primary Keys

repair of D, (ii) for all i < k we have last(ui) = key(ui+1), and (iii) trace(Π) is a prefix of
q. In particular, for any valid path Π of length k, we have trace(Π) = sk. Further, for any
prefix sl of q we write trace(Π) ∼ sl if there exists a run of the automaton Aq on trace(Π)
ending in state sl.

Let D ∈ N(q). Let N i(q, D) and ∆i(q, D) be the fix-point computations of N(q, D) and
∆(q, D) at their ith steps, respectively. To prove that D ∈ Cert(q), we will use the following
claim:

▷ Claim 18. For all i ≥ 0, For c ∈ adom(D) and for all prefix sl of q if ⟨c, sl⟩ ∈ N i(q, D)
then for all valid path Π where last(Π) = c and trace(Π) ∼ sl we have SΠ ∈ ∆i(q, D).

Let us show that the claim implies D ∈ Cert(q). As D ∈ N(q), there exists c ∈ adom(D)
such that ⟨c, ε⟩ ∈ Nm(q, D) for some step m. But note that ⟨c, ε⟩ ∈ Nm(q, D) can only
be produced by application of Rule 1 in the Iteration step (Rule 2 is not possible since ε

transitions do not start at the state ε). This implies that if R is the first relation occurring
in q then there exists a fact of the form R(c a) and for all facts of the form R(c b) in D

we have ⟨b, R⟩ ∈ Nm−1(q, D). For each such b we can apply the claim with the valid path
Π = R(c b), obtaining {R(c b)} ∈ ∆m−1(q, D) for every R(c b). Hence, ∅ ∈ ∆m(q, D) which
implies D ∈ Cert(q).

6 Certk does not capture all polynomial-time queries

We have shown that for all self-join free and path queries whose certainty is solvable in
polynomial time, the algorithm Certk computes certain(q) with k = |q|. A natural question
is whether this extends to all queries for which certainty is solvable in polynomial time. In
this section, we show that this is not the case. There exists query q whose certain answers
can be computed in polynomial time but the algorithm Certk(q) will always have a false
negative for any choice of k.

▶ Theorem 19. Let q4 be the query q4 = R(x yz) ∧ R(z xy). Then certain(q4) is in
polynomial time but cannot be computed by Certk(q4), for any choice of k.

Before proving the theorem we discuss some special properties of the query q4. Note that
q4 contains only two atoms but has self join. For any database D and facts a, b, c ∈ D, we
have that if D |= q4(ab) ∧ q4(ac) then b = c, and if D |= q4(ba) ∧ q4(ca) then b = c. Also, if
D |= q4(ab) ∧ q4(bc) then D |= q4(ca).

Since q4 contains only two atoms, for a database D, it is convenient to describe the set
of solutions to q4 as a graph. More precisely we say that the facts a, b ∈ D are q4-related
if D |= q4(ab) or D |= q4(ba). We define the solution graph of D, denoted by GD to be an
undirected graph whose vertices are the facts of D and pairs of q4-related facts form the
edges. From the properties of q4 it follows that every connected component in GD is always a
clique of size less than or equal to 3. If a clique has exactly three vertices we call it a triangle.

First we show that certain(q4) is in polynomial time by reducing it to bipartite matching.

▶ Lemma 20. certain(q4) is in PTime.

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:15

Proof. Fix an input database D. Without loss of generality, assume that there are no facts
a ∈ D such that D |= q4(aa)2. We reduce certain(q4, D) to a bipartite graph matching
problem. Consider the bipartite graph G = (V1 ∪ V2, E) where V1 is the set of all blocks and
V2 is the set of maximal cliques in GD. Let (v1, v2) ∈ E if the block v1 contains a fact which
is in the clique v2.

Suppose that there is a V1-saturating matching, that is, an injective function f : V1 → V2
such that (v1, f(v1)) ∈ E for every v1 ∈ V1. We construct a repair r where for every block B

of D, we pick the fact (or one of the facts, if there are more than one) which is in f(B). In
this way, no two chosen facts will be in the same clique, and also since there is no solution of
the form q4(aa) in D, no two chosen facts will form a solution to q4. Thus, r ̸|= q4.

Conversely, if q4 is not certain in D, let r be a repair such that r ̸|= q4. For each block
B of D let r(B) be the fact of B belonging to r. Note that, since V2 is a partition of D,
each r(B) belongs to a unique clique in V2. Define f : V1 → V2 such that each block B ∈ V1
is mapped to the clique in V2 where r(B) lies. To verify that f is a witness function of a
V1-saturating matching for G, note that for every B ∈ V1 we have (B, f(B)) ∈ E, as B and
f(B) both contain r(B). Moreover f is injective, otherwise if f maps two distinct blocks
to the same clique, this clique contains at least two elements of r; these two elements are
therefore q4-related, and thus r |= q4.

Thus, to check if D ∈ certain(q4), it is sufficient to check if there is a bipartite matching
of G that saturates V1. This is known to be in PTime [5]. ◀

We now prove that for all k, Certk(q4) does not compute certain(q4). To this end, for
every n ≥ 4 we exhibit a database Dn such that

Dn |= certain(q4) (Proposition 21);
Dn ̸|= Certn−2(q4) (Proposition 22).

Fix some n ≥ 4. The database Dn has n blocks of the form B1, · · · , Bn where each Bi

consists of n− 1 facts denoted b1
i , · · · , bn−1

i . Further, Dn also has (n− 1)(n− 3) blocks of
the form Ej

l for every 1 ≤ j ≤ n− 1 and 1 ≤ l ≤ n− 3, where each Ej
l has two facts denoted

by uj
l and vj

l . The solution graph of Dn is depicted in Figure 1.
Dn is defined in such a way that every fact of Dn is part of a “triangle”. More precisely,

we have the following triangles in the solution graph of Dn: For every 1 ≤ j ≤ n− 1, the
triples {bj

1, bj
2, uj

1} and {bj
n−1, bj

n, vj
n−3} form triangles and for every 1 ≤ l < n− 3 we have a

triangle {vj
l , uj

l+1, bj
l+2}.

▶ Proposition 21. For every n ≥ 2, Dn |= certain(q4).

To see this, note that there are n + (n− 1)(n− 3) blocks in Dn and there are (n− 1)(n− 2)
cliques (all triangles) in the solution graph of Dn. Thus, in the corresponding bipartite graph
(cf. Lemma 20) size of V1 is strictly smaller than the size of V2. Hence, there cannot be a
V1-saturating matching which implies Dn |= certain(q4).

▶ Proposition 22. Let k ≥ 2. Dk+2 ̸|= Certk(q4).

Proof sketch. To prove the proposition, for a set of blocks X = {X1, . . . Xk} of Dk+2, if
W = {a1, . . . ak} is a set of facts where each ai ∈ Xi, then we call W a partial repair of X.
Further, W is called an obstruction set of X if W satisfies some “desired properties”. In

2 If there is a fact a ∈ D such that D |= q(aa) then suppose the block containing a is a singleton set then
clearly D |= certain(q4). Otherwise, D |= certain(q4) iff D \ {a} |= certain(q4), so we can consider
the smaller database instance.

ICDT 2023

24:16 A Simple Algorithm for Consistent Query Answering Under Primary Keys

<latexit sha1_base64="Ock96GzSURcCYgs8rQItxz2kWME=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgFV2VGirqz6MZlRXuBdiiZNNOGZpIhyQhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBTZY3HqnSTIoHM4ypH+GeYCEj2Fjr/rrjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6sU4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflYuVY5gqB4dwBKfgwQVU4BaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4A1SCR5A==</latexit>

B1

<latexit sha1_base64="+qBImYMYvDDUjE3nL3KUf8gODQY=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8EquCpJKerOohuXFe0F2lAm00k7dDIJMxOhhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8CbLm49UKhaJBz2KqRfivmABI1gb6/66W+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjVODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUuasUqycwUx6O4BjOwIULqMIt1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ANakkeU=</latexit>

B2

<latexit sha1_base64="4VEGWlEG1X6TNTbIf1XozHVii64=">AAAB6nicbZC7TsMwFIZPyq2UW4CRxaIgMVUJVMBGBQtjEfQitVHluE5r1XEi20Gqoj4CCwOosPISvAYbb4PTdoCWX7L06f/Pkc85fsyZ0o7zbeWWlldW1/LrhY3Nre0de3evrqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJPljUcqFYvEgx7G1AtxT7CAEayNdX/dOevYRafkTIQWwZ1B8epznOmt2rG/2t2IJCEVmnCsVMt1Yu2lWGpGOB0V2omiMSYD3KMtgwKHVHnpZNQROjZOFwWRNE9oNHF/d6Q4VGoY+qYyxLqv5rPM/C9rJTq49FIm4kRTQaYfBQlHOkLZ3qjLJCWaDw1gIpmZFZE+lphoc52COYI7v/Ii1E9L7nmpfFcuVo5gqjwcwCGcgAsXUIFbqEINCPTgCV7g1eLWszW23qelOWvWsw9/ZH38ANgokeY=</latexit>

B3

<latexit sha1_base64="MwXhCYCUAJiswf/f8yTq5UyXjbE=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgFV2VGirqz6MZlRXuBdiiZNNOGJpkhyQhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XdZQoQmsk4pFqBlhTziStGWY4bcaKYhFw2ggGN1neeKRKs0g+mGFMfYF7koWMYGOt++tOuVMouiV3IrQI3gyKV5/jTG/VTuGr3Y1IIqg0hGOtW54bGz/FyjDC6SjfTjSNMRngHm1ZlFhQ7aeTUUfoxDpdFEbKPmnQxP3dkWKh9VAEtlJg09fzWWb+l7USE176KZNxYqgk04/ChCMToWxv1GWKEsOHFjBRzM6KSB8rTIy9Tt4ewZtfeRHqZyXvvFS+KxcrxzBVDg7hCE7BgwuowC1UoQYEevAEL/DqcOfZGTvv09IlZ9ZzAH/kfPwA2ayR5w==</latexit>

B4

<latexit sha1_base64="R8ROOUhtd992UZlSItIXHSkxxMM=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgFV2VGirqz6MZlRXuBdiiZNNOGZpIhyQhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBTZY3HqnSTIoHM4ypH+GeYCEj2Fjr/rojOoWiW3InQovgzaB49TnO9FbtFL7aXUmSiApDONa65bmx8VOsDCOcjvLtRNMYkwHu0ZZFgSOq/XQy6gidWKeLQqnsEwZN3N8dKY60HkaBrYyw6ev5LDP/y1qJCS/9lIk4MVSQ6UdhwpGRKNsbdZmixPChBUwUs7Mi0scKE2Ovk7dH8OZXXoT6Wck7L5XvysXKMUyVg0M4glPw4AIqcAtVqAGBHjzBC7w63Hl2xs77tHTJmfUcwB85Hz8xo5Ih</latexit>

Bn

<latexit sha1_base64="1Vf2BVSOKlOjqUme3uIBPy+VA84=">AAAB7nicbZDLSgMxFIbPeK31VnXpJlgFN5YZKerOohuXFewF2qFk0kwbmkmGJCOUoQ/hRrAibn0FX8Odb2Om7UJbfwh8/P855JwTxJxp47rfztLyyuraem4jv7m1vbNb2Nuva5koQmtEcqmaAdaUM0FrhhlOm7GiOAo4bQSD2yxvPFKlmRQPZhhTP8I9wUJGsLFW46aTijNv1CkU3ZI7EVoEbwbF68+XTONqp/DV7kqSRFQYwrHWLc+NjZ9iZRjhdJRvJ5rGmAxwj7YsChxR7aeTcUfoxDpdFEplnzBo4v7uSHGk9TAKbGWETV/PZ5n5X9ZKTHjlp0zEiaGCTD8KE46MRNnuqMsUJYYPLWCimJ0VkT5WmBh7obw9gje/8iLUz0veRal8Xy5WjmGqHBzCEZyCB5dQgTuoQg0IDOAJxvDqxM6z8+a8T0uXnFnPAfyR8/ED0gqTnw==</latexit>

Bn�1

<latexit sha1_base64="OTE4BzU97xIJvyBAHZ2qvtDrwXo=">AAAB7nicbZDLSsNAFIZP6q3WW9Slm8EquLEkpag7i25cVrAXaEOZTCft0MkkzEyEEvoQbgQr4tZX8DXc+TZO2i609YeBj/8/hznn+DFnSjvOt5VbWV1b38hvFra2d3b37P2DhooSSWidRDySLR8rypmgdc00p61YUhz6nDb94W2WNx+pVCwSD3oUUy/EfcECRrA2VvOmm4rz8rhrF52SMxVaBncOxevPl0yTWtf+6vQikoRUaMKxUm3XibWXYqkZ4XRc6CSKxpgMcZ+2DQocUuWl03HH6NQ4PRRE0jyh0dT93ZHiUKlR6JvKEOuBWswy87+snejgykuZiBNNBZl9FCQc6Qhlu6Mek5RoPjKAiWRmVkQGWGKizYUK5gju4srL0CiX3ItS5b5SrJ7ATHk4gmM4AxcuoQp3UIM6EBjCE0zg1YqtZ+vNep+V5qx5zyH8kfXxA9OPk6A=</latexit>

Bn�2

<latexit sha1_base64="QeRUV/9RunJIUioabpA+V6PAzv4=">AAAB7HicbZDNSsNAFIVv6l+tf1WXbgar4KokUqo7CyK4rGDaQhvLZDpph04mYWYilNBncOPCKm59B1/DnW/jpO1CWw8MfJxzL3Pv9WPOlLbtbyu3srq2vpHfLGxt7+zuFfcPGipKJKEuiXgkWz5WlDNBXc00p61YUhz6nDb94XWWNx+pVCwS93oUUy/EfcECRrA2lnvz4HSdbrFkl+2p0DI4cyhdfU4yvda7xa9OLyJJSIUmHCvVduxYeymWmhFOx4VOomiMyRD3adugwCFVXjoddoxOjdNDQSTNExpN3d8dKQ6VGoW+qQyxHqjFLDP/y9qJDi69lIk40VSQ2UdBwpGOULY56jFJieYjA5hIZmZFZIAlJtrcp2CO4CyuvAyN87JTLVfuKqXaCcyUhyM4hjNw4AJqcAt1cIEAgyd4gYklrGfrzXqfleasec8h/JH18QP+VZKK</latexit>

E1
1

<latexit sha1_base64="dw3JscUnyc5hE3ZZLcfCy2wqmUM=">AAAB7HicbZDNSsNAFIVv6l+tf1WXbgar4Kokpag7CyK4rGDaQhvLZDpph04mYWYilNBncOPCKm59B1/DnW/jpO1CWw8MfJxzL3Pv9WPOlLbtbyu3srq2vpHfLGxt7+zuFfcPGipKJKEuiXgkWz5WlDNBXc00p61YUhz6nDb94XWWNx+pVCwS93oUUy/EfcECRrA2lnvz4HQr3WLJLttToWVw5lC6+pxkeq13i1+dXkSSkApNOFaq7dix9lIsNSOcjgudRNEYkyHu07ZBgUOqvHQ67BidGqeHgkiaJzSaur87UhwqNQp9UxliPVCLWWb+l7UTHVx6KRNxoqkgs4+ChCMdoWxz1GOSEs1HBjCRzMyKyABLTLS5T8EcwVlceRkalbJzXq7eVUu1E5gpD0dwDGfgwAXU4Bbq4AIBBk/wAhNLWM/Wm/U+K81Z855D+CPr4wf/2ZKL</latexit>

E1
2

<latexit sha1_base64="zeP4JLyhmy+fp2t0zQeY7aycsuM=">AAAB7HicbZDNSsNAFIVv6l+tf1WXbgar4KokWtSdBRFcVjBtoY1lMp20QyeTMDMRSugzuHFhFbe+g6/hzrdx0nahrQcGPs65l7n3+jFnStv2t5VbWl5ZXcuvFzY2t7Z3irt7dRUlklCXRDySTR8rypmgrmaa02YsKQ59Thv+4DrLG49UKhaJez2MqRfinmABI1gby715cDpnnWLJLtsToUVwZlC6+hxneq11il/tbkSSkApNOFaq5dix9lIsNSOcjgrtRNEYkwHu0ZZBgUOqvHQy7AgdG6eLgkiaJzSauL87UhwqNQx9Uxli3VfzWWb+l7USHVx6KRNxoqkg04+ChCMdoWxz1GWSEs2HBjCRzMyKSB9LTLS5T8EcwZlfeRHqp2XnvFy5q5SqRzBVHg7gEE7AgQuowi3UwAUCDJ7gBcaWsJ6tN+t9WpqzZj378EfWxw8BbJKM</latexit>

E1
3

<latexit sha1_base64="L2W9kilW3t72TawkdJ75SfEQUD4=">AAAB8HicbZDLSgMxFIbPeK31VnXpJlgFN5YZKerOggguK9iLtGPJpGkbmmSGJCOUoU/hRkURt76Br+HOtzHTdqGtPwQ+/v8ccs4JIs60cd1vZ25+YXFpObOSXV1b39jMbW1XdRgrQisk5KGqB1hTziStGGY4rUeKYhFwWgv6F2leu6dKs1DemEFEfYG7knUYwcZat5d3XiuRR8VhK5d3C+5IaBa8CeTPP59SPZdbua9mOySxoNIQjrVueG5k/AQrwwinw2wz1jTCpI+7tGFRYkG1n4wGHqID67RRJ1T2SYNG7u+OBAutByKwlQKbnp7OUvO/rBGbzpmfMBnFhkoy/qgTc2RClG6P2kxRYvjAAiaK2VkR6WGFibE3ytojeNMrz0L1uOCdFIrXxXxpH8bKwC7swSF4cAoluIIyVICAgAd4gVdHOY/Om/M+Lp1zJj078EfOxw8CNZRI</latexit>

E1
n�4

<latexit sha1_base64="5NBS8tYMEmvHe9vebgzxiYr6hEM=">AAAB8HicbZDLSgMxFIbP1Futt6pLN4NVcGOZ0aLuLIjgsoK9SDuWTJppQ5PMkGSEMvQp3Kgo4tY38DXc+TZm2i609YfAx/+fQ845fsSo0o7zbWXm5hcWl7LLuZXVtfWN/OZWTYWxxKSKQxbKho8UYVSQqqaakUYkCeI+I3W/f5Hm9XsiFQ3FjR5ExOOoK2hAMdLGur28c9uJODwetvMFp+iMZM+CO4HC+edTqudKO//V6oQ45kRozJBSTdeJtJcgqSlmZJhrxYpECPdRlzQNCsSJ8pLRwEN73zgdOwileULbI/d3R4K4UgPum0qOdE9NZ6n5X9aMdXDmJVREsSYCjz8KYmbr0E63tztUEqzZwADCkppZbdxDEmFtbpQzR3CnV56F2lHRPSmWrkuF8h6MlYUd2IUDcOEUynAFFagCBg4P8AKvlrQerTfrfVyasSY92/BH1scPALCURw==</latexit>

E1
n�3

<latexit sha1_base64="hdxi86DRDul27CFlz37XRf/Gy4c=">AAAB8HicbZDLSgMxFIbP1Futt6pLN4NVcGOZqUXdWRDBZQV7kXYsmTTThiaZIckIZehTuFFRxK1v4Gu4823MtF1o9YfAx/+fQ845fsSo0o7zZWXm5hcWl7LLuZXVtfWN/OZWXYWxxKSGQxbKpo8UYVSQmqaakWYkCeI+Iw1/cJ7mjTsiFQ3FtR5GxOOoJ2hAMdLGurm4LXUScXg06uQLTtEZy/4L7hQKZx+PqZ6qnfxnuxvimBOhMUNKtVwn0l6CpKaYkVGuHSsSITxAPdIyKBAnykvGA4/sfeN07SCU5gltj92fHQniSg25byo50n01m6Xmf1kr1sGpl1ARxZoIPPkoiJmtQzvd3u5SSbBmQwMIS2pmtXEfSYS1uVHOHMGdXfkv1EtF97hYvioXKnswURZ2YBcOwIUTqMAlVKEGGDjcwzO8WNJ6sF6tt0lpxpr2bMMvWe/fAjqUSA==</latexit>

E2
n�3

<latexit sha1_base64="yK/2aJogzoONKg7whjmMOSSa4QE=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EquLHMlKLuLIjgsoK9SDuWTJppQzOZIckIZehTuFFRxK1v4Gu4823MtF1o6w+Bj/8/h5xzvIgzpW3728osLC4tr2RXc2vrG5tb+e2dugpjSWiNhDyUTQ8rypmgNc00p81IUhx4nDa8wUWaN+6pVCwUN3oYUTfAPcF8RrA21u3lXamTiOPyqJMv2EV7LDQPzhQK559PqZ6rnfxXuxuSOKBCE46Vajl2pN0ES80Ip6NcO1Y0wmSAe7RlUOCAKjcZDzxCh8bpIj+U5gmNxu7vjgQHSg0Dz1QGWPfVbJaa/2WtWPtnbsJEFGsqyOQjP+ZIhyjdHnWZpETzoQFMJDOzItLHEhNtbpQzR3BmV56HeqnonBTL1+VC5QAmysIe7MMROHAKFbiCKtSAQAAP8AKvlrQerTfrfVKasaY9u/BH1scPA7+USQ==</latexit>

E2
n�4

<latexit sha1_base64="lKX0WRj34Her5YN85iUjHXhpQ3Y=">AAAB7nicbZDLSgMxFIbP1Futt6pLN8EquCozbVF3FkRwWcFeoB1LJs20oZnMkGSEMvQh3AhWxK2v4Gu4823MtF1o6w+Bj/8/h5xzvIgzpW3728qsrK6tb2Q3c1vbO7t7+f2DhgpjSWidhDyULQ8rypmgdc00p61IUhx4nDa94XWaNx+pVCwU93oUUTfAfcF8RrA2VvPmodRNyuNuvmAX7anQMjhzKFx9vqSa1Lr5r04vJHFAhSYcK9V27Ei7CZaaEU7HuU6saITJEPdp26DAAVVuMh13jE6N00N+KM0TGk3d3x0JDpQaBZ6pDLAeqMUsNf/L2rH2L92EiSjWVJDZR37MkQ5RujvqMUmJ5iMDmEhmZkVkgCUm2lwoZ47gLK68DI1S0TkvVu4qheoJzJSFIziGM3DgAqpwCzWoA4EhPMEEXq3IerberPdZacaa9xzCH1kfP8hMk5k=</latexit>

E2
3

<latexit sha1_base64="YXxvrjfspMhUi/xFv1Z50buWfl8=">AAAB7nicbZDLSsNAFIZP6q3WW9Slm8EquCpJKerOggguK9gLtLFMppN26GQSZiZCCX0IN4IVcesr+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLm49UKhaJez2KqRfivmABI1gbq3nzUO6m5XHXLjolZyq0DO4cilefL5kmta791elFJAmp0IRjpdquE2svxVIzwum40EkUjTEZ4j5tGxQ4pMpLp+OO0alxeiiIpHlCo6n7uyPFoVKj0DeVIdYDtZhl5n9ZO9HBpZcyESeaCjL7KEg40hHKdkc9JinRfGQAE8nMrIgMsMREmwsVzBHcxZWXoVEuueelyl2lWD2BmfJwBMdwBi5cQBVuoQZ1IDCEJ5jAqxVbz9ab9T4rzVnznkP4I+vjB8bHk5g=</latexit>

E2
2

<latexit sha1_base64="AsM196nSB7dBteyA89ODlupKi7s=">AAAB7nicbZDLSsNAFIZP6q3WW9Slm8EquCpJKerOggguK9gLtLFMppN26GQSZiZCCX0IN4IVcesr+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLm49UKhaJez2KqRfivmABI1gbq3nzUO6m7rhrF52SMxVaBncOxavPl0yTWtf+6vQikoRUaMKxUm3XibWXYqkZ4XRc6CSKxpgMcZ+2DQocUuWl03HH6NQ4PRRE0jyh0dT93ZHiUKlR6JvKEOuBWswy87+snejg0kuZiBNNBZl9FCQc6Qhlu6Mek5RoPjKAiWRmVkQGWGKizYUK5gju4srL0CiX3PNS5a5SrJ7ATHk4gmM4AxcuoAq3UIM6EBjCE0zg1YqtZ+vNep+V5qx5zyH8kfXxA8VCk5c=</latexit>

E2
1

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>

...

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>. . .

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>. . .

<latexit sha1_base64="DrBigyEyJ5O5+eAoSwoyHbuAI6A=">AAAB7XicbZDLSgMxFIYz9VbrrerSTbAKrsqMFHVnwY3LCvYC7VAymUwbm0mG5IxQhr6DGxct4tZn8DXc+Taml4W2/hD4+P9zyDknSAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41jEo1ZXWqhNKtgBgmuGR14CBYK9GMxIFgzWBwN82bz0wbruQjDBPmx6QnecQpAWs1OiJUYLrFklt2Z8Kr4C2gdPs5nmpS6xa/OqGiacwkUEGMaXtuAn5GNHAq2KjQSQ1LCB2QHmtblCRmxs9m047wuXVCHCltnwQ8c393ZCQ2ZhgHtjIm0DfL2dT8L2unEN34GZdJCkzS+UdRKjAoPF0dh1wzCmJogVDN7ayY9okmFOyBCvYI3vLKq9C4LHtX5cpDpVQ9Q3Pl0Qk6RRfIQ9eoiu5RDdURRU/oBY3RxFHOq/PmvM9Lc86i5xj9kfPxA9fik7I=</latexit>. . .

<latexit sha1_base64="ylNqoy4oLBqGnSH9jy4/T4h5ccE=">AAAB7HicbZDNSsNAFIVv6l+tf1WXbgar4KokUqq4saALlxVMW2hDmUwn7dDJJMxMhBL6DG5cWMWt7+BruPNtnLRdaOuBgY9z7mXuvX7MmdK2/W3lVlbX1jfym4Wt7Z3dveL+QUNFiSTUJRGPZMvHinImqKuZ5rQVS4pDn9OmP7zJ8uYjlYpF4kGPYuqFuC9YwAjWxnJvuwJddYslu2xPhZbBmUPp+nOS6bXeLX51ehFJQio04ViptmPH2kux1IxwOi50EkVjTIa4T9sGBQ6p8tLpsGN0apweCiJpntBo6v7uSHGo1Cj0TWWI9UAtZpn5X9ZOdHDppUzEiaaCzD4KEo50hLLNUY9JSjQfGcBEMjMrIgMsMdHmPgVzBGdx5WVonJedarlyXynVTmCmPBzBMZyBAxdQgzuogwsEGDzBC0wsYT1bb9b7rDRnzXsO4Y+sjx8JOpKR</latexit>

Dn :

Figure 1 Solution graph for database Dn. Black dots denote facts, rectangles denote blocs, and
three-pointed edges denote “triangles” in the solution graph of Dn. There are n − 1 facts in each Bi

and two facts in every Ej
k.

particular we will show that if W is an obstruction set then W ̸|= q4. Next we will prove
that for any set of blocks X = {X1, . . . Xk} of Dk+2, we can always pick a partial repair W

of X such that W is an obstruction set.
Now suppose Dk+2 ∈ Certk(q4) then it follows that there has to exist at least one

obstruction set W ∈ ∆k(q4, Dk+2). We pick the minimum i such that there is some
obstruction set in ith step of ∆k(q4, Dk+2) computation. Note that i = 0 is not possible since
obstruction sets do not contain a solution to q4. Thus, to obtain a contradiction, we will
show that if there is an obstruction set in ∆k(q4, Dk+2) at ith step, then there has to exist
an obstruction set in ∆k(q4, Dk+2) in (i− 1)th step. ◀

▶ Theorem 23. Let q4 = R(x yz) ∧R(z xy). Then ¬certain(q4) is complete for bipartite
matching under LogSpace-reductions.

Proof. From the proof of Lemma 20 it follows that we can reduce ¬certain(q4) to bipartite
matching. The reader can verify that the reduction is in LogSpace. We now prove the
other direction.

Given a bipartite graph G = (V1 ∪ V2, E), let V1 = {s1, . . . sn} and V2 = {t1, . . . tm}.
Consider the problem of determining whether there exists a matching that saturates V1. We
will reduce this problem to ¬certain(q4).

For all sj ∈ V1 let N(sj) ⊆ V2 denote the neighbours of sj and similarly for all ti ∈ V2 let
N(ti) ⊆ V1 denote the neighbours of tj .

First note that if there is some sj ∈ V1 such that N(sj) = ∅, then clearly there cannot
be a matching that saturates V1. So assume that for every sj ∈ V1, N(sj) ̸= ∅. Similarly,
if there is some ti ∈ V2 such that N(ti) = ∅, then ti does not contribute to any matching
and hence can be removed from the input. So we can also assume that for every ti ∈ V2,
N(ti) ̸= ∅. Further, suppose there is some ti such that |N(ti)| = 1, let sj be the single
neighbour of ti. In this case, if there exists a matching that saturates V1 then there is a
matching that saturates V1 where sj is matched with ti. So we can remove the pair (sj , ti)
from the input. This means that we can assume that for every ti ∈ V2, |N(ti)| ≥ 2.

Altogether, we have |N(sj)| ≥ 1 for all sj ∈ V1 and |N(ti)| ≥ 2 for all ti ∈ V2. Note that
these properties can be checked in LogSpace.

Now we define the database DG. Note that this construction is very similar to the
construction of Dn that we used to prove Theorem 19.

For every vertex in sj ∈ V1 create a block Bj in DG.
For every sj ∈ V1 and ti ∈ V2, if ti ∈ N(sj) then there is a fact denoted by bi

j in the block
Bj . By assumption N(sj) ≥ 1 and hence every block Bj is non-empty.

D. Figueira, A. Padmanabha, L. Segoufin, and C. Sirangelo 24:17

For every ti ∈ V2 if |N(ti)| = l then let si1 , . . . sil
∈ V1 be the neighbours of t. By the

above construction, for every j ≤ l, there is a fact of the form bi
ij

in Bij
that corresponds

to the vertex ti.
Now if l = 2 then define bi

i1
and bi

i2
such that they form a solution to q4. Otherwise, if

l = 3 then define bi
i1

, bi
i2

and bi
i3

such that they pair-wise form a solution to q4 (the three
facts form a triangle).
If l ≥ 4 then create l − 3 new blocks denoted by Ei

1, . . . Ei
l−3 where each Ei

j contains
exactly two facts ui

j and vi
j . Moreover, in the same way as described in the definition

of Dn earlier, define the facts appropriately such that {bi
i1

, bi
i2

, ui
1} and {bi

il−1
, bi

il
, vi

l−3}
form triangles and for every 1 ≤ j < l − 3 we have a triangle {vi

j , ui
j+1, bi

j+2}.
The reader can verify that this is exactly the construction used to define Dn. Again, this
construction is in LogSpace. For each such j and l define U(i, l) = {ui

k | 1 ≤ k ≤ l− 2} and
V (i, l) = {vi

k | l − 1 ≤ k ≤ l − 3}.
Now suppose there is a matching that saturates V1 and let us show that the query is not

certain. Consider the repair r where for each block Bj we pick bi
j if sj is matched with ti.

Further, pick U(i, l) ∪ V (i, l) which gives a partial repair over Ei
1 . . . Ei

l .
If some ti ∈ V2 is not matched with any vertex in V1 then pick U(i, 1) ∪ V (i, 1) which

gives a partial repair over Ei
1 . . . Ei

l . It can be verified that the obtained repair does not
contain any solution.

Finally, suppose there is a repair over DG that falsifies the query then note that if bi
j is

picked in block Bj then for all other blocks Bj′ , the fact bi
j′ cannot be in the repair since

that will make the query true. Also bi
j ∈ Bj only if there is an edge between sj and ti. Hence

we can define the matching that maps every sj ∈ Vi to ti ∈ V2 where bi
j is the fact in the

falsifying repair from the block Bj . ◀

7 Conclusion

We have presented a simple polynomial time algorithm for certain query answering over
inconsistent databases under primary key constraints. The query is always certain when the
algorithm outputs “yes”, but it may produce false negative answers. We showed that for any
self-join-free or path query which is not coNP-hard, the algorithm correctly computes all
certain answers. A similar fixpoint algorithm can be obtained for other kinds of constraints.
It needs a few hypothesis such that being able to check in PTime whether a set of facts
belongs to a repair. However, the analysis of this algorithm under other kinds of constraints
is yet to be studied.

It is clear that when the fixpoint of the algorithm is bounded (i.e., it converges after a
number of steps which is independent of the input database) the certainty of the query can
be expressed in first-order logic, see Remark 11. It turns out that the converse is also true.
Using the characterizations of [8] for self-join-free queries and of [7] for path queries, we can
show that when the certainty can be expressed in first-order logic, then our algorithm is
bounded. This will appear in the journal version of this paper.

As we have shown, our algorithm does not solve all the known cases where certainty
can be solved in polynomial time. Hence, it would be interesting to have a (decidable)
characterization of the queries whose certainty can be solved using our algorithm; we leave
this for future work.

ICDT 2023

24:18 A Simple Algorithm for Consistent Query Answering Under Primary Keys

References
1 Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent databases: algorithms

and complexity. In Ronald Fagin, editor, Database Theory - ICDT 2009, 12th International
Conference, St. Petersburg, Russia, March 23-25, 2009, Proceedings, volume 361 of ACM
International Conference Proceeding Series, pages 31–41. ACM, 2009. doi:10.1145/1514894.
1514899.

2 Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query answers in
inconsistent databases. In Victor Vianu and Christos H. Papadimitriou, editors, Proceedings
of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, May 31 - June 2, 1999, Philadelphia, Pennsylvania, USA, pages 68–79. ACM Press,
1999. doi:10.1145/303976.303983.

3 Diego Figueira, Anantha Padmanabha, Luc Segoufin, and Cristina Sirangelo. A simple
algorithm for consistent query answering under primary keys. arXiv, 2023. arXiv:2301.08482.

4 Ariel Fuxman and Renée J. Miller. First-order query rewriting for inconsistent databases. J.
Comput. Syst. Sci., 73(4):610–635, 2007. doi:10.1016/j.jcss.2006.10.013.

5 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.

6 Phokion G. Kolaitis and Enela Pema. A dichotomy in the complexity of consistent query
answering for queries with two atoms. Inf. Process. Lett., 112(3):77–85, 2012. doi:10.1016/j.
ipl.2011.10.018.

7 Paraschos Koutris, Xiating Ouyang, and Jef Wijsen. Consistent query answering for primary
keys on path queries. In Leonid Libkin, Reinhard Pichler, and Paolo Guagliardo, editors,
PODS’21: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, Virtual Event, China, June 20-25, 2021, pages 215–232. ACM, 2021.
doi:10.1145/3452021.3458334.

8 Paraschos Koutris and Jef Wijsen. Consistent query answering for self-join-free conjunctive
queries under primary key constraints. ACM Trans. Database Syst., 42(2):9:1–9:45, 2017.
doi:10.1145/3068334.

9 Paraschos Koutris and Jef Wijsen. Consistent query answering for primary keys in datalog.
Theory Comput. Syst., 65(1):122–178, 2021. doi:10.1007/s00224-020-09985-6.

10 Jef Wijsen. A remark on the complexity of consistent conjunctive query answering under
primary key violations. Inf. Process. Lett., 110(21):950–955, 2010. doi:10.1016/j.ipl.2010.
07.021.

https://doi.org/10.1145/1514894.1514899
https://doi.org/10.1145/1514894.1514899
https://doi.org/10.1145/303976.303983
http://arxiv.org/abs/2301.08482
https://doi.org/10.1016/j.jcss.2006.10.013
https://doi.org/10.1137/0202019
https://doi.org/10.1016/j.ipl.2011.10.018
https://doi.org/10.1016/j.ipl.2011.10.018
https://doi.org/10.1145/3452021.3458334
https://doi.org/10.1145/3068334
https://doi.org/10.1007/s00224-020-09985-6
https://doi.org/10.1016/j.ipl.2010.07.021
https://doi.org/10.1016/j.ipl.2010.07.021

	1 Introduction
	2 Preliminaries
	3 Polynomial-time algorithm
	4 Self-join-free queries
	5 Path queries
	6 Cert_k does not capture all polynomial-time queries
	7 Conclusion

