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Abstract
Digital technologies amplify and change societal processes. So far, society and intellectuals have
painted two extremes of viewing the effects of the digital transformation on democratic life. While
the early 2000s to mid-2010s declared the “liberating” aspects of digital technology, the post-Brexit
events and the 2016 US elections have emphasized the “dark side” of the digital revolution. Now,
explicit effort is needed to go beyond tech saviorism or doom scenarios.

To this end, we organized the Dagstuhl Seminar 22361 “Challenges and Opportunities of
Democracy in the Digital Society” to discuss the future of digital democracy.

This report presents a summary of the seminar, which took place in Dagstuhl in September
2022. The seminar attracted scientific scholars from various disciplines, including political
science, computer science, jurisprudence, and communication science, as well as civic technology
practitioners.
Seminar September 4–9, 2022 – http://www.dagstuhl.de/22361
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formation systems; Applied computing → Law; Social and professional topics → Political
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1 Executive Summary

Abraham Bernstein (Unversity of Zurich, CH)
Anita Gohdes (Hertie School, DE)
Cristina Sarasua (Unversity of Zurich, CH)
Steffen Staab (University of Stuttgart, DE)
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In this Dagstuhl Seminar, we aimed to have interdisciplinary discussions on the challenges
and opportunities of online platforms, online participation, and online deliberation, including
experts in politics, law, technology, governance, and policy-making.

∗ Editor / Organizer
† Editorial Assistant / Collector
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In order to achieve a thorough integration of perspectives, we started the first day of
the seminar with several keynote talks by scholars from political science, computer science,
communication and law. The keynote speakers were Fabrizio Gilardi (Universität Zürich),
Anna de Liddo (Open University), Pablo Aragón (Wikimedia Foundation), Eleni Kyza
(Cyprus University of Technology), and Felix Uhlmann (Universität Zürich). After these
talks, the seminar organized a brainstorming session to identify key discussion topics related
to democracy in the digital society. Based on these discussion topics, the participants worked
on six breakout sessions: Goals, Actors, Narratives and Bias, Structure, Technology, and
Success Metrics. Additionally, throughout the seminar, Markus Brill (Technical University of
Berlin), Abraham Bernstein (Universität Zürich), Róbert Bjarnason (Citizens Foundation),
Gefion Thürmer (King’s College London), Gianluca Demartini (University of Queensland),
and Harith Alani (Open University) gave short presentations on various topics including
computational social choice, diversity in news recommender systems, citizen science, and
misinformation.

The remainder of this report provides the abstracts of the talks and the group discussions.
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3 Overview of Keynote Talks

3.1 Problem Definition in the Digital Democracy
Fabrizio Gilardi (Universität Zürich, CH)

License Creative Commons BY 4.0 International license
© Fabrizio Gilardi

Digital technology is widely perceived to cause important problems, such as fake news, hate
speech, and political polarization, which call for policy responses. However, there is no
consensus on the specific nature or intensity of those problems nor, therefore, what kinds
of actions would be appropriate. On the one hand, there is nothing special about this lack
of agreement. The contestation of the nature of problems and solutions is a key feature of
politics, in any area. On the other hand, the tension is particularly significant in the area of
digital technology: policy-makers often struggle to fully understand the issues, and problem
definition is subject to a high degree of political contestation enabled by digital technology
itself. The talk discussed these questions and illustrated them through three specific analyses:
(1) the emergence of content moderation as a political issue, (2) the effects of decentralised
social media on user sharing behavior, and (3) the role of media coverage for platform policy
change.

3.2 Harnessing the Power of Constructive Disagreement to Enable
Healthier Public Deliberation

Anna De Liddo (The Open University – Milton Keynes, GB)

License Creative Commons BY 4.0 International license
© Anna De Liddo

There are no simple solutions to complex societal challenges. Whether it is climate change
or dealing with the devastating impacts of the coronavirus pandemic, the questions these
problems pose to humanity have no single correct answer. Addressing them requires the
collaboration of governments, charities, businesses and individuals. However, at a time when
society seems to be dominated by dogma and discord, building consensus on what action
to take may seem like the biggest hurdle to overcome. We cannot overlook the role of the
Internet in fomenting divisions. Fake news and social media bubbles filter our reality and
have the power to entrench us on one side of the argument, preventing us from understanding
the views of others. However, research on Collective Intelligence also notes that technology
can be a powerful tool to help us find common ground, even in cases where it seems we could
not be further apart.

For more than a decade, I have argued for a new kind of collective intelligence, elsewhere
referred to as Contested Collective Intelligence (CCI), which is mediated by new technologies
for dialogue and argumentation and specifically aims to help people make sense of and co-
create innovative solutions to complicated challenges. The CCI tools that we have developed
harness the power of technology to enable people around the world to construct shared
understandings, even when, at first glance, they disagree. Combining advanced computational
methods, such as natural language processing and machine learning, with intuitive multimedia

22361
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interactions, these user-friendly tools harness and structure online conversations to identify
stated and unstated points of agreement within a discussion group and in this way help the
group better understand and address complex problems.

In this talk, I provided a brief overview of Contested Collective Intelligence research and
presented two of our CCI tools: bcause.app and democraticreflection.org.

3.3 Decidim: Technopolitical Networks for Participatory Democracy
Pablo Aragón (Wikimedia Foundation – Barcelona, ES)

License Creative Commons BY 4.0 International license
© Pablo Aragón

strategicDecidim (decidim.org) is a digital platform for participatory democracy, built
entirely and collaboratively as free open source software. More specifically, Decidim is
a web environment that allows anyone to create and configure a technopolitical network.
The platform can be deployed by any organization (local/regional/national governments,
universities, nonprofits) to host large-scale citizen participatory processes for strategic
planning, participatory budgeting, public consultations and collaborative policy-making. The
project was launched in 2017 in Barcelona and, 5 years later, there are hundreds of active
instances around the world. In this talk, key lessons from research and practice with Decidim
were shared, including the impact of its deliberative platform design and the technopolitical
principles that guide the participatory development of the project.

3.4 Challenges and Opportunities of E-democracy from the Perspective
of Communication Studies

Eleni Kyza (Cyprus University of Technology – Limassol, CY)

License Creative Commons BY 4.0 International license
© Eleni Kyza

This talk was organized in three parts. The first part revolved around communication studies
and the calls for a need to re-define core definitions and operationalizations of communication
studies, so that the pivotal role of AI technologies is acknowledged and examined. Towards
this end, there is increasing discussion about examining the agentic role of AI, in addition
to the traditional anthropocentric conceptualization of the study of communication. In
the second part of my talk, I presented some examples from a recently concluded work
from the Horizon 2020 project Co-Inform (Co-Creating Misinformation Resilient Societies,
proposal 770302). Our focus in this work was on investigating how a co-created browser
plugin influenced citizens’ perception of misinformation and their subsequent actions. As
part of this talk, I also briefly discussed the media and information literacy implications of
such work for learning, education, and the design of such interventions. I concluded the talk
with a summary of open areas of inquiry, informed by the Co-Inform work on how to combat
misinformation on social media.

https://creativecommons.org/licenses/by/4.0/
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decidim.org
https://creativecommons.org/licenses/by/4.0/
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3.5 What is Democracy from a Legal Perspective and What Can
Computers Do for It – Again, from a Legal Perspective?

Felix Uhlmann (Universität Zürich, CH)

License Creative Commons BY 4.0 International license
© Felix Uhlmann

Democracy is more than a decision by the majority. It is also the rule of law, encompassing
fundamental rights such as freedom of expression, property, access to courts etc. on the
individual level and institutions with defined competencies such as parliament, government
etc. on the institutional level. Democracy is also a process. The involvement of citizens in
the legislative process, the transparency of the debate as well as on financing are essential
for the functioning of a modern democracy. Switzerland has opted for quite a radical system
allowing popular initiatives to amend more or less any article of the Swiss constitution.

Access to large quantities of data, artificial intelligence or both elements combined may
fundamentally influence democracy. They may enhance the consultation process initiated
from the authorities as well as bring together like-minded people to draft and launch a
popular initiative. These possibilities are still unexplored both by private and state actors.

4 Overview of Short Talks

4.1 Computational Social Choice and Digital Democracy
Markus Brill (TU Berlin, DE)

License Creative Commons BY 4.0 International license
© Markus Brill

The successful design of digital democracy systems presents a multidisciplinary research
challenge. In this short presentation, I explained what computational social choice is and
I argued why tools and techniques from this field are relevant for the design of online
decision-making platforms and other digital democracy systems.

4.2 Escaping the Echo Chamber: The Quest for the Normative News
Recommender Systems

Abraham Bernstein (Universität Zürich, CH)

License Creative Commons BY 4.0 International license
© Abraham Bernstein

Recommender systems and social networks are often faulted to be the cause for creating
Echo Chambers – settings where people mostly encounter news that match their preferences
or those that are popular among similar users, resulting in their isolation inside familiar but
insulated information silos. Echo chambers, in turn, have been attributed to be one cause
for the polarization of society, which leads to the increased difficulty to promote tolerance,
build consensus, and forge compromises.

To escape these echo chambers, we propose to change the focus of recommender systems
from optimizing prediction accuracy only to considering measures for social cohesion. The
talk also succinctly presented some results from an empirical study investigating if such a
recommender system would actually have the desired results (see [1] for details).
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References
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4.3 Citizens Foundation. Connecting Governments & Citizens
Róbert Bjarnason (Citizens Foundation Iceland – Reykjavik, IS)

License Creative Commons BY 4.0 International license
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Many believe technology has undermined our faith in debate online; instead, our work shows
non-profit innovations in technology restoring trust in democratic deliberation and institutions.
Our partners, like Reykjavík city, the State of New Jersey, the Scottish Parliament, and
World Bank, have used our solutions, making better decisions in thousands of projects in
45 countries since 2008. Your Priorities offers open-source idea generation and deliberation.
Connecting governments and citizens by bringing people together to debate and prioritize
innovative ideas to improve their communities. The Better Reykjavik project was started in
2010 and has now become institutionalized in Reykjavik. It is an example of mass online
community participation with 70,000 citizens engaging out of a population of 120,000; over
40,000 registered users submitted 11,000 ideas and 25,000 debate points. Another example
is the Scottish Parliament using Your Priorities to engage with citizens in Scotland. The
challenge addressed is that the Scottish Parliament committees must better understand the
needs of Scottish citizens concerning various subjects.

4.4 Addressing Misinformation through Innovation, Arts, and Citizen
Science

Gefion Thürmer (King’s College London, GB)

License Creative Commons BY 4.0 International license
© Gefion Thürmer

Misinformation can be addressed in different ways. The MediaFutures project does so by
engaging with start-ups and artists (separately and together) who create products and
artworks that improve fact-checking, increase media literacy, or raise awareness in society.
The Action and Impetus projects support citizen science initiatives. They seek ways to
engage citizens in the entire scientific process, from asking questions through collecting data
to confronting policy makers with their results – which in turn raises scientific literacy and
awareness.

https://creativecommons.org/licenses/by/4.0/
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4.5 The Anatomy of an AI System for Misinformation Detection, and
Where Humans Fit in It

Gianluca Demartini (The University of Queensland, AU)

License Creative Commons BY 4.0 International license
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Information warfare instruments have recently been used to weaponize misinformation to
foster propaganda and to reach political goals by influencing populations at scale. In this
talk, we discussed how human-in-the-loop AI technology can support expert fact-checking
efforts that have been increasing substantially due to the rise in the spread of misinformation.
We first described the general fact-checking process and then discuss at which steps AI and
humans can help. We looked at how Twitter has been crowdsourcing fact-checking, as an
example of fact-checking on social media. Finally, we reflected on the human bias dimension
in fact-checking, and at how the concept of truth may change over time and over different
definitions of truthfulness.

4.6 Have You Been Misinformed?
Harith Alani (The Open University – Milton Keynes, GB)

License Creative Commons BY 4.0 International license
© Harith Alani

As long as there has been information, there has been misinformation. During the last few
years, a lot of attention has been paid to developing tools that can detect which information
is reliable and which is likely to be fake or misinforming. However, we are still learning how,
when, and where such advanced technologies or the work of fact-checkers around the world
can help in stopping misinformation from spreading. My goal in this talk was to demonstrate
that we also hold false or unreliable beliefs and argue that we need technologies that can
assess the information we and others share over time. Additionally, I discussed the benefits,
challenges, and risks of using automated methods for correcting people when they share
misinformation.

5 Working Groups

5.1 Goals
Lynda Hardman (CWI – Amsterdam, NL & Utrecht University, NL) and Abraham Bernstein
(Universität Zürich, CH)

License Creative Commons BY 4.0 International license
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We discussed possible audiences for publications inspired by the seminar. These include
policymakers, funding agencies, research evaluators, academics, citizens (in general) and
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activists.1 We recommended that addressing policymakers and academics would have the
higher priority.

The goals we discussed were aimed at the stages of the democratic process for which
(computational) support could be provided. At a high level, the goals we identified were:
1. Citizens

Inform, as a basis for forming an opinion
Ensure that citizens (and other actors) have appropriate and verifiable information for
their decision making
Deliberate, as a basis for forming an opinion
Ensure that citizens have sufficient opportunities to expose themselves to different
opinions and deliberations (incentives for) engagement (with both politicians and
administrations/civil servants)

2. Procedural/Institutional
Improve the democratic processes through appropriate technology
Protect individuals from repercussions due to their political activity

In addition to developing the goals of technological support for democratic processes,
we identified the common goals with a complementary initiative: the “Vienna Manifesto on
Digital Humanism”.2

5.2 Actors
Marco Steenbergen (Universität Zürich, CH), Fynn Bachmann (Universität Zürich, CH), El-
eni Kyza (Cyprus University of Technology – Limassol, CY) and Cristina Sarasua (Universität
Zürich, CH)

License Creative Commons BY 4.0 International license
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With floundering trust in politics and declining electoral participation rates in many of the
world’s democracies, the call for efforts to re-engage citizens grows ever louder. Over the past
two decades, this has resulted in a large number of different participatory formats, including
participatory budgeting, citizen juries, and minipublics. In nearly all cases, the number
of participants in those formats has been limited. Digitalization offers new opportunities
to create large-scale deliberations and co-creation projects for citizens. Scale is important
because public acceptance of new participatory forms is enhanced when large segments of
the public are represented. There have already been excellent experiments with large-scale
technnology-aided deliberation (see the keynote by Pablo Aragón).

Just because one builds platforms, however, does not mean that all problems of particip-
ation are resolved. It is very clear that unequal participation from different groups in society
remains an urgent problem. These problems start with recruitment but do not end there.
Citizens may not be active participants, they may not be heard because they are less well
equipped expressing their views, and they may ultimately drop out, perhaps more frustrated
than they started. A major challenge in the digital age is to engage citizens, to retain them,
and to ensure that they find an effective voice in deliberative and co-creative platforms. We

1 Representatives of organisations active in promoting higher citizen involvement in democratic decision-
making had been invited to the seminar but were unfortunately unable to join.

2 Vienna Manifesto on Digital Humanism https://dighum.ec.tuwien.ac.at/dighum-manifesto/

https://creativecommons.org/licenses/by/4.0/
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think here of automatic moderation, which detects when certain individuals have fallen silent
or have made inputs that have gone unanswered. We can also think of assistive technologies
that help citizens sort and formulate their ideas and arguments in order to enhance their
impact.

While citizens are key actors in democratic society, we cannot lose sight of other actors,
including political parties, representatives, and bureaucrats. We still find that parties and
representatives have a tenuous grip of digital technology. Opportunities are missed and risks
under-estimated. Enhancing digital skills within the representative and executive institutions
is essential if democracy is to flourish in the digital age. Here, the principles laid out in the
goals should be a guiding light.

5.3 Narratives and Bias
Fabrizio Gilardi (Universität Zürich, CH), Anita Gohdes (Hertie School of Governance –
Berlin, DE), Farane Jalali (Max Planck Institute for Informatics (MPI), DE), Jörn Lamla
(University of Kassel, DE), Catarina Pereira (Universität Zürich, CH) and Miklovana Tuci
(Universität Zürich, CH)

License Creative Commons BY 4.0 International license
© Fabrizio Gilardi, Anita Gohdes, Farane Jalali, Jörn Lamla, Catarina Pereira, and Miklovana Tuci

The group discussed the relevance of narratives about digital technology and democracy,
and how they are lined to perceived dangers such as misinformation, echo chambers, and
the reproduction of bias through algorithmic decision-making. Importantly, there may be a
significant mismatch between the discourse around those dangers (e.g. in the media) and
their actual importance. An example is “fake news,” which were widely discussed as a main
driver of political events such as Brexit and the election of Donald Trump. Verification of
those claims by independent researchers was initially very difficult due to problems of access
to social media data, which platforms (in particular Facebook) obstructed with arguments
linked to privacy and data protection. When reliable research findings became available, they
tended to disconfirm many of the ideas around fake news. For example, several independent
studies, using different data and methods, concluded that the consumption and sharing
of fake news is – on average – very low. Instead, they are concentrated among a specific
subgroup of people who tend to be older and very conservative. While these findings do not
imply that fake news are not a problem, they point to different policy responses than the
initial narrative did.

Against this background, the group discussed specific issues driving the power of narratives
about digital technology and democracy and inhibiting research that could challenge them,
namely, the ground truth problem. The ground truth problem means that agreeing on
categories (e.g., what is “fake news”?) is inherently contested, which makes it very difficult
to monitor them. Moreover, there is often a denominator problem, that is, the lack of a
benchmark to assess the prevalence of behaviors. By contrast, the media have no trouble
finding examples: there is a lot of everything on the internet. Furthermore, both ground
truth and denominators are moving targets, because of potentially rapid change in underlying
problems (e.g., COVID and the Ukraine war) as well as the relevance and user base of
different platforms (e.g., the rise of TikTok).

The group discussion concluded with a brainstorming session regarding possible solutions
as broader recommendations.
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5.4 Structures in Digital Democracy
Steffen Staab (University of Stuttgart, DE), Markus Brill (TU Berlin, DE), Martin Emmer
(FU Berlin, DE), Jörn Lamla (University of Kassel, DE), Libor Pavlícek (Charles University
– Prague, CZ), and Gefion Thürmer (King’s College London, GB)
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A common way to break down the policy life cycle results in the following five stages:
1. Agenda setting
2. Policy formulation
3. Decision making
4. Policy implementation
5. Policy evaluation

Usually, this process is a loop, as after policy evaluation the policy may be terminated
and a new agenda might be set or discussion about the existing policy may continue. The
reader may note that the process does not need to be strictly sequential and stages may be
skipped or repeated.

The working group discussed whether and how the digitalization of democracy means
changing these existing stages by rethinking and restructuring process steps, or whether the
overall process is stable and the speed and the agility of the process change. We addressed
this question by discussing the past, the present and the desired future execution of policy
life cycle stages as follows:

Considering stage 1, digitalization has profoundly changed the means for agenda setting.
In the past, media gatekeepers have hugely influenced agenda setting and were not easily
swayed by activists. Nowadays, traditional media still play a major role, but social media
enlarge the set of voices that are heard, which may help minorities, but which increasingly
often leads to information overload of the public. As a consequence, few topics are high on
the agenda and many lower ranked topics tend to be forgotten. Specific tools like Decidim
may help to spread the valuation of importance more evenly among a broader range of topics
and, hence, their regular use should help in the future. A core objective for the future would
be to “make uncertainty productive”. Current discussions often lead to overly simplistic
solutions, where only few aspects are considered because of information overload. If future
tools and processes could help to manage a multiplicity of uncertain dimensions, agenda
items could be managed in ways that would improve the joint satisfaction of multiple goals.

Considering stage 2, in the past policy formulation could be characterized by tight control
by executive and legislative powers who oversaw control of relevant knowledge. Political
parties and lobby groups were highly active and only in a minority of cases activism and
street protests would contribute. Today, there is a tendency towards increased transparency.
Social media-supported activism has led to new kinds of protests that increased the number of
actors, while political parties exhibit declining numbers of members. Because of digitalization,
knowledge can and is more broadly shared allowing the broad public to know about details
of formulated policies.

With regard to the future, we argue in favor of increased transparency about lobbyism and
specifically transparency of the policy formulation process. Because of increased complexity
of regulations, it is not only important what is written, but who wrote it. Overseeing
implications of policies seems only possible by stronger collaborations between politicians
and professionals in order to achieve evidence-based policy formulation. Many questions

https://creativecommons.org/licenses/by/4.0/
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remain open about such co-design of policies: who has access? Who has the right to be
heard by their representative? How is consultation fed back to the public commenters?

Considering stage 3, decision-making may change more slowly than other aspects of the
policy life cycle. Thereby, the success of novel means of e-voting or liquid democracy does
not only depend on the process, but on the assumptions underlying this process. When
voting is strictly confidential (as it is in Germany), there does not seem to exist a technology
that makes e-voting as sound proof as traditional voting with paper ballots. This is different,
if votes can be made public, because then it becomes easy to monitor the soundness of an
electronic voting process.

Considering stage 4, in the past policy implementation focused on guiding people by
giving or taking money and imposing court orders. Today, we observe a digital turn in
connection with a behavioral turn trying to nudge people using behavioral politics and
behavioral economics or appealing to citizens as an alternative or complementary means to
imposing laws.

For the future, we would wish for governmental processes to be streamlined by digitaliza-
tion for efficiency and effectiveness as well as an administration that seamlessly serves the
citizens rather than imposing heavy administrative burdens on citizens and organizations. A
key ingredient to such support may be the real-time observation of individuals and organiza-
tions, which, however, bears the dangers of ubiquitous surveillance and manipulation, as they
have become obvious in experiments with social credit systems. It remains an open question
how to take advantage of benefits while avoiding these heavy drawbacks – and whether this
is possible at all.

Little progress has been seen regarding stage 5, policy evaluation. In the future, we
might perhaps see more comprehensive consultation and feedback by the public. It would be
desirable to formulate key performance indicators that can be reported automatically already
during policy formulation. Also, open data might help to judge appropriateness of policies.

Finally, these structures need to be understood and elaborated in terms of overarching
or meta perspectives of these process stages. As illustrated by the overarching objective of
(non-)anonymity of voting, these meta perspectives may deeply affect the working of the
digitalization-enhanced policy life cycle.

5.5 Technology: Challenges and Opportunities of Technology for
Democracy

Anna De Liddo (The Open University – Milton Keynes, GB), Harith Alani (The Open
University – Milton Keynes, GB) and Pablo Aragón (Wikimedia Foundation – Barcelona,
ES)
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Within the technology group, we first examined what technology can do for democracy. We
tried to ask ourselves which democratic challenges we think are particularly well suited to be
addressed by a technology-mediated approach, and we asked what are the main challenges
and opportunities we see emerging in the near future in the field of technology research for
democracy. These challenges and opportunities are summarised below. We propose them as
key points of focus for the fields of computer, social and political sciences interested in the
study, design and application of technology for democracy.
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5.5.1 Challenges

1. Fair and inclusive technology design. How can we make fairness and inclusion the
key values not only behind technology design but also behind tech governance, regulation
and applications?

2. Testing, experimentation and evaluation at scale and in the wild. Advancing
scientific knowledge on technology for democracy requires solid testing in, often, controlled
environments. But democracy experiments are often very costly or impossible to carry
out in the wild. How can we enable testing, experimentation and evaluation at different
(smaller) scales that leads to solid scientific insights?

3. Online social dynamics and influence of existing digital practices. In a blended
socio-technical system as our society is nowadays, digital practice have proved to radically
influence real world practice, organisations and even power. On that account, it is a
fundamental question to ask: How can we study the influence of the digital world on the
analog world and vice versa? How do we account for, monitor, and counteract negative
influences, while leveraging the positive ones?

4. New economic models for neutral/open sustainability. Digitally mediated demo-
cratic research, technologies and experiments need political endorsement and financial
support to become self sustainable and survive the research project lifespan. But such
support and endorsement can hardly come from economic systems of models which brake
fundamental values such as equity, inclusion, fairness and democracy. Hence a key chal-
lenge for this research to thrive is: what Economic models, based on democratic values,
can be designed and devised to support, enable research in technology for democracy?

5.5.2 Opportunities

5. Re-engage people in public and civic life. Citizen disengagement from politics and
public life is one of the fundamental reasons for the systemic failure of our democracy
(see, for example, the result of the last Italian general elections, which saw only slightly
more than 50 percent of Italians go to the polls). The public has difficulty relating to
politics and often believes that it is only a context of victories and defeats that cannot
be influenced by individual action (much less individual voting). New technologies can
be used to make politics more interesting, fairer, more engaging, and even more fun.
Improving participation can be the first step and the way to solve the dangerous problem
of political disempowerment.

6. Improve minority representation in public choices. New technologies to improve
representation in decision-making contexts can be key to enabling minority voices to be
represented in democratic realities.

7. Improve trust in politics by enhancing fairness, transparency and account-
ability. Citizens are increasingly concerned about transparency and accountability in
the functioning of any democratic institution, but at the same time they have become
increasingly aware of the issue of data privacy. New decentralized technologies and
distributed ledger systems can provide transparency without endangering individual
privacy.

8. Improve sharing of resources and expertise across geographical barriers. The
Open Science, Open Data, and Open Education movements have demonstrated that
technology can improve access to science, information, and education for communities
around the world that lack the infrastructure, money, or human resources to obtain
them. These technologies are inherently suited to democratize access to knowledge across
geographic, economic, and social barriers.
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9. Informing new democratic models, social justice and redistribution of power.
Successful examples of digital democracy projects have shown that technology can be used
to disrupt power, protest and mobilize the masses. These examples show the opportunities
that technology can offer to bring democracy to places where it is not taken for granted.

10. Increasing the reach of participation. Social media have shown that ICT tools can
radically broaden participation in many social processes such as commerce, education,
work and socialization. Building on this potential, we ask: What does new technology
need to grow democracy?

5.5.3 Definition of Technologies in/for Democracy? (Technology as a Medium
and Actor)

What are democratic technologies? We have been reflecting on the difference between
“Technologies in Democracy”, that is, technologies used to promote, mediate, or particip-
ate in democratic processes in general, and “Technologies for Democracy”, that is, tools
designed, repurposed, or adapted specifically to improve democratic processes. “Techno-
logies for democracy” are intended to influence and change the way democratic processes
take place. This distinction is useful for classifying different types of technologies and
studying the contexts in which they are applied. We examined the current classification
of democratic technologies in the HCI and CSCW fields and found the focus on civic
technologies as tools for enhancing democratic participation particularly inspiring. Civic
technology has been defined by Saldivar et al. “as technology (primarily information
technology) that facilitates democratic governance among citizens.” [1] Government- and
citizen-centered definitions of civic technology for democratic participation are useful in
focusing attention on the role of governments in democratic technology research.
A government-centered view of civic technologies, for example, would include all ICT
tools used “by cities for service delivery, civic engagement, and data analysis to inform
decision-making (Living Cities 2012)” (Saldivar et al. 2019). These could be ordinary
social media or data collection and integration services. While a citizen-centric definition
of civic tech presents it as “platforms and applications that enable citizens to connect
and collaborate with each other and with government [2]” [1].
Both definitions mention government involvement, but the second only tangentially. This
means that democratic technology research also takes place outside existing government
structures and institutions. A citizen-centered view of democratic participation tools looks
at democratic governance rather than formal democratic institutions, and thus includes a
variety of democratic practices that emerge and flourish outside formal institutions.
However, an important question to ask is: To what extent should civic technologies aim
to influence and change the way governance processes take place in order to be classified
as democratic technologies (or technologies for democracy)?
The need for future research to clarify existing definitions and classifications of democratic
technologies is identified.

5.5.4 Stories of Success, Failure and Disruption

Reflecting on the most recent stories of success, failure and disruption of technology
applications in real-world democratic contexts, we have come to two main reflections,
which we offer for further discussion and insight.

We cannot solve technology when the problem stems from the economic
model
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A famous case in which technology was used to undermine (rather than improve)
democracy was Cambridge Analytica’s use of Facebook data to influence the 2016 U.S.
election. Every effort on the part of the company (Facebook) to “fix” the problem seems
to have gone in vain, as the use of social media data and the spread of disinformation
is now an unstoppable social phenomenon that has become “a problem” in its own
right and, most importantly, as the economic model behind the technology remains
profit.3 We ask ourselves: Do democratic technologies have a “hidden” requirement, a
design value of any democratic tool, namely the need for such tools to be based on
economic models that are democratic in themselves and do not pursue the profit of
the few?
Digital democracy seems to work when technology is used to distribute
power.
Successful digital democracy projects with democratic technology at their core seem
to emerge in power structures that are open and, in some ways, conducive to changing
existing democratic structures and practices. This cultural and political engagement,
together with concrete public and financial support from official local institutions,
seems to have been a key success factor for digital democracy projects such as “Better
Reykjavik”, “e-Democracia”, and Decidim.Barcelona.4 These projects have grown
and sustained due to the strong support of local councils and official government
institutions. These institutions have provided approval, continued funding, and a
platform to proactively change democratic practices at the local level. We ask: to what
extent can democratic technologies and digital democracy projects succeed without
such a framework and institutional support?

5.5.5 Fields of Interest

Finally, we have attempted to list a number of issues and research questions that require
urgent attention from the interdisciplinary research community on democratic technologies
or technologies in/for democracy, as we conceptualized them above. The list is by no
means conclusive and is intended as a source of inspiration for future research.

Explainability/Intervention
Explainability: Identifying why a claim or argument that is misleading or incorrect
is key to changing perception and opinion. It remains unclear how to do this
effectively.
Measuring success/impact of intervention should not be limited to changing the
opinion of the target individual. Audience matters, too.

Collective Intelligence
Computational social choice can provide mechanisms for the aggregation of individual
preferences.
In the field of deliberation, it is not clear what the best way to aggregate/summarize
discussions is.
Visual analytics to support deliberation processes
Can AI improve CI and vice versa?
∗ Machine-in-the-loop vs. human-in-the-loop

3 https://www.technologyreview.com/2021/03/11/1020600
/facebook-responsible-ai-misinformation

4 https://www.theguardian.com/public-leaders-network/2017/feb/23/
democracy-digital-lessons-brazil-iceland-spain
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Misinformation
Multilinguality
Multimedia: current tech is very text focused.
Bias: most models are trained on misinformation in particular topics / platforms.
Long-term impact: tools/methods to capture and process the long term impact of
collective misinformation are needed (e.g., tracking misinformation towards the EU
over many years).
Accountability: holding politicians/influencers accountable
Economic disincentivization of disinformation
Changing policy, business model, and practice towards promoting “good” information
and behavior.

Polarization
Tech to (a) measure polarization on given topics, and (b) identify the main sources
that are feeling this polarization (e.g., newsmedia, politicians, groups, bots?)
Capturing cross-polar argumentation
Detecting ideas/arguments bridging polarized scenarios
To what extent diversity and disagreement can help reduce polarization and build
common ground?

Sensemaking and critical thinking
Technology for slowing down
Slow tech for a better digital democracy 5

Technology for sensemaking
Technology for stability vs agility

Experimentation
Resource inequality (big tech vs civic tech)
Experimentation design challenges (costs, large-scale, in the wild)
Who is responsible for designing experiments?
Inclusiveness of experimentation and testing of relevant tech

References
1 Jorge Saldivar, Cristhian Parra, Marcelo Alcaraz, Rebeca Arteta, and Luca Cernuzzi. Civic

technology for social innovation. Comput. Support. Cooperative Work., 28(1-2):169–207,
2019.

2 Manik Suri. From crowd-sourcing potholes to community policing: Applying interoperability
theory to analyze the expansion of ’open311’. Berkman Center Research Publication, (2013-
18), 2013.

5.6 Success Metrics
Marco Steenbergen (Universität Zürich, CH), Harith Alani (The Open University – Milton
Keynes, GB), Abraham Bernstein (Universität Zürich, CH), Cristina Sarasua (Universität
Zürich, CH) and Gefion Thürmer (King’s College London, GB)

License Creative Commons BY 4.0 International license
© Marco Steenbergen, Harith Alani, Abraham Bernstein, Cristina Sarasua, and Gefion Thürmer

Democracy serves many purposes. It lends legitimacy to authority and decisions, it solves
problems, and it engages citizens, to name a few. These purposes should be reflected in
our metrics. Depending on the function, however, not all metrics are equally relevant. For

5 https://medium.com/qleek/the-slow-tech-manifesto-1b39fbcd1c48
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instance, creating respectful discourse of all claims, no matter how outlandish, is important
when the goal is engagement. On the other hand, it likely introduces many inefficiencies
when the goal is to solve an urgent problem. All functions should find a place somewhere in
democracy, but they do not necessarily have to be satisfied all at once.

When building technologies that assist democratic processes, it is important to keep an
eye on function: what specific goal should this solution cater to. The measure of success is
then defined in terms of that goal. This functionalist logic is increasingly found in normative
theories of (deliberative) democracy.

That said, we can specify a series of general metrics, a subset of which may be crucial for
a specific purpose. We list them here in several rubrics.
1. Representation: Is a technology capable of bringing in all of the stakeholders in a

topic? Metrics include a comparison of those formally partaking to the public. Beyond
this, one can also look at active participation and reciprocation (are all the arguments of
all stakeholders heard?).

2. Respect: Does a technology enhance respectful interaction among citizens? In an age of
affective polarization across political parties and groups, respectful discourse often seems
in short supply. A minimum standard for technology is that it cools down discourse to
the point that hate speech is eliminated. Higher bars can be set, however, such as the
degree of perspective-taking: even if person A continues to disagree with B, can they at
least understand and respect where B is coming from?

3. Output: Does a co-creation or deliberative process yield an output that is helpful, for
instance, to policy-makers? Here, one can think of the legal quality of a proposed law or
the factual accuracy of an epistemic discussion. Digital technologies should help citizens
and policy-makers to reach high-quality outcomes, as judged by experts.

4. Legitimacy: Are the outcomes of human-in-the-loop or computer-in-the-loop deliberative
and co-creative processes acceptable to those who did not participate? Metrics here
include survey-based measures of acceptance.
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1 Summary
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Digital twins are an emerging concept with the potential for revolutionising the way we
interact with the physical world. Early versions of digital twins have already been applied
successfully in almost all known areas, including engineering and development areas, but
also scientific domains and cultural, social, and economic domains.

Digital twins are leveraging the digitalization of increasingly more application domains
and are intensively using various models of different types in a descriptive, predictive,
and prescriptive way. Furthermore, the the ever-increasing availability of data, the last
improvements of sensor technologies, and the reliable connnectivity enable direct inspection
and manipulation of real-world systems, both for physical systems and objects as well as
social systems and organisations respectively their processes.

The concept has seen strong interest in industry, where there is a desire to control
increasingly complex systems of systems, ensuring they behave as expected and to control their
adaptation to the environment or any deviations with the initial plan. Digital twins can be
used for improved analysis and understanding of complex systems (in silico experimentation)
as well as for control and transformation of these systems. Digital twins are themselves
complex software systems, posing novel software-engineering challenges, which have so far
not been sufficiently addressed by the software-engineering research community.

There is a need for solid foundations to ensure the development of tools and methods
according to well-established principles. We believe that Model-Driven Engineering (MDE),
will be a key technology for the successful systematic engineering of Digital Twins. In this
Dagstuhl Seminar, the goal was to bring together both practitioners and researchers to

(i) reflect on the concept of Digital Twins and the software-engineering challenges posed,
(ii) identify relevant existing MDE approaches and technologies that can help tackle the
challenge of systematically engineering digital twins, and
(iii) define an academia–industry research roadmap for systematic engineering of digital
twins based on MDE.

As the intended primary goal of the seminar is to create a community and establish a
research roadmap, we have been discussing the following topics:

Challenges faced in real-world development of Digital Twins.
Opportunities offered by MDE.
Active exploration of collaboration opportunities.

The following paper reflects the discussions and some of the outcomes, however, we also
identified that the overall topic is not only relevant, but also highly innovative, which is
why this paper does only reflect an intermediate status of discussions and results, but the
community will vividly go on to solve the challenges identified and addressed in the rest of
this paper.
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One key outcome of the seminar and its continuing community activities will be to
contribute to a solid research roadmap for the new Software Engineering sub-discipline of
Model-Based Development of Digital Twins.

Definitions to set the stage
There are two core terms that need appropriate definitions, namely model driven engineering
(MDE) and digital twin. While MDE (and with it the terms model and modeling language)
are relatively straightforward, there are different variants of definitions for digital twins that
served as a starting base.

▶ Definition 1 (Model Driven Engineering (MDE)). Model Driven Engineering is a state-of-art
software engineering approach for supporting the increasingly complex construction and
maintenance of large-scale systems [4, 3, 2]. In particular, MDE allows domain experts,
architects, developers to build languages and their tools that play an important role in all
phases of the development process [7].

As digital twins are currently a relatively young and in particular evolving area of research,
it is not surprising, that there is a variety of different definitions available. (E.g. [1] identifies
more than hundred different definitions).

At the beginning and during the seminar we identified the following definitions to be
particularly of interest.

▶ Definition 2 (Digital Twin (DT)). A digital twin (DT) is a comprehensive digital repres-
entation of an actual system, service or product (the Physical Twin, PT), synchronized at a
specified frequency and fidelity [5]. The digital twin includes the properties, conditions and
behavior of the physical entity through models and data, and is continuously updated with
real-time system data [6]. The exchange of data between the digital and the physical twins
takes place through bidirectional data connections.

An alternative definition can be found at the website of the software engineering institute
of RWTH Aachen University1 together with some additional discussions:

▶ Definition 3 (Digital Twin (DT)). A digital twin of a system consists of
a set of models of the system and
a set of digital shadows, both of which are purposefully updated on a regular basis,
provides a set of services to use both purposefully with respect to the original system,
and
can send

information about the environment and
control commands to the original system.

▶ Definition 4 (Digital Twin System (DTS)). Based on these definitions, a Digital Twin
System can be defined as the combination of an actual system and the DTs of this actual
system.

1 https://www.se-rwth.de/essay/Digital-Twin-Definition/
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Figure 1 Schedule of the seminar.

3 Schedule of the seminar and presentations

This section presents the schedule of the dagstuhl week and the various presentations we had
during the seminar.

3.1 Schedule of the week at Dagstuhl
Figure 1 depicts the schedule of the seminar week. It started by opening the seminar week
and then with presentations and discussions about the terminology, context, and properties
of digital twins. We then discussed the planning of the rest of the week. In the second day,
we had presentations of real world scenarios of digital twins. After that, we discussed about
requirements for digital twins and finalized the planning of the rest of the week. Finally, for
the rest of the week, we split in three groups to work in parallel, with a plenary session in
the morning and the evening to debrief each other about what was done and will be done.
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4 Overview of Talks

This section presents the various presentations we had during the seminar. It details the
author and the talk’s title and abstract.

4.1 Learning Digital Twin Models
Shaukat Ali (Simula Research Laboratory – Oslo, NO)

License Creative Commons BY 4.0 International license
© Shaukat Ali

Given that operational cyber-physical systems (CPS) produce continuous data, a comple-
mentary approach to model-based engineering is to learn digital twins models with machine
learning techniques and providing functionalities such as predictions and anomaly detection.

This talk will start with presenting an opinion on the next generation of digital twins
(Quantum Digital Twins), where some aspects of digital twins will be implemented as quantum
software and executed on quantum computers, e.g., for simulating the physical environment
that can be realistically simulated with quantum-mechanical principles.

Followed by this opinion, the talk will present some recent works on learning digital twins
from historical data and continuous updates of digital twins with continuous data from opera-
tional CPS. Various machine learning techniques were applied, such as generative adversarial
networks, curriculum learning, and transfer learning to learn digital twins. The digital twins
were built for use cases from the transportation domain and water distribution/treatment
plants. These digital twins were focused on anomaly detection and waiting time predictions.

4.2 Theory building and sociotechnical digital twin: MDE Requirements
Balbir Barn (Middlesex University – London, GB)

License Creative Commons BY 4.0 International license
© Balbir Barn

Depending upon the flavour of digital twin (and that is an entirely different problem), a
digital twin of a real world artefact is designed for a purpose. Such a purpose can can range
from trying to understand an “as is” situation, analysing multiple options in a decision
making scenario through to tractable transformation of the real world artefact. Underpinning
all these purposes is a form of theory building and assumptions of underlying theories.

A theory in its most sparse understanding is a statement of what causes what, and
why, and under what circumstances. A theory can be a contingent statement or a proven
statement. We use theories all the time. Peter Naur referred to programming as form of
theory construction. Decision makers in organisations use theory every day. They make
decisions on some basis of cause and effect, often without being specific about their reasoning.
Naturally, theories are empirical or can remain conceptual explanations.

The most widely accepted notion of a Digital Twin (DT) is one where there is a cyber-
physical component. DTs of civil structures such as bridges are one such example. Such DTs
rely on well understood physics based laws which provide empirically tested theories. New
generations of DT belong to a socio-technical context where there is heady mix of human
action, systems integration and emergent behaviour that cannot readily be assumed to follow
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a particular predicted route. Such Socio-technical DTs when they are constructed need input
from social science, psychology and other inter-disciplinary fields. Theories for justifying
concepts, relationships and rules of such a STDT are therefore obtained from these non-IT
fields. How do we embed and use these theories?

The challenge for model driven engineering of STDT is therefore further attenuated and
more engineering support is needed. For example, we need a modelling language that is
sufficiently rich to capture working descriptions of key social science theories. We will need
libraries of these theories together with working examples. We will need theory integration
environments and accompanying methods that support theory building. We want to be able
to run a model and view the execution of the theory and its explanation.

The benefits of being able to demonstrably prove that an established theory underpins a
component of a DT specification model provides external validity through a reference bench
mark of a well understood theory that has been critiqued at scale and over time. Model
validity concerns are therefore mitigated. Essentially this is a research challenge and I am
not yet aware of significant progress in this area with respect to Digital Twins.

4.3 Digital twins Automotive
Ion Barosan(TU Eindhoven, NL)

License Creative Commons BY 4.0 International license
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Advancements in the automotive industry is being highly dependent on Software technology
as the industry is now changing from manual driving to different levels of autonomous driving.
In order to develop autonomous driving vehicles, digital twins are now used to achieve the
desired features and functionality. The approach to use digital twins saves huge resources as it
accelerates product development and perform virtual simulation forecasts before production.
Another use case is using the twin in tandem with the physical environment providing
functionalities of monitoring, fault detection to name a few. The Automotive Technology
research lab at Eindhoven University of Technology, Netherlands is performing research
and development of such systems. As a part of this lab, this project focuses on design and
implementation of a digital twin software framework for autonomous articulated vehicles
within a distribution center. The goal is to develop such a system, that replicates ‘the
real world moving of autonomous trucks in a distribution center’ within a Digital Twin.
Additionally, the virtual system should be able to gather data from various sensors in order to
enhance the development of the physical truck. This data can then be used by users to further
study or visualize. In order to develop this complex system, a software system representing
the digital twin called the TruckLab-DTF has been developed. Using the TruckLab-DTF
product development teams working on achieving autonomy in distribution centers can
apply insights from the virtual twin and physical system directly to their development.
Additionally, requirements can be verified in the digital twin early in the design phase, saving
time and money. Thus, the use of digital twin with this domain is multi and this project
is an initial step towards the realization of much larger “system of systems.” In extension,
designed software can be also used as an educational technology tool for vehicle dynamics
and control-based courses.
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4.4 Digital twins = models@run.time + Simulations
Nelly Bencomo (Durham University, GB)

License Creative Commons BY 4.0 International license
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Digital twins (DT) have emerged as a promising paradigm for run-time modelling and
performability prediction of cyber-physical systems (CPS) that can be applied in multiple
domains. Different definitions and industrial applications of DT have materialised, going
from purely visual three-dimensional models to predictive tools, many of them focusing on
data-driven evaluations. We want to focus on a conceptual framework based on autonomic
systems to host DT run-time models based on a structured and systematic approach. A
model at run-time can be defined as an abstract representation of a system, including its
structure and behaviour, which exist alongside the running system. Run-time models provide
support for decision-making and reasoning based on design-time knowledge. However, they
can also offer themselves as a run-time abstraction based on information that may emerge at
run-time and was not foreseen before execution. New techniques based on machine learning
(ML) and Bayesian inference offer great potential to support the update of run-time models
during execution. Run-time models can be updated using these new techniques to provide
better-informed decision-making based on evidence collected at run-time. The syncing of
the real and the digital twin: Models@runt.time and the MAPE-K loop can provide the
structured basis of the software architecture presented and how the required casual connection
of run-time models is realised to sync the real and the digital twins. This process keeps the
running system inside an envelope of good behaviour.

4.5 Digital Twin for DevOps Process Improvement
Francis Bordeleau (ETS – Montreal, CA)

License Creative Commons BY 4.0 International license
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DevOps emerged in the last decade as the prominent approach to increase productivity and
system quality in the software industry. It advocates for automation and monitoring at all
stages of software development and operations, and aims for shorter development cycles,
increased frequency of deployment, and more reliable releases. Its adoption by industry
leaders (e.g. Amazon, Facebook, Google, and Netflix) has resulted in spectacular progress.
However, evolving/improving the software process remains a main challenge and many
companies are struggling with the implementation and evolution of software processes. The
lack of a systematic approach makes continuous improvement an ad hoc journey in which
decisions are based on intuition rather than facts. To enable the systematic improvement of
DevOps processes, we propose a digital twin approach that addresses two main challenges:
1) the continuous monitoring and measurement of DevOps process according to specific
objectives to detect issues so that improvement actions can be taken; and 2) the evaluation of
various modification alternatives to reach a specified DevOps process improvement objective;
this allows to take decisions on a scientific basis rather than in an ad hoc manner.
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4.6 Model Driven Adaptable Digital Twins
Tony Clark (Aston University – Birmingham, UK)

License Creative Commons BY 4.0 International license
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A series of architecture models for digital twins of increasing sophistication is presented,
leading to a digital twin that adapts in order to control a real-world asset. A technology is
in development that supports the construction of adaptable digital twins. An overview of a
simple use of the technology is presented.

4.7 Model-Driven Engineering for Enterprise Digital Twins:
Opportunities and Challenges

Benoit Combemale (IRISA, University Rennes, FR)
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Enterprises are rapidly evolving as complex socio-technical systems that require continuous
adaptation regarding a dynamic and uncertain environment. Various stakeholders are involved
and deliver continuous knowledge through heterogeneous digital models (systems, processes,
organizations, etc.) manipulated with various scientific and engineering environments. This
modeling continuum open new opportunities for adaptable and efficient enterprises, but also
raise new modeling challenges. In this talk, I explore the use of model-driven engineering to
develop and operate enterprise digital twins. The talk covers the current state of the art, and
provide concrete implementations for smart trade-off analysis and decision making. Finally,
I discuss open challenges and draw a roadmap for the community.

4.8 Conceptual Modelling for Risk Modelling
Georg Grossmann (University of South Australia – Mawson Lakes, AU)

License Creative Commons BY 4.0 International license
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The modelling of risks and predicting the impact of risks is crucial in physical asset manage-
ment. Digital Twins can support the risk modelling and prediction by providing a holistic
view of the assets but there is no existing standard on how to model risks. The challenges of
modeling risks comprise the support of different abstraction levels, integration of different
views of risks and supporting the evolution of risk models over time through Digital Twins.
We provide an overview of those challenges with examples from energy industry.
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4.9 Digital Twins for Cyber-Physical Systems
Gabor Karsai (Vanderbilt University – Nashville, US)

License Creative Commons BY 4.0 International license
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The talk will give a very brief summary of existing Digital Twin efforts in the US, and then
introduces some ideas about the specific challenges digital twins have to solve in the domain
of Cyber-Physical Systems. A specific approach for addressing the model integration problem
is discussed, as well as how DT-s can assist in autonomous system operations. Finally, five
fundamental challenges are posed.

4.10 The MB.OS Approach: How can Complexity be Managed in a
Software-Defined World?

Oliver Kopp (Mercedes-Benz AG – Stuttgart, DE)

License Creative Commons BY 4.0 International license
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Product complexity is ubiquitous – and it is constantly increasing. Instead of working against
it, we should accept it as challenge and make complexity manageable.

Why are software methods becoming increasingly important in this context? Because
that is exactly where they come in: Complexity becomes controllable by software methods.
For the automotive business, this means that we must use systems engineering methods to
manage product variance holistically, based on a central data model having an end-to-end
scope over lifetime. To do this, we follow a data-centric approach that maps every aspect:
Both in the problem space (requirements, features, regulatory specifications) including the
product configurations and in the solution space (types, options, functions, components)
including the corresponding type configurations.

In this talk an overview of our concept “Typebased Product Line Engineering” is presented:
How can we move from a reactive, quantity-based product documentation approach to a
proactive product documentation approach based on individual and concrete configurations?
The role of a Digital Twin is outlined – especially in the context of a vehicle that can always
be upgraded with new features via over-the-air updates throughout its lifetime in customer
hands.

Acknowledgement: The talk was originally presented by Christian Seiler, Mercedes-Benz
AG at the Digital Product Forum 2022. This work is partially based on the research project
SofDCar (19S21002), which is funded by the German Federal Ministry for Economic Affairs
and Climate Action.
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4.11 OASIS TOSCA: A meta and meta-meta model for modeling and
managing of structured applications

Oliver Kopp (Mercedes-Benz AG – Stuttgart, DE)

License Creative Commons BY 4.0 International license
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Deployment denotes the installation and the running of necessary components of an applica-
tion. There are mulitple tools available to do so: Terraform nad Ansible form two examples.
They all have different meta-models to capture the desired application topology (also called
“infrastrucutre-as-code”). OASIS TOSCA (“Topology and Orchestration Specification for
Cloud Applications”) is a standard including both a meta-model and a meta-meta model to
model the application topology in a standardized and vendor-neutral way. This talk outlines
aspects of TOSCA and presents Eclipse Winery as one tool to model applicaton topologies
using TOSCA.

Acknowledgement: This work is partially based on the research project SofDCar (19S21002),
which is funded by the German Federal Ministry for Economic Affairs and Climate Action.

4.12 JabRef as a Literature Management Tool and a Software
Engineering Training Tool

Oliver Kopp (Mercedes-Benz AG – Stuttgart, DE)

License Creative Commons BY 4.0 International license
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JabRef is a literature management software based on BibTeX written in Java. The project
management is mainly done using GitHub’s features. The talk will fist outlined JabRef’s
functionalities and then dives into open source software development. We showed how
the JabRef team supports newcomers to find new issues and to craft a code contribution –
and how this helps to use JabRef as teaching object for training Software Engineering on
intermediate level.

4.13 Towards Dynamic Self-adaptive DT Architectures
Daniel Lehner (Johannes Kepler Universität Linz, AT)

License Creative Commons BY 4.0 International license
© Daniel Lehner

With the emergence of Digital Twins, more and more architectures are developed to use these
Digital Twins in particular context to serve a specific purpose. However, the components of
such architectures are usually targeted to its particular context and purpose, with limited
adaptability. This makes it hard to change an architecture once the purpose of the underlying
system changes, or reuse existing components in developing new architectures. To solve this
challenge, we propose a feature model of Digital Twins that enables to put together new
software architectures that leverage these Digital Twins. The component-based realization of
the individual features on the software and modeling language level should enable an efficient
plug and use of Digital Twin architectures in the future.

22362

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


32 22362 – Model-Driven Engineering of Digital Twins

4.14 Engineering/Working with Digital Twins
Bernhard Mitschang (Universität Stuttgart, DE)
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From a data-centric point of view digital twins are just data structures/models that keep
relevant information of real-world artifacts (machines, products, environments etc.). Thus
“working with digital twins (cf.my title)” simply means adapting/changing/extending/mer-
ging/intersecting/snipping/... these structures/models. My main questions raised – and
perhaps even answered during this seminar – are:

Is this really so simple?
What does it mean to merge two digital twin models and what is the impact and
consequences thereof?
Don’t we need to consider (domain) semantics?

4.15 On the Conceptual Modeling of Behavior: Dynamic
Reclassification of Entities

Alfonso Pierantonio (University of L’Aquila, IT)

License Creative Commons BY 4.0 International license
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The concept of classification as realized in most traditional object-oriented computer languages
has certain limitations that may inhibit its application to modeling more complex phenomena.
This is likely to prove problematic as modern software becomes increasingly more integrated
with the highly dynamic physical world. In this paper, we first provide a detailed description
of these limitations, followed by an outline of a novel approach to classification designed to
overcome them. The proposed approach replaces the static multiple-inheritance hierarchy
approach found in many object-oriented languages with multiple dynamic class hierarchies
each based on different classification criteria. Furthermore, to better deal with ambiguous
classification schemes, it supports potentially overlapping class membership within any given
scheme. Also included is a brief overview of how this approach could be realized in the design
of advanced computer languages.

4.16 Simulation to digital twin
Fiona A. C. Polack (University of Hull, GB)

License Creative Commons BY 4.0 International license
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We have already explored engineering a simulation so that it can be trusted (in the non-strict
sense), and so that the basis for the trust can be interrogated and challenged: the principled
simulation approach has been used in e.g. immune system simulation and robotics. In 2000s we
proposed MDE as one way to automate development so that effort could focus on abstraction,
design and interpretation of results, plus use of the simulation for its purpose. Digital Twin
development might perhaps learn from engineering principled simulation, particularly in areas
such as purpose, results interpretation/use, fitness/validation, management of trustworthiness.
Again MDE could allow “people” to focus on these non-automatable but critical areas.
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4.17 Digital Twins – Challenges from a Modelling Perspective
Matthias Riebisch (Universität Hamburg, DE)
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© Matthias Riebisch

This talk describes challenges for the development of the digital twin from a modelling
perspective.

4.18 Federation of Digital Twins to conform with Manufacturing
Systems

Matthias Riebisch (Universität Hamburg, DE)

License Creative Commons BY 4.0 International license
© Matthias Riebisch

Manufacturing systems are structured as multi-layered systems, with different goals and
constraints for the layers. Digital Twins must reflect this by being split into parts what we
call Federated Digital Twin. For its parts, and for the bridges between them, appropriate
decisions on coverage, structure, technology, etc. are required.

4.19 Digital Ecosystems and Digital Twins
Markus Stumptner (University of South Australia – Mawson Lakes, AU)

License Creative Commons BY 4.0 International license
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Digital Twins need to accommodate the interactions of the System under Study (SuS) to
be able to collect data, stimuli and outputs. This requires interaction with the (software)
ecosystem surrounding the SuS, determined by relevant functions, and defining a landscape
of models and their interactions.

4.20 The importance of being Uncertain
Antonio Vallecillo (University of Málaga, ES)

License Creative Commons BY 4.0 International license
© Antonio Vallecillo

A fundamental characteristic of software models is their ability to represent the relevant
characteristics of the system under study, at the appropriate level of abstraction. We now
live in the age of cyber-physical systems, smart applications and the Internet of things,
which require some forms of interaction with the physical world. Uncertainty is an inherent
property of any system that operates in a real environment or that interacts with physical
elements or with humans but, unfortunately, the explicit representation, management and
analysis of uncertainty has not received much attention by the software modeling community.
In this talk we analyze the impact of measurement uncertainty on the behavior of the system
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using examples, and describe the traditional ways of dealing with it, namely using fixed
and confidence (adaptive) intervals. We then discuss the need to consider all attributes as
random variables and the importance of properly comparing them.

4.21 Digital Z (model/shadow/twin/passport/ . . . ) “twinning” for and
by Systems Engineering

Hans Vangheluwe (University of Antwerp, BE)

License Creative Commons BY 4.0 International license
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Throughout their life-cycle (design, production, assembly, operation and optimization, main-
tenance, re-purposing, disposal), smart, adaptive systems will include ecosystems of Digital
Zs (models/shadows/twins) to achieve a plethora of goals such as condition monitoring,
fault diagnosis, predictive maintenance, optimization, etc. . This builds on many existing
techniques, architectures and standards from real-time simulation, co-simulation, systems and
control theory, IoT, knowledge management, machine learning, experiment/validity frames,
surrogate modelling, etc. To satisfy system goals, a federated knowledge repository (graph) (a
“Modelverse”) containing both “linguistic” and “ontological” information, is used as a starting
point for inferencing. This leads to the (product line: goals to realizations) construction of
new Digital Z “experiments” which, when deployed, in turn, yield new data/knowledge which
is merged (during or at the end of an experiment) with the information already present in
the Modelverse. As multiple concurrent inferencing and experiment processes may exist, the
Modelverse acts as a blackboard. Conceptually, one Digital Z “experiment” is created per
Property of Interest (to be monitored, satisfied or optimized).

Multi-Paradigm Modelling (MPM) principles are used throughout: model explicitly,
most appropriate formalism(s), abstraction(s) for architectures and views, requirements and
designs, with workflows modelled explicitly too.

4.22 Reflections about Digital Twins
Andreas Wortmann (Universität Stuttgart, DE)

License Creative Commons BY 4.0 International license
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Digital twins are starting to appear everywhere. In this talk, I reflect upon definitions,
purposes, and tools related to engineering and operating digital twins based on the largest
cross-domain mapping study on the topic to date.
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4.23 Digital Twins for Learning Healthcare Systems
Steffen Zschaler (King’s College London, GB)
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I report on our experience building agent-based simulations and, further, digital twins for
learning healthcare systems, the role that MDE has to play in this, and the challenges for
future work.

4.24 Are Digital Twins going to rule the world?
Mark van den Brand (TU Eindhoven, NL)

License Creative Commons BY 4.0 International license
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Digital Twins play an important role in engineering complex (high-tech) systems. They
allow for real-time analysis of engineered systems in order to detect anomalies, to predict
maintenance, and to optimise behaviour. The use of model-driven techniques accelerates the
development of digital twins. The focus of the Software Engineering and Technology group
from the TU/e focuses on the efficient development of Digital Twins, by means of model
reuse and advance orchestration of the reused models.

The use of models used in the engineering process leads to the question whether the
digital twin can replace the supervisory control of the engineered system. What are the
requirements to facilitate this:

Supervisory control in the cloud by means of the engineered system
Fast communication channels between physical entity and the engineered system (5G and
beyond)
Sensors, actuators and edge computation on the engineered system.

5 Problem Space Summary

5.1 Contexts
In this group, the participants focused on identifying the different contexts in which a Digital
Twin may be produced, the goals and purposes of those Digital Twins, and their qualities
and properties. We motivated our definitions based on the range of talks given during the
seminar, as outlined in section 4. The talks included a variety of contexts for digital twins,
including a variety of assets for which a digital twin is constructed, a variety of environments
in which the digital twin is embedded, and a variety of purposes for which the digital twin
was constructed. Below, we provide a short summary of the key discussion points within the
group, and our findings:

From the range of talks demonstrated in section 4, we have seen that there are many
different assets for which a digital twin can be developed. We came to define the ‘context’
of a digital twin as the asset type, as well as the asset’s environment. Properties of the
environment may include whether there is human intervention in the environment, whether
the system is cyber-controlled or not, and whether the asset was engineered or is natural.
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Figure 2 Digital Twin schema annotated with qualities.

5.2 Qualities of Digital Twins
In the problem space group, we then discussed the “qualities” of digital twins. I.e. the
desirable properties of the system towards some measure or mitigation. We discussed the
qualities of both the digital twin as an artifact, as well as the qualities that the digital twin
must achieve for the user. Qualities apply to all engineered aspects including I/O and data
flows between the physical and digital twins as well as the digital twin itself. We do not,
however, comment on the qualities of the ‘physical twin’ as this is beyond the scope of the
concerns of a digital twin developer.

During our discussions, we reached the opinion that qualities in the digital twin context
are closely linked to qualities in the systems/software engineering context more generally.
We, therefore, did not endeavor to produce a comprehensive list of qualities but instead
aimed to identify some of the qualities of relevance to (different) digital twins.

In figure 2 we annotate a digital twin architecture diagram with the most relevant quality
properties. These include:

Validity: A measure to show that the digital twin is a “good enough” digital representation
of the physical entity/twin
Fidelity: How much reliance can be placed on the outputs (data, control signals, observa-
tions, etc.) of the digital twin.
Trustworthiness: Closely linked to properties of fidelity and traceability. The degree to
which stakeholders trust the validity of the digital twin as a whole.
Modularity: The capacity to allow for the substitution of components such as services to
fit the needs of the user in a given context
Usability: The human-computer interaction properties of the system, and the standard
of user experience the system provide
Synchronisation: The properties of ‘lag’ between the digital and physical twin
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Security: Including considerations on risk analysis, data protection, and data biases
The goal of this group’s discussions was to identify the fundamental scope and properties of
digital twins. These properties were then used to motivate the requirements for the design
space group as discussed in Section 6.

6 Design Space

The discussions in this group were targeting the design space aspect of using MDE techniques
for Engineering Digital Twins. As a first discussion point, a conceptual model of digital twins
was developed in order to gain a common understanding and terminology of the individual
aspects and components of digital twins among the participants. The aim of this conceptual
model was that it can be instantiated in various ways for specific domains, including cases
where some of the components are missing.

A list of instantiations has been created for use cases provided by the participants in the
domains on Anomaly Detection, Predictive Maintenance, Optimization, Diagnostics, and
Policy Planning. The conceptual model was validated in these particular use cases, and
in addition, for each use case, a design pattern and a list of open challenges was derived.
In a final round of discussions, the results from the individual use cases were consolidated
to come up with (i) a method for developing digital twins based on the individual design
patterns, and (ii) a list of open challenges for designing digital twins using MDE techniques.
The found challenges include (i) supporting experts in validating a DT system, (ii) capturing
assumptions and the scope of a DT effectively, (iii) specification languages for DT systems,
and (iv) design technologies for modeling privacy and security aspects of DTs.

7 Solution Space

The discussions in this group were targeting the necessary components needed for the MDE
of Digital Twin Systems (DTSes). A model-based approach requires models that (1) may
be used in the digital twin of the physical twin and (2) form the basis for generation and
engineering tasks.

The distinction between descriptive, predictive, and prescriptive roles of models was
discussed, as well as the fact that models are heterogeneous and composition covering various
integration aspects is needed. Metamodels form the basis for model transformations from the
various model kinds to other models or artefacts. MDE provides support for composition,
consistency, an overall management of models. Overall, MDE provides a number of solutions
for the challenges to be addressed in development of digital twins, but it is also evident that
general MDE techniques and methods need to be adapted for the specific challenges of digital
twin development.

Regarding connectivity, the group discussed how communication protocol choices depend
on needs i.t.o. coupling, fidelity, service level, and quality of service; both for communication
inside the DT as well as to its environment.

The importance of data storage, and of abstracting from data for purposes depending on
the services the data is required for, were addressed. Suitable data pipelines, and integration
with external services such as maintenance and operations management are important aspects
regarding data and its management. Of course, models themselves need to be stored and
processable so can be considered a form of data as well.
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Finally, concerning services, we distinguished between internal and external services,
with the latter for example covering data visualization and interaction with the digital twin.
Important from the services point of view as well are data exchange, the availability of
suitable execution and simulation engines, and data analytics. For service generation and
operation, (meta)models also play an important role.

The group identified a list of challenges around the solution space for MDE of digital twins,
concerning (1) integration and data exchange between different components; (2) consistency
of models, data, and metamodels under evolution scenarios; (3) modeling environment
interoperability (possibly including wrapping); (4) runtime support for time series data; (5)
further standardization to allow interoperability and reuse of the artefacts involved in MDE
based digital twins; (6) variability in DTs when considering product lines; (7) wrapping of
tools patterns for the description and MDE of DTs; and (8) flexible definition of new services.

8 Conclusion

In this paper we have documented a fruitful week of discussions and community building
in the the Dagstuhl Seminar 22362 – Model-Driven Engineering of Digital Twins.
This paper threat describes preliminary results of these discussions. We strongly expect that
the discussions we started will continue in fruitful collaborations, potentially EU or national
research programs addressing the question how to define digital twins in a more efficient and
essential way and finally also lead to further events, e.g. such as a scientific conference about
model-based engineering of digital twins.

As a short summary: we have identified that MDE does provide a number of solutions
for the challenges to be addressed in development of digital twins, but it is also evident, that
a specific adaptation of the general MDE techniques and methods is needed to address the
specific challenges of digital twin development. And because the domain of digital twins is
relevant, it is absolutely worthwhile addressing these challenges with MDE techniques.

Finally, we really want to thank all the local assistance, the organizational assistance and
the strategic organizational people for making Dagstuhl this wonderful place to meet and
discuss and put innovations forward. Thanks alot, we really appreciate it, especially inn
these pandemic times.
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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 2237 “Algebraic and
Analytic Methods in Computational Complexity”.

Computational Complexity is concerned with the resources that are required for algorithms
to detect properties of combinatorial objects and structures. It has often proven true that the
best way to argue about these combinatorial objects is by establishing a connection (perhaps
approximate) to a more well-behaved algebraic setting.

Beside algebraic methods, analytic methods have been used for quite some time in theoretical
computer science. These methods can also be used to solve algebraic problems as show by many
recent examples in the areas of derandomization, coding theory or circuit lower bounds. These
new directions were in the focus of the Dagstuhl Seminar and reflect the developments in the
field since the previous Dagstuhl Seminar 18391.

This Dagstuhl Seminar brought together researchers who are using a diverse array of algebraic
and analytic methods in a variety of settings. Researchers in these areas are relying on ever more
sophisticated and specialized mathematics and this seminar played a role in educating a diverse
community about the latest new techniques, spurring further progress.
Seminar September 11–16, 2022 – http://www.dagstuhl.de/22371
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Introduction
The seminar on algebraic methods in computational complexity has traditionally taken place
every two years in Dagstuhl for many years. In these meetings, we try to bring together
leading researchers in a very active and broad area of theoretical computer science, having
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the algebraic methods as a unifying thread. Researchers in these areas are relying on ever
more sophisticated and specialized mathematics and this seminar can play an important role
in educating a diverse community about the latest new techniques, spurring further progress.
For the year 2022, we added a new direction that focused besides the algebraic aspect also
on methods from analysis. The seminar brought together more than 40 researchers covering
a wide spectrum of complexity theory. We had 24 talks, most of them lasting about 45
minutes, leaving ample room for discussions. In the following we describe the major topics of
discussion in more detail.

Some areas of focus
Computational complexity is a fundamental and active subarea of theoretical computer
science that has produced some of the most well known results in theoretical computer
science in recent years. Here we discuss a few broad themes which highlight the importance
of algebra as well as analytic methods in computational complexity, and which represent
some focus areas of our present seminar.

Circuit complexity

Boolean circuits are one of the most fundamental model of computation. Due to its combin-
atorial nature, they seem more amenable to formal analysis than the uniform models such
as Turing machines. The classical lower bound techniques of Razborov and Smolensky are
algebraic: they work by first approximating AC0[p] circuits (constant-depth circuits with
AND, OR, NOT, and counting modulo prime p gates) by low-degree polynomials, and then
proving that certain functions (like Majority) are not well correlated with such polynomials.
The Fourier expansion of a Boolean function and its representation as a real multilinear
polynomial as well as other analytic tools have been added in the last years to the bag of
tools used for the analysis of Boolean circuits. In the seminar, we talked about recent results
in circuit complexity.

Andrej Bogdanov talked about property testing. He constructed a natural tester that
tells if a function from {0, 1}n to some Abelian group is linear (or far from linear).

Frederic Green proved a new correlation bound for certain exponential sums over charac-
teristic 5.

William Hoza presented the construction of a Boolean function F on n bits such that F

can be computed by a uniform depth-(d + 1) AC0 circuit with O(n) wires, but F cannot be
computed by any depth-d TC0 circuit with n1+γ wires, where γ = 2−Θ(d) and d = o(log log n).

Michal Koucký dealt with a classical problem, the simulation of Turing machines by
circuits. He gave a new simple proof for the classical result that Turing machines running in
time t(n) and space s(n) can be simulated by Boolean circuits of size O(t(n) log s(n)) and of
depth O(t(n)).

Meena Mahajan presented relations between the minimum rank of a decision tree com-
puting a Boolean function and other complexity measures of the function, as well as a new
composition theorem in terms of rank and decision tree depth.

In his talk, Rocco Servedio establish a new quantitative version of the Gaussian correlation
inequality. It gives a lower bound on the correlation of two centrally symmetric convex sets
based on their “common influential directions”.

A new family of sampling tasks was presented by Rahul Santhanam. He showed that any
non-trivial algorithmic solutions to tasks from this family imply new uniform lower bounds
such as “NP not in uniform ACC0” or “NP does not have uniform depth-2 threshold circuits”.
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Algebraic complexity

A class of circuits especially suited for the use of algebraic techniques is that of arithmetic
circuits. These are circuit models that compute polynomial functions by using gates per-
forming arithmetic operations (additions, subtractions, multiplications, divisions, etc.) Two
fundamental complexity measures for arithmetic circuits are the size and the depth or product
depth.

Prerona Chatterjee considered the question of proving lower bounds against non-
commutative circuits better than Ω(n log n). She showed a quadratic lower bound against
the n-variate central symmetric polynomial.

Arkadev Chattopadhyay talked about connections between communication complexity
measures and monotone arithmetic circuit lower bounds. He constructed a (set-multilinear)
monotone polynomial that can be computed by depth-3 multilinear formulas in sub-cubic size
but requires exponential size to be computed by monotone arithmetic circuits. Second, he
proved the existence of a polynomial over n variables in VNP, for which 2Ω(n) size ϵ-sensitive
lower bounds hold if ϵ = 2−O(n).

Barrier results in the group-theoretic approach to bounding the exponent of matrix
multiplication was the topic of the talk by Chris Umans. He showed that finite groups of Lie
type cannot prove ω = 2 and presented a further barrier result. Then he gave constructions
in the continuous setting, which can potentially evade these two barriers.

Pascal Koiran studied the decomposition of multivariate polynomials as sums of powers
of linear forms. He presented a randomized algorithm for the following problem: Given a
homogeneous polynomial of degree d as a blackbox, decide whether it can be written as a
linear combination of dth powers of linearly independent complex linear forms.

Nutan Limaye proved in her talk that there exist monomial symmetric polynomials that
are hard for the class VNP.

Pseudorandomness and derandomization

The theory of pseudorandomness studies explicit constructions and applications of “random-
like” objects of combinatorial or algebraic type. The common feature of such objects is that
it is easy to construct one by random sampling, but a very important problem is to get
efficient deterministic constructions.

Eric Allender proved that Kolmogorov complexity characterizes statistical zero knowledge.
Every decidable promise problem has a non-interactive statistical zero-knowledge proof system
if and only if it is randomly reducible to a promise problem for Kolmogorov-random strings.

Random walks on expanders are a useful tool in complexity theory. Gil Cohen explained
how the inherent cost can be reduced from exponential to linear by applying a permutation
after each random step.

Sylvester-Gallai type problems have found applications in polynomial identity testing
and coding theory. Rafael Oliveira discussed such problems and their relation to algebraic
computation, and presented a theorem that radical Sylvester-Gallai configurations for cubic
polynomials must have small dimension.

Ryan O’Donnell explained how to contruct high-dimensional expanders from Chevalley
groups.

Motivated by applications from cryptography, Noga Ron-Zewi studied a new interactive
variant of PCPs, so-called interactive oracle proofs. She showed that for this model the
overhead in the encoding can be made arbitrarily small and the prover complexity overhead
can be made constant.
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In his talk, Amon Ta-Shma gave an alternative construction of the lossless condenser by
Guruswami, Umans and Vadhan. Instead of Parvaresh-Vardy codes, the new construction is
based on multiplicity codes.

A Chor-Goldreich source is a sequence of random variables where each has min-entropy,
even conditioned on the previous ones. David Zuckerman showed how to extend this
notion in several ways, most notably allowing each random variable to have Shannon entropy
conditioned on previous ones. He then proved new pseudorandomness results for Shannon-CG
sources.

Border complexity and invariant theory

Many problems in algebraic complexity theory can be written as an orbit closure problem.
We are given a vector space V and a group G acting on it. The orbit Gv of an element
v ∈ V is the set {gv | g ∈ G} and its closure is the usual closure in the Zariski topology.
For instance, we can formulate the tensor border rank problem in this language: Alder and
Strassen proved that the question whether a tensor t has border rank ≤ r is equivalent to
deciding whether t is in the orbit closure (under the standard action GLn × GLn × GLn) of
the so-called unit tensor of size r. As second example is provided by Mulmuley and Sohoni
who formulated a variant of the permanent versus determinant question as an orbit closure
problem.

Peter Bürgisser gave an introduction to new algorithmic and analysis techniques that
extend convex optimization from the classical Euclidean setting to a general geodesic setting.
He pointed out the relevance of invariant and representation theory for for complexity theory
and highlighted connections to different areas of mathematics, statistics, computer science,
and physics.

Rohit Gurjar considered determinants of the matrices of the form (
∑

i Aixi) where each
Ai is rank one. He showed that this class of polynomials is closed under approximation.

Approximate complexity was also the topic of Nitin Saxena’s talk. He proved that the
border of bounded-top-fanin depth-3 circuits is relatively easy, since it can be computed by a
polynomial-size algebraic branching program.

Counting and quantum complexity

In order to study the #P (non-)membership of some concrete problems, Christian Ikenmeyer
started the development of a classification of the #P closure properties on affine varieties.
He obtained oracle separations between counting classes, where the existence of the oracle is
based on properties of the vanishing ideal of an affine variety.

Steve Fenner considered a problem in quantum computing, the construction of a “realistic”
Hamiltonian for quantum fanout.

Conclusion
The talks of the seminar ranged over a broad assortment of subjects with the underlying
theme of using algebraic and analytic techniques. It was a very fruitful meeting and it has
hopefully initiated new directions in research. Several participants specifically mentioned
that they appreciated the particular focus on a common class of techniques (rather than end
results) as a unifying theme of the workshop. We look forward to our next seminar.
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3 Overview of Talks

3.1 Kolmogorov Complexity Characterizes Statistical Zero Knowledge
Eric Allender (Rutgers University – Piscataway, US)

License Creative Commons BY 4.0 International license
© Eric Allender

Joint work of Eric Allender, Harsha Tirumala, and Shuichi Hirahara
Main reference Eric Allender, Shuichi Hirahara, Harsha Tirumala: “Kolmogorov Complexity Characterizes

Statistical Zero Knowledge”, ECCC TR22-127, 2022
URL https://eccc.weizmann.ac.il/report/2022/127/

We show that a decidable promise problem has a non-interactive statistical zero-knowledge
proof system if and only if it is randomly reducible to a promise problem for Kolmogorov-
random strings, with a superlogarithmic additive approximation term. This extends recent
work by Saks and Santhanam (CCC 2022). We build on this to give new characterizations of
Statistical Zero Knowledge (SZK), as well as the related classes NISZKL and SZKL.

3.2 Direct sum testing over Abelian groups
Andrej Bogdanov (The Chinese University of Hong Kong, HK)

License Creative Commons BY 4.0 International license
© Andrej Bogdanov

Joint work of Andrej Bogdanov, Gautam Prakriya
Main reference Andrej Bogdanov, Gautam Prakriya: “Direct Sum and Partitionability Testing over General

Groups”, in Proc. of the 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), LIPIcs, Vol. 198,
pp. 33:1–33:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

URL http://dx.doi.org/10.4230/LIPIcs.ICALP.2021.33

I spoke about a natural tester that tells if a function from {0, 1}n to some Abelian group like
Z3 is linear (or far from linear). More generally, the tester can be used to tell if a multivariate
function g(x1, ..., xn) admits a direct sum decomposition f(x1) + ... + f(xn) for some f .

3.3 Optimization, Complexity and Invariant Theory
Peter Bürgisser (TU Berlin, DE)

License Creative Commons BY 4.0 International license
© Peter Bürgisser

Joint work of Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, Avi Wigderson
Main reference Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, Avi Wigderson: “Towards

a Theory of Non-Commutative Optimization: Geodesic 1st and 2nd Order Methods for Moment
Maps and Polytopes”, in Proc. of the 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, 2019.

URL http://dx.doi.org/10.1109/focs.2019.00055

Invariant and representation theory studies symmetries by means of group actions and is a
well established source of unifying principles in mathematics and physics. Recent research
suggests its relevance for complexity and optimization through quantitative and algorithmic
questions. The goal of the talk is to give an introduction to new algorithmic and analysis
techniques that extend convex optimization from the classical Euclidean setting to a general
geodesic setting. We also point out surprising connections to a diverse set of problems in
different areas of mathematics, statistics, computer science, and physics.
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3.4 A Quadratic Lower Bound Against Homogeneous Non-Commutative
Circuits

Prerona Chatterjee (The Czech Academy of Sciences – Prague, CZ)

License Creative Commons BY 4.0 International license
© Prerona Chatterjee

Joint work of Prerona Chatterjee, Pavel Hrubeš

Inspite of the various strong lower bounds against constant depth circuits and the depth
reduction results in algebraic circuit complexity, the best lower bound known against general
algebraic circuits remains Ω(n log n) [Strassen, 1973; Baur-Strassen 1983]. Nothing better is
known even in the more restrictive non-commutative setting where the product gates are
considered to denote non-commutative multiplication. This is surprising since exponential
lower bunds are known against algebraic formulas [Nisan 1991] and super polynomial lower
bounds are known against homogenous formulas for polynomials computable even by ABPs
[Tavenas, Limaye, Srinivasan, 2022]. A natural question is therefore to prove better lower
bounds against non-commutative circuits. In this talk, we make progress in this question
by showing a quadratic lower bound against the n-variate central symmetric polynomial.
Further, the simplicity of the proof motivates us to ask whether a similar lower bound can be
shown against general non-commutative circuits. This is ongoing work with Pavel Hrubes.

3.5 Monotone Arithmetic Lower Bounds Via Communication
Complexity

Arkadev Chattopadhyay (TIFR – Mumbai, IN)

License Creative Commons BY 4.0 International license
© Arkadev Chattopadhyay

Joint work of Arkadev Chattopadhyay, Rajit Datta, Utsab Ghosal, Partha Mukhopadhyay
Main reference Arkadev Chattopadhyay, Rajit Datta, Partha Mukhopadhyay: “Lower bounds for monotone

arithmetic circuits via communication complexity”, in Proc. of the STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pp. 786–799,
ACM, 2021.

URL http://dx.doi.org/10.1145/3406325.3451069

We make two novel connections between communication complexity measures and monotone
arithmetic circuit lower bounds. The first connection exploits the corruption measure. We
formulate a general method that constructs a set-multilinear polynomial Pf from a Boolean
function f and uses the corruption bound of f ◦XOR to imply a size lower bound on monotone
arithmetic circuits computing Pf . Using this method, we construct [1] a (set-multilinear)
monotone polynomial that can be computed by depth-3 multilinear formulas in sub-cubic
size but require exponential size to be computed by monotone arithmetic circuits. It was not
even known, before our work, if general formulas of arbitrary depth could provide exponential
savings in size over monotone circuits.

The second connection uses the discrepancy measure from communication complexity to
lower bound the size of monotone circuits computing a polynomial even in an ϵ-sensitive way.
Very recently, Hrubes [3] showed that ϵ-sensitive monotone lower bounds, for arbitrary small
positive ϵ, implies general circuit lower bounds. We formulate [2] a general recipe between
discrepancy under a universal distribution and ϵ-sensitive bounds. Using this connection, we
show the following:
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there exists a polynomial over n variables, crafted out of the Boolean inner-product
function defined using expander graphs, that is in VNP and for which 2Ω(n) size ϵ-
sensitive lower bounds hold if ϵ = 2−O(n).
the spanning tree polynomial, defined over the edge variables of a complete graph on n

vertices, needs 2Ω(n) size to be computed by monotone circuits in an ϵ-sensitive way as
long as ϵ = 2−O(n). Recall that the number of variables of this spanning tree polynomial
is Θ(n2) and it is in VP.

This is based on two papers referenced below.

References
1 Arkadev Chattopadhyay, Rajit Datta, and Partha Mukhopadhyay, Lower bounds for mono-

tone arithmetic circuits via communication complexity, STOC, 2021.
2 Arkadev Chattopadhyay, Rajit Datta, Utsab Ghosal, and Partha Mukhopadhyay, Monotone

complexity of spanning tree polynomial revisited, ITCS, 2022.
3 Pavel Hrubes, On ϵ-sensitive monotone computations, Computational Complexity, 2020.

3.6 Random walks on rotating expanders
Gil Cohen (Tel Aviv University, IL)

License Creative Commons BY 4.0 International license
© Gil Cohen

Joint work of Gil Cohen, Gal Maor

Random walks on expanders are extremely useful in TOC. Unfortunately though, they
have an inherent cost. E.g., the spectral expansion of a Ramanujan graph deteriorates
exponentially with the length of the walk (when compared to a Ramanujan graph of the
same degree). In this talk, we will see how this exponential cost can be reduced to linear
by applying a permutation after each random step. These permutations are tailor-made to
the graph at hand, requiring no randomness. Our proof is established using the powerful
framework of finite free probability and interlacing families that was introduced, around
ten years ago, by Marcus, Spielman and Srivastava in their seminal works on the existence
of bipartite Ramanujan graphs of every size and every degree, and in their solution to the
Kadison-Singer problem.

3.7 A “Realistic” Hamiltonian for Quantum Fanout
Stephen A. Fenner (University of South Carolina – Columbia, US)

License Creative Commons BY 4.0 International license
© Stephen A. Fenner

Joint work of Stephen A Fenner, Rabins Wosti
Main reference Stephen Fenner, Rabins Wosti: “Implementing the fanout operation with simple pairwise

interactions”, arXiv, 2022.
URL http://dx.doi.org/10.48550/ARXIV.2203.01141

We give a swap-invariant diagonal gate Un equivalent in constant depth to the n-qubit
fanout gate. For t = π/4 and real coupling constants {αi,j : 1 ≤ i, j ≤ n} with αi,j = αj,i,
αii = 0, the Hamiltonian Hα⃗ :=

∑
i<j αi,jZiZj implements Un (i.e., Un = exp(−iHα⃗t) up

to a global phase factor) if and only if: (1) all the αi,j are odd integers; and (2) for all i,
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∏
j ̸=i αi,j ≡ 1 (mod 4). We give tight constraints on {αi,j} as above for spatial arrangements

of identical qubits satisfying an inverse square law. These constraints are obtained using
modular arithmetic on rational numbers.

Joint work with Rabins Wosti.

3.8 New Correlation Bounds for Quadratic Polynomials
Frederic Green (Clark University – Worcester, US)

License Creative Commons BY 4.0 International license
© Frederic Green

Let p be an odd prime, ζ = e2πi/p a complex primitive pth root of unity, and χ : Z5 → C the
quadratic character over Zp. Let t ∈ Zp[x1, . . . , xn] be an n-variable quadratic polynomial∑

i,j cijxixj +
∑

i ℓixi. Consider the exponential sum,

S = 1
(p − 1)n

∑
x∈Zn

p

χ(
n∏

i=1
xi)ζt(x),

which can be interpreted as the correlation between the parity of the number of xi’s which
are quadratic residues and whether t(x) ≡ 0 (p). In 2001, Green (JCSS 69, 2004, pp. 28–
44) showed that for p = 3, |S| ≤ (|ζ − −ζ|/2)⌈n/2⌉, and that this bound can be met by
x1x2+x3x4+. . . . In this talk, we prove a tight bound for |S| when p = 5: |S| ≤ (|ζ−−ζ|)/2)n,
which can be met by the polynomial x2

1 + x2
2 + · · · + x2

n. The technique relies on some of
the simpler methods of those recently developed by Ivanov, Pavlovic, and Viola (ECCC
TR22-092, July 2022). The latter paper consider sums of the form,

1
2n

∑
x∈{0,1}n

ζ
∑n

i=1
xi(−1)t(x),

again with t quadratic, and, remarkably, prove tight upper bounds met by symmetric
polynomials for any complex unit ζ. It is not yet clear how to extend the simpler method for
p = 5 to other odd moduli.

3.9 Set of rank-1 determinant polynomials is closed under
approximations

Rohit Gurjar (Indian Institute of Technology – Mumbai, IN)

License Creative Commons BY 4.0 International license
© Rohit Gurjar

Joint work of Rohit Gurjar, Abhranil Chatterjee, Sumanta Ghosh, Roshan Raj

Consider the class of polynomials computed by rank-one determinants – determinants of
the matrices of the form (

∑
i Aixi) where each Ai is rank one. These polynomials appear

naturally in the study of bipartite matching and related combinatorial problems. We show
that this class of polynomials is closed under approximation. Interestingly, the proof of
closure uses ideas from combinatorial optimization, specifically Rado’s theorem on matroid
transversals.
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3.10 Depth-d Threshold Circuits vs. Depth-(d + 1) AND-OR Trees
William Hoza (University of California – Berkeley, US)

License Creative Commons BY 4.0 International license
© William Hoza

Joint work of William Hoza, Avishay Tal, Pooya Hatami, Roei Tell
Main reference Pooya Hatami, William Hoza, Avishay Tal, Roei Tell: “Depth-d Threshold Circuits vs. Depth-(d +

1) AND-OR Trees”, Electron. Colloquium Comput. Complex., Vol. TR22-087, 2022.
URL https://eccc.weizmann.ac.il/report/2022/087

For n ∈ N and d = o(log log n), we prove that there is a Boolean function F on n bits and a
value γ = 2−Θ(d) such that F can be computed by a uniform depth-(d + 1) AC0 circuit with
O(n) wires, but F cannot be computed by any depth-d TC0 circuit with n1+γ wires. This
bound matches the current state-of-the-art lower bounds for computing explicit functions by
threshold circuits of depth d > 2, which were previously known only for functions outside
AC0 such as the parity function. Furthermore, in our result, the AC0 circuit computing F is
a monotone read-once formula (i.e., an AND-OR tree), and the lower bound holds even in
the average-case setting with respect to advantage n−γ .

Our proof builds on the random projection procedure of Håstad, Rossman, Servedio, and
Tan, which they used to prove the celebrated average-case depth hierarchy theorem for AC0

(J. ACM, 2017). We show that under a modified version of their projection procedure, any
depth-d threshold circuit with n1+γ wires simplifies to a near-trivial function, whereas an
appropriately parameterized AND-OR tree of depth d + 1 maintains structure.

3.11 The algebraic geometry of the closure properties of #P
Christian Ikenmeyer (University of Liverpool, GB)

License Creative Commons BY 4.0 International license
© Christian Ikenmeyer

Joint work of Christian Ikenmeyer, Igor Pak
Main reference Christian Ikenmeyer, Igor Pak: “What is in #P and what is not?”, in Proc. of the 63rd IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
– November 3, 2022, pp. 860–871, IEEE, 2022.

URL http://dx.doi.org/10.1109/FOCS54457.2022.00087

Since 1995 the functional closure properties of #P are beautifully classified via the coefficients
in the expansion over the binomial basis. In order to study the #P (non-)membership of
concrete problems related to counting versions of TFNP problems, we start the development
of a classification of the #P closure properties on affine varieties. We obtain oracle separations
between counting classes, where the existence of the oracle is based on properties of the
vanishing ideal of an affine variety, which then translates to a specific polyhedron having no
integer point. This is a part of the recent FOCS 2022 paper “What is in #P and what is
not”, which is joint work with Igor Pak.

References
1 Christian Ikenmeyer and Igor Pak. What is in #P and what is not. Proceedings FOCS 2022,

full version on arXiv:2204.13149
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3.12 Black Box Absolute Reconstruction for Sums of Powers of Linear
Forms

Pascal Koiran (ENS – Lyon, FR)

License Creative Commons BY 4.0 International license
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Joint work of Pascal Koiran and Subhayan Saha
Main reference Pascal Koiran, Subhayan Saha: “Black Box Absolute Reconstruction for Sums of Powers of Linear

Forms”, in Proc. of the 42nd IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai, India,
LIPIcs, Vol. 250, pp. 24:1–24:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

URL http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2022.24

We study the decomposition of multivariate polynomials as sums of powers of linear forms.
We give a randomized algorithm for the following problem: If a homogeneous polynomial
f ∈ K[x1, ..., xn] (where K ⊆ C) of degree d is given as a blackbox, decide whether it can be
written as a linear combination of d-th powers of linearly independent complex linear forms.
The main novel features of the algorithm are:

For d = 3, we improve by a factor of n on the running time from the algorithm in (Koiran
and Skomra, 2020). The price to be paid for this improvement is that the algorithm now
has two-sided error.
For d > 3, we provide the first randomized blackbox algorithm for this problem that
runs in time poly(n, d) (in an algebraic model where only arithmetic operations and
equality tests are allowed). Previous algorithms for this problem (Kayal, 2011) as well as
most of the existing reconstruction algorithms for other classes appeal to a polynomial
factorization subroutine. This requires extraction of complex polynomial roots at unit
cost and in standard models such as the unit-cost RAM or the Turing machine this
approach does not yield polynomial time algorithms.
For d > 3, when f has rational coefficients (i.e. K = Q), the running time of the blackbox
algorithm is polynomial in n, d and the maximal bit size of any coefficient of f . This
yields the first algorithm for this problem over C with polynomial running time in the bit
model of computation.

These results are true even when we replace C by R. We view the problem as a tensor
decomposition problem and use linear algebraic methods such as checking the simultaneous
diagonalisability of the slices of a tensor. The number of such slices is exponential in d. But
surprisingly, we show that after a random change of variables, computing just 3 special slices
is enough. We also show that our approach can be extended to the computation of the actual
decomposition. This step relies on matrix diagonalisation which is not an algebraic step over
C. In forthcoming work we plan to extend these results to overcomplete decompositions, i.e.,
decompositions in more than n powers of linear forms.

3.13 Turning Turing Machines into Boolean Circuits
Michal Koucký (Charles University – Prague, CZ)

License Creative Commons BY 4.0 International license
© Michal Koucký

We give a new simple proof for the classical result that Turing machines running in time
t(n) and space s(n) can be simulated by boolean circuits of size O(t(n)logs(n)) and of depth
O(t(n)). When we allow unbounded fan-in gates we can get circuits of the same size and
depth O(t(n)/loglogs(n)).
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3.14 The complexity of monomial symmetric polynomials
Nutan Limaye (IT University of Copenhagen, DK)

License Creative Commons BY 4.0 International license
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Informatik, 2022.
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The determinant of the Vandermonde matrix has a very simple algebraic formula. However,
the complexity of its permanent, denoted in this talk as Perm(V), is not known. The
permanent of the Vandermonde matrix is a “monomial symmetric polynomial”. In this talk
we show that there exist monomial symmetric polynomials that are hard for VNP.

3.15 Decision tree rank for Boolean functions
Meena Mahajan (The Institute of Mathematical Sciences – Chennai, IN)

License Creative Commons BY 4.0 International license
© Meena Mahajan

Joint work of Yogesh Dahiya, Meena Mahajan
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In this talk, I describe some relations between the minimum rank of a decision tree computing a
Boolean function and other complexity measures of the function. I also describe a composition
theorem in terms of rank and decision tree depth, and show how it simplifies some known
lower bounds on decision tree size and rank.

Joint work with Yogesh Dahiya.

3.16 Radical Sylvester-Gallai theorem for cubics – and beyond
Rafael Mendes de Oliveira (University of Waterloo, CA)
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Joint work of Rafael Oliveira, Akash Kumar Sengupta
Main reference Rafael Mendes de Oliveira, Akash Sengupta: “Radical Sylvester-Gallai for Cubics”, Electron.

Colloquium Comput. Complex., Vol. TR22-131, 2022.
URL https://eccc.weizmann.ac.il/report/2022/131

In 1893, Sylvester asked a basic question in combinatorial geometry: given a finite set of
distinct points v1, . . . , vm ∈ RN such that the line defined by any pair of distinct points vi, vj

contains a third point vk in the set, must all points in the set be collinear?
Generalizations of Sylvester’s problem, which are known as Sylvester-Gallai type problems,

have found applications in algebraic complexity theory (in Polynomial Identity Testing –
PIT) and coding theory (Locally Correctable Codes). The underlying theme in all these
types of questions is the following:

Are Sylvester-Gallai type configurations always low-dimensional?
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In 2014, Gupta, motivated by such applications in algebraic complexity theory, proposed
wide-ranging non-linear generalizations of Sylvester’s question, with applications on the PIT
problem.

In this talk, we will discuss these non-linear generalizations of Sylvester’s conjecture,
their intrinsic relation to algebraic computation, and a recent theorem proving that radical
Sylvester-Gallai configurations for cubic polynomials must have small dimension.

Joint work with Akash Kumar Sengupta.

3.17 High-dimensional expanders from Chevalley groups
Ryan O’Donnell (Carnegie Mellon University – Pittsburgh, US)
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In this talk I discussed recent joint work with Kevin Pratt on constructing high-dimensional
expanders.

Let Φ be an irreducible root system (other than G2) of rank at least 2, let F be a finite
field with p = charF > 3, and let GΦF be the corresponding Chevalley group. We describe
a strongly explicit high-dimensional expander (HDX) family of dimension rank(Φ), where
GΦF acts simply transitively on the top-dimensional faces; these are λ-spectral HDXs with
λ → 0 as p → ∞. This generalizes a construction of Kaufman and Oppenheim (STOC 2018),
which corresponds to the case Φ = Ad. Our work gives three new families of spectral HDXs
of any dimension ≥ 2, and four exceptional constructions of dimension 4, 6, 7, and 8.

3.18 Highly-efficient local proofs
Noga Ron-Zewi (University of Haifa, IL)

License Creative Commons BY 4.0 International license
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Joint work of Noga Ron-Zewi, Ron Rothblum

The celebrated PCP theorem from the 90’s shows that any mathematical proof can be
encoded in such a way that its correctness can be verified locally by reading only a tiny
number of bits from the encoding. A fundamental question that has drawn a great amount
of interest is what is the minimal overhead in encoding that is needed to allow for such highly
efficient local verification. While the original PCP theorem only guarantees a polynomial
overhead, a beautiful line of work has culminated in remarkably short encodings with only a
poly-logarithmic overhead. Motivated by cryptographic applications, we study a relatively
new interactive variant of PCPs, called Interactive Oracle Proofs, and show that for this
model the overhead in the encoding can be made arbitrarily small (approaching 1), and
moreover, the prover complexity overhead can be made constant.

The improved efficiency was obtained by replacing polynomial-based codes, commonly
used in such proof systems, with more efficient (tensor-based) codes. In particular, these
constructions bypassed a barrier imposed by the need to encode the computation using a
multiplication code.
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3.19 An Algorithmic Approach to Uniform Lower Bounds
Rahul Santhanam (University of Oxford, GB)

License Creative Commons BY 4.0 International license
© Rahul Santhanam

We propose a new family of sampling tasks such that non-trivial algorithmic solutions to
certain tasks from this family imply frontier uniform lower bounds such as “NP not in uniform
ACC0” and “NP does not have uniform depth-2 threshold circuits”. Indeed, the most general
versions of these sampling tasks have implications even for central open problems such as
PSPACE vs P and NP vs P.

We observe that these sampling tasks do have non-trivial solutions under standard
cryptographic assumptions. Moreover, we can use our framework to capture uniform versions
of known non-uniform lower bounds, as well as classical results such as the space hierarchy
theorem and Allender’s uniform lower bound for the Permanent. Our framework can also be
used to show that NP does not have uniform AC0 circuits with a bottom layer of Mod 6
gates – the non-uniform version of this lower bound appears to be an open question.

3.20 Demystifying the border of depth-3 algebraic circuits
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Border (or approximative) complexity of polynomials plays an integral role in GCT approach
to P̸=NP. This raises an important open question: can a border circuit be efficiently
debordered (i.e. convert from approximative to exact)? Or, could the approximation involve
exponential-precision which may not be efficiently simulable? Circuits of depth 3 or 4, are a
good testing ground for this question.

Recently, (Kumar ToCT’20) proved the universal power of the border of top-fanin-2
depth-3 circuits. We recently solved some of the related open questions. In this talk we
outline our result: border of bounded-top-fanin depth-3 circuits is relatively easy– it can
be computed by a polynomial-size algebraic branching program (ABP). Our de-bordering
paradigm has many applications, especially in identity testing and lower bounds.
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Based on the works with Prateek Dwivedi & Pranjal Dutta (CCC 2021) (FOCS 2021,
invited to SICOMP).

3.21 Convex influences and a quantitative Gaussian correlation
inequality

Rocco Servedio (Columbia University – New York, US)
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The Gaussian correlation inequality (GCI), proved by Royen in 2014, states that any two
centrally symmetric convex sets (say K and L) in Gaussian space are positively correlated.
We establish a new quantitative version of the GCI which gives a lower bound on this
correlation based on the “common influential directions” of K and L. This can be seen as
a Gaussian space analogue of Talagrand’s well known correlation inequality for monotone
Boolean functions.

To obtain this inequality, we propose a new approach, based on analysis of Littlewood
type polynomials, which gives a recipe for transferring qualitative correlation inequalities
into quantitative correlation inequalities. En route, we also give a new notion of influences
for symmetric convex symmetric sets over Gaussian space which has many of the properties
of influences of Boolean functions over the discrete cube. Much remains to be explored about
this new notion of influences for convex sets.

Based on joint work with Anindya De and Shivam Nadimpalli.

3.22 Lossless Condensers from Multiplicity Codes
Amnon Ta-Shma (Tel Aviv University, IL)
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In 2007 Guruswami, Umans and Vadhan gave an explicit construction of a lossless condenser
based on Parvaresh-Vardy codes. This lossless condenser is a fundamental building block in
many constructions, and, in particular, is behind state-of-the-art extractor constructions.
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We give an alternative construction that is based on Multiplicity codes. While the
bottom-line result is similar to the GUV result, the analysis is very different. In GUV (and
Parvaresh-Vardy codes) the polynomial ring is closed to a finite field, and every polynomial
is associated with related elements in the finite field. In our construction a polynomial from
the polynomial ring is associated with its iterated derivatives. Our analysis boils down to
solving a differential equation over a finite field, and uses previous techniques, introduced
by Kopparty for the list-decoding setting. We also observe that these (and more general)
questions were studied in differential algebra, and we use the terminology and result developed
there.

We believe these techniques have the potential to get better constructions and solve the
current bottlenecks in the area.

3.23 Matrix multiplication via matrix groups
Christopher Umans (California Institute of Technology – Pasadena, US)
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Cohn and Umans proposed a group-theoretic approach to bounding the exponent of matrix
multiplication. Previous work within this approach ruled out certain families of groups as a
route to obtaining ω = 2, while other families of groups remain potentially viable. In this
work we turn our attention to matrix groups, whose usefulness within this framework was
relatively unexplored.

We first show that finite groups of Lie type cannot prove ω = 2 within the group-theoretic
approach. This is based on a representation-theoretic argument that identifies the second-
smallest dimension of an irreducible representation of a group as a key parameter that
determines its viability in this framework. Our proof builds on Gowers’ result concerning
product-free sets in quasirandom groups. We then give another barrier that rules out certain
natural matrix group constructions that make use of subgroups that are far from being
self-normalizing.

Our barrier results leave open several natural paths to obtain exponent 2 via matrix
groups. To explore these routes we propose working in the continuous setting of Lie groups,
in which we develop an analogous theory. Obtaining the analogue of exponent 2 in this
potentially easier setting is a key challenge that represents an intermediate goal short of
actually proving ω = 2. We give constructions in the continuous setting, which evade our
two barriers, and indeed are “best-possible” in a precise sense. We then describe a new
ingredient – “separating polynomials” – which allow us to recover a full-fledged framework
yielding actual algorithms in the Lie setting (rather than constructions whose interest is only
by analogy).
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3.24 Almost Chor-Goldreich Sources and Adversarial Random Walks
David Zuckerman (University of Texas – Austin, US)
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A Chor-Goldreich (CG) source is a sequence of random variables where each has min-entropy,
even conditioned on the previous ones. We extend this notion in several ways, most notably
allowing each random variable to have Shannon entropy conditioned on previous ones. We
achieve pseudorandomness results for Shannon-CG sources that were not known to hold even
for standard CG sources, and even for the weaker model of Santha-Vazirani sources.

Specifically, we construct a deterministic condenser that on input a Shannon-CG source,
outputs a distribution that is close to having constant entropy gap, namely its min-entropy
is only an additive constant less than its length. Therefore, we can simulate any randomized
algorithm with small failure probability using almost CG sources with no multiplicative
slowdown. This result extends to randomized protocols as well, and any setting in which we
cannot simply cycle over all seeds, and a “one-shot” simulation is needed. Moreover, our
construction works in an online manner, since it is based on random walks on expanders.

Our main technical contribution is a novel analysis of random walks, which should be of
independent interest. We analyze walks with adversarially correlated steps, each step being
entropy-deficient, on good enough lossless expanders. We prove that such walks (or certain
interleaved walks on two expanders) accumulate entropy.
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Abstract
This report documents the programme and outcomes of Dagstuhl Seminar 22372 “Knowledge
Graphs and their Role in the Knowledge Engineering of the 21st Century” held in September
2022.

The seminar aimed to gain a better understanding of the way knowledge graphs are created,
maintained, and used today, and identify research challenges throughout the knowledge engineering
life cycle, including tasks such as modelling, representation, reasoning, and evolution. The
participants identified directions of research to answer these challenges, which will form the basis
for new methodologies, methods, and tools, applicable to varied AI systems in which knowledge
graphs are used, for instance, in natural language processing, or in information retrieval.

The seminar brought together a snapshot of the knowledge engineering and adjacent com-
munities, including leading experts, academics, practitioners, and rising stars in those fields. It
fulfilled its aims – the participants took inventory of existing and emerging solutions, discussed
open problems and practical challenges, and identified ample opportunities for novel research,
technology transfer, and inter-disciplinary collaborations. Among the topics of discussion were:
designing engineering methodologies for knowledge graphs, integrating large language models and
structured data into knowledge engineering pipelines, neural methods for knowledge engineering,
responsible use of AI in knowledge graph construction, other forms of knowledge representations,
and generating user and developer buy-in. Besides a range of joint publications, hackathons, and
project proposals, the participants suggested joint activities with other scientific communities, in
particular those working on large language models, generative AI, FAccT (fairness, accountability,
transparency), and human-AI interaction.

The discussions were captured in visual summaries thanks to Catherine Allan – you can find
more about her work at https://www.catherineallan.co.uk/. The summaries are arrayed
throughout this report. Lastly, knowledge about the seminar is captured in Wikidata at https:
//www.wikidata.org/wiki/Q113961931

Seminar September 12–14, 2022 – http://www.dagstuhl.de/22372
2012 ACM Subject Classification Computing methodologies → Knowledge representation and

reasoning; Computing methodologies → Natural language processing; Computing meth-
odologies → Machine learning; Information systems → Information retrieval; Computing
methodologies → Ontology engineering; Computing methodologies → Reasoning about belief
and knowledge; Human-centered computing → Collaborative and social computing theory,
concepts and paradigms
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1 Executive Summary

Marieke van Erp (KNAW Humanities Cluster – Amsterdam, NL)
Elena Simperl (King’s College London – London, GB)
Denny Vrandečić (Wikimedia Foundation – San Francisco, US)
Paul Groth (University of Amsterdam, NL)
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Knowledge engineering has changed dramatically in the last twenty years. When the organisers
of this seminar were starting out, it used to be about gathering highly curated knowledge
from experts and encoding it into computational representations in knowledge bases. It was
primarily a manual process, focusing more on how knowledge was structured and organised,
for instance, as schemas or ontologies, and less on tying in existing data into that process. The
results were used in expert systems and required considerable up-front investment. Today,
knowledge base construction is a largely automatic process with human-in-the-loop. Owing
to greater availability of data in different modalities and to advances in data management,
machine learning, and crowdsourcing, knowledge bases today incorporate large amounts of
knowledge. Provided access to data and (off-the-shelf) AI capabilities, an organisation can
create a large knowledge base at a fraction of the costs from decades ago. It’s for these reasons
that we see knowledge bases, in particular in the form of knowledge graphs, routinely applied
in anything from search and intelligent assistants to digital twins, supply chain management,
and legal compliance. Many socio-technical challenges remain, which the seminar aimed to
address with a mix of invited talks, deep-dives, and small-group workshops as following:
Landscape review: as the field has changed so much, both in research and practices, it was

important to take inventory of approaches, methods, techniques, and tools by analysing
real-world case studies where knowledge bases and knowledge graphs are created and
used. Participants reflected on core lessons learned, knowledge gaps, and opportunities
to create and maintain knowledge graphs at scale in various domains.

The knowledge graph life cycle: participants discussed extant knowledge engineering
pipelines and identified gaps and connections between knowledge sources and meth-
ods and tools used in the construction and maintenance of knowledge graphs, including
large language models and generative AI systems. There was consensus that we need
a sustained effort to update and upgrade classical ontology engineering methodologies
and develop a prototype infrastructure to make the most of the latest neurosymbolic
technologies and tools. One specific challenge identified during the seminar was around
taking knowledge engineering and knowledge graphs beyond structured data e.g., tables
and information extraction from text to other modalities.

Using AI responsibly: as knowledge graph construction is slowly but surely embracing more
and more sophisticated AI capabilities to scale, it is critical that processes and outcomes
are aligned with fairness, accountability, and transparency guidance and standards.
Solutions need to consider a range of end-users and stakeholders, including those that are
unique to knowledge engineering settings such as domain experts, information scientists
and librarians, and knowledge graph developers. Participants discussed the need for
setting up task-based studies and in-depth analyses of human-centric challenges, and for
developing bespoke explainability solutions and bias and fairness assessments.

Knowledge and technology transfer: knowledge graphs and knowledge engineering do not
exist in isolation. From a research point of view, participants suggested activities to build
capabilities to use the latest neurosymbolic technologies and tools in knowledge graph
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construction, including tutorials, workshops, and hackathons, and to jointly develop
frameworks and methodologies. From an application point of view, it was recognised
that there is a need to promote knowledge graphs to the wider developer community and
communicate their benefits, for instance, alongside neural methods.
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3 Overview of Talks

3.1 Day 1: History, Practices, Lessons Learned

Figure 1 A History of Knowledge Engineering.

3.2 A Brief History of Knowledge Engineering: A Practitioner’s
Perspective

Bradley P. Allen (Merit International, Inc. – Millbrae, US, bradley.p.allen@gmail.com)

License Creative Commons BY 4.0 International license
© Bradley Allen

3.2.1 An Approach to the History of Knowledge Engineering

This talk is an attempt to outline the evolution of the discipline of knowledge engineering
practice over time, draw some lessons from that evolution, and then raise a number of
questions that this seminar is in a position to address, towards the end of defining paths
forward for knowledge engineering with knowledge graphs in the 21st century.

Knowledge engineering as a discipline has changed considerably since its initial flowering
during the period associated with expert systems development during the nineteen-eighties.
If we define knowledge as a set of beliefs that are “(i) true, (ii) certain, [and] (iii) obtained
by a reliable process” [2], we can further define knowledge engineering as the discipline of
building and maintaining processes that produce knowledge. We argue that this gives us a
framework to understand the history of knowledge engineering to date through the evolution
of stated requirements for such knowledge production processes.

22372

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


66 22732 – Knowledge Graphs and Knowledge Engineering

3.2.2 Seventy Years of Evolving Requirements

During the period from 1955 to today, we can identify four distinct periods, each of which
began with the addition of a new set of requirements for knowledge production processes
intended to address perceived shortcomings of systems developed during the preceding period
(see fig. 2).

Figure 2 Seventy years of evolving requirements for knowledge production processes [1, 2, 3, 4, 5,
6, 7, 9, 10, 11, 12, 13].

3.2.2.1 The Dawn of AI

Starting from Ramsey’s simple requirement that such processes be reliable, some of the
earliest work in AI identified the additional requirement that such processes also be effective,
in the sense that they complete in a reasonable amount of time [3]. Newell and Simon
were optimistic about the potential of goal-directed search using heuristics as a general
approach to problem solving to be useful for practical applications, but by the beginning
of the nineteen-seventies, it was clear that such systems were difficult to use in developing
applications that were recognizably more than just toy tasks.

3.2.2.2 The Expert Systems Era

By the mid-seventies, having been deeply involved in attempting to apply Newell and Simon’s
model, Feigenbaum became convinced that automating knowledge production required a
domain-specific focus to succeed [4]. His evangelism of knowledge engineering (a term he
was instrumental in propagating the use of) engendered a period of intense activity in the
construction of expert systems for the purposes of decision support in business enterprise
settings. By the early nineteen-nineties, however, Feigenbaum and others acknowledged that
the expert systems approach resulted in systems that were brittle and hard to maintain.
Without abandoning his requirement that knowledge production be domain-specific in
application focus and thus heavily dependent on subject matter expertise, he argued that
future knowledge-based systems also be scalable, globally distributed, and interoperable to
address these shortcomings [5]. At that point in time, however, there was no consensus
about how such requirements could be addressed, but in retrospect, one can argue that in [5]
Feigenbaum anticipated several aspects of what several years later would come to be known
as the World Wide Web.
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3.2.2.3 The Semantic Web Era

With the establishment of the Web and the emergence of Web architectural principles,
Berners-Lee argued for a “Web of Data” based on linked data principles, standard ontologies,
and data sharing protocols that not only provided an implementation of Feigenbaum’s
requirements, but with a single stroke established Web-centric open standards that anyone
could adopt [6]. The subsequent twenty years witnessed the development of a globally
federated open linked data “cloud”, as well as the refinement of techniques for ontology
engineering (i.e., the development and publishing of shared data schemas with semantics
using linked data principles). Enterprises in particular found better value propositions
for the use of such techniques toward the improvement of access and discovery of Web
content and data, in contrast to the automation of decision making that was the primary
value proposition for knowledge-based systems during the expert systems era [8]. However,
while progress was made in building systems based on such principles, general adoption of
specific principles advocated for by the semantic web community by the broader community
of software developers and web application designers was slow, leading to semantic web
researchers to identify additional requirements for broader adoption, for example that the
core tools and standards used in semantic web application be more developer-friendly and
more directly aligned with software industry norms, and that measures be taken to make
federated open data more robust to noise [9]. Addition focus on improving the effectiveness
of federated query, which proved hard to scale, and on handling the problem of data catalog
incompleteness, all the while maintaining the practical benefits of open source and open
standards led to new requirements towards those ends [11, 12].

3.2.2.4 The Language Model Era

The success of connectionist methods arising from the proliferation of graphical processing
hardware for matrix arithmetic and concurrent innovations in neural network architectures
[14] has led to a new set of possibilities for the production of knowledge graphs. This is an
area that at the time of this writing is difficult to summarize due to the rapid rate of research
publication, but two perspectives on the relation between language models and knowledge
bases have emerged over the last several years. First, that the language model can serve
directly as a knowledge base that is queryable using natural language prompts; secondly,
that a language model can be a useful component in a knowledge production workflow that
combines techniques based on the use of language models together with more traditional
symbolic approaches [13]. Regardless of which of these perspectives is most valid, both are
sure to result in work that will have an impact on the ability to produce and use knowledge
graphs in knowledge engineering work moving forward.

3.2.3 Seventy Years of Lessons Learned

This decades-long evolution of knowledge engineering, bringing us to the current situation
where the production of knowledge as knowledge graphs is gaining industrial acceptance at
the same time as an entirely new paradigm of knowledge production through the use of large
language models may be beginning to emerge, provides us with lessons learned along the
way. In addition to these lessons from the history of knowledge engineering, it is also worth
noting as well that this period also saw the evolution of software engineering best practices
and patterns, as well as the emergence of both the software products and Internet services
industries, and that many of the lessons learned in those contexts can be applied to improve
the practice of knowledge engineering, particularly from a methodological perspective. Below
we call out seven such lessons.
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3.2.3.1 Manually Authored Knowledge from Subject Matter Experts is Precious

The digital library community has long argued that manually-created metadata is of vital
importance in the creation of robust search resources, and much of the development of
the World Wide Web (and continuing on to the Open Linked Data cloud) was informed
by that assumption [15]. The effort of designing ontologies, taxonomies, and entity and
relationship data has historically depended on expensive, labor-intensive manual effort. In
many respects, the work generated by this labor is irreplaceable, and must be treated with
respect. Acknowledging the essential nature of these foundational knowledge resources is not
only important for an understanding of how knowledge is produced, but also to gain a clear
understanding of the labor economics involved in these processes, from both a cost and an
ethical perspective [16].

3.2.3.2 Automatic Generation of Knowledge is Needed for Scale

Automatic generation of knowledge graphs are needed to scale the extraction and production
of knowledge. With the emergence of statistical natural language processing capable of dealing
with training corpora on the order of half a trillion tokens, text available in massive curated
corpora or the Web at large are now a effective source of manually authored knowledge. The
sheer amount of human-authored content across the Web and in hand-crafted ontologies for
linked open data require the automation of the knowledge graph creation process. Automation
can also reduce time-to-market and enable larger and more up-to-date knowledge graphs to
be generated, making knowledge graphs more accessible and useful.

3.2.3.3 Human Curation of Automatically Generated Knowledge is Needed for Trust

While automated systems can produce large knowledge graphs, they are limited in their
ability to interpret and contextualize this output (though with the advent of language models
this may be changing). Human curation is needed to verify that the knowledge graph
production process is accurate. This process of verification is a necessary condition in many
applications for users to be able to trust the knowledge and use it effectively. Additionally,
human curation can provide insights into the data that automated systems may miss, such
as potential ethical implications, biases, and areas for improvement.

3.2.3.4 User Buy-in to the Value Proposition is Essential

The failure of expert systems in delivering value to commercial enterprises can be viewed as
an example of the failure of software product developers to understand users’ needs and to
effectively communicate value propositions to their users [17]. In striving to replace human
decision makers, knowledge engineering in the expert systems era was attempting to solve a
problem that ultimately turned out to be not of great importance to many enterprises. The
Semantic Web era saw a realignment of knowledge engineering with user values by developing
knowledge graphs that supported the needs of organizations to develop ways of guiding their
users to the right sources of knowledge and information.

3.2.3.5 Developer Buy-in is Critical for Adoption of Standards and Tools

Software developer buy-in is critical for the successful adoption of standards and tools in any
given field. Without their buy-in, the standards and tools will not be leveraged correctly
by developers, or at all. We see this in the controversies around the adoption of Semantic
Web standards and tools. In part, some developers are hesitant to use these standards
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and tools due to limited support by commercial vendors, and the lack of resources to help
them understand the technology and how to incorporate it into their projects. Without the
buy-in of software developers, knowledge graph standards and tools will continue to lack
widespread adoption. In instances where commercially-useful enterprise knowledge graphs
have been produced, such as Google Knowledge Graph [18], Amazon’s Product Graph [19],
and Wikidata [20], this has led to a reliance on custom architectures and approaches, which
does not address the requirements of interoperability and federation of knowledge resources
identified by Feigenbaum and Berners-Lee [5, 6].

3.2.3.6 Open Source/Access/Standards are a Huge Accelerant for Adoption

Open source/access/standards promote adoption because they make it easier to share,
collaborate, and replicate research. For example, the pace of research and development in the
area of large language models has been greatly accelerated by open source initiatives such
as GPT-3 [21], TensorFlow [22], and PyTorch [23]. Initiatives such as these have provided
researches in both academic and industrial contexts quick and easy access to cutting-edge
tools and datasets, which in turn allows researchers to share, replicate, and collaborate on
research quickly and easily through open access publication platforms such as Arxiv [24]. As
a result, researchers are able to develop more sophisticated models and applications faster
than ever before; this is in contrast with the experience of knowledge engineering in the
expert systems era, which was heavily dependent on proprietary, closed source tools and
technologies, and hence compromised with respect to the speed of innovation and technology
transfer.

3.2.3.7 Failure in the Short Term is Often Followed by Success in the Long Term

It is easy to be disillusioned by the inability to deliver clear benefits out of the early adoption
of technologies that initially seemed to carry significant promise. But often that perception of
failure is due to insufficient time yet invested in working through the challenges of deployment
and adoption. The history of speech recognition is a wonderful example of this. The initial
approaches taken by participants in the ARPA Speech Understanding Research Project of the
mid-nineteen-seventies laid the groundwork for much of what has come to be the statistical
and neural language processing technologies approaching universal adoption today, at levels
of accuracy barely dreamed of by the researchers of the time. At the conclusion of that
effort, however, the evaluation of the project’s result was decidedly mixed, with some expert
evaluators arguing that the effort had in fact been a step backwards for the research area
[25]. This example argues for patience in the effort to demonstrate the benefits of the use
and application of knowledge graphs in knowledge engineering.

3.2.4 The Road Ahead: Questions for the Seminar

This seminar provides us with an opportunity to reflect on the past and come up with a set
of goals for future progress towards the continuing evolution of knowledge engineering. Below
are five questions that we believe need to be addressed to arrive at a robust set of goals.

In what ways does knowledge engineering deliver value today?
Knowledge graphs have demonstrated their ability to improve knowledge access, knowledge
discovery, and heterogeneous data integration. But in many respects these are incremental
improvements over what has been accomplished with software engineering in general.
Can we identify economically and societally important problems either cannot be solved
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without knowledge engineering, or are best solved with it? These problems will give us
the basis for reinforcing the case for the benefits of knowledge engineering, that can be
used to drive further adoption.

What should be the requirements for knowledge production processes?
Best practice in software product development requires us to clearly establish that our
technology choices are properly motivated by our users’ needs. What are we to carry
forward from the cumulative sum of requirements articulated in the body of worked
referenced in fig. 2 above? The requirements for knowledge graph production processes
should include capabilities for data integration from multiple structured sources, data
quality checks, entity resolution, merges and links, query optimization, and natural
language processing. Moreover, the production processes should be automated to enable
efficient updates and maintenance of the knowledge graph. Finally, the production
process should incorporate mechanisms for security and privacy, as well as access control
mechanisms to ensure that the data stays secure and only authorized users have access.
It is worth observing that many of these issues have been explored to date in the more
generic context of data engineering and data science architectures and platforms. To
what extent does knowledge engineering add value to those architectures and platforms,
and how current knowledge engineering and knowledge graphs tools and standards can
be best integrated with them?

Why do we believe that knowledge graphs are a key enabling technology?
A fundamental premise of this seminar is there is a consensus that knowledge graphs are
the preferred representation for knowledge for knowledge engineering. What evidence do
we have for this assertion? Anecdotally, there is a better developer experience associated
with the use of graphs as opposed to, e.g., rules, but what evidence has been gathered to
support this view?

What other enabling technologies are there, and how do they interact with knowledge
graphs?

Large language models show early promise as a enabling technology that can significant
improve and complement knowledge graphs. Can they be harnessed to this end, or
do they instead they present an alternative approach to knowledge engineering? In
addition, graph databases are necessary for the storage and querying of knowledge
graphs, but there is a bifurcation within the community between the use of RDF graphs
and labeled property graphs to represent knowledge graphs. How can we reconcile these
two approaches (for example, as described in [26])?

How can we convince people that knowledge graph engineering is mainstream software
engineering?

Finally, and perhaps most importantly, the majority of software engineering efforts
today do not involve the use of knowledge engineering techniques, even in use cases
where knowledge engineers can see clear benefits to be gained in their use. Knowledge
engineering is still a niche skill set that is unfamiliar to most practicing software engineers.
However, the architectures and methodologies emerging from the commercial applications
of machine learning, data science, and data engineering [27] in many ways borrow heavily
from those developed to support knowledge engineering. How can we better relate
knowledge engineering concepts, tools and methodologies to the industry consensus and
ecosystem that has been established for data engineering and data science platforms, and
drive mainstream adoption in the future?
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3.3 Knowledge Engineering Past, Present, (some) Future: A
Researcher’s View

Deborah L. McGuinnness (Rensselaer Polytechnic Institute – Troy, US, dlm@cs.rpi.edu)
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I provide a brief historical perspective on significant research contributions and highlight some
key lessons, some of which may be particularly worthy for reflection as we move forward. I
begin with expert systems as a foundational motivating area but I also highlight the evolution
and contributions from the structured object and ontology communities. I also reflect on
the early notion of knowledge engineering as the applied side of artificial intelligence (from
Feigenbaum) and present that notion in the grounding of the 21st century environment. I also
present a range of characteristics as considerations for evaluating if a knowledge engineered
system is “good”.

I then present some perspectives on the our current landscape that may be significantly
different from the past. These include: much greater need for knowledge graph interoperability
(as well, of course, as the needs for compatibility and interoperability with a wide range
of ontologies); The very large linked open data world ; the significantly more diverse
architectures for hybrid AI systems, with large language models as an increasing component;
the increasingly diverse community of co-designers and co-authors of large “smart” data
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portals. I conclude with a set of driving research questions along with a take home message
that process and methodology is becoming even more critical for our field to increase impact
and buy-in.

3.4 Automated Knowledge Graph Construction
Lise Stork (Vrije Universiteit of Amsterda, NL, l.stork@vu.nl)
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Figure 3 Automated Knowledge Graph Construction.

The talk gave an overview of Knowledge Graph Construction (KGC) methods, four big
focus shifts in the development of these methods [1], and sketched some open challenges and
future directions for KGC.

Over the past decade, many methods have been proposed for KGC: human-based collab-
orative or curated approaches in which experts work together to create and curate knowledge
graphs, but also automated approaches, classified broadly into approaches that use a pre-
defined schema for extraction, versus open information extraction (IE) [2, 3]. Tasks become
increasingly harder (i) with less data available for training, (ii) when relationships are in-
creasingly complicated to extract (binary vs n-ary relations) and (iii) the openness of the
task: schema-driven vs open IE.

Methods proposed for KGC have shifted focus from the engineering of features, to the
engineering of model architectures, the engineering of tasks or objectives, to the engineering
of prompts [1]. Before 2013, domain experts used their expertise about a domain to define
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salient textual features to be used in an NLP task. After the rise of Neural Nets, the focus
shifted towards Architecture Engineering: convolutional neural networks as well as recurrent
neural networks such as LSTMs and BiLSTMs were applied in a fully supervised manner,
where features were learned jointly with the supervised classification task.

Around 2017, the power of language models increased, mostly due to the discovery that
proximity in the input is less important than expected, and context is much better represented
when sentences are processed fully, using attention mechanisms [4], instead of sequentially.
Such a method at the same time proved easier to train. Since these models, when trained
on large corpora, appeared powerful enough to be used in a variety of down-stream tasks,
the focus then began to shift towards the fine-tuning of pre-trained LLMs specific tasks
[5, 6, 7, 8, 9].

Lastly, since 2019, it was found that these LLMs are interesting to probe, given that
they have learned a lot of interesting facts. It was hypothesized that LLMs could serve as
knowledge graphs themselves; new ways had to be discovered to query them. Therefore, the
focus shifted towards creating, either manually or algorithmically, prompts in order to get
out the interesting facts these LLMs models had learned, and ‘prompt engineering’ became
an active field of research [1, 10, 11].

Open challenges that were proposed:
1. how to automatically construct “higher-order or higher-ary knowledge”, such as scopes,

context, degrees of belief, confidence, and how to evaluate these;
2. how to deal with n to M relations;
3. how do we integrate LMs in the knowledge engineering pipeline;
4. how to deal with bias, trust and control in LMs as KGs; how to add provenance to

statements in LMs;
5. how to deal with explainability of answers from prompts;
6. how to update facts in LLMs as KGs;
7. what types of knowledge representations do we extract.
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3.5 Day 2 Challenges and Future Directions

Figure 4 Future Directions: Human-Centric Knowledge Graph Construction.
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3.6 Human-Centric Knowledge Engineering: Making Knowledge
Engineering Trustworthy

Elena Simperl (King’s College London, GB, elena.simperl@kcl.ac.uk)
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Knowledge engineering has changed dramatically since I was doing my PhD. It was always
meant to be and has remained a challenging, inter-disciplinary subject – the question of how
to encode a domain in a computational representation will always be non-trivial and will
require some form of human-in-the-loop. The field has advanced considerably: the knowledge
bases we build today are much larger and more complex than twenty years ago, there are a
range of technologies and end-user tools to support standard tasks, as well as several notable
open-source projects delivering large knowledge graphs that can bootstrap applications
without massive up-front investment. And yet, our understanding of user-centric aspects of
knowledge engineering remains limited. The reasons for this are as often sociotechnical, but
the result is clear: we are not (yet) in a position to fully answer questions like these:

Who are the users?
What are the users’ tasks and goals?
How does a user interact with the knowledge graph?
What are the users’ experience levels with it, or with similar environments?
What functionalities does the user need?
What additional information might the users need, and in what form do they need it?
How does the user think knowledge engineering tools should work?
Is the user multitasking? Are they working on a mobile phone, desktop computer etc?
Does the interface utilise different input modes, such as touch, speech, gestures or
orientation?
How can we support multi-disciplinary teams?
How can we support remote work, decision making, conflict resolution?

Answering such questions will require studies of specific knowledge engineering projects
or tool environments, but would deliver invaluable insights to improve both user experience
and knowledge graph outcomes. In time, it would lead to a culture of user-centric design
and to research advances that are applicable beyond knowledge engineering contexts. with
the recent changes, it is also worth revisiting the surveys and handbooks written a decade
or so ago to deliver up-to-date comparative surveys and tool evaluations, relevant to how
knowledge graphs are built today in terms of scale, complexity, and degree of automation.

Using automation, particularly the latest AI capabilities, raises interesting human-centric
challenges, which other communities such as natural language processing and computer
vision are starting to explore. These are grouped under the banner of trustworthy AI, which
is concerned with questions of transparency, accountability, fairness, human agency and
oversight, and sustainability when AI is used by (or impacts) different groups of people. There
is a large body of work happening right now to define frameworks, guidance, regulation, and
standards for trustworthy AI1 – for instance, the European Commission has proposed seven
dimensions for designing AI systems, shown in Figure 5 and there are many standardisation
activities at national and international levels (e.g. ISO).2

1 For an overview, see e.g., OECD AI Policy Observatory, https://oecd.ai/, visited in September 2022
2 See a list of AI-related ISO standards at https://www.iso.org/committee/6794475/x/catalogue/,

visited in December 2022
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Figure 5 Dimensions of Trustworthy AI according to the European Commission.

Ongoing research in trustworthy AI proposed a core set of methods and best practices to
meet the regulatory requirements of trustworthy AI systems [1]. These include factsheets [2],
model cards [3], canvases,3 explainability methods [4] and fairness and debiasing methods
[5]. Knowledge graphs and knowledge graph construction systems need to build on these
works to ensure the processes we follow and their outcomes can be trusted by end-users and
stakeholders. This includes: the domain expert or business analyst involved in knowledge
acquisition, the knowledge engineer building the knowledge graph construction pipeline,
the crowd worker labelling training data, the developer of downstream applications using
the knowledge graph, for instance in the form of embeddings [6] and the users of those
applications.

In my team we undertook research into knowledge communities such as DBpedia and
Wikidata to understand how different components of trust emerge and propose socio-technical
methods to improve the quality of the knowledge graph and make it more complete, up-to-date
and less biased. The research pursued questions such as:
Do we know how good the data in the knowledge graph is? In [7] we surveyed 28 quality

approaches and methods for Wikidata and proposed a joint framework.
Do we know where the data comes from In [8] and [9] we proposed an AI architecture

with human-in-the-loop to assess quality of triple provenance across five languages.
Do we know how to audit our data to make it less biased? In [10] we proposed a method

to detect content gaps in open knowledge graphs and applied it to three main types of
biases: gender, recency, and socioeconomic biases.

3 For example, the data ethics canvas of the Open Data Institute in the UK, https://theodi.github.
io/interactive-data-ethics-canvas/, visited December 2022
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Do we know how the data came about? Even when automation is at play, knowledge con-
struction is a social process. For this reason, we analysed the link between quality of
knowledge graph entities and the make-up of the editor teams that worked on those
entities [11, 12]

Do we know how the data is used? One application of knowledge graphs is natural lan-
guage processing. In [13] we evaluated a natural language generation system that takes
Wikidata triples and creates Wikipedia articles in different languages. We ran user studies
to understand if and when the presence of automation changes editor perceptions and
practices.

Knowledge engineering remains as exciting of a field as ever, with a range of human-
centric challenges that cannot and should not be overlooked given the advanced in the field
and in related fields such as machine learning, natural language processing, and computer
vision. Looking ahead, I would like to see more work into establishing user-centric design
and empirical methods more firmly into the ways we build our tools and applications. In
particular, we need to ensure the way we make knowledge graphs today is interpretable
and trustworthy, and ongoing research in the area of responsible AI, including transparency,
accountability, and fairness can deliver new impulses for interdisciplinary research.
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3.7 Everything is Expensive
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The creation of ontologies is expensive. It is hard to achieve the initial buy-in from developers,
and often developers are mandated into the use of a specific ontology. This often leads to less
than enthusiastic support. The ontologist often has to ”cat-herd” technical leads and product
managers across several departmenets and organizations. Generating agreements often takes
a long time and many meetings with discussions and not directly tangible outcomes. And
meetings are expensive. Even in Wikidata, property creation is one of the major bottlenecks.

The trouble with triples. Single triples cannot express complex statements (known as
n-ary statement, but also not frames or events). So patterns of triples are required to represent
such complex statements. But for users of a triple store, these are atomic statements. Tools,
user experience, metrics, processes all become much more complex and expensive due to this
mismatch.

Will large language models lead to cheap ontologies? It is expected that a technology-
driven companies there will be an initial surplus of trust in large language models, which may
backfire when these models lead to expensive errors. On the other side, technology-skeptical
organizations such as in journalism or in Wikidata, may start with a deficit of trust, which
may hamper the usage of these technologies. The biggest problem is actually the same as
with handmade ontologies: how to make people understand, commit to, and trust the created
ontologies? The cost is not in creating the ontologies, but the agreement.

Knowledge acquisition is expensive. Once we have the ontology, how do we efficiently
populate it? How do we let humans efficiently check a large amount of data before product
launch? Important are the possibility to sample parts of the knowledge graph, which are
either particularly impactful or particularly interesting. Rules have been very good at
discovering inconsistencies and incompleteness. Machine learning has also been well used to
suggest anomalies.

Knowledge maintenance is expensive. Now that we have large lists of inconsistencies and
incomplete data, what do we do with that? We also need to keep and maintain metadata
about exceptions (because the world is always more complex than your rules). If we allow for
feedback from end users, how do we capture and classify that feedback? If we don’t allow for
feedback, what is the point of the knowledge graph? How do we channel feedback in order
to maintain the knowledge?
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3.8 Tools and User Experience for KG Engineering
Filip Ilievski (University of Southern California – Marina del Rey, US, ilievski@isi.edu)
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Figure 6 Tools and User Experience.

Today’s knowledge graphs contain a wealth of information. For instance, Wikidata has
billions of statements for millions of notable entities, with recorded provenance and semantic
constraints. In this talk, I ask the question: What are KGs used for and how successfully? I
consider three user profiles: an end user, an AI/DS engineer, and a knowledge engineer.
1) An end user might use knowledge graphs to explore knowledge, browse answers to their
questions, or develop new ideas. These tasks can be supported by browsers, visualization
tools, or tools for textual and faceted search. Key pain pointers from an end-user perspective
are the lack of streamed workflow from high- to micro-level, the lack of user studies, the
ambiguity of interface semantics, and issues with compositionality and data quality.
2) An AI/DS engineer might use knowledge technologies to perform automatic question
answering, recommendation, search, or content enrichment. These tasks can be pursued with
a pipeline of existing tools that perform operations like entity linking, semantic similarity,
lexicalization, and embedding learning. Integrated tools, databases, or libraries allow
developers to perform a set of these operations in the same framework, avoiding the need to
compose different toolkits, formats, and standards themselves. Evaluation dashboards for
tasks like knowledge graph completion and question answering enable fine-grained auditing
of system performance. Pain points for AI engineers include: sparsity of factual and
commonsense knowledge, consistency of ontological knowledge, the lack of decision support
tooling, and potentially outdated knowledge.
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3) A knowledge engineer might contribute or edit new knowledge or provenance, perform
semantic modeling and validation, infer new knowledge, or engineer a new knowledge graph.
Key tools for knowledge engineers include ontology editors, tooling for Wikidata contributors,
and knowledge construction and validation tools. The key pain points for knowledge engineers
are that inference at scale is challenging, identity is hard to establish, different is-a flavors are
difficult to distinguish, the lack of tool integration, and the lack of user studies and logging
practices.

3.9 Social and Technical Biases in Knowledge Graphs
Harald Sack (FIZ Karlsruhe – Leibniz Institute for Information Infrastructure, DE & Karls-
ruhe Institute of Technology (KIT), DE, harald.sack@fiz-karlsruhe.de)
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Figure 7 Biases in Knowledge Graphs.

Knowledge graphs as a key tool for organizing and presenting information in the modern
world constitute networks of interlinked data that help us to make sense of the vast amounts
of information available to us. Once constructed, knowledge graphs are often considered
as “gold standard” data sources that safeguard the correctness of other systems. Thereby,
objectivity and neutrality of the represented information have become an important issue.
Biases inherent to knowledge graphs may become magnified and spread through knowledge
graph based systems. Traditionally, bias can be defined as “a disproportionate weight in favor
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of or against an idea or thing, usually in a way that is closed-minded, prejudicial, or unfair”4.
Taking into account the bias networking effect for knowledge graphs, it is crucial that we
acknowledge and address various types of bias already in knowledge graph construction [1].

Biases in knowledge graphs as well as potential means to address them, are different from
those in linguistic models or image classification. Knowledge graphs are sparse by nature,
i.e. only a small number of triples are available per entity. In difference, linguistic models
learn the meaning of a term from its context within large corpora and image classification
learns classes from millions of labeled images. Biases in knowledge graphs may originate
in the very design of the knowledge graph, in the source data from which it is created
(semi-)automatically, and in the algorithms used to sample, aggregate, and process that data.
These source biases typically appear in expressions, utterances, and text sources, and can
carry over into downstream representations such as knowledge graphs and knowledge graph
embeddings. Furthermore, we also have to consider a large variety of human biases, as e.g.
reporting bias, selection bias, confirmation bias, overgeneralization, etc.

Biases in knowledge graphs can arise from multiple sources. Data bias occurs already in
the data collection process for the knowledge graph or simply from the available source data.
Schema bias depends on the chosen ontology for the knowledge graph or simply is already
embedded within the used ontologies [1]. Inferential bias might result from drawing inferences
on the represented knowledge. Ontologies are typically defined by a group of knowledge
engineers in collaboration with domain experts and consequently (implicitly) reflect the
worldviews and biases of the development team. Ontologies are also prone to encoding bias
depending on the chosen representation language (fragment of description logics). Moreover,
biases in knowledge graph embeddings may also arise from the embedding method. Inferential
biases in knowledge graphs arise at inferencing level, such as reasoning, querying, or rule
learning. A simple example might be the different SPARQL entailment regimes, which in
consequence, might be responsible for different results that different SPARQL endpoints
deliver despite containing the same knowledge graph.

Collaboratively built knowledge graphs, as e.g. DBpedia or GeoNames also exhibit
social bias, often arising from the western centered world view of their main contributors [2].
In addition, some “truths” represented in those knowledge graphs might be considered as
controversial or opinionated, which underlines the importance of provenance information.

For knowledge graph embeddings that represent a vector space based approximation of
the structural and semantic information contained in a knowledge graph, one of the main
sources of bias lies in the sparseness and incompleteness of most knowledge graphs. Thereby,
knowledge graph embeddings trained on incomplete knowledge graphs might favour entities
for which more information is available [3]. However, if the underlying knowledge graph
is biased, then also knowledge graph embeddings trained on this base data. De-biasing of
knowledge graph embeddings requires methods for detecting as well as removing bias in
knowledge graph embeddings. Depending on the underlying embedding model, this task
might become complex and requires finetuning of embeddings with respect to certain sensitive
relations [4, 5, 6].
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4 Lightning Talks

Figure 8 Participant Perspectives – Lightning Talks.
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4.1 Organizing Scientific Contributions in the Open Research
Knowledge Graph
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The transfer of scholarly knowledge has not changed fundamentally for many hundreds of
years: It is usually document-based-formerly printed on paper as a classic essay and nowadays
as PDF. With around 2.5 million new research contributions every year, researchers drown
in a flood of pseudo-digitized PDF publications. As a result, research is seriously weakened.
We argue for representing scholarly contributions in a structured and semantic way as a
knowledge graph. The advantage is that information represented in a knowledge graph
is readable by machines and humans. As an example, we give an overview of the Open
Research Knowledge Graph (ORKG5), a service implementing this approach. For creating
the knowledge graph representation, we rely on a mixture of manual (crowd/expert sourcing)
and (semi-)automated techniques. Only with such a combination of human and machine
intelligence, we can achieve the required quality of the representation to allow for novel
exploration and assistance services for researchers. As a result, a scholarly knowledge graph
such as the ORKG can be used to give a condensed overview of the state-of-the-art addressing
a particular research quest, for example as a tabular comparison of contributions according
to various characteristics of the approaches. Further possible intuitive access interfaces to
such scholarly knowledge graphs include domain-specific (chart) visualizations or answering
natural language questions.

A detailed presentation including screenshots of the demo can be found here.

4.2 dblp as a Knowledge Graph
Marcel R. Ackermann (Schloss Dagstuhl LZI – Trier, DE)
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For more than 20 years, a full XML dump of the dblp computer science bibliography6 has
been available as open data for download and reuse. Snapshots of the dblp XML dump have
been converted to RDF before by members of the community. However, these snapshots are
usually severely out of sync with the continuously curated dblp data, in some cases up to
several years. To remedy this problem, the dblp team has now started to release its data
also in RDF via APIs and as a full dump download. The goal is to provide a semantically
rich knowledge graph of bibliographic information that is up to date and in sync with the
curated and disambiguated dblp data. Just as with any other data provided by dblp, the
RDF data is made available under CC0 1.0 Public Domain Dedication license.

In its initial release, the dblp knowledge graph7 forms a simple person-publication graph,
consisting (as of October 2022) of more than 3 million person entities, 6.3 million publication
entities, and 340 million RDF triples in total. More than 15 million external resource URIs

5 https://orkg.org
6 https://dblp.org
7 https://dblp.org/rdf/
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are linked in the data set. Numerous metadata aspects, like journals/conference series or
the affiliation of an author, are currently provided only as string literals. Future iterations
of the schema will see these and further aspects being added as true entities, together with
their own metadata, persistent IDs, and links to external resources. Hence, we don’t see the
current dblp knowledge graph as final, but rather as a first step in providing the semantics
of the dblp dataset in a more structured way. We also aim to provide a proper SPARQL
endpoint in the near future.

4.3 Triples are not Enough
Denny Vrandečić (Wikimedia Foundation – San Francisco, US)
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Abstract Wikipedia aims to cover the whole breadth of knowledge that is in a usual Wikipedia
article. Wikidata cannot comfortably represent the kind of knowledge necessary for the
natural language text of such a Wikipedia article. We decided to work with two knowledge
representations beyond triples: functions, in order to generate natural language text, and
frames, in order to capture n-aries and other complex statements [1].

See [1] for more details.

4.4 Making Knowledge Graph Embeddings a First Class Citizen
Heiko Paulheim (Universität Mannheim, DE)
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Knowledge graph embeddings have become a major area in the knowledge graph research
landscape. There are quite a few downstream applications which do not consume the
knowledge graph per se, but only the embeddings.

At the same time, embeddings are not very well integrated in current tool stacks. In
many cases, developers download a dump of a knowledge graph, compute embeddings, and
then feed them into the application at hand. Such a model can neither incorporate any
knowledge graph dynamics, nor is it suitable if only a small excerpt of a large knowledge
graph is of interest for an application at hand. [2].

Services which serve knowledge graph embeddings like KGvec2go [3] are still rare.
Moreover, embeddings are rarely integrated with other KG toolstack services, such as
query interfaces. For those reasons, if we want to unleash the full potential of knowledge
graph embeddings, we have to integrate them more tightly into our current knowledge graph
tool stacks.
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4.5 Knowledge Graph Completion using Embeddings
Mehwish Alam (FIZ-Karlsruhe, Leibniz Institute for Information Infrastructure, DE &
Karlsruhe Institute of Technology, DE)
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Knowledge Graphs (KGs) constitute a large network of real-world entities and relationships
between these entities. KGs have recently gained attention in many tasks such as recommender
systems, question answering, etc. Due to automated generation and open-world assumption,
these KGs are never complete. Recent years have witnessed many studies on link prediction
using KG embeddings which is one of the mainstream tasks in KG completion. These
KG completion methods also include methods for entity type prediction [4], i.e., given the
structural, textual, or another kind of information about an entity the task is to predict the
type of an entity. Over the past few years, many methods have been proposed that also
utilize language models, as well as a few benchmark datasets, have also been proposed [5]. A
challenge remains as to how these methods can further be applied to real-world problems
such as the biomedical domain, materials sciences, cultural heritage, scholarly data [6], etc.
How do these existing methods scale to a particular domain? Moreover, multilingualism is
also an important aspect that is under explored, i.e., how different language chapters of a
KG such as Wikidata or DBpedia can help complete a KG in one language?

4.6 Knowledge Engineering for Semantic Web Machine Learning
Systems

Marta Sabou (Vienna University of Economics and Business, AT)
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In line with the general trend in artificial intelligence research to create intelligent systems
that combine learning and symbolic components, a new sub-area has emerged that focuses on
combining machine learning (ML) components with techniques developed by the Semantic
Web (SW) community – Semantic Web Machine Learning (SWeML for short). Of particular
interest are the emerging variations of processing patterns used in these SWeML systems in
terms of their inputs/outputs and the order of the processing units. While several such neuro-
symbolic system patterns were identified previously, we performed a systematic study and
analyzed nearly 500 papers published in the last decade in this area. Overall we discovered
41 different system patterns, which we categorized into six pattern types. We observed that
simple patterns that only incorporate one ML module are the most frequent, however the
number of modules used in SWeML Systems is growing over time leading to increasingly
complex and sophisticated system architectures for these novel systems. This development
raises interesting questions for our community: What does the emergence of these complex
systems mean for knowledge engineering? Do we need to rethink how we create, evaluate
and evolve knowledge resources to better fit the requirements of such systems? What are
typical SWeML systems patterns that can be used for various knowledge engineering tasks?
Can we make use of these system patterns to guide the development of knowledge-based
intelligent systems?
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4.7 Shifting from a Triple-centric View to a Knowledge Components
View in KGs

Eva Blomqvist (Linköping University, SE)
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Tool support and partial automation is essential in today’s Knowledge Engineering (KE)
practices. This is true both for creating schemas, e.g. ontologies, and corresponding knowledge
graphs. It is rarely the case that a single triple in a KG answers a user’s query, rather, users
of knowledge intensive systems most often need much more complex knowledge structures.
An example from our previous experience is the notion of a crime, in the policing domain. A
naive look at the concept of may lead to modelling a direct relation between a crime concept
and a person that committed that crime. While this may be to some extent valid in a historic
record, for an ongoing police investigation however, there are only suspects that to a certain
degree can be connected to the crime, based on specific evidence. Even the crime in itself
may need to be represented not as a single event, but as a series of actions, that could lead to
certain charges being applicable in court. On the other hand, end users, in this case the police
investigator also need ways to abstract from highly complex relations, to get an overview
of the main connections between events and people involved in the investigation. Hence, it
becomes essential that the knowledge engineering process captures all these end-user relevant
levels of granularity, i.e. not only the triple-level but as more complex knowledge components.
Some previous work on ontology design patterns, and recently conceptual components, point
in this direction. However, this has not yet been fully brought into KE methodologies, tools,
visualisations, and reasoning methods. Even further, when automating parts of the KE
methodologies, such as the population of KGs, there is a need for knowledge extraction not
only at the triple level, but at the level of detecting and extracting such complex components,
e.g. from natural language text, where many open challenges exist.

4.8 A Normative Knowledge Graph for Verified Identity Applications
Bradley Allen (Merit International, Inc. – Millbrae, US)
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The Merit Graph is a commercial example of a knowledge graph. However, in contrast to
other commercial knowledge graphs, and because of the sensitivity of its areas of application
in licensing, certification, and emergency services, the Merit Graph takes special care to
address the problem of ensuring that the data it contains is managed to the highest standards
of truth and trust. The Merit Graph maintains metadata about the provenance of statements
about relations and entities, and uses that information to establish access control over data
in the graph. This metadata supports verifiable and fine-grained policies that are meant to
ensure the trustworthiness of the data, as well as to prevent improper sharing of personal data
with third parties. The normative specification of these policies uses principles derived from
action and deontic modal logic, allowing the control of not only who can access certain data,
but also who is permitted to share data they have access to with whom, a capability necessary
to provide organizations the tools needed to ensure that data that they are responsible for is
not compromised or abused by others with whom they share that data. The Merit Graph

22372

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


88 22732 – Knowledge Graphs and Knowledge Engineering

is formally defined in a way that it can be transformed into a set of logical statements
which, combined at processing time with rules, can be used to perform automated reasoning
about the data in the graph. Rules are managed as part of the schema associated with
the graph, through user interfaces used by system administrators to establish policies and
provide domain expertise for specific use cases. This capability is used to automatically
perform syntactic and semantic validation, transformation, and enhancement of data during
the ingestion and issuance of merits, personas, and folios. It can also be used to perform
advanced analytics, for example, link prediction in support of the recommendation of career
or educational opportunities for licensed individuals, or normative reasoning to establish
additional permissions and obligations of entities represented in the graph.

4.9 Semantic Interoperability at Conceptual Level: Not Easy but
Necessary

Valentina Presutti (University of Bologna, IT)
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Knowledge graphs (KG) have the potential of enabling meaning-aware artificial intelligence
(AI) as opposed to statistically-aware AI. Let us consider recommending systems as an
example. Most of them rely on features such as popularity: if I like a song, I will be suggested
to listen to other music that is very “popular” among consumers who listened to the same
song before me. To act differently and being able to personalise recommendations and
motivate them, AI systems need to be aware of the meaning associated with the music
(or any other item) they recommend and of the preference that emerge from a consumer’s
previous behaviour. Encoding the meaning of music or of other subjects is a hard problem
but knowledge graphs and their ability to capture and formalise domain knowledge can push
AI systems toward this achievement. One main issue is that specialised, domain knowledge
is often overlooked. We are literally sitting on an unprecedented global, distributed source of
knowledge addressing all sorts of specialised domains (Linked Open Data – LOD) but most
KG-related research is limited to analyse and reuse encyclopedic knowledge. From a study
that analyses the alignment between LOD ontologies [7] it emerges that LOD is poorly linked
at the conceptual level (and I speculate that these alignments are mostly based on labels and
common sense). There is an opportunity and a challenge to analyse LOD’s knowledge from
specialised domains, to enrich it and properly link it at the conceptual level. We shall resume
the Semantic Web agenda about alignment and reuse of distributed ontologies, which opens
to numerous research paths: to define more expressive and flexible knowledge representation
languages, informed by empirical semantics; to standardise ontology design patterns (ODP);
to provide tool support that makes it easy to reuse ODP, to perform ODP-based ontology
alignment, to document (automatically) ontologies and KGs, to perform ontology testing, to
lexicalise ontologies, etc. Only with semantic interopertability at the conceptual level and by
properly addressing specialised domains shall we make a step towards meaning-aware AI
systems.
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4.10 Modelling Complex Concepts
Marieke van Erp (KNAW Humanities Cluster - Amsterdam, NL)
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The success of AI technologies on standardised benchmark datasets, invites us to move
towards more difficult and more complex concepts and tasks. The digital humanities domain
presents many opportunities for investigating the recognition and modelling of complex
concepts thanks to massive digitisation efforts that have made available large and varied
datasets, in multiple modalities. My work now specifically highlights the complexities in
modelling a concept such as smell, dealing with its representations in various media, and
how the temporal dimension of historical and linguistic research forces us to deal with issues
such as changing social norms and our colonial history.

4.11 KG Magic Requires KE Magic
Stefan Schlobach (VU University Amsterdam, NL)
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Expert Systems have been among the initial success stories of Knowledge Representation,
showing the potential of (mostly rule-based) formalised knowledge in a variety of tasks in
various domains. The enormous costs of producing such high-quality knowledge led to the
development of a variety of Knowledge Engineering (KE) methodologies in the Nineties
and the decades after, which focused on the challenge of creating systematic processes to
formalise tacit and tribal knowledge that, while being essential for the success of a system, is
very often neither explicit, nor formalised. Nowadays, Knowledge Graphs (KG) are often
considered to be some kind of magic wands of modern AI with the promise to extend purely
statistical, learning-based, approaches by more generalisability and explainability. This has
lead to increased interest in the development of Knowledge Graphs by commercial partners.
The engineering challenges for constructing such high-quality knowledge remain the same as
10, 20 or 30 years ago; tribal and tacit knowledge is still as non-explicit and non-formalised
as it used to be then. My research ambition is to extend the proven socio-technical KE
methodologies with recent technological advances, e.g. based on Language Models or other
statistical learning-based methods, to scale-up to the required complexity of modern AI-based
systems.
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5 Breakout Groups

5.1 Integration of Language Models and Structured Data
Juan Sequeda (data.world – Austin, US)
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Karlsruhe Institute of Technology, DE)
Soren Auer (TIB - Hannover, DE)
George Fletcher(Eindhoven University of Technology, NL)
Harald Sack (FIZ-Karlsruhe, Leibniz Institute for Information Infrastructure, DE & Karlsruhe
Institute of Technology, DE)
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This group focused on how Large Language Models (LLMs) can be integrated or used for
structure data.

5.1.1 Discussed Problems

Large-scale Language Models (LLMs) have shown impressive results in terms of language
generation, question answering, but also software source code generation or translation.
Following the presentation of the overview of the state of the art in Automated Knowledge
Graph Construction, it was observed that the surveyed methods focused on automated
approaches to construct knowledge graphs from unstructured sources. The question is
whether these results can be applied for automatically constructing knowledge graphs from
structured data (e.g. tabular, relational), and mapping structured data to ontologies and
knowledge graphs.

The following initial observations were made:
There are two streams to consider: 1) Automatic Knowledge Graph Construction from
structured data, namely given structured data as input, the output is a knowledge graph,
and 2) Automatically Mapping structured data to Knowledge Graph, namely, given
structured data and an existing knowledge graph as input, the output is an augmented
knowledge graph.
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The second stream considers the traditional data integration challenges of schema matching
and entity linking.
Language models have common sense knowledge. However, to do the mapping, it would
also need to have specific business/domain knowledge, which may not exist in language
models today.

5.1.2 Possible Approaches

There have been few recent studies focusing on tabular data to KG matching [1] along
with many recent efforts by the semantic web community which designs a group benchmark
dataset for this problem, i.e., the SemTab [2, 3, 4] challenge where the community joins
forces and presents their systems targeting the problem of tabular data to KG. None of the
existing studies so far utilize LLMs for performing this matching.

On the other hand, there have been several efforts where the latent representations are
learned directly from the tabular data such as Tab2Vec [5], TaBert [6], etc. Tab2Vec is
then evaluated on row completion, table completion, and table retrieval tasks. TaBERT is
a pre-trained model that learns representations for natural language sentences and tabular
data. These efforts should further be explored and exploited for mapping structured data to
ontologies and KGs. A brief collection of methods following this line of research has been
discussed in [7]. A deep dive into Machine or Deep Learning methods for tabular data is
required.

5.1.3 Open Research Questions

The high-level questions to consider are:
How do we automatically construct a knowledge graph from structured data?
How do we automatically construct mappings from structured data to a knowledge graph?

Diving deeper into these questions, we discussed the following questions:
Do we even need LLMs for this problem? It seems that we are turning this problem
into a nail for the Language Model hammer, thus we should try to use this tool. As
observed, language models consist of common-sense/domain-agnostic knowledge and may
lack specific domain/business knowledge, thus the limits of existing language models need
to be investigated. On the other hand, if we look at schema.org, we have evidence of
a manual, low-effort, distributed, community-driven, and scalable approach to adding
semantics to web pages.
What is the cost/benefit tradeoff to using LLMs? What do we do with the results of a
language model? A user will most likely need to review the result. For this approach
to be cost beneficial, it would need to be drastically reduced to the cost of creating the
knowledge graph manually/non-language model approaches.
How can mappings be learned with additional context provided as input, for example,
mapping patterns?
What happens when the input is just tabular data vs relational data (SQL DDL, con-
straints)?
Would there be a need to denormalize the data into a single flat table?
What are the frameworks for evaluation?
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5.1.4 Next Steps

Some anecdotal evidence arising from some experiments done during the breakout session8

showed that while LLMs are able to perform some form of data mapping on typical textbook
examples, they quickly fail when data structures are more original (and thus less likely to
be included in the LLM training data). Also, due to the lacking explainability of LLM
results, it is extremely cumbersome and thus not feasible to manually verify the results, since
the required effort for this task might easily exceed a manual mapping. However, LLMs
could possibly be used for generating smaller (e.g. property) mapping or documentation
suggestions.

An interesting question is whether the experience of LLMs can be applied to generate
novel large-scale structured data models, which are trained with millions of data schemata,
ontologies, and mappings and will thus be better suited for mapping generation tasks.
However, this might not be practically feasible since many of the required artifacts are
private. Possibly some federated learning of such large-scale structured data models could
alleviate this problem.

When considering applying Language Models for the problems of schema mapping, it’s
key to understand the state of the art in order to create bridges. For example, there is formal
work on learning schema mappings [8] and queries from examples of structured data.

One of the possible solutions could be to align two embeddings generated from different
structures such as tabular data and the knowledge graphs and perform alignments or make
use of both kinds of embeddings and use it in the downstream task of matching.

What would prompt engineering for data integration look like? This may be an extension
of the existing SemTab challenge.

Finally, we should be careful and not just jump on using the Language Model hammer
and start pounding on that hammer to see what works. It is paramount to have a systematic
approach to understanding and evaluating how language models and structured data can be
combined to automatically construct knowledge graphs.
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5.2.1 Discussed Problems

Knowledge engineering remains expensive. The emergence of new powerful automation tools
(e.g. large language models) opens new avenues for exploration to bring down the cost of
knowledge engineering. While there is much work using machine learning for knowledge
engineering (e.g. ontology learning, curation), we know much less about the overall picture
of the incorporation of these new machine learning (ML) techniques.

5.2.2 Open Research Questions

How does state of the art machine learning, including large language models augment
knowledge engineering processes and projects?
What is the existing user / developer experience of machine learning tools?
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What are the roles of people and machines in current knowledge engineering process?
How do you evaluate the added value of automation to knowledge engineering processes?
How do you control the outputs of ML-based systems are what you need for knowledge
engineering?
What is the interplay knowledge graph engineering (with or without AI) and system
engineering?

5.2.3 Possible Approaches

Classic knowledge engineering approaches (e.g. NEON [1]) tend to distinguish between
management, support, development activities while knowledge graph engineering approaches
are still in their infancy and tend to focus largely on development activities (e.g. relation
extraction, learning class representations, refinement). Therefore, the potential for automation
is much bigger when considering the management and support activities, for instance, re-
purposing existing knowledge graphs in new contexts, search, automatic generation of
documentation (e.g. labels in multiple languages, entity and relation descriptions), or process
optimization. These are just some examples, hence, what is needed is a systematic study of
current practices, roles, and tools that support them. This can be achieved in several points:

analyze emerging knowledge engineering processes to assess their automation potential
building on [2, 3, 4] (e.g. through literature reviews or empirical analysis of existing
code);
run task-based studies in which the tasks would be to build knowledge graphs following
established knowledge engineering methodologies using existing out-of-the-box automation
tools (e.g. HuggingFace);
case study analysis of existing knowledge engineering projects that include an AI element.

Within this analysis, a key emerging technology, is prompt engineering [5], whose outputs,
based on large language models, could inform knowledge engineering activities in several
ways. Here, a mapping to between the state-of-the-art in prompt engineering and knowledge
engineering would be beneficial. In particular, there is a question as to how these technologies
can be suitably controlled for knowledge engineering processes.

Evaluating and understanding the impact of technology is an established field with its
own methodologies and approaches. In particular, there has been considerable work by
researchers, practitioners and regulators around the use of machine learning in a range of
applications, which resulted in frameworks for responsible/trustworthy AI [6, 7]. Studies
with technical users of AI seem to suggest data scientists and other technical roles tend to
over-trust the outcomes of machine learning systems and do not always fully grasp how they
work, or, where applicable, their explanations [8]. End-users of downstream applications need
means to provide feedback and adjust the outputs of the application, which often involves
improving the underlying data – often, knowledge graph embeddings are a source of such
data, hence it is important when evaluating the added value of automation in building a
graph to consider questions of end-user agency and control from the start. Here, extending
approaches [9] that look at machine teaching9 to examples from knowledge graphs appears
promising.

Any way to understand to knowledge engineering with AI systems should be based on
the existing extensive work with designing and planning for AI systems. This includes a
series of practices including, following human-centered design, identifying multiply evaluation

9 https://github.com/cleanlab/cleanlab
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metrics, extensive testing and continued monitoring while in deployment.10 This also includes
reflecting on fairness and interpretability, which come with their own set of best practices
and techniques.

Furthermore, often knowledge graph engineering is described as one-off activity, where
the project is finished when a knowledge graph is complete. In practice, this is not the case
as seen by the examples discussed at the seminar. Therefore, there is to study the ongoing
maintenance of knowledge graphs the roles and automation involved. This should be done
with a grounding in the current thinking around data-centric AI and MLOps[10].

5.2.4 Next Steps

Perform the user studies, case studies and reviews mentioned above;
Organizie a workshop bringing together prompt engineering and knowledge engineering
experts.
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3 Gytė Tamašauskaitė and Paul Groth. Defining a knowledge graph development process
through a systematic review. ACM Transactions on Software Engineering and Methodology,
2022.

4 Lucie-Aimée Kaffee, Kemele M. Endris, and Elena Simperl. When humans and machines
collaborate: Cross-lingual label editing in wikidata. In Proceedings of the 15th International
Symposium on Open Collaboration, OpenSym ’19, New York, NY, USA, 2019. Association
for Computing Machinery.

5 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural
language processing. CoRR, abs/2107.13586, 2021.

6 Lu Cheng, Kush R Varshney, and Huan Liu. Socially responsible ai algorithms: Issues,
purposes, and challenges. Journal of Artificial Intelligence Research, 71:1137–1181, 2021.

7 Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Ben-
jamins, et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities
and challenges toward responsible ai. Information fusion, 58:82–115, 2020.

8 Harmanpreet Kaur, Harsha Nori, Samuel Jenkins, Rich Caruana, Hanna Wallach, and
Jennifer Wortman Vaughan. Interpreting interpretability: Understanding data scientists’
use of interpretability tools for machine learning. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, CHI ’20, page 1–14, New York, NY, USA, 2020.
Association for Computing Machinery.

9 Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in test sets
destabilize machine learning benchmarks. arXiv preprint arXiv:2103.14749, 2021.

10 https://ai.google/responsibilities/responsible-ai-practices/, https://www.microsoft.com/
en-us/ai/responsible-ai-resources

22372

https://ai.google/responsibilities/responsible-ai-practices/
https://www.microsoft.com/en-us/ai/responsible-ai-resources
https://www.microsoft.com/en-us/ai/responsible-ai-resources


96 22732 – Knowledge Graphs and Knowledge Engineering

10 Hima Patel, Shanmukha Guttula, Ruhi Sharma Mittal, Naresh Manwani, Laure Berti-
Equille, and Abhijit Manatkar. Advances in exploratory data analysis, visualisation and
quality for data centric ai systems. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’22, page 4814–4815, New York, NY, USA,
2022. Association for Computing Machinery.

5.3 Explainability of Knowledge Graph Engineering Pipelines
Axel-Cyrille Ngonga Ngonga (Universität Paderborn, DE, axel.ngonga@upb.de)
Diana Maynard (University of Sheffield, GB, d.maynard@sheffield.ac.uk)
Marcel R. Ackermann (Schloss Dagstuhl LZI – Trier, DE, marcel.r.ackermann@dagstuhl.de)

License Creative Commons BY 4.0 International license
© Axel Ngonga, Diana Maynard, Marcel R. Ackermann

5.3.1 Discussed Problems

There is currently no standard definition for explanation and explainability. We consider
the following explanation scenario [1]: An explainer is to provide an explanation for an
explanandum to an explainee via explanans. In knowledge engineering for knowledge graphs,
the explainer is commonly a system driven by some background knowledge. The explanandum
could consist of the graph as a whole or a single statement, but also the process. The explainee
can be a human or another system. Finally, the explanans can range from natural language
to a set of assertions in a formal language. In this setting, explanation is clearly an iterative
process within which the explainee can request supplementary information (e.g., pertaining
to previous explanans) to reach the explanation goal. When modelled as such, the function
of an explanation is to empower the explainee to understand enough about the explanandum
to take action. It is rather unclear how explanations and the accompanying processes are to
be tailored and evaluated.

Explainability is central for several aspects of the knowledge engineering process includ-
ing building trust, quantifying uncertainty, hypothesis exploration, due diligence support,
compliance and liability, data and process audits, and data usage agreements. Trust is a
key element of explainability, enabling the explainee to evaluate the correctness / usefulness
and/or actionability of the output. Quantifying uncertainty ensures that the explainee has a
measurement for the reliability of the explanation process and hence of the explanandum.
Devising pareto-optimal explanation processes that can cater for several of these aspects is a
challenge which is currently not widely addressed.

5.3.2 Possible Approaches

The body of works on interpretability and explainability covers various disciplines ranging
from psychology [1] to machine learning theory [2]. The ML community has developed
post-hoc methods for explainability, including approaches such as LIME [3], SHAP [4], and
MVU [5]. Ante-hoc solutions such as verbalization techniques for class expressions [6, 7] serve
a similar purpose in inductive logic programming based on description logics. Still, these
are one-shot explanations, which do not fully implement the iterative explanation process
described in Section 5.3.1. Currently, there seems to be no detailed study encompassing the
state of the art in theory and practice, but rather a number of piecemeal attempts to solve
various issues in tackling explainability.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Paul Groth, Elena Simperl, Marieke van Erp, Denny Vrandečić 97

5.3.3 Open Research Questions

Explaining is an intrinsically challenging task, as a good explanation for a given explanandum
must fit potentially very different user and application requirements. The computation
of explanations must hence be carried out in collaboration with the explainee – a process
which is widely unexplored in knowledge engineering. Still, it seems obvious that one-shot
explanations will rarely be enough to satisfy user needs. A clear specification of the relation
between explanations and interpretations (e.g., as described in [2]) must be at the core of
future research as the distinction between them is unclear and often misrepresented. Further
key challenges include the need to provide measures for explanation, methods to evaluate
them and to quantify their trustworthiness (both intrinsically and extrinsically) and to allow
for measures of uncertainty. On the other hand, since the field of explainability in this
context is both fast-evolving and application-dependent, it is therefore difficult and perhaps
undesirable – especially in the near future – to develop rigid standards.

5.3.4 Next Steps

We plan to write a survey of the state of the art in explainability, with the aim of understanding
better the current limitations and future directions. Several workshops on explainability are
currently organized at major AI conferences including XAI4CV at CVPR, and SemEx at
ISWC. We plan to support these efforts and contribute requirements and solutions from
knowledge engineering. Our ultimate goal is to write a reference book on methods and
applications of explainable AI for knowledge engineering.
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This working group focused on investigating the gap between what is currently captured in
Knowledge Graphs and what information is contained in other sources and modalities. The
impetus for this break-out group came from the observation that most current KGs focus on
factoid-information that is easily captured in triples such as information about entities and
properties.

More freely structured data such as text and images contain information that may be
difficult to capture in triple format. Procedural knowledge or other knowledge that has a
clear sequence (e.g. word order in text) does not naturally fit into KGs. Solutions such as
the NLP Interchange Format (NIF) have been proposed but lead to bulky modelling.

Information concerning more abstract concepts such as opinions or perspectives are often
implicit and have a social and contextual dimension – what is acceptable in one context
may not be acceptable in another. This type of information intersects with commonsense
knowledge as well as social norms. Something that, to the best of our knowledge, is currently
not captured in KGs.

This break-out group therefore poses the following questions:
What can (or should be) be included knowledge graph?
Which source can it come from?
What is the purpose of (elements of) the knowledge graph?

https://creativecommons.org/licenses/by/4.0/
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5.4.1 Discussed Problems – Towards a Typology of Knowledge for KGs

The main problems that we discussed are the identification and characterization of the types
above, as well as the representation techniques that can be used to handle them.

Table 1 Types of knowledge typically found in knowledge graphs.

Type of know-
ledge

Examples (Typical) representation level

Conceptual know-
ledge

Entities: classes, properties. Typic-
ally the knowledge written in OWL

T-Box, R-Box

Factual knowledge Entities and statements: objects,
relationships

A-Box

Procedural know-
ledge
Rules

Commonsense and
encyclopedic

Naive physics, “knives are used for
cutting”, “dinner is at 6pm”

Causality
Sentiment
Arguments, claims Political, scientific arguments Qualifiers, named graphs, nanopub-

lications
Beliefs “No man landed on moon”
Provenance, refer-
ences

Qualifiers, named graphs

Perspectives, narrat-
ives, frames, inter-
pretations

Colonial perspectives on objects be-
ing “given”, Tonality of a music
piece (which changes as the applied
theory changes), Wikidata has dif-
ferent entries for Jesus (in which he
may be the last or second-to-last
prophet)

Representations of situations,
(trans-)actions and (sociological)
roles

Moral and ethical
judgements

“Abortion is a crime” according to
certain groups of people in the US

Definitions (and to some extent, terminology) need to be confirmed and refined for these
types. For example our group discussed commonsense knowledge, only to conclude that
while we have a general idea of the notion – e.g., it includes what is needed to understand
the newspapers – it remains extremely vague and the term is quite overloaded.

5.4.2 Possible Approaches

A first way to refine and better structure the notions (roughly) laid down above would
be to identify suitable dimensions of analysis and position the various types of knowledge
along these dimensions. This idea follows upon the example of the “expressiveness spectrum”
produced at AAAI99, which was presented by McGuinness at the Seminar (see fig. 9).

A complementary, more bottom-up approach, would be to inventorise the elements of
knowledge used in actual KGs. As a first attempt, and recognizing that the types of knowledge
present in KGs heavily depends on the domain or the application considered, the group
embarked on identifying knowledge elements that are typically (or less typically) found in a
few selected domains.
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Figure 9 Expressiveness spectrum as presented by McGuinness during the seminar (see Section 3.3
for an overview of the talk).

Table 2 Matrix in which the break-out group brainstormed types of knowledge that may be
included in a knowledge graph for a particular use case.
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5.4.3 Next Steps

The discussion in our group was only a first attempt at charting the landscape of the various
types of knowledge that can appear in KGs. This effort needs to be continued, especially on:

Surveying of cases and the types of knowledge that can or should be relevant for them.
Working on one or several “spectra” of expressiveness and other dimensions, for the
knowledge that can be represented in KGs.

This work, which could be progressed in a workshop-like setting (especially in order to
agree on types and dimensions) and long-term community outreach effort (especially for the
surveying), should be eventually presented in a written form that can benefit researchers
and practitioners on the longer term – either as a separate paper or part of a wider book on
knowledge engineering methodology.
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This working group focused on how knowledge graphs relate to, complement, and could
be combined with, or even replaced by, other forms of knowledge representation, including
traditional forms of knowledge representation like text and tables, as well as novel forms of
knowledge representation such as (large) language models.

5.5.1 Discussed Problems

How do knowledge graphs relate to other types of knowledge representation?
What kinds of knowledge are knowledge graphs good at representing?
Will knowledge graphs still be needed given the advancements in large language models?
Are knowledge graphs the best target for knowledge extraction from large language
models?

5.5.2 Discussion

Despite the growing popularity of knowledge graphs, it is not always clear for what sorts of
knowledge (or knowledge-centric applications) such graphs are appropriate representations.
Our discussion thus covered different forms of knowledge representation and knowledge, how
knowledge graphs relate to modern forms of knowledge graphs like large language models,
and what forms of representation are useful in what settings.

5.5.2.1 Different Representations

Knowledge graphs are a particular class of knowledge representation; some members of
this class include RDF, RDF*, property graphs, Wikidata, etc. Knowledge graphs have
garnered a lot of attention for their ability to integrate knowledge from diverse sources at
large scale. However, they are only one instance of a particular “modality” of knowledge
representation used by humans. One may thus ask: How do knowledge graphs relate to other
modalities of knowledge representation? When are they more or less useful than the other
alternatives? Can we model all knowledge within a knowledge graph, or do we need different
representations for different types of knowledge? How could knowledge graphs be combined
with, or interact with, these other representations?

With respect to modalities of knowledge representation, we can identify, for example, the
following:

Textual: books, literature, rich text, emails
Lexicographical: thesauri, lexemes, vocabulary, dictionaries
Tabular : CSV, spreadsheets, relational tables
Temporal: edit histories, chronologies, stock tickers, temporal databases
Graph: (social/transport/biological) networks, knowledge graphs
Hierarchical: taxonomies, classifications, XML, JSON
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Logical: rules, ontologies, first-order logic, frames, scripts, schemas
Procedural: code, instructions, workflows, tutorials
Multimedia: video, audio, images
Diagrammatic: UML, ER, pie charts, Sankey diagrams
Numeric: embeddings, language models, matrices
Mental: human memory, epigenetic memory
Social: word of mouth, gossip, stories, songs, institutional memory

It is clear that knowledge graphs are not intended to replace all of these modalities, nor
is it clear that they even can. To understand this in more detail, we identify some different
types of knowledge:

Factual: expressing declarative statements representing claims of truth (e.g., the capital
of Nigeria is Abuja).
Quantified: expressing statements for existential or universally quantified elements (e.g.,
all countries have a capital).
Contextual: expressing statements that are claimed to be true within a certain context,
such as a probability or fuzzy quantification of truth (e.g., a country probably only has
one capital); a temporal context (the capital of Nigeria has been Abuja since 1991 ), etc.
Procedural: expressing ways of doing things, often involving a sequence of actions and
their effects (e.g., how to prepare the Nigerian dish Tuwo shinkafa).
Narrative: expressing a series of statements building a model and working within that
model to communicate knowledge
Tacit: implicit knowledge often gained through lived experience; may involve qualia,
such as taste, smell, touch, sight (e.g., what Tuwo shinkafa tastes like); socially-acquired
knowledge relating to customs, values, etc. (e.g., that it would be strange to eat Tuwo
shinkafa with marmalade), and so forth.
Counterfactual: expressing statements of possible world states, representing what would
be true under varying circumstances and often including modal terms such as “possibly”
(if I would take the bike, I would possibly not be on time).

Knowledge graphs are perhaps strongest when representing factual knowledge, particularly
when such knowledge is expressed as binary relations. When combined with rules or ontologies,
they can further represent quantified knowledge. When combined with techniques such as
annotated logic, reification, named graphs, RDF* or property graphs, etc., they can also be
used to capture contextual knowledge. For reasoning over such complex objects, however,
new formalisms would be required [1]. Though knowledge graphs are only one possible
representation, they have shown certain advantages and disadvantages when compared with
tables (SQL, CSV, etc.), trees (JSON, XML, etc.), images, and so forth.

How knowledge graphs can be used to capture procedural knowledge is less clear. If, for
example, we wanted to represent the sequence of steps in a recipe, while we could potentially
structure the recipe as a graph of dependent steps or causal relations, the steps themselves
will likely be described in natural language, such as “mash the rice with a wooden spoon”.
While such unstructured steps could potentially be decomposed (potentially recursively) into
a structured sequence of sub-steps, and the instruments they involve, etc., and while a more
fine-grained structure might help to later find recipes satisfying certain criteria, the resulting
representation will not convey very well how to actually make the recipe (a video would be
better).

Moreover, it is nontrivial how to represent hypothetical knowledge – such as counterfactual
knowledge – for which statements can be equally likely depending on different world states.
RDF* does allow for contextualised statements without any truth value assigned to them.
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These are quoted triples,11 which are statements not asserted and thus not evaluated in
the knowledge graph. However, keeping track of the epistemic status of a contextualised
statement, given situational facts, is not yet supported.

Likewise tacit knowledge is often inherently difficult to express, particularly as structured
knowledge (including knowledge graphs).

5.5.2.2 Use for Knowledge Graphs in the Age of Large Language Models

Knowledge graphs will inevitably begin to compete with – and potentially complement –
language models [2, 3], which have recently captured not only interest within academia, but
also the more general public, in terms of their ability to seemingly understand and commu-
nicate knowledge through natural language. Such language models thus increase machine
interpretability of human language. However, many of the modalities of knowledge represent-
ation introduced previously – including knowledge graphs – were primarily introduced as
a way to make knowledge available in “machine-readable” structured formats. If language
models are paving the way for human natural language to become “machine-readable”, and
if natural language is a more intuitive way for humans to capture, express, communicate and
conceptualise knowledge (including procedural and tacit knowledge), then a key question
arises: assuming that language models continue to improve over time, will we even need
structured representations like knowledge graphs in the future?

Knowledge graphs require knowledge to be structured, while language models are designed
to capture unstructured knowledge. Thus the question of how knowledge graphs relate to
language models is contained within the broader scope of how structured knowledge relates
to unstructured knowledge. Viewed in this light, knowledge graphs are more efficient for
query answering, are more reliably modifiable, are more transparent, cover the long tail
better, and lend themselves better to explainability than large language models (which we
expect to hold, also, for the medium-term future). In more detail:

For query answering, looking up a triple in a triple store is more efficient than retrieving
text from a large generative model with billions of parameters; e.g. it is less expensive to
look up the capital of France in Wikidata than to generate that answer from GPT-3.
If the world changes, or if an error in the knowledge is discovered, we can easily fix, edit
and update the knowledge graph, but it is currently an open research question how a
language model would need to update its weights to reflect such a change in the world
or correct an existing error; e.g. if the capital of Kazakhstan gets a new name, or if the
British monarch dies, how do we update a language model to incorporate that change?
Knowledge graphs can be more transparent and can have clearer provenance as they
can contain references, sources, or other ways to establish trust in the knowledge in the
graph. Conversely, language models do not currently capture the connection between the
weights and the textual sources used to learn these weights in a fine-grained way.
Relatedly, knowledge graphs allow for more explainability than large language models.
With a symbolic system we can display the involved ground statements, and the inferences
that took place, whereas with language models, generating explanations is a very popular
and challenging topic of active research [4].
Knowledge graphs also cover the long tail better, and can be more easily extended
to cover the long tail. A naive approach to increasing coverage for a language model

11 https://w3c.github.io/rdf-star/cg-spec/editors_draft.html#dfn-quoted

22372

https://w3c.github.io/rdf-star/cg-spec/editors_draft.html#dfn-quoted


104 22732 – Knowledge Graphs and Knowledge Engineering

is to retrain or refine it with more text about the topics to be covered; in a structured
knowledge base you can just explicitly add the required structure. Anecdotal experience
indicates that if we want to increase coverage of, e.g. different file types, we can either
write or search for documents about these file types – and writing a new document may
take dozens of minutes if not hours – or we can create a new item in a knowledge base,
which may take half a minute.

The aforementioned advantages of knowledge graphs versus language models have clear
parallels elsewhere in terms of the advantages and disadvantages of structured/deduct-
ive/symbolic methods vs. unstructured/inductive/numeric methods. In the context of
Natural Language Processing and Information Extraction, for example, while machine learn-
ing methods have led to major advances in the state-of-the-art, more traditional rule- or
pattern-based approaches are still often preferred for certain applications (particularly in
domain-specific scenarios) as they provide more control over the process, provide more
transparent and explainable results, and can work better for the long tail or for emerging
knowledge (where training data is sparse).

In conclusion, we think that knowledge graphs will not become redundant due to language
models, but rather both can clearly complement each other.

5.5.2.3 Representations in Practice

Large language models are good at understanding (the distribution of) language and can
therefore be used in a variety of downstream tasks such as named entity recognition. However,
they also come with some important draw-backs and challenges, such as the lack of provenance
and explainability (as discussed in the previous section). Humans express and record a
lot of knowledge in unstructured form, but even before the advent of digital computers,
humans were applying structure to knowledge for the purpose of understanding as well as
communication (e.g., the Periodic Table).

Existing diverse representational structures (as enumerated in Subsection 5.5.2.1) each
have their specific merits. In some cases, working with just a bunch of screenshots decreases
cognitive load over working with free text. In others, we need formal rules or ontologies
where transparency and clarity are key, whereas in other cases a table will suffice.

The downside of using a variety of data structures alongside one another is the lack of
integration and harmonisation. The question then arises, how do we enable data federation
in the case of heterogeneous data structures?

One solution would be a single data structure for heterogeneous data, such as the multi-
modal knowledge graph described in [5], as the go-to data structure. Such a data structure
integrates multi-modal data such as lists, images, etc., queryable through a single query
language. Potential pitfalls of such a heterogeneous data structure could be the added
modeling complexity, resulting in data silos that would be hard to query/use, or structures
that are difficult to query or understand by users. Another way to go forward would be a
single knowledge based system integrating multiple types of knowledge, with a single unified
query interface.

5.5.3 Open Research Questions

How to allow for a knowledge based system that integrates different kinds of knowledge
representation, but yet allow for a unified query interface?
What types of tasks require which kind of knowledge representations?
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Language models are good in smoothly dealing with the brittleness problem of symbolic
knowledge representations. How can we combine language models with knowledge graphs
to gain the advantage of language models?
Would increased use of datatypes be advantageous for knowledge graph engineering?
Is that a potential approach for combining knowledge graphs with more knowledge
representations?
Can we separate individual facts or knowledge out of a language model, and store it
in a more efficient representation, and thus save on parameters that would encode that
knowledge, making them smaller and more efficient, while allowing them to access a
knowledge graph?
How could we track provenance for language models? How could we represent and explain
where this response came from? How would we trace the lineage of statements in large
language models?
How can language models be updated?
How can language models be adapted to better cover the long tail, emerging knowledge,
etc.?

5.5.4 Next Steps

Invite collaboration on a prototypical infrastructure that demonstrates the usefulness of
combining a knowledge graph with other modalities, e.g., images and a language model.
Setting up tasks or challenges that are expected to be very difficult for certain types of
knowledge representations, and easy for others. Often benchmarks are biased towards
tasks that are solvable with a given approach; for example, benchmarks for question
answering over knowledge graphs will include questions that are answerable over the
target knowledge graph, and might tend to exclude questions like how can I mash rice?
or what is EUR12.53 in USD? that knowledge graphs are not well-suited for, even if
users may often like to answer such questions. These challenges should include tasks that
are easy for, say, knowledge graphs, but very challenging for language models; and vice
versa. The challenges should also consider “meta-tasks”, like updating the knowledge,
curating answers, explaining them, etc. The challenges should be promoted within the
wider machine learning communities. The best-performing approaches will likely require
combining different forms of representation; thus the challenges might stimulate research
on hybrid approaches.
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The starting point of this discussion was the overview lecture on social and technical bias in
knowledge graphs presented by Harald Sack. Bias often is characterised as a disproportionate
weight in favour of or against a person, group, an idea or thing, usually in a way that
is considered closed-minded, prejudicial, or unfair, especially one that is preconceived or
unreasoned. Biases in Knowledge Graphs (KGs) as well as potential means to address them
are different from those in other AI systems, as e.g. in large language models or in image
classification. KGs store human knowledge about the world in structured format, e.g., triples
of facts or graphs of entities and relations, to be processed by AI systems. In the past
decade, extensive research efforts have gone into constructing and utilising KGs for tasks in
natural language processing, information retrieval, recommender systems, and many more. In
difference to language models and image classification systems, KGs are sparse, i.e. typically
only a small number of triples exist per entity. Once constructed, KGs are often considered as
objective and neutral reference data sources that safeguard the correctness of other systems.
In reality this is often not the case, since KGs are created with specific application context
in mind. This has the undesirable effect that biases inherent to KGs may become magnified
and spread through KG based systems (Bias Network Effect).

Basically, biases in KGs may arise from the following sources [1]:
Data Bias: Bias may be already inherent in the source data from which the KG is created

in an automated or semi-automated way. For KGS that are collaboratively created or
based on collaboratively collected information, all forms of human biases might be already
incorporated. Furthermore, bias can also be introduced by the algorithms used to sample,
aggregate, and process that data.

Schema Bias: Bias may be introduced via the chosen ontology as the basis for a KG,
or simply be embedded within ontologies. Most times, ontologies are developed in a
top-down manner with application needs or certain philosophical paradigms in mind
Typically defined by a group of knowledge engineers in collaboration with domain experts,
ontologies consequently (though often implicitly) reflect the worldviews and biases of the
development team (human bias and anthropocentric thinking). In addition, the ontology
and its modelling often depends on the chosen representation language, i.e. typically a
fragment of DL, and not the other way around.

Inferential Bias: Inferential biases in KGs arise at inferencing level, such as reasoning,
querying, or rule learning.
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Bias inherent in KGs will directly carry over into downstream representations such as
KG embeddings (KGE). Also errors and incompleteness in KGs might cause bias in KGEs
due to an unbalanced distribution of facts or attributes that does not reflect an objective
worldview. Furthermore the chosen KGE model might be the source of additional bias
induced by application-specific loss functions.

5.6.1 Discussed Problems

Bias as a signal problem

One way in which representation bias might surface in knowledge graphs is that information
which can be inferred is not explicitly represented in a knowledge graph. For example, the
relation is married to is symmetric, and from A is married to B, one can infer that B is
married to A also holds. From a logical standpoint, it is therefore sufficient to encode one of
the two statements in the knowledge graph.

In [2], it was reported that a vast majority of is married to relations in DBpedia are only
present in one direction, and there are far more statements where the subject is female and
the object is male than vice versa [3]. This can be considered a gender-related representation
bias in the knowledge graph, since the editors (of Wikipedia infoboxes, which DBpedia is
created from) find this information more noteworthy for females than for males.

The same paper [2] also discussed logical inference as a means to cancel the representation
bias. In this example, it would mean filling the slots for the symmetric relation in both
directions, i.e., adding B is married to A for every occurrence of A is married to B. However,
in an experimental setup, they showed that the performance of using the debiased knowledge
graphs in a few downstream tasks actually leads to worse performance.

One interpretation of this outcome is that bias can actually be a signal, which can help
downstream applications. The fact that a human editor considered the fact A is married to
B noteworthy, but not B is married to A, actually conveys some information about A and
B – mainly that B is better known for other things. Removing the bias here also implies
removing the corresponding signal.

Bias as a legal and professional problem

The EU commission distinguishes between fair and unfair bias.12 In general, national and
international law, as well as the standards of professional bodies [4], provide norms regarding
the development and use of knowledge and data-based systems and applications. What are
the relationships between legal and professional norms such as (un)fairness, responsibility,
accountability and bias in knowledge graph construction, maintenance, and use? How can we
build and use knowledge graphs which reflect legal or professional guidelines regarding bias?
To what extent can auditing and compliance checking of knowledge graphs be automated?

Bias as a context problem

Bias as an ethical and societal problem is another important aspect, rooted in the context of
the knowledge graph, since the knowledge graph cannot be generated without context, which
is usually implicit. Typical examples include political and cultural statements. The serious
issue of such ethical/societal bias can be exacerbated by the naive use of a knowledge graph,

12 https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-
artificial-intelligence-altai-self-assessment
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and may even cause the denial of a whole knowledge graph (for example, some nations forbid
the use of Wikipedia). Data and knowledge graph quality methodologies and methods are
also typically context-driven. Questions to explored include understanding the relationships
between bias and quality of knowledge graphs.

5.6.2 Possible Approaches

Bias detection

Detecting biases is not a straightforward task, requiring knowledge of the world. For example,
observing in the data that there are more females married to males than vice versa is an
observed representation bias. On the other hand, observing in the data that there are far
more male than female Nobel prize winners is not a representation bias in the data, but an
accurate rendition of the state of the world.

Moreover, identifying bias requires some intuition of what to look for. While some
sensitive attributes (e.g., gender or nationality) are quite straightforward, others are not,
and may require several iterations of observing downstream behaviour in a system using
a knowledge graph. For example, in [5], it was found that different language editions of
DBpedia have a different information density of movies with respect to their genre – a
representation bias that would be hard to anticipate without observing it in a downstream
task.

Methods for detecting bias suggested in the literature so far often anticipate that the user
knows which bias to look for, and then query the knowledge graph to get some statistics out
(e.g., the proportion of male and female subjects in statements with a given property). A
more open approach to this would be to learn patterns from the graphs, and then let a user
decide whether those patterns represent biases in the data or distributions in the real world.

Representing and documenting bias

In contrast to language models or image classification systems, where bias can only be
detected implicitly, and explicit bias descriptions have to be added separately, KGs offer the
means for an explicit internal representation of bias, legal norms, and further guidelines by
definition. Once bias is detected, it would be helpful to document it. If the bias occurs in
the form of some pattern, this could be done using a pattern description language, such as
SHACL.13 Moreover, some statistical information would be required, as, e.g., defined by the
VoiD vocabulary.14

Handling bias

Documenting bias is a first step to handling bias, but it is not the end of the line. Depending
on the requirements and task at hand, different ways of further handling bias are possible.
Applying negotiation protocols is an option for dealing with conflicting information, but may
not be possible for truly controversial information. In such cases, the authors of [6] suggest
allowing controversial information with additional metadata. Depending on the task at hand,
bias may also be removed or handled by means of resampling methods. However, as the
experiment reported above shows, this might not always be an efficient method.

13 https://www.w3.org/TR/shacl/
14 https://www.w3.org/TR/void/#statistics
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5.6.3 Open Research Questions

Handling Bias

The bias as a signal observation gives rise to the conclusion that bias – although a mostly
negatively connoted term – can also be helpful, and that blindly removing bias is therefore
not the only or necessarily best option. Instead, more sophisticated ways of dealing with
bias are required.

Detecting bias

As discussed above, bias detection requires world knowledge. For a fully automated detection
of bias, one would therefore need a fully objective and bias-free knowledge base of world
knowledge. This presumption – which, at least today, is impossible to meet – shows that
fully automatic bias detection is currently impossible. Therefore, manual intervention will
be required to detect bias in knowledge graphs, and the processes and models to do so in
the best and most efficient way are still to be explored. This is not a solely computational
issue. Rather, people with various disciplines should commit to the whole life cycle form
generation to use of knowledge graph (diversity and inclusion issue).

Representing bias

As discussed above, a bias that is detected in a knowledge graph should at least be documented.
However, to the best of our knowledge, no standards for documenting biases exist so far.
Therefore, the representation of bias is still an open research issue.

Bias needs not only to be documented for humans, but also machines. Once a standard
for bias representation has been defined, it would be another open question of how subsequent
steps, e.g., machine learning operations, may be informed about that bias, and then how to
carry out appropriate remedies (e.g., by internally re-sampling the data).

Compliance and auditing

How could we support KG engineers in building legally compliant KGs, and how could
we support government bodies in (semi-)automated auditing of KGs for legal compliance
(e.g., EU regulations on responsible data and AI)? How would these goals be balanced with
methods and tools for bias negotiation (e.g., legal compliance vs. protecting personal safety)?
More generally, further work at the intersection KG engineering and Computational Law is
called for.

5.6.4 Next Steps

Targeted directions for continuing this discussion include:
A vision paper, fleshing out the roadmap sketched above.
Activities to bridge the knowledge graph engineering community and scholars working
in the legal, professional, and cultural, societal aspects of data and knowledge. Avenues
here include multidisciplinary workshops, panel discussions, Dagstuhl Seminars, research
consortia (e.g., EU COST action), and working groups.
Standardization of vocabularies and standards for bias representation.
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This working group focused on how knowledge graphs can be made more attractive for
regular developers of applications and services. We wanted to figure out how to make the vast
amount of value created in resources like Wikidata accessible to a broad developer audience.

5.7.1 Discussed Problems

We discussed how to make accessing the data available in knowledge graphs quicker, cheaper
and more efficient for developers of applications and services, especially those who have
not been in contact with knowledge graphs before. This is becoming especially relevant
as artificial intelligence and machine learning systems are becoming more prevalent and
knowledge graphs can be a powerful tool to improve them.

Developers trying to work with knowledge graphs are facing a number of pain points. We
discussed the various pain points we encountered in our own work with developers building
applications and services on top of different knowledge graphs. Some of these pain points
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relate to the data in the knowledge graph and some to the tooling around that data. The
following pain points were identified:

Getting incorrect answers to queries: Developers are getting incorrect answers to their
queries, which directly harms adoption and trust. This may be caused by issues in the
data, the modeling of the data or the query itself.
Dislike of identifiers, especially opaque identifiers: Many developers seem to dislike the
prevalent use of identifiers in knowledge graphs, especially opaque ones like they are used
for example in Wikidata. Developers want to use human-readable labels in their code
instead.
Schema discovery: The same data can often be modeled in different ways in a knowledge
graph. To write queries that give them the answers they need, developers need to first
get an understanding of how the data they are interested in is modeled. This can be
challenging, especially if exploratory tools are not at hand.
Adapting to new interfaces: There are various user interfaces developers are expected to
work with when developing with data from a knowledge graph such as a query UI. These
have a learning curve.
Unclear and unhelpful error messages: When writing queries developers make mistakes
and sometimes produce syntactically invalid queries. The errors they get back from the
query systems are often not helpful for them to identify the problem and improve their
query.

During the discussion, it became clear that more work is needed to define the exact target
group of this developer outreach to make it successful. We need to better understand their
needs, motivations, additional pain points and the environment they are working in. We
also need to articulate more clearly what problem areas knowledge graphs are particularly
well equipped to solve. A list of prototypical example use cases was considered particularly
helpful in addition.

It might help to analyze positive existing use cases for KGs in a commercial setting,
including data unit testing, content enrichment, geographical visualization, easy access to
multilingual labels, and infobox extraction with a single query. It also seems helpful to
understand the experience and the motivation of the library community, which has bought
into knowledge graphs, perhaps after being shown how Wikidata can answer questions that
could not be answered before. However, applying the same approach to other communities
and use cases might bring novel challenges.

5.7.2 Possible Approaches

To facilitate value creation for software developers brought by knowledge technologies, we
propose a combination of the following eight approaches:
1. Conduct user studies to better understand the target group. Software developers should

be asked to perform representative tasks, and monitoring tools should be included to
understand their mental model. Users should be asked to provide feedback on what was
easy, what was difficult, what went wrong, and what could be improved.

2. Log user actions to help us understand typical user needs that are expressed through
their queries.

3. Provide useful knowledge subsets from Wikidata that users can easily download and
plug in their tools. These subsets should be provided in a developer-friendly format, like
TSV or JSON.

4. Provide users with atomic functions for common operations, based on the persona
needs derived from user studies and logging (points 1 and 2). Some operations would
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include getting labels and aliases for an item, describing an item, query for similar items,
text search for entities or events, fact extraction, and extracting a subset for reuse.

5. Provide example use cases as Jupyter and Colab notebooks, to illustrate the simplicity,
effectiveness, and efficiency of including knowledge technologies in developer tasks. This
should include a discussion on why this technology is the one to use.

6. Enable users to develop a proof of concept (POC) quickly, based on the atomic func-
tions and the example use cases. This POC is primarily meant to convince developers,
but it is also essential to secure management buy-in, as people are best convinced by
showing, not telling.

7. Make knowledge technologies relevant to the developer world, by designing them to
follow developer best practices as closely as possible, including graphical interfaces, APIs,
data unit testing, and GitHub actions and releases. We should not expect developers to
change their habits and make sacrifices to adopt knowledge technologies.

8. Solicit developer feedback to understand remaining pain points and listen to their sug-
gestions for further improvement.

5.7.3 Open Research Questions

There seems to be a limited understanding of knowledge graph adaptations by developers. As
a first step, we need a better understanding of why developers are adopting knowledge graphs
and – most importantly – why not. For this research, we first need a clear understanding of
the developer role and the different applications for which knowledge graphs can be adopted.
The developer role needs to be clearly distinguished from other roles, such as data engineer
and end user. In a second step, we need to determine what categories of information are
needed and how the pain points outlined above hinder the adoption of knowledge graphs.
Amongst others, we have to look into aspects such as:
Data access and presentation: What types of interfaces do developers require and how are

their requirements fulfilled by current tools? E.g., how are SPARQL endpoints perceived
as points of access? What are advantages and what are problems that developers face
when using them? In what ways should the data be represented, i.e., triple-based formats
vs. other data formats?. A possible result would be a list of atomic interaction patterns
(such as API calls) that are considered to be beneficial or to be avoided when providing a
knowledge graph data interface.

Tool requirements: What tools are needed to access a knowledge graph – again, specifically
from the perspective of a developer? E.g., what data inspection/visualization tools are
needed and how do requirements for these tools differ from requirements of other roles?

Data ownership: What role does data ownership play in knowledge graph adoption? What
are the hurdles/concerns in using a shared knowledge graph such as Wikidata, particularly
in a commercial setting? What roles do data quality and trust issues play in adopting
shared knowledge graphs?

In a second step we need to develop new or improve existing tools to better align with
the needs of developers and to provide an overall better experience. These tools need to be
evaluated based on the understanding of user requirements we developed. We also need to
evaluate the usefulness of the possible approaches mentioned above to increase the buy-in of
developers.
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5.7.4 Next Steps

1. Research on persona descriptions and needs – The most urgent challenge with de-
veloper buy-in is social rather than technical. We need to understand what we mean
exactly by developers, what are their knowledge needs, and what is their current workflow.
A possible entry point is an existing user group in the library community, which has
seen the value of knowledge and has gradually embraced knowledge technologies in its
practices.

2. Map of different knowledge types in relation to representation formats – Knowledge
graphs are likely not the optimal format to store every kind of data. Geo-coordinates, for
instance, might be stored more efficiently in a database that supports numeric querying
with high precision, and text-heavy knowledge might be better captured by language
models or ElasticSearch indices. It is essential to provide a rule of thumb for which kind
of representation and resource should be the primary source for which kind of knowledge.
A comprehensive figure or webpage would be a great initial format for such a map.

3. Cookbook style documentation for developers – Performing a knowledge technology
task is overwhelming without understanding the landscape of available knowledge graphs
and tooling. This could be a challenge at the beginning of using this technology, but also
later in the process. To improve the developer experience, we aim to develop cookbook-
style documentation that will enable developers to find relevant knowledge sources and
tools as efficient as possible. The cookbook should ideally also include example use cases
with code as supplementary material.

4. Release data subsets with high reuse potential – Well-understood datasets like MNIST
have been key drivers of user-friendly tools in data science, like scikit-learn. Similarly,
developing high-quality Wikidata subsets with high reuse potential, like a list of all
countries or English labels, will provide an attractive playground for developers and
inspire them to include ready knowledge in their frameworks. The downloads of the
published subsets should be tracked to understand which, if any, are adopted by developers.

5.8 A Core Knowledge Engineering Methodology for Knowledge Graphs
Eva Blomqvist (Linköping University, SE)
Deborah McGuinness (Rensselaer Polytechnic Institute – Troy, US )
Valentina Presutti (University of Bologna, IT)
Marta Sabou (Vienna University of Economics and Business, AT)
Juan Sequeda (data.world – Austin, US)
Steffen Staab (Universität Stuttgart, DE)

License Creative Commons BY 4.0 International license
© E. Blomqvist, D. McGuinness, V. Presutti, M. Sabou, J. Sequeda, S. Staab

This working group focused on the state of Knowledge Engineering (K) methodologies today,
their relation to ontology engineering methodologies and other types of methodologies, as
well as identifying open issues and needs in this domain.
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5.8.1 Discussed Problems

The discussion started with an inventory of methodologies used by the participants and
experiences of using such methodologies for knowledge engineering in the past. The inventory
of methodologies included mainly ontology engineering methodologies [1], [2], [3], [4], [5] and
others. Some of the issues discussed were:

Lack of transparency, e.g. provenance data, in many projects. Auditing the project can
be an important tool to understand what went well and what did not.
Methodologies need to be agile, to some extent. Waterfall-style processes do not work.
Also the setup of the projects are different, i.e. centralized of decentralized.
Methodologies need to start from use cases, and most of them do, but they differ in how
much guidelines are given on how to actually capture and describe use cases, and to elicit
requirements from them. A good template is essential, and it should include Competency
Questions. It is also important to be able to pick or tailor the methodology base on
the type of use case. An enterprise data integration project has different needs than a
collaborative open data project. In addition, most projects also need to cater for the
unknown use cases of tomorrow – how can a methodology incorporate that?
Costs of the methodology should be considered – KE is expensive. There needs to be
guidelines on how to reduce the costs, and adapt methodology to the available resources.
Human-machine collaboration, and crowdsourcing can be such means to reduce costs.
Types of stakeholders and users, and different roles of users, is another important aspect
that a methodology should cover.
Reuse, e.g. both of existing data artefacts, code lists, and existing ontologies, are not in
focus of most methodologies, but often an ad-hoc add-on activity. Also design patterns is
an important kind of reuse of best practices and proven solutions.
Evaluation and testing is often overlooked, or restricted only to assessing basic sanity
criteria. Very few test-driven methodologies, and to some extent activities such as
ontology testing are still under explored, compared to in for instance software engineering.
Evaluation needs to be more structured and with better tool support. However, human-
centric evaluation methodologies are also crucial.
Focusing only on ontology engineering is too restrictive. A KE methodology needs
to include also data curation, data integration/mapping, population of the knowledge
(graph), and should put the project into its context, e.g. software engineering.
Current tool support is far from perfect, and new tools are emerging to automate additional
steps in KE methodologies, e.g. through ML approaches and language models. Most
tools operate on the triple level, but Knowledge Engineers, and in particular domain
experts, think in terms of other conceptual units, i.e. more complex structures.
Although methodologies should not be too prescriptive, knowledge engineers that are not
experts need a good cookbook, with rules of thumb etc.

An observation of the group was that at a high level existing methodologies are quite
similar, and can be updated and consolidated to give a more coherent view of the KE
processes. However, they are also to some extent lacking in that they do not cover the whole
process, and do not take into account the relation to, for instance, whether the project takes
place in a software engineering context, is conducted more independently, or in an open
collaborative setting, such as crowd-sourcing.
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Figure 10 A blueprint knowledge engineering process that connects multiple methodologies for
developing knowledge graphs.

5.8.2 Possible Approaches

There are many existing methodologies, both earlier KE methodologies and current ontology
engineering methodologies. At an abstract level these are often quite similar, e.g. iterative
processes to incrementally build up the knowledge model, but they are also often too narrow
in scope, since they do not take into account the interaction with the context in which the
KE process happens. Such context can for instance be a software project, intended to provide
some business value to a company. In addition, many such methodologies also do not take
into account the population of the knowledge model being built, i.e. the data integration
and curation efforts needed to put the knowledge into use. Therefore some work is needed
that considers the overall picture of KE in context, as illustrated in Figure 10.

Each step in such a process, i.e. the boxes in the figure, can then be more or less
automated, and supported by various tools and detailed methodologies. However, the overall
core KE methodology will still remain largely the same. A similar effort was also presented
in [6].

5.8.3 Open Research Questions

How does the sync between the methodologies in Figure 10 actually happen?
What kind of evaluations are to be performed in each step, and overall?
How can certain steps be automated or crowdsourced, and to what extent? What are the
quality implications?
How do current Knowledge Engineers actually perform these steps in practice? What are
the bottlenecks and challenges?
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5.8.4 Next Steps

Several possibilities for follow-up publications are discussed and will be pursued by the
working group.
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6 Conclusions and Open Questions

Advances in neural and symbolic AI approaches [1], including knowledge graphs, prompted
us to organise a Dagstuhl Seminar to chart the next frontiers of knowledge engineering
in this brave new world. Participants reviewed the past, current, and emerging landscape
of approaches, practices, and tools in knowledge base and knowledge graph construction,
identified open research questions, and proposed next steps to address them.

The knowledge graph life cycle was a focal point of discussion. There was consensus that
we need a sustained effort to update and upgrade classical ontology engineering methodolo-
gies [2] and develop end-to-end open-source infrastructure to make the most of the latest
neurosymbolic technologies and tools, hence taking knowledge engineering and knowledge
graphs beyond structured and semi-structured data to other modalities.

There are several canonical examples of knowledge graph architectures in use today.
Within organisations, knowledge graphs are instrumental to data, content, and knowledge
management [3]. KG projects essentially follow variants of classical ontology engineering
methodologies, supported by a range of platforms and specialist tools e.g., taxonomy/ontology
editors, graph databases, semantic mappers etc. In conjunction with machine learning,
knowledge graphs are also used in semantic search, zero-shot learning, dialogue systems and
recommender systems as a source of knowledge and explanations. Some of the best known
knowledge graphs today, for instance in web search (Google, Microsoft), social networks
(LinkedIn), and intelligent assistants (Siri, Alexa) achieve scales that were inconceivable
decades ago – this is possible only with the help of automation, in particular using the
latest developments in machine learning including generative models pre-trained on huge
amounts of online data. It was recognised at the seminar that this AI-centric architecture
with human-in-the-loop is not well supported in terms of methodologies and end-to-end tools.
Finally, a third category of knowledge graphs are open-source and built by lively online
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communities [4]. While they have found considerable adoption in research and practice,
their success is difficult to replicate in closed, proprietary settings, though they do provide
invaluable insight into the sociotechnical ecosystem in which knowledge is created and shared.

As knowledge graph construction is making use of increasingly sophisticated, yet opaque
AI capabilities, knowledge engineering must, like any other community using AI face its
fairness, accountability, and transparency challenges. Several break-out workshops during
the seminar considered common trustworthy AI concerns such as interpretability, biases, as
well as human-AI interaction more generally, arguing for the need for bespoke solutions that
target a range of end-users and stakeholders unique to knowledge engineering settings.

Finally, participants shared best practices and ideas to continue the knowledge and
technology transfer efforts of the last two decades that have made knowledge graphs the
backbone of systems as diverse as search engines, recommenders, chatbots, and enterprise
data management platforms. They suggested activities to build capabilities and skillsets
to use the latest neurosymbolic technologies and tools in knowledge graph construction,
including tutorials, workshops, and hackathons, and agreed to work on joint frameworks and
knowledge engineering methodologies. They also recognised the sustained need to promote
knowledge graphs to the wider developer community and communicate their benefits, for
instance, alongside neural methods.

As a community invested in knowledge representation and engineering, the participants
embrace neural solutions such as language models for the step change they brought about in
automating knowledge graph construction. At the same time, and looking back at decades of
projects and experience with capturing knowledge in computational representations within
organisations and on the open web, they are convinced that the use of such solutions will
require human-in-the-loop approaches that are trusted and trustworthy. One of the reasons
why enterprise knowledge graphs have become so successful is their ability to combine
efficient, flexible storage of data with tractable representations of domain knowledge, while
guaranteeing data integrity. If enterprise knowledge graph platforms are to adopt the latest
advances in machine learning these guarantees will be as critical as ever. 15

6.1 Continuing the Conversation
To continue the conversation, we provided organizers of EKAW 2022 the 23rd International
Conference on Knowledge Engineering and Knowledge Management input for a walkshop.
We prompted them with the following questions coming from the seminar:

What ways does knowledge engineering deliver value today? What should be the require-
ments for knowledge production processes?
What does user centric knowledge engineering look like including does it integrate into
standard software engineering processes?
How can new technologies help automate manual tasks such as knowledge elicitation,
documentation, etc?
How and to what extent do we integrate language models and knowledge engineering

15 For an individual perspective of the seminar, we refer the reader to the trip report by Juan Sequeda:
http://www.juansequeda.com/blog/2022/09/20/knowledge-graphs-and-their-role-in-the-
knowledge-engineering-of-the-21st-century-dagstuhl-trip-report/
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6.2 Open Questions
Finally, throughout this report we have identified many open questions for futher study. We
itemize them here:
Knowledge Engineering Practice

How does state of the art machine learning, including large language models augment
knowledge engineering processes and projects?
What is the existing user / developer experience of machine learning tools?
What are the roles of people and machines in current knowledge engineering process?
How do you evaluate the added value of automation to knowledge engineering processes?
How do you control the outputs of ML-based systems are what you need for knowledge
engineering?
What is the interplay knowledge graph engineering (with or without AI) and system
engineering?
How doe we synchronize knowledge engineering methodologies?
What kind of evaluations are needed to be performed in each step, and overall for
knowledge engineering methodologies?
How can certain steps in knowledge engineering be automated or crowdsourced, and
to what extent? What are the quality implications?
How do current Knowledge Engineers actually perform methodological steps in practice?
What are the bottlenecks and challenges?

Types of Knowledge
What are cases and the types of knowledge that can or should be relevant for people.
Provide one or several “spectra” of expressiveness and other dimensions, for the
knowledge that can be represented in KGs.
How to allow for a knowledge based system that integrates different kinds of knowledge
representation, but yet allow for a unified query interface?
What types of tasks require which kind of knowledge representations?
Language models are good in smoothly dealing with the brittleness problem of symbolic
knowledge representations. How can we combine language models with knowledge
graphs to gain the advantage of language models?
Would increased use of data types be advantageous for knowledge graph engineering?
Is that a potential approach for combining knowledge graphs with more knowledge
representations?
Can we separate individual facts or knowledge out of a language model, and store it in
a more efficient representation, and thus save on parameters that would encode that
knowledge, making them smaller and more efficient, while allowing them to access a
knowledge graph?
How could we track provenance for language models? How could we represent and
explain where this response came from? How would we trace the lineage of statements
in large language models?
How can language models be updated?
How can language models be adapted to better cover the long tail, emerging knowledge,
etc.?

Explanations and Bias
What is a clear specification of the relation between explanations and interpretations?
What are measures for explanation and methods to evaluate them and to quantify
their trustworthiness (both intrinsically and extrinsically) and to allow for measures of
uncertainty?
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How doe we detecting bias using knowledge?
How to representing bias?
How can steps, e.g., machine learning operations, be informed about bias, and then
how to carry out appropriate remedies?
How could we support KG engineers in building legally compliant KGs, and how
could we support government bodies in (semi-)automated auditing of KGs for legal
compliance (e.g., EU regulations on responsible data and AI)?
How would these goals be balanced with methods and tools for bias negotiation (e.g.,
legal compliance vs. protecting personal safety)?

Developer Experience
What types of interfaces do developers require and how are their requirements fulfilled
by current tools?
What are advantages and what are problems that developers face when using tools?
In what ways should the data be represented, i.e., triple-based formats vs. other data
formats?
What tools are needed to access a knowledge graph – again, specifically from the
perspective of a developer? E.g., what data inspection/visualization tools are needed
and how do requirements for these tools differ from requirements of other roles?
What role does data ownership play in knowledge graph adoption? What are the
hurdles/concerns in using a shared knowledge graph such as Wikidata, particularly in
a commercial setting?
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Abstract
This report documents the program and outcomes of Dagstuhl Seminar 22381 “Rational Design of
RiboNucleic Acids” (RNAs). The seminar covered a wide array of models, algorithmic strategies,
molecular scales and modalities, all targeting in silico design of RNAs performing predefined
biological functions. It consisted in a series of talks, each being allocated a generous time budget
enabling frequent (welcomed!) interruptions and fruitful discussions. Applications of rational
RNA design include mRNA vaccines; RNAs acting as sensors; self-replicating RNAs, relevant to
RNA world/origin of life studies; populations of RNAs performing computations, e.g. through
strand-displacement systems; RNA origamis forming nano-architectures through self-assembly;
weakly interacting RNAs inducing the formation of droplets within cells through liquid-liquid
phase separation. Those diverse applications are typically tackled by Bioinformatics-inclined
scientists, contributing to distinct areas of life science and, as a result, somewhat isolated and
sometimes unaware of similar pursuits in neighboring fields. The overarching goals of this meeting
were to gather computational scientists from multiple fields, increase awareness of relevant efforts
in distant communities, and ultimately contribute to a transversal perspective where RNA design
becomes an object of study in itself.
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be harnessed, and RNAs are increasingly utilized to accurately monitor and control biolo-
gical processes [19], leading to RNA being found at the core of modern therapeutics [18].
It is therefore not surprising that the RNA-guided CRISPR-Cas9 editing [10], rewarded by
the 2020 Nobel Prize in Chemistry, and mRNA-based vaccines [12], are at the forefront of
modern biotechnology. For many functional RNA families [11], decades of research have
produced a deep understanding of the sequence and structural basis underlying their biolo-
gical function(s). Such studies, coupled with mature computational methods for structure
prediction [23], have paved the way for a rational design of RNAs targeting a wide diversity
of biological function [8, 2, 13].

Accordingly, RNA design has emerged as an exciting open computational problems in
molecular biology. Owing to the discrete nature of RNA sequence and popular structural
representations (e.g. secondary structure), RNA design has inspired the contribution of
a large number of diverse algorithms [9, 20, 14, 4] for the inverse folding problem, i.e.
the design of an RNA sequence which preferentially and effectively folds into a predefined
(secondary) structure. Given the, recently established, NP-Hardness of the problem, even
for minimal energy models [1], many of those algorithmic predictions are either heuristics,
exponential-time or based on a variety of machine learning techniques.

More generally, RNA design addresses the generation of sequences of nucleotides target-
ing a given biological function. A non-exhaustive list of classic design objectives includes:

Preferential adoption of one or multiple given structures (inverse folding);
Sequence specific constraints such as an overall (di-)nucleotide composition [21], encoding
of an amino-acid sequence (mRNA design), presence/absence of motifs [22];
Adoption of different conformations upon presence of ligand (RNA switches and
sensors) [3];
Effective and specific interactions with targeted partners (RNAs, proteins) cascading
into system-level regulatory effects [15, 16];
Self-assembly into large scale architectures, ultimately adopting a predefined 3D shape
(RNA origami) [6];
Exploit co-transcriptional folding, and more general out-of-equilibrium regimes to per-
form computations (strand displacement systems, oritatami) [5]

Typical applications of design include novel therapeutic strategies, control principles for
existing biological systems, or sensors for the presence of small molecules [3], but designed
sequences can also provide an objective experimental assessment of functional hypotheses,
where designs are synthesized and their effect on the cellular context can be tested in vitro
and, in turn, in vivo.

Over the course of the seminar, we witnessed a substantial recent expansion of the
scope of applications. Beyond classic but still challenging objectives of design, including
riboswitches addressed by Talk 5.8, 5.9 and 5.21, messenger RNAs towards vaccine objectives
mentioned by Talk 5.27, and CRISPR gRNAs mentioned by Talk 5.11, novel applications
of RNA design emerged during the seminar. Talk 5.11 introduced SARS CoV 2 sensors
based on strand displacement, Talk 5.15 addressed self-replicating ribozymes connected with
origin-or-life questions, and Talk 5.6 explored rational design principles for repetitive RNAs
inducing the formation of cellular droplets through liquid-liquid phase separation.

RNA Design as a discrete (inverse) optimization problem

The inverse folding problem, one of the central elements of RNA design, is a hard computa-
tional problem [1]. Although attracting a wide interest from the community, it is also one
of the very few problems in computational biology whose complexity status has remained
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open for a long time (about three decades). This difficulty can be attributed to a lack of a
suitable conceptual framework for inverse combinatorial problems. Indeed, inverse folding
can be viewed as the search of a pre-image, in a function that maps each RNA sequence to
its most stable conformation, the latter being computed using a polynomial, yet non-trivial,
dynamic programming algorithm [23]. Natural generalizations virtually include any instance
of inverse optimization problems, and could be of general interest to the Computer Science
research field. Prior works in this direction have led to characterization of designable struc-
tures based on formal languages and graph theory [7], revealing strong connections to many
subfields of computer science (for instance, between positive design and graph coloring).

In Talk 5.18 it was discussed that a flexible inverse folding approach, e.g. by allowing
the extension of helices by at most one base pair, seems to be easier than keeping the
problem strict. Such a flexibility in the structural objective of design was also emphasized
as desirable by Talk 5.5. The problem of classical inverse folding can be extended from one
to multiple target structures, and Talk 5.27 showed that this can be solved by an elegant
dynamic programming approach that is fixed parameter tractable. The resulting framework
was further generalized, and is not only applicable to RNA design, but also to apparently
more distant problems such as the alignment of RNAs with pseudoknots. In silico designs
and analysis depend on the accuracy of the applied energy model. In Talk 5.12 it has been
underpinned that a systematic perturbation of parameters can be used to define a notion
of robustness of individual parameters of an energy model, and help to improve prediction
accuracy. Talk 5.28 revisited the inverse folding problem as an inverse optimization problem,
and showed that many local structural motifs do not admit a design, with consequences to
the space of designable structures, but raised fundamental questions on a relatively new
flavor of optimization.

RNA Design in Structural Bioinformatics

Inverse folding also represents the ultimate test of our understanding of the mechanisms
governing the folding of macromolecules. Given a set of folding rules (typically, an energy
model), a synthesis of in silico designed sequences combined with high-throughput experi-
ments (e.g., structure probing) enables an assessment of the compatibility of the determined
structure with the initial target. Observed discrepancies can then be used to assess the
quality of predictive models, especially those based on statistical potentials which may be
prone to overfitting. Systematic local imprecisions can also be used to refine energy mod-
els, enabling the generation of better designs, whose iteration represents a virtuous circle,
ultimately contributing to a better understanding of folding principles.

A nascent RNA molecule typically folds during its transcription. Frameworks to sim-
ulate this kinetically driven process can help to interpret experimental results (Talk 5.4)
but as neither the simulation nor the experiment is perfect, quality assurance (Talk 5.14) of
the in silico investigations is essential and results have to be interpret with caution, as for
instance the mapping of time scales is a non trivial task. Finally, complex RNA hybridiza-
tion networks are designed in silico to perform regulatory functions with complex temporal
dynamics. A simplified kinetic model, introduced in Talk 5.26, for RNA/RNA hybridization
represents an attractive evaluation model for the design of interactions.

At a much more detailed 3D level, Talk 5.17 showed that high-resolution experimental
techniques can be used to observe dynamic behaviors, sometimes triggered by the binding of
a ligand, and could inform future objective functions. Talk 5.24 and 5.16 described coarse-
grained models amenable to molecular dynamics. Interestingly, the latter can be leveraged
in order to study kinetics behaviors at the 3D level.

22381
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RNA Design in Synthetic Biology and Natural Computing

This line of research applies various engineering principles to the design, and construction
of artificial biological devices. While initially focused on hijacking naturally-occurring regu-
latory functions through a copy/paste of evolved genetic material [17], the need for a precise
control and for a modularity/orthogonality of constructs, has increasingly led to a de novo
design based on nucleic acids. Recently, RNA has been successfully used as a material for
the design of whole regulatory circuits, or for the construction of complex programmable
shapes (RNA origamis [6]), with promising applications as biomaterial.

Software frameworks, like the ones presented in Talk 5.10 and Talk 5.22, make the
construction of large DNA and RNA nano-structures possible. Those designs are not only
adopting the right structure in silico according to combinatorial folding algorithms, but can
also be validated by simulations (Talk 5.24) and microscopy (Talk 5.1). This observation
suggests that the difficulty of design could stem from the compactness of targeted ncRNAs,
while larger (but more regular) RNAs may be easier to design, an element that could inspire
future theoretical studies.

In the course of the seminar it became evident that information from the 2D and 3D
level need to be mapped onto each other. Design could therefore benefit from multiscale ap-
proaches: selecting candidates with 2D objectives, use coarse grained 3D analysis (Talk 5.16)
and go to a full atom final validation for critical sub-regions. The curation of refined and
non-redundant 3D RNA structures (Talk 5.2) and the systematic extraction of information
from such a data set can help to investigate for instance structural features of modified bases
or to propose isosteric structural mutations (Talk 5.19) in order to generalize the design from
2D to compact 3D architectures.

Programmable RNA folding can also be used as a computational model, allowing for the
computation of complex programs based on cotranscriptional folding phenomena. RNA reg-
ulatory circuits can be used to emulate Boolean functions, allowing a precise and expressive
control of regulatory networks at an early stage of the gene expression process. Talk 5.23
introduced RNA oritatami, a Turing-complete model of computation based on cotranscrip-
tional folding inspired by cellular automata. Talk 5.7 described exciting applications of
design to generate easily-checkable QR codes that reveal contamination in a closed environ-
ment. However an application-agnostic implementation of the strand displacement systems
underlying some of those applications still represent major challenges in RNA, as shown and
discussed during Talk 5.3. Those include intra-molecular base pairs and an overall wasteful
behavior that motivates efficient recycling strategies.

RNA evolution and Machine Learning

The analysis of new RNA families, such as the pervasive and poorly understood lncRNAs
or the numerous viral/bacterial non-coding RNAs observed in metagenomics experiments,
relies critically on the identification of an evolutionary pressure, allowing to hypothesize new
functions. Given a family of homologous RNAs sharing established functional traits, it is
classic to asks whether an observed property, such as the occurrence of a common motif or a
given covariation pattern, is likely to reveal a yet-unknown selective pressure or, conversely,
is merely the consequence of established functional traits. Classic bioinformatics methods
rephrase the problem in a hypothesis-testing framework, and compute the probability that
a sequence, generated at random in a model that captures existing constraints, features the
observed property. Ideally, such sequences should represent solutions to an instance of the
design problem, target established functions, while respecting a distribution that can either
be derived from the targeted function, or learned from data.
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Talk 5.5 presented a context where rational design methodologies were utilized to cap-
ture remote homologs of a suspected, but scarcely-populated, functional family of ncRNAs.
Generative models can also be used for design, in cases where the underlying model of func-
tion is partially understood, and should be learned from the data. Talk 5.8 used Restricted
Boltzmann Machines (RBM), an unsupervised learning approach, to pickup the intricate
probability distribution of the statistical features of a naturally-occurring riboswitch. The
RBM was then used to generate novel instances with the same distribution of features, res-
ulting in an enrichment of functional designs as revealed by experimental validation. Direct
Coupling Analysis was also used in Talk 5.15 to generate self-replicating ribozymes, using
a complex definition of function that may require some element of learning. Interestingly,
the efficacy of designs was ultimately shown to benefit from further refinements using clas-
sic combinatorial methods for inverse folding, suggesting future hybrid ML/combinatorial
methodologies.

While RNA design is an increasingly important computational task in molecular biology,
nanotechnology and medicine, methods for computational rational design are still lacking for
many applications. Moreover, many design tasks are currently addressed using algorithmic
techniques (e.g. Markov chain Monte Carlo) that are clearly superseded by the state-of-the-
art in algorithmic research. Conversely, computer scientists considering design tasks usually
limit themselves to inverse folding, overlooking a rich bestiary of computational problems
whose consideration would, in turn, undoubtedly lead to the emergence of new algorithmic
paradigms.

Talk 5.20 showed that basic ML architectures can be learned in the context of reinforce-
ment learning and can be successful for basic inverse folding of RNA. Talk 5.25 presented a
complete design story, describing a methodology to advance our understanding of tRNAs.
In particular, a mechanistic understanding of the target function can be gained by masking
constraints during redesign, and the differentiability of the design problem can lead to great
speedups of the computation. However, ML approaches may not always represent a silver
bullet in RNA bioinformatics, and Talk 5.13 dramatically illustrated this in the context of
RNA folding, a context where the quality and biases in the data strongly impacts, and prob-
ably hinders for intrinsic reasons, the predictive capabilities of deep learning-based methods.
As a consequence, synthetic data can and should be used to test the capacity of learning
architectures on simplified problems before embarking into “real life” learning.
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Figure 1 Participants statistics. Breakdown of workshop participants by country/continent of
employing institution, primary disciplinary background, gender and academic seniority.

3 Participants and Group Composition

The list of participants included 33 researchers, selected for their outstanding contributions
to RNA design, and/or their outstanding potential to impact future developments of the
field. It should be noted that, in addition to those ultimate participants, a dozen confirmed
researchers had to cancel, partly due to the ongoing pandemics.

As shown in Figures 1a and 1b, participants primarily originated from European institu-
tions (26/33), but also from North America (5/33) and Asia (2/33), with five countries (Aus-
tria, France, Germany, Canada and Denmark) representing almost three quarters (24/33) of
participants. While this concentration largely reflects the main centers of research on RNA
bioinformatics, combined with the European location of the seminar center, the organizers
regretted the absence of key players from North America and Asia, and will take this fact
into consideration upon (possibly) organizing future editions of the seminar.

A key aspect of RNA design is that it requires a constant interdisciplinary dialogue,
involving partners originating from diverse fields of research. Those include computational
scientists to design algorithms and methods, modelers and experts in biochemistry to formu-
late models that are both accurate and computationally tractable, and end users/stakehold-
ers from the fields of biology, biotechnology and medicine to assess the suitability of current
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design models and inform future developments. The organizers are proud to report that the
seminar was able to strike such a critical interdisciplinary mix, as show in Figure 1c. While
roughly half (17/33) of our participants were originally trained in Computer Science, one
third (10/33) had initial background in Biology or Biochemistry, with the remaining parti-
cipants being equally split between Physics and Mathematics (3/33 each). Interdisciplinary
research also notoriously benefits from an early exposure of junior scientists to other fields of
research. As shown in Figure 1d, the organizers were pleased to witness the presence of two
fifths (13/33) of junior scientists (PhD candidates or Postdocs), among a majority (20/33)
of more established scientists (Asst/Full prof. or permanent researchers).

Finally, partly due to late cancellation and despite a conscious mitigation effort by the
organizers, the gender representation among participants certainly showed imbalance, with
only a fifth of female researchers (7/33), Figure 1d. One possible reason, mentioned by
some prospective participants, is the lack of support for daycare options (esp. towards small
infants), which we understand is being considered by the center. While the organizers believe
that this aspect is only partly within their control, it will nevertheless be the object of an
increased focus while organizing future seminars.

4 Overall Organization and Schedule

Firstly, we wish to stress the impact of the ongoing COVID 19 pandemics on the organization
of this seminar. Beyond the above-mentioned cancellations, the seminar was originally
envisioned in February 2019, submitted in April 2019 and accepted in July of 2019, to be
held in October 2020 and finally canceled due to a deep resurgence of COVID in Europe. A
proposal was resubmitted in November 2020, and accepted in February 2021, to be finally
held in September 2022. Overall, this workshop has been 3 1/2 years in the making, and
the organizers were particularly excited to see it finally happen after such uncertainty.

The seminar itself consisted of talks, mostly scheduled before the seminar, while leaving
ample time to impromptu discussions and spontaneous talk propositions. Wednesday af-
ternoon was intentionally left open, to allow participants to interact in a less formal/public
environment. We also finished the seminar after lunch on Friday, to allow most participants
to reach home before the weekend. This left us with sufficient time to feature 28 talks, each
of a duration of 30 or 45 minutes, structured in 7 sessions.

The seminar started with a joint talk by the organizers on Monday morning, aiming at
providing sufficient context for all participants to follow and maximally benefit from the
remaining talks. The afternoon session, named Design Stories, consisted of success stories
in RNA design, a topic which we reasoned would expose most participants to the diversity
of objectives required by applications, and base our future discussions on realistic use-cases.
Tuesday morning’s Molecular Biology session mentioned topics at the interplay of molecu-
lar modeling and evolution, while the afternoon’s Molecular Computing session showcased
design challenges and solutions arising in a context where RNA is used as a programmable
material, capable of self-assembly and computation. The sole Wednesday morning session
was dedicated to Machine Learning in the context of design, with a strong emphasis on
generative models being used as a substitute for the classic specification/implementation
philosophy. On Thursday, the morning Combinatorial Design session was dedicated to al-
gorithmic and enumerative considerations of the yet-unsolved inverse folding problem, while
the afternoon session focused on 3D and Design, a very challenging context whose objective
functions are still to be defined. Further increasing in difficulty, the Friday morning Design
for Dynamic Landscapes session closed the seminar with contributions towards the design
of RNA folding or interacting kinetically, out of the equilibrium regime.
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Due to the interdisciplinary nature of the audience and topic, we ended up not elicit-
ing to formally include an open problem session, although some formalized problems were
mentioned during talks, and more thoroughly explored in smaller groups, past dinnertime.

5 Overview of Talks

5.1 Structural basis of RNA origami design, folding and flexibility
Ebbe Sloth Andersen (Aarhus University, DK)

License Creative Commons BY 4.0 International license
© Ebbe Sloth Andersen

Joint work of Ebbe Sloth Andersen, Helena Rasmussen, Ewan K. S. McRae, Jianfang Liu; Andreas Bøggild,
Michael Truong-Giang Nguyen, Néstor Sampedro Vallina, Thomas Boesen, Jan Skov Pedersen,
Gnag Ren, Cody Geary

The research field of RNA nanotechnology develops methods for the rational design of self-
assembling RNA nanostructures with applications in nanomedicine and synthetic biology.
Inspired by the cotranscriptional folding of biological RNA molecules, we developed the RNA
origami method to design RNA nanostructures compatible with cotranscriptional folding
[1, 2], advantageous for large-scale production in vitro and expression in vivo. However,
advancing this technology further will require a better understanding of RNA structural
properties and the non-equilibrium dynamics of the cotranscriptional folding process. Here,
we use cryogenic electron microscopy to study a panel of RNA origami structures at sub-
nanometer resolution revealing structural parameters of kissing loop and crossover motifs,
that are further used to optimize designs by reduction of internal strain and global twist.
In three-dimensional bundle designs, we discover a novel kinetic folding trap that forms
during cotranscriptional folding and is only released 10-12 hours after transcription start.
We characterize the conformational landscape of RNA origamis to reveal the RNA flexibility
of helices and structural motifs. Finally, we demonstrate that large distinctive RNA origami
shapes are visible by cryo-electron tomography pointing to potential use as markers in
cellular environments. Our results improve understanding of RNA structure, folding, and
dynamics, providing a basis for rational design of genetically encoded RNA nanodevices.

References
1 Geary, C., Rothemund, P. W. and Andersen, E. S. A single-stranded architec-

ture for cotranscriptional folding of RNA nanostructures. Science 345, 799-804,
doi:10.1126/science.1253920 (2014).

2 Geary, C., Grossi, G., McRae, E. K. S., Rothemund, P. W. K. and Andersen, E. S. RNA
origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nat
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5.2 Datasets for benchmarking RNA design algorithms
Maciej Antczak (Poznan University of Technology, PL)
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PDB-derived RNA 3D structures”, Bioinform., Vol. 38(14), pp. 3668–3670, 2022.
URL https://doi.org/10.1093/bioinformatics/btac386

Main reference Jakub Wiedemann, Jacek Kaczor, Maciej Milostan, Tomasz Zok, Jacek Blazewicz, Marta
Szachniuk, Maciej Antczak: “RNAloops: a database of RNA multiloops”, Bioinform., Vol. 38(17),
pp. 4200–4205, 2022.

URL https://doi.org/10.1093/bioinformatics/btac484

In this talk, we will present the databases developed to support benchmarking of bioin-
formatics algorithms targeting RNA, including the ones for RNA design. RNAsolo1 collects
experimentally determined 3D RNA structures from RNAs alone, protein-RNA complexes,
and DNA-RNA hybrids and organizes them into classes of equivalent structures. Their
sequences and tertiary structures are grouped in 192 benchmark sets ready for download
and automated processing. RNAloops2 aims to facilitate the study of multiloops in RNA
molecules. It collects n-way junctions found in experimental RNA structures and allows to
search them by sequence, secondary structure topology, or structure parameters. Both data
sources address RNA-related studies by providing reliable sequence and structure data and
efficient search facilities.

5.3 On the compilation of multi-stranded nucleic acids circuits
Stefan Badelt (Universität Wien, AT)

License Creative Commons BY 4.0 International license
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Main reference Stefan Badelt, Seung Woo Shin, Robert F. Johnson, Qing Dong, Chris Thachuk, Erik Winfree: “A
General-Purpose CRN-to-DSD Compiler with Formal Verification, Optimization, and Simulation
Capabilities”, in Proc. of the DNA Computing and Molecular Programming - 23rd International
Conference, DNA 23, Austin, TX, USA, September 24-28, 2017, Proceedings, Lecture Notes in
Computer Science, Vol. 10467, pp. 232–248, Springer, 2017.

URL https://doi.org/10.1007/978-3-319-66799-7_15

Compilation from high level languages to low level languages is a fundamental concept
in computer science, and it enables researchers to program silicon-based machines even
though they have no understanding of assembler code or transistors. In previous work, we
have shown that a description of nucleic acid circuits at the domain level (equipped with
an approximate biophysical model for DNA), can be formally derived from a high level
language, e.g. compilation from a boolean circuit to formal chemical reaction network to a
domain-level strand displacement system.

The next challenge is to ensure a correct compilation from the domain-level system
specification to the nucleotide level, which must involve both nucleic acid sequence design
and a verification based on folding kinetics at the secondary structure level. Currently, we
are exploring new sequence design techniques for large and complex nucleic acid reaction
networks, that also systematically incorporate feedback from experimental work.

1 https://rnasolo.cs.put.poznan.pl/
2 https://rnaloops.cs.put.poznan.pl/
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5.4 Simulations of cotranscriptional folding explain the impact of
sequence mutations

Stefan Badelt (Universität Wien, AT)
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Cotranscriptional folding has the exciting potential to encode multiple functional important
structures into a single molecule and visit them in a controlled manner. Unfortunately, the
interpretation of experimental data on cotranscriptional folding is still heavily dependent
on computational structure prediction, and it is easy to misinterpret data when using ther-
modynamic models. We use the stochastic simulator Kinfold, as well as a newly developed
deterministic heuristic DrTransformer to show how cotranscriptional simulations can help
with understanding experimental results and point out common mistakes in existing inter-
pretations of data.

5.5 Eukaryotic riboswitch detection using inverse RNA folding
Danny Barash (Ben Gurion University - Beer Sheva, IL)
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The inverse RNA folding problem for designing sequences that fold into a given RNA sec-
ondary structure was introduced in the early 1990’s in Vienna. By an extension of this
problem we use a coarse-grained approach to possibly detect novel eukaryotic riboswitches.
The approach can tentatively be used for other domains and applications.

5.6 Design of RNA tandem repeats creating RNA droplets forming
liquid-liquid phase separation

Sarah Berkemer (Ecole Polytechnique - Palaiseau, FR)

License Creative Commons BY 4.0 International license
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Various genetic disorders are caused by expansion of short tandem repeats as they aggregate
in cells and form so-called RNA droplets or foci. However, themolecular mechanisms of
RNA foci formation remains unclear. The aim of being able to design RNA tandem repeats
and model RNA foci formation is twofold: it will help understand the mechanisms and
therapies related to genetic disorders such as Huntigton’s disease but at the same time
serve as a method to spatial engineering inside cells as RNA droplets cause a liquid-liquid
phase separation which can serve as process isolation and help to organize proteins and
multienzyme pathways without fine-tuning RNA expression levels.
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Phase-separating RNA molecule complexes are contructed from small repeating
sequences, e.g. triplet repeats. Visualization of RNA foci is conducted by tagging droplets
with e.g. GFP and corresponding adapters such as the MS2 aptamer.

Previous studies successfully showed the formation of RNA foci using various types of
RNA triplet repeats and even longer repeat sequences where the formation of G-quadruplexes
seems to be an important part for the interaction between two tandem repeat RNAs [1, 2,
3, 4].

Existing studies could experimentally show which RNA triplets are the most successful
in forming RNA foci, however, the structure of RNA foci and their dynamics are not yet
understood. Additionally, the liquid-liquid phase separation opens numerous possibilities
for spatial engineering inside the cells, but we still lack the knowledge of structural and
chemical properties of the RNA droplets and the space inside the foci. By designing RNA
molecules that form droplets, we need to take into account interactions of more than two
RNA sequences as well as possible interactions with binding proteins. Hence, we aim to
develop design strategies for interacting short tandem RNA repeats and explore properties
of RNA droplets and their formation.

References
1 Haotian Guo et al., https://www.biorxiv.org/content/10.1101/2020.07.02.
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2 Jain and Vale, 2017, https://doi.org/10.1038/nature22386
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5.7 Scaling and Limits of DNA Strand Displacement Computing
Harold Fellermann (Newcastle University, GB)
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Since it has been shown that DNA strand displacement (DSD) reactions can implement
arbitrary chemical reaction networks, they have become a popular substrate for molecular
computing applications. One question worth asking if whether and where there exists up-
per limits on the size and complexity of realistically achievable DSD circuits. To address
this question, I am presenting as example application the design for a molecular QR code
generator that displays a dedicated QR code for any configuration of n molecular input
DNA strands. By increasing the number of inputs, the complexity of the circuit increases
in a superexponential manner, as well as our current attempts to tame the number of re-
quired DSD gates that implement the requred function. The second part of the talk presents
experimental results on the scalability of DSD circuits and limits that arise from toehold
occlusion or partially complementary toeholds. Motivation for this study is the realization
that reversible toehold binding imposes an upper limit on toehold length of typically six
to eight nucleotides. This in turn puts a hard limit on the number of distinct toeholds a
circuit can employ. While the number of distinct nucleotide sequences is still quite large,
crosstalk appears in system with significantly fewer toehold sequences once the sequence of
supposedly distinct toeholds becomes similar enough to cause undesired interactions. We
have systematically analyzed noise in DSD systems caused by crosstalk between signals with
single and double mismatches. Our main result is that toehold occlusion might occur already
in systems one order of magnitude below the theoretical upper limit to toehold domains.
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5.8 Generative modelling of riboswitches with restricted Boltzmann
machines

Jorge Fernández de Cossío Díaz (ENS - Paris, FR)
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Restricted Boltzmann machines (RBM) are energy-based latent variable generative models,
consisting of two layers, that can offer interpretable representations of complex data. Re-
cently they have been applied to modelling protein sequence data. In this talk, I will present
evidence suggesting RBM are effective generative models of structured RNA. In particular,
I consider the SAM riboswitch family, which regulates expression of downstream bacterial
mRNAs by adopting competing structural conformations in response to the presence of a
cellular metabolite. The RBM automatically infers relevant statistical features from the
sequence data, such as conservation patterns, complementarity constraints consistent with
the secondary structure, and the presence of a pseudoknot. The functionality of designed
sequences has been validated experimentally by SHAPE mapping.

5.9 Get away from Plug and Pray: Synthetic Riboswitches -
Applications and open Problems

Sven Findeiß (Universität Leipzig, DE)

License Creative Commons BY 4.0 International license
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Joint work of Sven Findeiß, Mario Mörl, Peter F. Stadler

I will talk about the collaborative projects with the group of Mario Mörl (Biochemistry
department at Leipzig University) on transcription termination regulating riboswitches and
how we put tRNA processing under ligand control. The presentation will summarize how
the corresponding design models have been developed, implemented, and analyzed in silico,
as well as the biochemical investigations in vitro and in vivo. I will not only show the success
story but the main emphasis will be on the problems we faced, how we solved them, and
especially the issues that remain.
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5.10 Designing RNA during the DNA Origami revolution
Cody Geary (Aarhus University, DK)
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Main reference Cody Geary, Guido Grossi, Ewan K. S. McRae, Paul W. K. Rothemund, Ebbe S. Andersen: “RNA

origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds”. Nat. Chem.
13, 549–558 (2021).

URL https://doi.org/10.1038/s41557-021-00679-1

RNA is the punk-brother of DNA. While DNA plays by rules, RNA is more rebellious. The
diverse structural features of RNA that make it a powerfully-functional molecule in biology
also make it difficult to tame and rationally-design.

In contrast to engineered DNA nanostructures such as DNA origamis, natural RNA
molecules in cells must fold under non-equilibrium conditions; the RNAs fold continuously
while the strand is still emerging from the polymerase. While design of staple strands
to produce DNA origami nanostructures can be easily automated by simple algorithms,
producing a single-stranded RNA origami requires the entire sequence of the RNA to be
designed by inverse folding, which is computationally much more challenging.

Our RNA design software ROAD begins with a random starting sequence, and over
many iterations mutates that sequence to improve its folding into a target fold. ROAD uses
both positive and negative design cycles to perform a gradient descent based on an adapting
scoring function. The strategy is based on in vitro selection methods where the selection
conditions gradually become more difficult over successive rounds.

5.11 Two design stories: probes for SARS-CoV-2 detection and
CRISPR/Cas9 gRNAs

Jan Gorodkin (University of Copenhagen, DK)
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Main reference Mohsen Mohammadniaei, Ming Zhang, Jon Ashley, Ulf Bech Christensen, Lennart Jan
Friis-Hansen, Rasmus Gregersen, Jan Gorm Lisby, Thomas Lars Benfield, Finn Erland Nielsen,
Jens Henning Rasmussen, Ellen Bøtker Pedersen, Anne Christine Rye Olinger, Lærke Tørring
Kolding, Maryam Naseri, Tao Zheng, Wentao Wang, Jan Gorodkin, Yi Sun: “A non-enzymatic,
isothermal strand displacement and amplification assay for rapid detection of SARS-CoV-2 RNA”.
Nat Commun 12, 5089 (2021).
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integration and deep learning”. Nat Commun 12, 3238 (2021).

URL https://doi.org/10.1038/s41467-021-23576-0

I will present two design cases. The first case concern non-enzymatic isothermal strand
displacement and amplification for rapid detection of SARS-CoV-2, which we accomplished
through design of DNA probes that opens and binds to targeted locations of the SARS-CoV-
2 genome. Through RNA folding considerations, we show why one of two probes are more
successful and makes the detection possible. In the second case, design of CRISPR/Cas9
guide RNA (gRNA) are made from first generating cleavage efficiency data and subsequently
train a deep learning-based neural network which has cutting-edge performance tested on
independent data sets.
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5.12 What can geometric combinatorics say about RNA design?
Christine Heitsch (Georgia Institute of Technology - Atlanta, US)
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Branching is a critical characteristic of RNA design, yet can be challenging to validate with
thermodynamic optimization approaches. Using mathematical methods (convex polytopes
and their normal fans), we can improve prediction accuracy on well-defined families while
also illuminating why the general problem is so difficult.

5.13 Experiments in Deep Learning for RNA Secondary Structure
Prediction

Ivo Hofacker (Universität Wien, AT)
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Joint work of Christoph Flamm, Julia Wielach, Michael T. Wolfinger, Stefan Badelt, Ronny Lorenz, Ivo L.
Hofacker

Main reference Christoph Flamm, Julia Wielach, Michael T. Wolfinger, Stefan Badelt, Ronny Lorenz, Ivo L.
Hofacker: “Caveats to Deep Learning Approaches to RNA Secondary Structure Prediction”,
Frontiers in Bioinformatics, Vol. 2, 2022.

URL https://doi.org/10.3389/fbinf.2022.835422

Machine learning (ML) and in particular deep learning techniques have the potential to
overcome shortcomings of current RNA secondary structure prediction methods, such as
the inability to predict pseudoknots and poor treatment of non-canonical pairs. Several
recent publications have proposed deep neural networks for RNA secondary structure pre-
diction and reported excellent accuracies. However, these works build upon training sets that
are derived from a relatively small number of RNA families and therefore do not properly
represent the RNA structure space.

By folding random sequences using the RNAfold program of the ViennaRNA package,
we can generate synthetic data sets that allow to test in detail which properties of the RNA
folding map are easy or hard to learn for these networks. We find that structure features that
are local in the base pairing matrix, such as stacks and interior loops, are easy to learn, while
less local multi-loops are much harder. Most strikingly, the number of base pairs predicted
by convolutional networks grows quadratically, rather than linearly, with sequence length.

Using inverse folding, we designed a further synthetic training set that contains the
same structures as the widely used bpRNA data set, and therefore exhibits the same lack of
structure diversity in spite of near perfect randomness of the sequences. Networks trained on
this data set achieve excellent performance on sequence that have no similarity to training
sequences but fold into structures well represented in the training set. Nevertheless, the
networks perform poorly on sequence folding into novel structures. This suggests, that the
excellent performance reported in the literature is largely due biases in the data sets, i.e.
that training and test sets that exhibit the same overrepresentation of a few well studied
RNA families and their structures.
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5.14 BarMap-QA – Cotranscriptional folding with quality assurance
Felix Kühnl (Universität Leipzig, DE)
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URL https://www.bioinf.uni-leipzig.de/Software/BarMap_QA/

The structure of an RNA molecule is often a crucial characteristic to be able to explain
its biological function. While studying the thermodynmaically optimal (MFE) structure
often yields important information, there are relevant cases where a computation of the
MFE structure alone is not sufficient to understand a molecule’s behaviour, for example
in transcriptional riboswitches. Cotranscriptional folding simulations can thus be a helpful
tool to gain a deeper understanding a given RNA.

In this talk, I present the software pipeline BarMap-QA, which relies on the BarMap
framework by Hofacker et al., to simulate cotranscriptional folding of RNAs. The pipeline
is not only very streamlined and easy to set up and run, but it also provides several quality
measures to assess the quality of the conducted analysis and thus allow the user to optimally
ballance computational efficiency against simulation accuracy for a specific use case.
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5.15 Discovering RNA Self-Reproducers By In Silico And In Vitro
Screening

Philippe Nghe (ESPCI - Paris, FR)
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Nghe

The RNA world hypothesis proposes that RNAs carry catalytic activity necessary for prim-
ordial evolution. A first necessary condition for evolution is reproduction. Whether self-
reproduction is rare or common in the space of RNA sequences is central to assess the
plausibility of this scenario. To date, two ribozymes have been shown to autocatalytic-
ally sustain their self-reproduction in the laboratory, starting from RNA oligomers: the
Azoarcus ribozyme derived from the group I intron family (Hayden and Lehman 2006) and
a fragmented ligase (Lincoln and Joyce 2009). In this project, we assess the probability
of self-reproducing RNAs in sequence space by using as a starting point the Azoarcus ri-
bozyme that can autocatalytically self-reproduce. We show that combining in silico and
in vitro screening allows for the discovery of a large number of artificial self-reproducing
ribozymes. For this, the strategy consists of: i) Identifying natural self-reproducing GIIs; ii)
Applying physics-based and machine learning methods to generate artificial candidates for
self-reproduction; iii) Testing designed sequences for self-reproduction using high-throughput
sequencing; v) characterizing the representative self-reproducers. We find that generative
models that combine statistical signatures from pair correlations and secondary structure
prediction are efficient at producing functional ribozymes more than 60 nucleotides away
from the original sequence, whereas random mutations destroy activity after only a few.
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These methods interpolate the natural diversity found in group I introns, from which self-
reproducers can be successfully re-engineered. This overall shows that self-reproduction is
not an exceptional property of a few laboratory-made RNAs, but is relatively widespread in
the sequence space.

5.16 Physical modeling of RNA polymorphism
Samuela Pasquali (University Paris-Diderot, FR)
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RNA molecules are characterized by the existence of a multitude of stable states that that
result in a frustrated energy landscape, where the observed structures depend sensibly on
experimental conditions and can depend on the initial, unfolded, structure. Using both
atomistic and coarse-grained physical models for RNAs, combined with enhanced sampling
methods, we investigate the energy landscape of these systems to understand what are the
most relevant structures in the different conditions. Using a few significant examples we
show how the combination of these methods allowed us to rationalize the experimental evid-
ence showing the concurrent existence of multiple states [1, 2]. The coarse-grained model
we develop [3] is also a useful starting point to couple simulations with experimental data,
moving toward intergrative modeling. We have recently developed a simulation technique
allowing to bias MD coarse-grained simulations with SAXS data on-the-fly [4], and a theor-
etical framework to perform fast constant pH simulations where we can model the system
considering the exchange of charges with the solvent [5]. These developments allow us to
account for the environment to obtain reasonable structures to then be studied more thor-
oughly with high-resolution modeling.
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5.17 RNA dynamics: one basepair at a time
Katja Petzold (Karolinska Institute - Stockholm, SE)
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Many functions of RNA depend on rearrangements in secondary structure that are triggered
by external factors, such as protein or small molecule binding. These transitions can feature
on one hand localized structural changes in base-pairs or can be presented by a change in
chemical identity of e.g. a nucleo-base tautomer [1]. We use and develop R1ρ relaxation-
dispersion NMR methods [2] for characterizing transient structures of RNA that exist in low
abundance (populations <10%) and that are sampled on timescales spanning three orders
of magnitude (µs to s).

The characterization of transient structures in microRNA miR-34a targeting the mRNA
of Sirt1 [3] will be discussed and a first glimpse into ribosomal dynamics will be provided.
We have trapped these short-lived states and characterized their structure and impact on
function.
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5.18 Minimalistic RNA inverse folding
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We consider two minimalistic instances of RNA Design, restricting our attention to a minimal
instance of RNA inverse folding based on a simplified energy model, where any canonical base
pair contributes equally to the free-energy. This greatly simplifies the study of algorithmic
questions, hopefully enabling new (exact? efficient?) solutions to design problems that are
usually approached in a heuristic fashion.

First, we consider the problem of counting/sampling sequences that are simultaneously
compatible with a collection of secondary (2D) structures. Valid sequence assignments turn
out to be in bijection, up to trivial symmetry, to independent sets of a compatibility graph,
built as the union of base pairs from all structures. As all graphs can be obtained as unions
of 2D structures, this implies #P-hardness of the counting problem. Yet, the problem can
be solved using an DP algorithm that is fixed parameter tractable for the tree-width of
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the graph. The associated algorithm can be further generalized to compute the partition
function for generic constraints, and represents the engine of our declarative framework
InfraRed for sequence sampling.

Next, we consider the inverse folding problem which starts from a single target 2D
structure, and consists in finding a sequence that folds uniquely into the target with respect
to base pair maximization. We first provide a complete characterization for designable
structures without unpaired bases. More generally, we characterize extensive classes of (non-
)designable structures, and prove the closure of the set of designable structures under the
stutter operation. Finally, we consider a structure-approximating relaxation of the design,
given a structure S (avoiding 2 basic undesignable motifs) transforms S into a designable
structure by adding at most one base-pair to each helix. For all designable structures, a
sequence can be generated in linear time, suggesting this relaxed version of design may be
easier that the rigid version of the problem.

5.19 Challenges in designing RNA non-canonical modules
Vladimir Reinharz (University of Montreal, CA)
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RNA structures depends largely on the geometry of interactions between its nucleotides.
While the classical canonical/wobble interactions drive the folding of the major helices,
there is a wide variety of different shapes that can connect through hydrogen bonds any
nucleotide to any other. They have been classified by Leontis-Westhof into 12 non-canonical
families. Graph algorithms have allowed to automatically retrieve all conserved network
of non-canonical interactions in all known RNA structures. This work has exhibited the
modularity and composability of theses structures. Nonetheless, most of them don’t have any
associated thermodynamic parameter and it is still unknown if their folding is opportunistic
or actually pushed for by these interactions. We ask as questions: What would be a rational
scheme to design novel sequences folding in these shapes? How much of the context must
be taken into account to ensure the correct folding? And how can chemical modifications
enable unique modules?

5.20 Learning to Design RNA
Frederic Runge (Universität Freiburg, DE)
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Machine learning (ML) and especially deep learning (DL) approaches recently achieved
remarkable results in different domains of life sciences. While such methods have entered
many areas of molecular research, the field of RNA design still largely lacks deep learning-
based approaches. To close this gap, we present two machine learning based approaches to
tackle two different problems related to the field of RNA design. We present an automated
deep reinforcement learning (AutoRL) approach that is capable of generating RNA sequences
that fold into a desired secondary structure (inverse RNA folding) while often requiring
only very few shots to yield a solution. Due to the sensitivity of deep RL algorithms to
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their hyperparameter settings and the lack of similar work in the field, we use a meta-
optimization approach to automatically find the best RL setting for solving the problem.
Since inverse RNA Folding is fundamentally linked to RNA folding, we present a probabilistic
Transformer for the secondary structure prediction problem. We show that our method
outperforms previous work on a commonly used benchmark dataset from the literature and
that it improves the quality of non-canonical base pair and pseudoknot predictions compared
to previous work. Besides the advantages of a global reception due to self-attention compared
to convolution neural networks, the probabilistic nature of our method allows to reconstruct
structure ensembles learned from data.

5.21 Differential SHAPE probing to screen computationally designed
RNA and to detect pseudoknot and non-canonical interactions

Bruno Sargueil (Paris Descartes University, FR)
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The development of reliable RNA design processes requires experimental validation. RNA
structure modelling from chemical probing experiments has made tremendous progress, how-
ever accurately predicting large RNA structures is still challenging for several reasons. In
particular interactions such as pseudoknots and non-canonical base pairs which are not cap-
tured by the available incomplete thermodynamic model are hardly predicted efficiently. To
identify nucleotides involved in pseudoknots and non-canonical interactions, we scrutinized
the SHAPE reactivity of each nucleotide of a benchmark RNA under multiple conditions.
We show that probing at increasing temperature was remarkably efficient at pointing to
non-canonical interactions and pseudoknot pairings. The SHAPE probing technology was
then use to screen for RNA computationally designed to interact with a small molecule

5.22 ENSnano: a 3D modeling software for designing complex
DNA/RNA nanostructures

Nicolas Schabanel (ENS - Lyon, FR)
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Since the 1990s, increasingly complex nanostructures have been reliably obtained out of self-
assembled DNA strands: from “simple” 2D shapes to 3D gears and articulated nano-objects,
and even computing structures. The success of the assembly of these structures relies on
a fine tuning of their structure to match the peculiar geometry of DNA helices. Various
softwares have been developed to help the designer. These softwares provides essentially
four kind of tools: an abstract representation of DNA helices (e.g. cadnano, scadnano,
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DNApen, 3DNA, Hex-tiles); a 3D view of the design (e.g., vHelix, Adenita, oxDNAviewer);
fully automated design (e.g., BScOR, Daedalus, Perdix, Talos, Athena), generally dedicated
to a specific kind of design, such as wireframe origamis; and coarse grain or thermodynamical
physics simulations (e.g., oxDNA, MrDNA, SNUPI, Nupack, ViennaRNA,...). MagicDNA
combines some of these approaches to ease the design of configurable DNA origamis.

We present our first step in the direction of conciliating all these different approaches
and purposes into one single reliable GUI solution: the first fully usable version (design from
scratch to export) of our general purpose 3D DNA nanostructure design software ENSnano.
We believe that its intuitive, swift and yet powerful graphical interface, combining 2D and
3D editable views, allows fast and precise editing of DNA nanostructures. It also handles
editing of large 2D/3D structures smoothly, and imports from the most common solutions.
Our software extends the concept of grids introduced in cadnano; grids allows to abstract
and articulated the different parts of a design. ENSnano also provides new design tools
which speeds up considerably the design of complex large 3D structures, most notably: a
2D split view, which allows to edit intricate 3D structures which cannot easily be mapped in
a 2D view, and a copy & repeat functionality, which takes advantage of the grids to design
swiftly large repetitive chunks of a structure. ENSnano has been validated experimentally,
as proven by the AFM images of a DNA origami entirely designed in ENSnano.

ENSnano is a light-weight ready-to-run independent single-file app, running seamlessly
in most of the operating systems (Windows 10, MacOS 10.13+ and Linux), it thus does not
require the installation of any other softwares such as Matlab, Maya or Samson. Precompiled
versions for Windows and MacOS are ready to download on ENSnano website. In the
coming months, we will add new features to our software to extend its capacities in the
various directions discussed in this article. We decided to release now this first version of
our software as its 3D and 2D editing interface is meeting our usability goals. Because of its
stability and ease of use, we believe that ENSnano should find already its place in anyone’s
design chain, when precise editing of a larger nanostructure is needed.

Furthermore, we propose a new method for designing curved origamis that deviates
radically from the pattern-based previous approaches. We have developed a new model for
DNA double helices curved in 3D that allows us to directly position the DNA double helices
constituting the desired shape in the 3D interface of our software ENSnano. The crossovers
positions are then simply deduced from the 3D positions of the nucleotides, as predicted
by our model. This geometry-based interactive approach shortcuts the tedious process of
manually coming up with a pattern suited for the desired curvature, and furthermore allows
to deal transparently with structure whose curvature varies continuously. We also propose
an innovative 2D representation synchronizing curved parallel double helices without relying
on insertions or deletions, by automatically adapting the cell width for each nucleotide in
the array representation.

We provide experimental data validating our curvy DNA model by successfully annealing
two DNA origamis conceived thanks to two new DNA design methods. The first origami
consists in a 6-helices bundle following an interactively created bezier curve whose curvature
gets as low as 4.7nm. The second is an asymetrical Möbius torus whose DNA strands are
routed along 2 spiraling helices covering its whole surface. This new spiraling technique,
allowed by our DNA curvy model, enables to grasp xovers within a continuous range which
results in an easier-to-design and smoother surface. Both of our designs folded as is, without
any need to redesign their xover schemes.
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5.23 Single-Stranded Architectures for RNA Co-Transcriptional Folding
Shinnosuke Seki (The University of Electro-Communications - Tokyo, JP)
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Assemble Shapes No Less Complex Than Tile Assembly Model (ATAM)”, in Proc. of the 39th
International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18,
2022, Marseille, France (Virtual Conference), LIPIcs, Vol. 219, pp. 51:1–51:23, Schloss Dagstuhl -
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Oritatami (folding in Japanese) is a mathematical model of computation by co-transcrip-
tional folding we proposed in 2016 and have been studying, primarily on its computational
power. In this model, RNA co-transcriptional folding is generalized so that the bases (called
“beads” herein) can be of arbitrarily defined, finitely-many types that may have arbitrary
affinities with each other (rather than just the four bases in RNA with their fixed set of
affinities), but restricted on the 2D plane. In this talk, we present the latest universal
oritatami architecture that enables us to compute all computable functions (Turing univer-
sality) co-transcriptionally, with particular emphasis on simplicity of mechanisms it employs
to read/write a bit, to store information, and to merge computational paths (erasure).

5.24 Coarse-grained modeling for RNA nanotechnology
Petr Sulc (Arizona State University - Tempe, US)

License Creative Commons BY 4.0 International license
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Nucleic acid nanotechnology uses designed DNA or RNA strands that self-assemble into
larger complexes and nanodevices. Computer modeling and simulations can provide crucial
insights into function and design of such nanostructures. However, the sizes (up to thou-
sands of base pairs) and timescales of their assembly (minutes to hours) of such nanodevices
presents major challenge for modeling approaches. Here, we will present a coarse-grained
model, oxDNA/oxRNA, specifically designed to simulate DNA and RNA nanotechnology,
and we will demonstrate its application to RNA strand displacement reaction, a key mech-
anism in active nanotechnology devices which has recently been also identified to occur
during RNA folding in vivo. We will then discuss applications of our modeling platform
for inverse design of multicomponent nanostructure assemblies: how to design individual
nucleic acid building blocks that self-assemble reliable into target mutlicomponent structure
while avoiding kinetic traps and alternative free-energy minima? We show that through
combination of multiscale modeling and mapping of the inverse design problem to Boolean
Satisfiability Problem (SAT), it is possible to design nanostructures that assemble large-scale
3D assemblies, opening ways to use nucleic acids to biotemplated manufacturing.
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5.25 Persuading tRNA to jump over stop codons
Andrew Torda (Universität Hamburg, DE)
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Joint work of Andrew E. Torda, Marco C. Matthies

Can one persuade a half-artificial tRNA to bind to a stop codon, pretend to be a tRNA-Ala
and incorporate an alanine residue in a growing protein ? If so, you might be on the way to
alleviating a disease caused by an unwanted stop codon.

If you want to design an RNA sequence, you want a series of real nucleotides at the end
of the day, but you may well go through some non-physical mixed states along the way. You
can represent a base as some fraction of A plus C plus.. If you have an energy model, you
can take the derivative of energy with respect to the composition at each site. This lets you
use gradient-based methods to optimise your sequence.

We used the program DSS-Opt to find our artificial tRNA sequences, although this was
no longer a de novo problem. The tRNA does not just have to fold correctly. It has to be able
to convince an amino-acyl synthetase to charge it and then sneak past a host of recognition
factors before a ribosome would consider taking it seriously. This means our calculations
were far from de novo design. Only about 45% of the bases were actually optimised.

About half a dozen candidates were tested for charging by an alanine amino acyl-tRNA
synthetase and then for stop-codon read-through with a luciferase assay. The winner of
this was fed to an antibiotic-stalled ribosome and the structure solved by cryo-EM (acquis-
ition code 7B5K). A bouncing baby half-designed tRNA smiled at the authors from the
coordinates.

You could either view this as a triumph of design or you could say, less than half the
sites in the molecule were actually chosen.

5.26 Kinetic features of RNA-RNA interactions
Maria Waldl (Universität Wien, AT)

License Creative Commons BY 4.0 International license
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Interactions between RNAs are an essential mechanism in gene regulation. State-of-the-art
computational genome-wide screens predict targets of regulatory RNAs based on thermody-
namic stability but largely neglect kinetic effects. To overcome this limitation, we propose
novel models of RNA-RNA interaction dynamics. On this basis we can improve our un-
derstanding of general principles that govern RNA-RNA interaction formation and improve
target prediction tools.

While the dynamics of secondary structure formation of single RNAs have been suc-
cessfully modeled using transition systems between conformations, analogous approaches
for RNA-RNA interaction quickly lead to infeasibly large systems. Therefore, we propose
reducing the interaction system to the direct trajectories (shortest paths) from possible first
contacts to full hybridization. This key idea enables studying general principles and relevant
features of the interaction formation as well as model details; e.g. the relative speed of intra-
and intermolecular folding. Specifically, we isolate kinetic effects by comparing experiment-
ally confirmed interactions from Salmonella and E. coli to a randomized background with
similar thermodynamic properties.
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These experiments indicate that native interactions are kinetically favored. Moreover,
folding trajectories often look remarkably different depending on the site of the initial con-
tact. Based on a machine learning classifier, we were able to identify a combination of
interaction features that provide most information on the behavior of native RNA-RNA
interactions. These features can be exploited to filter target predictions.

Due to the design of our RNA kinetics model, features like energy barriers can be com-
puted efficiently. This enables refining genome-wide target predictions through kinetic cri-
teria. Beyond these immediate practical improvements, we shed light on general principles
like the long-debated influence of the accessibility of the initial contact site.

In the context of this seminar I would like to present this direct path models for in-
teraction formation as well as the kinetic features that we identified and discuss how such
features could extend current RNA design strategies.

5.27 Infrared: A sampling framework for RNA design... and beyond
Sebastian Will (Ecole Polytechnique - Palaiseau, FR)

License Creative Commons BY 4.0 International license
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Joint work of Sebastian Will, Yann Ponty, Hua-Ting Yao
URL http://www.lix.polytechnique.fr/ will/Software/Infrared/

Infrared is a modeling framework for efficient targeted sampling and optimization. It was
originally developed for implementing complex sequence design approaches with multiple ob-
jectives and side constraints, e.g. design of sequences with multiple RNA target structures
while controlling the GC-content (RNARedPrint). Due to its declarative, compositional ap-
plication programming/modeling interface, Infrared allows extending existing design tools
to solve very specific design tasks, e.g. optimizing codon-usage while targeting RNA struc-
tures and (possibly) additional constraints. In the same way, it enables rapid development
of completely new design tools like RNAPOND (and, due to its generality, even methods
beyond design, e.g. alignment of RNAs with pseudoknots). A main feature of the system
is its automatic adaptation to the complexity of the declaratively modeled task. For this
purpose, the system implicitly derives fixed- parameter-tractable sampling and optimization
algorithms using tree-decomposition. The talk outlines main properties and background of
the system, its elementary usage, and presents concrete examples of design applications.
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5.28 Forbidden RNA motifs and the cardinality of secondary structure
space

Hua-Ting Yao (Universität Wien, AT)
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Are Designable”, in Proc. of the 10th ACM International Conference on Bioinformatics,
Computational Biology and Health Informatics, BCB ’19, p. 289–298, Association for Computing
Machinery, 2019.

URL https://doi.org/10.1145/3307339.3342163

The problem of RNA design attempts to construct RNA sequences that perform a pre-
defined biological function, identified by several additional constraints. One of the foremost
objectives of RNA negative design is that the designed RNA sequence should adopt a pre-
defined target secondary structure preferentially to any alternative structure, according to
a given metrics and folding model. It was observed in several works that some secondary
structures are undesignable, i.e. no RNA sequence can fold into the target structure while
satisfying some criterion measuring how preferential this folding is compared to alternative
conformations.

We show that the proportion of designable secondary structures decreases exponentially
with the size of the target secondary structure, for various popular combinations of energy
models and design objectives. This exponential decay is, at least in part, due to the ex-
istence of forbidden motifs, which can be generically constructed, and jointly analyzed to
yield asymptotic upper bounds on the number of designable structures. Moreover, we define
a lower bound of the structural ensemble defect. We show that, across uniformly distrib-
uted secondary structures, such a lower bound has a Normal limiting distribution with the
expected value and the variance both linear to the size of the secondary structure.
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1 Executive Summary
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Jessica Montgomery
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Today’s scientific challenges are characterised by complexity. Interconnected natural, techno-
logical, and human systems are influenced by forces acting across time- and spatial-scales,
resulting in complex interactions and emergent behaviours. Understanding these phenomena
– and leveraging scientific advances to deliver innovative solutions to improve society’s health,
wealth, and well-being – requires new ways of analysing complex systems.

Artificial intelligence (AI) offers a set of tools to help make sense of this complexity. In an
environment where more data is available from more sources than ever before – and at scales
from the atomic to the astronomical – the analytical tools provided by recent advances in AI
could play an important role in unlocking a new wave of research and innovation. The term
AI today describes a collection of tools and methods, which replicate aspects of intelligence in
computer systems. Many recent advances in the field stem from progress in machine learning,
an approach to AI in which computer systems learn how to perform a task, based on data.

Signals of the potential for AI in science can already be seen in many domains. AI has
been deployed in climate science to investigate how Earth’s systems are responding to climate
change; in agricultural science to monitor animal health; in development studies, to support
communities to manage local resources more effectively; in astrophysics to understand the
properties of black holes, dark matter, and exoplanets; and in developmental biology to map
pathways of cellular development from genes to organs. These successes illustrate the wider
advances that AI could enable in science. In so doing, these applications also offer insights
into the science of AI, suggesting pathways to understand the nature of intelligence and the
learning strategies that can deliver intelligent behaviour in computer systems.

Further progress will require a new generation of AI models. AI for science calls for
modelling approaches that can: facilitate sophisticated simulations of natural, physical,
or social systems, enabling researchers to use data to interrogate the forces that shape
such systems; untangle complicated cause-effect relationships by combining the ability to
learn from data with structured knowledge of the world; and work adaptively with domain
experts, assisting them in the lab and connecting data-derived insights to pre-existing domain
knowledge. Creating these models will disrupt traditional divides between disciplines and
between data-driven and mechanistic modelling.

The roadmap presented here suggests how these different communities can collaborate to
deliver a new wave of progress in AI and its application for scientific discovery. By coalescing
around the shared challenges for AI in science, the research community can accelerate
technical progress, while deploying tools that tackle real-world challenges. By creating
user-friendly toolkits, and implementing best practices in software and data engineering,
researchers can support wider adoption of effective AI methods. By investing in people
working at the interface of AI and science – through skills-building, convening, and support
for interdisciplinary collaborations – research institutions can encourage talented researchers
to develop and adopt new AI for science methods. By contributing to a community of
research and practice, individual researchers and institutions can help share insights and
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expand the pool of researchers working at the interface of AI and science. Together, these
actions can drive a paradigm shift in science, enabling progress in AI and unlocking a new
wave of AI-enabled innovations.

The transformative potential of AI stems from its widespread applicability across dis-
ciplines, and will only be achieved through integration across research domains. AI for
science is a rendezvous point. It brings together expertise from AI and application domains;
combines modelling knowledge with engineering know-how; and relies on collaboration across
disciplines and between humans and machines. Alongside technical advances, the next wave
of progress in the field will come from building a community of machine learning researchers,
domain experts, citizen scientists, and engineers working together to design and deploy
effective AI tools.
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3 Introduction: bridging data driven and mechanistic modelling

The 21st century has been characterised as the century of complexity.1 Shifting social,
economic, environmental, and technological forces have created increasingly interconnected
communities, affected by “wicked” problems in domains such as health, climate, and economics
[1]. This complexity is reflected in today’s scientific agenda: whether in natural, physical,
medical, environmental, or social sciences, researchers are often interested in the dynamics of
complex systems and the phenomena that emerge from them.

Science has always proceeded through the collection of data. Through their experiments
and observations, researchers collect data about the world, use this data to develop models or
theories of how the world works, make predictions from those models, then test those predic-
tions, leading to further refinements to the model and the underpinning theory. Digitisation
of daily activities–in the lab, and elsewhere – means that researchers today have access to
more data from a greater range of sources than ever before. In parallel, more sophisticated
tools to collect data have opened new scales of scientific inquiry, from detailed patterns of
gene expression to light signals from other galaxies. Data proliferation is both a signal of the
complexity of today’s environment, and an opportunity to make sense of such complexity.

Advances in artificial intelligence (AI) have produced new analytical tools to make sense
of these data sources. The term “AI” today describes a collection of methods and approaches
to create computer systems that can perform tasks that would typically be associated with
“intelligent” behaviour in living systems.2 In this document, the term AI is used broadly, to
refer to algorithmic decision-making systems that combine data, mathematical models, and
compute power to make predictions about the world.

AI is already unlocking progress across research disciplines:
In Earth sciences, it is helping researchers investigate how different parts of the Earth’s
biosphere interact, and are affected by climate change.3
In climate science, it supports modelling efforts to reconstruct historical climate patterns,
enabling more accurate predictions of future climate variability.4
In agricultural science, it is helping farmers access faster diagnoses of animal diseases,
enabling more effective responses.5
In astrophysics, it is advancing understandings of the nature of dark matter and its role
in the Universe.6
In developmental biology, it is generating insights into the genetic processes that shape
how cells develop and differentiate into specialist roles.7
In environmental science, it allows researchers to analyse the features of natural environ-
ments more accurately, aiding land and resource managers.8
In neuroscience, it can help model how different neural circuits fire to deliver different
behaviours in animals.9

1 This quote is attributed to Stephen Hawking, in an interview with the San Jose Mercury News in
January 2000.

2 While not the only branch of the field, machine learning is the approach to AI that has delivered many
of the recent advances in AI. Machine learning is an approach to AI in which models process data,
learning from that data to identify patterns or make predictions. In this document, the terms machine
learning and AI are used interchangeably.

3 These examples are inspired by talks given at the Dagstuhl Seminar; these are provided later in the
document. This example is inspired by Markus Reichstein’s talk.

4 This example is inspired by Ieva Kazlauskaitė’s talk.
5 This example is inspired by Dina Machuve’s talk.
6 This example is inspired by Siddharth Mishra-Sharma’s talk.
7 This example is inspired by Maren Büttner’s talk.
8 This example is inspired by Christian Igel’s talk.
9 This example is inspired by Jakob Macke’s talk.
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The diversity of these successes illustrates the transformative potential of AI for research
across the natural, physical, social, medical, and computer sciences, arts, humanities, and
engineering. By enabling researchers to extract insights from a greater volume of data, drawn
from a wider variety of sources, and operating across multiple dimensions and scales, AI
could unlock new understandings of the world. In so doing, AI could influence the conduct of
science itself. AI-enabled analytical tools mean researchers can now generate sophisticated
simulations of natural or physical systems, creating “digital siblings” of real-world systems
that can be used for experimentation and analysis. Machine learning models that combine
the ability to learn adaptively from data with the ability to make structured predictions
reflecting the laws of nature can help researchers untangle the web of cause-effect relationships
that drive the dynamics of complex systems. AI-assisted laboratory processes could increase
the efficiency of experiments, and support researchers to develop and test new hypotheses.

Achieving this potential will require advances in the science of AI, the design of AI
systems that serve scientific goals, and the engineering of such systems to operate safely
and effectively in practice. These advances in turn rely on interdisciplinary collaborations
that connect domain expertise to the development of machine learning models, and feed the
insights generated by such models back into the domain of study. As interest in the potential
of AI to drive a new wave of research grows, the challenge for the field is to identify technical
and operational strategies to realise this potential. In the process, new questions arise about
the future of “AI for science”; whether this will emerge as a distinct field, characterised by
its own research agenda and priorities, or whether its benefits can be best achieved through
separate, domain-focused sub-fields, which seek to integrate AI into business-as-usual across
research disciplines.

In response, this document proposes a roadmap for “AI for science”. Synthesising insights
from recent attempts to deploy AI for scientific discovery, it proposes a research agenda
that can help develop more powerful AI tools and the areas for action that can provide an
enabling environment for their deployment. It starts by exploring core research themes –
in simulation, causality, and encoding domain knowledge – then draws from these ideas to
propose a research agenda and action plan to support further progress. The ideas presented
are inspired by discussions at “Machine Learning for Science: Bridging Mechanistic and Data
Driven Modelling Approaches”, a Dagstuhl Seminar convened in September 2022. Abstracts
from the talks given at the seminar are shown throughout this document. These talks and
the discussions they provoked should be credited for the ideas that have shaped it. Thank
you to the speakers and participants for their thoughtful contributions to both the seminar
and the development of this work.

References
1 Horst W. J. Rittel and Melvin M. Webber. Dilemmas in a general theory of planning.

Policy sciences, 4(2):155–169, 1973. Reprinted in N. Cross, ed. Developments in design
methodology, pp. 135–44. Chichester: J. Wiley & Sons, 1984.

4 Snapshots of AI in science

Across domains, AI is being deployed to advance the frontiers of science. The snapshots
below introduce some current areas of research in AI for science, and explore the issues raised
by these research projects. Across these snapshots, some common themes emerge:

How can researchers most effectively combine observations, data-driven models, and
physical models to enhance understanding of complex systems? To answer this question,
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methods are needed to integrate different types of model, operating across different
levels of granularity, while managing the impact of the uncertainties that emerge when a
machine learning model is integrated in a wider system. New approaches to simulation
and emulation can support progress in tackling these challenges, alongside new strategies
for examining the robustness or performance of machine learning models.
How do the outputs from an AI system align with what researchers already know about the
world, and how can such systems help uncover causal relationships in data? Advances in
causal machine learning are needed to connect the laws and principles already established
in many areas of research with data-driven methods.
How can AI be integrated into the scientific process safely and robustly? Effective
integration will rely on the ability to encode domain knowledge in AI systems, the design
of interfaces that facilitate interaction between humans and AI, and the development of
mechanisms for sharing knowledge and know-how about how to use AI in practice.

4.1 In Earth sciences
The Earth is a complex system,10 comprised of terrestrial, marine, and atmospheric
biospheres that interact with each other and are shaped by biological, chemical, and physical
processes that exchange energy across scales from the molecular to the planetary. It is also a
unique system: researchers have yet to discover other planets that replicate its dynamics.
Studies of the Earth system therefore rely on observations and physical models, which
describe the dynamics of energy exchange from first principles and use those principles to
build models of the Earth’s sub-systems. As climate change perturbs this complex system,
it is increasingly important to have accurate models that can be used to analyse how the
Earth will respond to increasing carbon dioxide levels. The challenge for Earth system
science is to build more complex models that represent the web of relationships between
biospheres under changing conditions, without generating overwhelming uncertainties and
while generating actionable insights that can be used by individuals, organisations, and
policymakers to understand the localised impact of changing environmental conditions [1].

For example, how much carbon dioxide is absorbed by different biospheres can be affected
by diverse factors including volume and type of vegetation cover, water and drought stress
in different areas, and local temperature, which have implications for how carbon dioxide
contributes to climate change. Researchers have access to data that describes local uptake of
carbon dioxide by some ecosystems, such as tropical rainforest, European beech forest, or
Mediterranean savanna, for example, but lack sufficient observational coverage to scale from
these local observations to accurate global representations of carbon exchange. One response
to this challenge is to leverage data-driven models to knit together the different mechanistic
models that describe (for example) carbon, water, and energy cycles in different biospheres.

By starting with observational data and combining this with physics-informed modelling,
researchers can leverage machine learning to create simulations that can generate new under-
standings of how complex systems function. Taking this approach, the FLUXNET project
combines observed data on carbon emissions from different sources to generate a data-driven
picture of global carbon dynamics. By combining data across scales to establish a statistical
model of global carbon dynamics, this project can generate simulations of how the Earth

10 This example is inspired by Markus Reichstein’s talk, the abstract for which is provided later in this
document.
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breathes [2]. The ability to integrate across scales and combine models of different Earth sub-
systems can also contribute to wider efforts to build a “digital twin” of the Earth, with the aim
of better understanding the implications of climate change across biospheres and communities.

As the Earth’s climate changes,11 researchers anticipate that local environmental condi-
tions will change and extreme weather events will increase. Understanding the impact of
these changes is important for those seeking to develop appropriate responses, for example
developing environmental management plans or planning human activities.

How a landscape responds to changing environmental conditions will vary depending on
the local climate, characteristics of the terrain (vegetation type, for example), and human
activities in the area. Under changing climate conditions, as extrapolation beyond known
limits becomes necessary, the assumptions or abstractions that form the basis of a model
can be rendered invalid. Relying solely on either mechanistic descriptions of the system
– the impact of temperature on plant growth, for example12 – or statistical models could
result in inaccuracies. Machine learning can help respond to this challenge, through the
creation of hybrid models that combine an understanding of the physical laws with model
parameters learned from data. Researchers often already have access to known physical
parameters for a system (for example, the equations that govern how water evaporates to air).
These parameters can be fed into a machine learning model that will learn other patterns.
Known equations specify the chemical and physical processes; machine learning can then
help elucidate the other biological forces at play. Integrating this physical structure in the
model helps make it both more interpretable to the domain scientists and more reliable in
its predictions. The resulting model can accurately forecast the impact of climate change on
the features of local landscapes, operating within the bounds set by the laws of physics [4].

Ice loss13 has been the greatest contributor to sea-level rise in recent decades [5]. Large
volumes of fresh water are stored as ice: NASA estimates that if all the world’s glaciers
and ice sheets melted, sea levels globally would rise by over 60 metres, flooding all coastal
cities [6]. Researchers can estimate the contribution that melting ice makes to sea level rise
through mechanistic models that describe the underlying physical processes (that turn ice to
water) and through observational data about the velocity of ice sheet movement. Machine
learning could offer a toolkit to make these models more accurate, connecting ice sheet
models to ocean and atmospheric models, and integrating different data types in hybrid
mechanistic-data models.

Efforts to build such models, however, illustrate the complexity of designing tools to
meet domain needs. Projects in this space have considered emulating the ice sheet system
– or its individual components – to see if models could be run faster; though successful
methodologically, it has not been clear that such efforts address a clear research need. Another
approach is to use machine learning to streamline simulations, for instance by identifying the
most effective level of granularity for different models (is a spatial breakdown of 5km or 10km
more interesting?). An important lesson from such collaborations is the specificity of domain
needs: machine learning is a tool for research, but just because researchers have a hammer,

11 This example is inspired by Markus Reichstein’s talk, the abstract for which is provided later in this
document.

12 Under conditions of extreme temperature, patterns of stomatal opening and closing in plants changes.
See, for example [3].

13 This example is inspired by Ieva Kazlauskaitė’s talk, the abstract for which is provided later in this
document.

22382



160 22382 – Machine Learning for Science

does not mean every research problem is a nail. Effectively deploying machine learning for
research requires both suitable AI toolkits and an understanding of which toolkits are best
deployed for which challenges.

4.2 In environmental and agricultural sciences
Poultry farming14 is a vital source of income and food for many communities in Tanzania.
4.6 million households in the country raise approximately 36 million chickens, but despite
the importance of this activity, poultry farming suffers from relatively low productivity due
to the prevalence of disease. Efforts to tackle poultry diseases such as Salmonella, Newcastle
disease, and coccidiosis are held back by the accessibility of diagnostic processes and lack of
data. Diagnosis currently requires lab analysis of droppings, which can take 3-4 days. Once
disease is confirmed, farmers often lose their entire farm’s flock.

Farm-level tests and diagnostics could increase the effectiveness of disease surveillance
and treatment, giving farmers rapid access to information about the diseases affecting their
flock and action plans about how to manage outbreaks. With mobile phones ubiquitous
across the country – there are almost 49 million mobile phone subscriptions in Tanzania –
there are opportunities for new uses of local data to detect disease outbreaks.

By collecting images of droppings from farms, researchers have been creating a dataset
to train a machine learning system that can identify the symptoms of these diseases. Fecal
images are taken on farms, annotated with diagnostic information from agricultural disease
experts and the results of lab tests, then used to train an image recognition system to
automate the diagnosis process [7]. System robustness and accuracy is vital, given the
significant implications of a positive diagnosis, and careful design is necessary to incentivise
farmers to make use of the app.

Collaboration with experts from different domains is central to developing this system.
Input from farmers is needed to collect data and test the system in practice; from veterinary
pathologists to help annotate the data and ensure the system’s accuracy; and from technolo-
gists to develop an AI system that is effective in deployment as an app on mobile phones.
These collaborations also open opportunities for new forms of citizen science, as farmers and
local communities are engaged in efforts to develop and maintain an open toolkit for disease
diagnosis, providing a gateway for communities to take ownership of machine learning as a
tool to serve their needs.

Trees and forests15 play a crucial role in maintaining healthy ecosystems. Despite this,
an estimated ten million hectares of forest are lost globally each year due to reforestation,
with only around half of this balanced by tree-planting efforts [8]. Africa experienced an
annual rate of forest loss of approximately 3.9 million hectares per year from 2010-2020. This
loss has implications for biodiversity and people, with trees a vital contributor to ecosystem
services such as carbon storage, food provision, and shelter. In this shifting landscape,
understanding the number and distribution of trees is important for the development of
forestry management plans and for understanding the carbon storage implications of changes
to land use.

14 This example is inspired by Dina Machuve’s talk, the abstract for which is provided later in this
document.

15 This example is inspired by Christian Igel’s talk, the abstract for which is provided later in this document.
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To estimate the number and biomass of trees in the West African Sahara and Sahel,
researchers have used satellite imagery of 90,000 trees from 400 sampling sites to create a
labelled dataset for use in machine learning. Using an image segmentation tool to identify the
location of trees, an automated system was able to count the number of trees, with domain
experts guiding the system to distinguish trees from surrounding vegetation. This tree count
can then be used to estimate the biomass of trees in the area, and predict the amount of
carbon they store; the prediction is generated using allometric calculations, which translate
the properties of the tree to its carbon storage potential. In this approach, machine learning
measures the properties of the ecosystem from satellite images, then these properties are
used to feed mechanistic models that describe the ecosystem’s physical functions [9]. This
opens the possibility of new tools to estimate tree cover, leveraging these insights for more
effective environmental management. However, in the process, care is needed to manage the
type and nature of the uncertainties created by different modelling approaches. Different
allometric models, for example, can be more or less suited to different types of tree cover [10],
meaning that the method for estimating biomass from satellite imagery can be subject to
biases when applied across a large area. A small error in the calculation of the biomass from
one tree can have a cumulatively large effect when that method is scaled to country-level.
The type and nature of such uncertainties need to be considered when a machine learning
model is used within a wider system.

Vector borne diseases16 account for more than 17% of diseases in people and over
700,000 deaths annually [11]. Changes to the climate and patterns of land use, amongst
other factors, are bringing human populations into contact with new vectors of disease. In
Africa, for example, populations of mosquitoes carrying malaria that might previously have
been found mainly in rural areas are spreading into cities.

Tools to characterise building features from satellite imagery have already been developed
and made available for use.17 Leveraging these to analyse multi-scale data – from household
to city-level–researchers are investigating how the built environment influences people’s risk
of contracting mosquito-borne disease. For example, it has been found that the prevalence of
mosquitos in an area is related to the type of roofing used in construction; metal roofing tends
to be associated with lower mosquito prevalence, potentially due to the high temperatures
they attract during the day [13]. These insights can be deployed by policymakers in the
development of appropriate policy responses [14].

Decisions made on the basis of insights generated by machine learning models will be
influenced by the assumptions made in those models. In the context of housing, for example,
the decision about which type of housing to identify as “at risk” or which building materials
to flag as “problematic” may have significant consequences for individuals or communities.
When those decisions are assimilated within a model or analysis before a downstream “policy
decision”, the implications for those communities of different courses of action may be
obscured, creating a risk of marginalising or disadvantaging individuals or groups. The
assumptions are built into the model, and how visible those assumptions are made to different
user groups, can have significant social and scientific consequences.

16 This example is inspired by Christian Igel’s talk, the abstract for which is provided later in this document.
17 For example: [12].
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4.3 In physical sciences
Understanding the nature of dark matter18 is one of the biggest unsolved challenges
of particle physics today. The matter that researchers can measure using cosmological
observations makes up about 5% of the Universe [15]. While not directly observable, evidence
for the existence of dark matter can be found in a variety of phenomena not otherwise
accounted for by currently known laws of physics: stars rotate around galaxies faster than
might be expected; the pattern of fluctuations in primordial microwave observations indicate
that there were sources of gravitation in the early Universe beyond ordinary matter; light
bends around galaxy clusters due to gravitational effects from dark matter.

Despite knowing that dark matter exists and that it plays an important role in how
the Universe formed, its particle composition or properties remains unclear. Investigating
these properties is the focus of large-scale experimental studies, for example in particle
colliders.19 A variety of data could contain information about the properties of dark matter,
from studies of cosmic rays, cosmic microwave radiation, properties of stars, gravitational
lensing studies, and more. These datasets are complex: they are typically high-dimensional,
represent complex relationships between the micro-physics and macro-phenomenon in a
system, and may contain artefacts or noise from the instruments used to collect them. To
make use of this data, researchers need to account for this complexity and tether their models
to assumptions about physical processes.

The challenge for machine learning in astro-particle physics research is to extract insights
about the particle composition of dark matter from the macroscopic patterns that can be
observed in the Universe. For example, gravitational lensing is a phenomenon in which the
pathway of light traveling through the Universe is deflected due to the influence of gravity
from an intervening mass, distorting how this background light is observed [17]. Gravitational
lensing effects arising from dark matter clumps (“substructure”) could hold information about
the structure of dark matter at a microscopic level. To infer the presence of substructure
of these lensing systems, researchers need models that describe the effect of dark matter,
ordinary matter, and the wider environment while simultaneously modelling the form of the
background light, which can be a morphologically-complex galaxy. By letting a machine
learning model, like a neural network, describe the complex background light source, it is
possible to make predictions about how the light might appear after being lensed with and
also without the impact of dark matter clumps. By performing many simulations considering
various possibilities, researchers can compare these with observations from telescopes and
understand which dark matter theories are compatible with the data.

Rapid progress in this field is generating a variety of models and approaches. In its
next wave of development, further research is needed to test how trustworthy these methods
are, by assessing their performance in generating physically plausible results and robust
constraints on the properties of dark matter and other forms of new physics [18].

How particles move20 across their environment is a shared area of interest for many
domains. In chemistry, for example, researchers are often interested in how molecules diffuse,
and where they end up distributed, based on the physical forces that shape their movement

18 This example is inspired by Siddharth Mishra Sharma’s talk, as well as insights from Gilles Louppe’s
talk, the abstracts for which are provided later in this document.

19 For example: [16]
20 This example is inspired by Francisco Vargas’s talk, the abstract for which is provided later in this

document.
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over time. The analogy of particle movement can also be applied as an abstraction of larger
scale physical processes, such as in agent-based models for crowd simulation.21 In these
systems the initial system state is represented in an initial probability distribution, the
scientific objective can then also be represented as a target distribution. The dynamics
underpinning this diffusion are formalised mathematically in the Schrödinger bridge problem.
This long-standing problem is concerned with finding the most likely paths along which
particles move from their starting distribution to their distribution at a defined point in
time, based on experimentally-observed start and end positions. In general, finding analytic
solutions to the Schrödinger bridge problem is intractable, but machine learning tools are
providing new approaches for finding approximate numerical solutions that can be deployed
across domains [21].

4.4 In biological sciences
The development and differentiation of cells into tissues and organs22 is a complic-
ated process, shaped by hormonal and genetic influences on cell growth [22]. Advances in
genomics have allowed researchers to characterise the genetic material of different organisms;
more recent progress in single-cell genomics extends this ability to the single-cell level,
unlocking detailed analysis of how genetic activity determines cellular function.

Single-cell RNA studies examine how ribonucleic acids (RNA) shape cellular properties
and development pathways. The RNA profiles created by genetic sequencing techniques
allow researchers to identify which genes are active in a cell. The question for the field today
is how to move from these single-cell analyses to an atlas of cell development that shows how
cells specialise and form tissues or organs.

By combining statistical and machine learning techniques, researchers can reconstruct the
gene dynamics – which genes are activated at which time – that influence cell development
[23]. Cells in the small intestine, for example, undergo a pattern of differentiation that takes
them from their base state to highly specialised units, able to variously secrete mucus, absorb
nutrients, or respond to hormones. By studying what genes are expressed in a cell at an early
stage, researchers can predict how the cell will specialise and identify which genetic changes
are associated with that specialisation, opening opportunities to treat intestinal diseases [24].

Building these models relies on effective data management. Lab processes can inject arte-
facts into datasets, for example batch effects arising from how cells were grown or harvested
for study, which need to be removed from data before analysis. Effective data correction
maintains biologically-relevant information, while removing noise from the data. A variety of
tools exist for this correction, including regression models, dimensionality reduction, graph
methods, and deep learning. For domain researchers to be able to identify the tools that
are useful for them, benchmarking studies are vital in identifying the most effective data
integration method for their purpose [25]. However, there remain open questions about how
best to benchmark the performance of a system when there are complex pipelines of analysis
involved. Understanding the end-to-end nature of an analytical pipeline can be difficult, and
new approaches to assessing performance may be needed.

21 Examples of agent-based models for crowd simulation include: [19, 20].
22 This example is inspired by Maren Büttner’s talk, the abstract for which is provided later in this

document.
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To understand how the brain works,23 neuroscientists develop mathematical mod-
els that describe the activity of individual neurons, and how these connect across brain
networks. Models on the mechanistic level take the form of differential equations. These
models are based on experimental data, from experiments that examine how neurons respond
to different signals or perturbations. To build a computational model from this data, it is first
necessary to find which factors influence how a neuron acts, creating a set of parameters that
determine how the model works. This process of finding parameters is often labour-intensive,
relying on trial-and-error, which limits researchers’ ability to scale models across complex
neural networks. Machine learning can help streamline that model definition process, by
predicting which models are more likely to be compatible with data. By automatically identi-
fying model parameters, researchers can rapidly develop simulations of complex structures,
such as brains or nervous systems in different animals [26].
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5 Talks given during this seminar session

5.1 Machine-learning-model-data-integration for a better understanding
of the Earth System

Markus Reichstein (MPI für Biogeochemistry – Jena, DE)
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The Earth is a complex dynamic networked system. Machine learning, i.e. derivation of
computational models from data, has already made important contributions to predict
and understand components of the Earth system, specifically in climate, remote sensing
and environmental sciences. For instance, classifications of land cover types, prediction
of land-atmosphere and ocean-atmosphere exchange, or detection of extreme events have
greatly benefited from these approaches. Such data-driven information has already changed
how Earth system models are evaluated and further developed. However, many studies
have not yet sufficiently addressed and exploited dynamic aspects of systems, such as
memory effects for prediction and effects of spatial context, e.g. for classification and change
detection. In particular new developments in deep learning offer great potential to overcome
these limitations. Yet, a key challenge and opportunity is to integrate (physical-biological)
system modelling approaches with machine learning into hybrid modelling approaches, which
combines physical consistency and machine learning versatility. A couple of examples are
given with focus on the terrestrial biosphere, where the combination of system-based and
machine-learning-based modelling helps our understanding of aspects of the Earth system.

5.2 Poultry Diseases Diagnostics Models using Deep Learning
Dina Machuve (DevData Analytics – Arusha, TZ)
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Coccidiosis, Salmonella, and Newcastle are the common poultry diseases that curtail poultry
production if they are not detected early. In Tanzania, these diseases are not detected early
due to limited access to agricultural support services by poultry farmers. Deep learning
techniques have the potential for early diagnosis of these poultry diseases. In this study, a deep
Convolutional Neural Network (CNN) model was developed to diagnose poultry diseases by
classifying healthy and unhealthy fecal images. Unhealthy fecal images may be symptomatic
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of Coccidiosis, Salmonella, and Newcastle diseases. We collected 1,255 laboratory-labeled
fecal images and fecal samples used in Polymerase Chain Reaction diagnostics to annotate
the laboratory-labeled fecal images. We took 6,812 poultry fecal photos using an Open Data
Kit. Agricultural support experts annotated the farm-labeled fecal images. Then we used a
baseline CNN model, VGG16, InceptionV3, MobileNetV2, and Xception models. We trained
models using farm and laboratory-labeled fecal images and then fine-tuned them. The test
set used farm-labeled images. The test accuracies results without fine-tuning were 83.06% for
the baseline CNN, 85.85% for VGG16, 94.79% for InceptionV3, 87.46% for MobileNetV2, and
88.27% for Xception. Finetuning while freezing the batch normalization layer improved model
accuracies, resulting in 95.01% for VGG16, 95.45% for InceptionV3, 98.02% for MobileNetV2,
and 98.24% for Xception, with F1 scores for all classifiers above 75% in all four classes.
Given the lighter weight of the trained MobileNetV2 and its better ability to generalize, we
recommend deploying this model for the early detection of poultry diseases at the farm level.
There are open questions about the deployment of the model at the farm level and potential
areas for further research.

5.3 Simulation-based approaches to astrophysics dark matter searches
Siddharth Mishra-Sharma (MIT – Cambridge, US)
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We are at the dawn of a data-rich era in astrophysics and cosmology, with the capacity to
extract useful scientific insights often limited by our ability to efficiently model complex
processes that give rise to the data rather than the volume and nature of observations itself.
I will describe recent progress in applying mechanistic forward modeling techniques to a
range of astrophysical observations with the goal of searching for signatures of new physics,
in particular the nature of dark matter. These leverage developments in machine learning-
aided inference, e.g. using simulation-based inference as well as differentiable probabilistic
programming, while encoding domain knowledge, in order to maximize the scientific output
of current as well as future experiments.

5.4 Single-cell transcriptomics
Maren Büttner (Helmholtz Zentrum München, DE & Universität Bonn, DE)

License Creative Commons BY 4.0 International license
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Cells are the fundamental units of life. Understanding cellular processes is a basis for
improving human health, disease diagnosis and monitoring. The advent of single-cell
transcriptomics (scRNA-seq) allows characterizing the gene expression patterns of entire
organs and organisms at single cell resolution. The human genome encodes more than 30.000
genes, and high-throughput scRNA-seq methods create samples with tens of thousands of
cell measurements. The analysis of such data requires a variety of methods from the machine
learning field, e.g. dimensionality reduction techniques from PCA to variational autoencoders,
graph-based clustering, classification of cell types, trajectory inference and causal inference
of gene regulation to understand cell fate decision making. To date, scRNA-seq is a widely
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applied research technique, which has the potential for standard application in the clinics.
My presentation focusses on current approaches for large-scale scRNA-seq data, current open
questions, and implications for human health.

5.5 Estimating ecosystem properties: Combining machine learning and
mechanistic models

Christian Igel (University of Copenhagen, DK)
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Abdoul Aziz Diouf, Laurent Kergoat, Ole Mertz, Fabian Gieseke, Sizhuo Li, Katherine Melo
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Fensholt: “An unexpectedly large count of trees in the West African Sahara and Sahel”. Nature 587,
78–82 (2020).
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Progress in remote sensing technology and machine learning algorithms enables scaling up
the monitoring of ecosystems. This leads to new knowledge about their status and dynamics,
which will be helpful in land degradation assessment (e.g., deforestation), in mitigating
poverty (e.g., food security, agroforestry, wood products), and in managing climate change
(e.g., carbon sequestration).

We apply deep learning for the mapping of individual trees and forests. Tree crowns
are segmented in satellite imagery using fully convolutional neural networks. This provides
detailed measurements of the canopy area and of the distribution of trees within and outside
forests. Allometric equations are applied to estimate the biomasses (and thereby the stored
carbon) of the individual trees. We use iterative gradient-based optimization of the allometric
models and suggest techniques such as jackknife+ for quantifying the uncertainty of the
model predictions. Tree biomass can also be directly inferred from LiDAR (laser imaging,
detection, and ranging) measurements using 3D point cloud neural networks. This leads to
highly accurate results without requiring a digital elevation model.

In a new project, we consider risk assessment of vector-borne diseases based on deep
learning and remote sensing. Malaria risk is related to the housing conditions, for example,
the type of roofing material, which can be determined from satellite images.

5.6 Partial differential equations and Variational Bayes
Ieva Kazlauskaite (University of Cambridge, GB)
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Inverse problems involving partial differential equations (PDEs) are widely used in science
and engineering. Although such problems are generally ill-posed, different regularisation
approaches have been developed to ameliorate this problem. Among them is the Bayesian
formulation, where a prior probability measure is placed on the quantity of interest. The
resulting posterior probability measure is usually analytically intractable. The Markov
Chain Monte Carlo (MCMC) method has been the go-to method for sampling from those
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posterior measures. MCMC is computationally infeasible for large-scale problems that arise
in engineering practice. Lately, Variational Bayes (VB) has been recognised as a more
computationally tractable method for Bayesian inference, approximating a Bayesian posterior
distribution with a simpler trial distribution by solving an optimisation problem. The talk
covered some recent experiences of applying Bayesian inference, generative models and
probabilistic programming languages in the context of learning material properties in civil
engineering and in ice sheet and ice core modelling. The main shortcomings of PPLs and
differentiable problems were highlighted.

5.7 The Schrödinger bridge problem
Francisco Vargas (University of Cambridge, GB)

License Creative Commons BY 4.0 International license
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Recent works in diffusion-based models have been achieving competitive results across
generative modelling and inference, in this presentation we propose to explore a unifying
framework based on Schrodinger bridges to explore/explain diffusion-based methodology.
The Schrödinger bridge problem (SBP) finds the most likely stochastic evolution between
two probability distributions given a prior (reference) stochastic evolution. Recently SBP
based methodology has made its way into generative modelling, sampling, and inference. In
this talk we propose the exploration of a unifying framework for the aforementioned works
based on the renowned IPF/Sinkhorn algorithm. The motivation behind this is to cast a
unifying lens via the Schrodinger perspective relating inference, sampling and transport, in
a way that we can leverage many of the useful techniques and heuristics from each field to
benefit each other.

6 Building effective simulations

6.1 Moving upstream
Science proceeds through hypothesis, observation and analysis. For hundreds of years,
researchers have advanced the frontiers of knowledge by collecting data, compressing those
observations into a model, then computing that model to create representations of how the
world works, generating new insights about natural and physical phenomena and theories
about the systems from which those phenomena emerge in the process [1]. These mathematical
models rely on numerical methods: algorithms that help solve mathematical problems where
no analytical solution is available. Today, data collection and the basic computational
tasks involved in its analysis – linear algebra, optimisation, simulation, and so on – remain
consistent features of the scientific process. Progress in machine learning, however, has
changed the modelling landscape.

“AI for science” offers a data-centric approach to modelling and simulating the world.
Operating alongside the traditional mathematical models that are central to many disciplines,
machine learning provides data-centric analytical methods that can be integrated across
the scientific pipeline, for example enabling sophisticated simulations of real-world systems.
These simulations can be used to inform model development, test hypotheses and shape
areas of research focus, or unlock insights from complex data.
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6.2 Nurturing a diversity of approaches
Simulations are a well-established tool for scientific discovery. Their fundamental task is to
allow data sampling from a model where the differences between simulation and the real
world are reduced as far as feasible, to enable experimentation or testing of the impact of
different perturbations, while allowing some measure of simplification of the system. Effective
simulators allow researchers to move from theory to an understanding of what data should
look like.

Domains such as particle physics, protein folding, climate science, and others, have
developed complex simulations that use known theories and parameters of interest to make
predictions about the system of study. AI for science can be brought in to speed up some of
these through surrogate models. Machine learning can complement “traditional” approaches
to scientific simulation, adding components that model the most uncertain elements of
a system to strongly mechanistic models that might otherwise be too restrictive in their
assumptions.

Much early excitement surrounding AI for science was rooted in the reverse process,
asking: instead of starting with theory, could researchers instead start with the large amounts
of data available in many areas of research and, from that data, build an understanding
of what an underpinning theory might be? Given a set of observations, is it possible to
find parameters for a model that result in simulations that reflect the measured data? Such
simulation-based inference (SBI) offers the opportunity to generate novel insights across
scientific disciplines.

To enable such analysis, machine learning methods are needed that can extract insights
from high-dimensional, multi-modal data, in ways that are labour- and compute-efficient
[2]. The field of probabilistic numerics offers a way to flexibly combine information from
mechanistic models with insights from data, solving numerical problems through statistical
approaches [3]. Operationalising these methods to create effective data-driven simulations
requires balancing different model characteristics. The model’s parameters must be specified
to a sufficient level of granularity to describe the real-world system, while operating at a
level of abstraction that is amenable to analysis and computation; almost all models are
“wrong” or falsifiable because of this, but some level of abstraction is necessary to make them
useful for analysis. The simulation must also be designed to be robust, and able to generate
inferences that align with real-world observations.

6.3 Truth, truthiness, and interfacing with the real world
The excitement underpinning AI for science stems from the aspiration to unearth new
understandings of the world, leveraging data to advance the frontiers of knowledge. While
subject to their own limitations, the scientific community has developed checks and balances
to scrutinise new knowledge and maintain the rigour of scientific inquiry. Recent years have
seen a variety of challenges or benchmarks emerge in the machine learning community that
have come to represent the field’s expected standards of performance from algorithms on
defined tasks. However, these standards do not necessarily align with the expectations of
domain researchers [4]. As data-centric simulations are integrated into scientific process,
machine learning researchers must consider their responsibility in maintaining the integrity
of the domains into which they are deployed, raising the question: what guardrails are
needed to ensure researchers can be confident in the outputs from machine learning-enabled
simulations?
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A variety of diagnostic tests can help. Core to many of these diagnostics is analysis
of whether a model is computationally faithful. In short: the inferences generated by a
simulation should reflect those from observations [4]. One approach to checking this alignment
is to consider the consistency of distributions from inferred and observed datasets. If the
model is a good fit, the data it generates should broadly match the data observed through
experimentation.

Underpinning these diagnostics is a fundamental question about how to manage uncer-
tainty, in a context where different failure modes have different implications. Put simply:
when a model fails, is it worse to be over-confident in its results, or over-conservative? In the
scientific context, over-confidence seems more likely to result in negative outcomes, whether
through giving misleading interpretations or results or driving lines of enquiry in unproductive
directions. Machine learning methods can be designed for conservatism, reducing the risk of
false positives.

Implementing a schedule of model building, computing, critiquing, and repeating can refine
this process. One lesson from experiences of building machine learning-enabled simulations
is that there can be a disconnect between how machine learning approaches inference and
model building, and how the same task is approached by domain scientists. From a domain
perspective, model building seems naturally an iterative process: collect data, fit a model,
find errors or areas for improvement, update the model, and so on. This iterative process is
guided by expert intuition and knowledge; deep understanding of the system under study and
how it responds to perturbation. Machine learning research has developed practices for prior
elicitation – using domain knowledge to shape the structure of probabilistic models – but
the nuances of this domain intuition are often not easily captured a priori, instead emerging
when models fail as an informal sense of what “feels” like it should be true. This qualitative
input is vital in building effective simulations. It requires close collaboration, which in turn
requires an investment of time and energy from domain communities, generated through
mutual trust, incentives, and long-term relationship-building.

6.4 Connecting simulation to practice
Computational tools are central to the effective deployment of machine learning-enabled
simulation. The function and form of such tools must align with the requirements of the
community deploying them. Designing computational systems to match user needs – and work
effectively in practice – requires both effective software engineering and close collaboration
with domain groups that can articulate the requirements and expectations of those working
in the field. To remain effective over the longer-term, such systems must leverage effective
software engineering practices, including embedding version control and building interfaces
that work with other models and systems. Those practices, and the software systems that
emerge from them, must be designed for the needs of those using the system, drawing from
existing best practices in software engineering, but adapting those practices to reflect the
needs of the domain for deployment.

Constructing computational tools requires a mix of technical insight and craft skill – of
knowledge and know-how. Tools produced by the machine learning community differ in their
usefulness on different problems: some work well for certain tasks, but not for others. Without
access to such craft skills, those outside the “AI for science” community can find it challenging
to determine which tools to use for which purposes, reducing the generalisability of existing
methods and approaches. This challenge becomes particularly visible when practitioners
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are tightly integrated into the analysis pipeline, such as in applications in developmental
biology, in the developing world, and in data-centric engineering. Widening access to the
field will require user guides that characterise which simulations are effective for which tasks
or purposes, supported by case studies or user stories that help demystify how machine
learning can work in practice.

6.5 Directions
Machine learning typically requires an explicit representation of a likelihood, but these are
often difficult to compute. Further advances in SBI are necessary to allow researchers to
identify model parameters from data.

Techniques such as likelihood-free inference can enhance existing Bayesian methods for
inferring posterior estimations [5].
Building surrogate models,24 using Bayesian approaches for simulation planning to
optimise information gain,25 or deploying emulations [8] can also enhance the efficiency
of simulations.
Probabilistic numerics offers a route to develop statistically-optimal algorithms that
are amenable to comprehensive uncertainty quantification, leveraging Gaussian Process-
based Ordinary Differential Equation (ODE) solvers to pursue simulation as an inference
problem [9].

Operationalising these approaches will also require new toolkits to support implementation
of probabilistic numerical methods.26

Computational faithfulness – alignment of inferred parameters with scientific knowledge –
can be achieved through:

Diagnostic checks in the self-consistency of the Bayesian joint distribution, which measure
the scientific quality of the regions computed by Bayesian SBI methods [4, 11]. Checking
for self-consistency gives a sense whether the model is “good enough” (ie whether the
inference engine gives a good sense of the posterior).
Enforcing conservative neural ratio estimation through binary classifier specification,
producing more conservative posterior approximations [12].
Hybrid modelling, which combines machine learning components learned from data with
the mechanistic components specified by existing domain knowledge [13].
Further study of the impact of model misspecification could also help generate new
robustness diagnostic checks [14].

“Digital twins” have recently received much attention as a tool to exploit sophisticated
simulations. In Earth sciences, for example, ambitious efforts to develop a digital twin of
the Earth propose to allow more accurate forecasting, visualisation, or scenario-testing of
the impact of climate change and efforts to mitigate it.27 The challenge is to integrate
different models or components of a system – for example, connecting atmospheric models,
with land models, with models of human behaviour – in a way that represents the complete

24 See above, and [6].
25 See, for example, [7].
26 See, for example, the previous Dagstuhl meeting on this topic: https://www.probabilistic-numerics.

org/meetings/2021_Dagstuhl/ and [10].
27 For example: [15].
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Earth system. That requires consideration of the different levels of granularity with which
these different models operate: economic models of human behaviour, for example, operate
with different assumptions and levels of enquiry in comparison to physical models of ocean
circulation. The full range of granularities becomes apparent when considering that specific
applications, such as disease monitoring on poultry farms, sit within the wider ecosystem of
the natural and built environment. A digital twin needs to make choices about what levels of
granularity it is operating at, from the scale of the poultry farm to the planet. The questions
that emerge from such ambitions is: what level of granularity is helpful or necessary to
deliver effective results? And what interfaces between diverse models might be possible?
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7 Talks given during this seminar session

7.1 Information from data and compute in scientific inference
Philipp Hennig (Universität Tübingen, DE)
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Simulations are central to scientific inference. Simulators are typically treated as black
boxes, with the inference loop wrapped around them. This approach is convenient for
the programming scientists, but can be highly inefficient. Probabilistic numerical methods
represent computational and empirical data in the same language, which allows for inference
from mechanistic knowledge and empirical data in one combined step. I will argue that
scientific computing needs to embrace such new computational paradigms to truly leverage
ML in science, which also requires rethinking scientific codebases.

7.2 ODE filters and smoothers: probabilistic numerics for mechanistic
modelling

Hans Kersting (INRIA – Paris, FR)
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Probabilistic numerics (PN) unifies statistical and numerical approximations by formulating
them in the same language of statistical (Bayesian) inference. For ODEs, a well-established
probabilistic numerical method is ODE filters and smoothers which can help to deal more
aptly with uncertainty in mechanistic modeling. In the first half of this talk, we will first
introduce PN and then present ODE filters/smoothers as a specific instance of PN. In the
second half, we will discuss how ODE filters/smoothers can improve mechanistic modeling in
the natural sciences and present a recent application of inferring the parameters of real-word
dynamical system.
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7.3 Four short stories on simulation-based inference
Jakob Macke (Universität Tübingen, DE)
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Many fields of science make extensive use of simulations expressing mechanistic forward
models, requiring the use of simulation-based inference methods. I will share experiences and
lessons learned from four applications: Describing the dynamics and energy consumptions
of neural networks in the stomatogastric ganglion; inferring parameters of gravitational
wave models; optimising single-molecule localisation microscopy, and building computational
models of the fly visual system. I will try to convey some thoughts on the challenges and
shortcomings of current approaches.

7.4 Towards reliable simulation-based inference and beyond
Gilles Louppe (University of Liège, BE)

License Creative Commons BY 4.0 International license
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Modern approaches for simulation-based inference build upon deep learning surrogates to
enable approximate Bayesian inference with computer simulators. In practice, the estimated
posteriors’ computational faithfulness is, however, rarely guaranteed. For example, Hermans
et al., 2021 have shown that current simulation-based inference algorithms can produce
posteriors that are overconfident, hence risking false inferences. In this talk, we will review
the main inference algorithms and present Balanced Neural Ratio Estimation (BNRE), a
variation of the NRE algorithm designed to produce posterior approximations that tend to
be more conservative, hence improving their reliability.

7.5 Modeling the data collection process: My journey
Thomas G. Dietterich (Oregon State University – Corvallis, US)

License Creative Commons BY 4.0 International license
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In this talk, I will describe three examples of my attempts to integrate subject-matter know-
ledge with machine learning. The first example involves predicting grasshopper infestations.
I will sketch the methodology in which we first modeled the life cycle of the grasshoppers to
capture the factors that affect their population. Unfortunately, most variables of interest were
not measured, so we used the model to guide the construction of proxy variables. Ultimately,
this project did not succeed, but it is hard to determine whether this is due to modeling
problems or to the chaotic nature of the biological phenomenon.
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8 Connecting data to causality

8.1 Causality in science and data
Most scientific endeavours have a causal element: researchers want to characterise how a
system works, why it works that way, and what happens when it is perturbed. How researchers
identify cause-and-effect relationships varies across domains. For some disciplines, the process
of hypothesis design – data collection – model development provides the core structure
for interrogating how a system works. In others, where experimentation is more difficult,
researchers may rely on natural experiments and observations to compare the response of a
system under different conditions. Those studying the Earth system, for example, have little
scope to replicate planetary conditions, so instead rely on observational data and modelling
to identify the impact of different interventions. These different approaches, however, share a
modelling approach in which researchers provide variables to create structural, causal models.

In contrast, machine learning proceeds by learning representations or rules from data,
based on statistical information, rather than structured rules about how a system works (such
as physical laws). Causal inference – the ability to identify cause-and-effect relationships in
data – has been a core aim of AI research, in service of both wider ambitions to replicate
intelligence in machines and efforts to create AI systems that are robust in deployment.
However, in many respects efforts to integrate causal inference into AI systems have yet to
deliver [1].

An apocryphal story in AI tells of efforts by US researchers during the 1980s to train a
computer system that could distinguish between images of tanks from the US and USSR.
The resulting system delivered high accuracy on its training data, but failed repeatedly
in practice. The system was subsequently found to be classifying images based on their
resolution and background features – is the image grainy? Does it contain snow? – rather
than the tanks themselves. It found patterns in the data that were co-incident, rather than
causal. That same error has real-world implications for the AI systems deployed today. In
medical sciences, AI systems trained to detect collapsed lungs from medical images have been
proven inaccurate, after the model was found to have learned to detect the tube inserted into
the lung to enable a patient to breath as a response to its collapse, rather than the physical
features of the lung itself [2]. In medical sciences, deployment of such systems could put
patient care at risk. In social sciences, these AI design and data bias failures can combine to
marginalise vulnerable populations [3].

Conversely, an understanding of the structures within data can improve the accuracy of
machine learning analyses. In exoplanet discovery, for example, machine learning is used
as a tool to detect variations in light signals from large-scale astronomical datasets. The
movement of exoplanets around stars results in periodic changes to the light signals from
those stars, as the planet obscures them in its transit. Machine learning can detect those
signals and predict where exoplanets might be located, but the data is often noisy. Noticing
that the structure of this noise was consistent across a number of stars, which were too
distant from each other to be interacting, researchers concluded that instrumentation effects
were distorting the data, and developed a method to model those effects and remove them
from exoplanet predictions. The result was an efficient method for exoplanet identification
that subsequently contributed to the discovery of the first potentially habitable planet [4].
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8.2 Causal models as a route to advancing the science of AI and AI for
science

Many of these errors in misdiagnosing cause-effect relationships arise from a core assumption in
many machine learning methods: that data follows an independent and identical distribution
(IID). In practice, almost all data from real-world, or complex, systems will violate this
assumption, given the interconnectedness of different variables. The task of causality in
machine learning is to create models that can manage this violation, distinguishing between
patterns in data that simply co-occur and patterns that are causal. The resulting AI systems
would be able to solve a task in many different environments, based on an understanding
of the fundamental causal mechanisms in a system [5]. They would be more robust in
deployment, being less likely to make incorrect predictions as the environment in which they
operate changes, and could be more efficient to train and deploy. They would also represent
a step towards replicating human- or animal-like intelligence, being able to solve a task in
many different environments.

In these regards, causal machine learning offers a route to balancing the widespread
utility of statistical modelling with the strengths of physical models. Causality allows models
to operate at a level of abstraction beyond strongly mechanistic approaches, such as those
based on differential equations, moving along a continuum from mechanistic to data-driven
modelling. They provide researchers with the ability to make accurate predictions under
conditions of dataset shift (enable out of distribution generalisation); can provide insights
into the physical processes that drive the behaviour of a system; unlock progress towards AI
systems that “think” in the sense of acting in an imagined space; while also leveraging insights
that can be learned from data, but not otherwise detected.28 They also offer opportunities to
explore counterfactuals in complex systems, asking what the impact of different interventions
could have been, opening a door to the development of simulation-based decision-making
tools.29

Achieving this potential requires technical developments in a number of directions, but
can also yield more effective AI systems. Such systems would:

Be able to operate on out of distribution data, performing the task for which they are
trained in environments with varying conditions.
Be able to learn how to perform a task based on relatively few examples of that task in
different conditions, or be able to rapidly adapt what they have learned for application in
new environments through transfer, one-shot, or lifelong learning approaches.
Support users to analyse the impact of different interventions on a system, providing
explanations or ways of attributing credit to different actions.
Respond to different ways of transmitting information between individuals and groups,
enabling effective communication with their users or other forms of cultural learning.

8.3 From methods to application
Achieving the level of technical sophistication required for causal modelling requires careful
model design, based on close collaboration between machine learning and domain scientists.
The process of specifying what to represent in a causal machine learning system involves

28 For reference, see the table on page 11 of reference [4].
29 Such tools may have particular relevance in policy. For example: [6].
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a series of “micro-decisions” about how to construct the model, negotiated by integrating
machine learning and domain expertise. In this regard, causal machine learning can be
a positive catalyst for deeper interdisciplinary collaboration; model construction can be a
convening point for sharing understandings between domains. However, the level of detail
required can also be in tension with efforts to promote widespread adoption of AI methods
across research. The availability of easy-to-use, off-the-shelf AI tools has been an enabler for
adoption in many domains. The hand-crafted approach inherent to current causal methods
renders them less accessible to non-expert users. Part of the challenge for the field is to make
such methods more broadly accessible through open-source toolkits or effective software
engineering practices.

This tension between specification and learning also highlights the importance of nurturing
a diversity of methods across the spectrum from data-driven to mechanistic modelling. The
domain (or, how much prior knowledge is available and what knowledge should be included),
research question of interest, and other practical factors (including, for example, compute
budget), will shape where along this spectrum researchers wish to target their modelling
efforts.

While pursuing practical applications, advances in causal inference could help answer
broader questions about the nature of intelligence and the role of causal representations in
human understanding of how the worlds work. Much of human understanding of the world
arises from observing cause and effect; seeing what reaction follows an intervention – that an
object falls when dropped, for example – in a way that generalises across circumstances and
does not require detailed understanding of mathematical or physical laws. Integrating this
ability into machine learning would help create systems that could be deployed on a variety
of tasks. The process of building causal machine learning forces researchers to interrogate
the nature of causal representations – What are they? How are they constructed from the
interaction between intelligent agents and the world? By what mechanism can such agents
connect low-level observations to high-level causal variables? – which may in turn support
wider advances in the science of AI.

8.4 Directions
Causality in machine learning is a long-standing and complex challenge. In the context of
scientific discovery, learning strategy, model design, and encoding domain knowledge all play
a role in helping identify cause-effect relationships.

Different learning strategies can improve the “generalisability” of machine learning,
increasing its performance on previously unseen tasks, based on learning underlying structure
of a task or environment in ways that can contribute to broader understandings of causality.
Such learning strategies include:

Transfer learning, taking learning from one task or domain and applying it in another.
Multi-task learning, enabling a system to solve multiple tasks in multiple environments.
Adversarial learning, to reduce the vulnerability of models to performance degradation
on out-of-distribution data.
Causal representation learning, defining variables that are related by causal models [4].
Reinforcement learning strategies that reward agents for identifying policies based on
invariances over different conditions.

Across these new learning approaches, attempts to establish causal mechanisms are also
prompting progress in machine learning theory, through statistical formulations of core
principles [7].
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Combining different methods can also enhance the functionality of an AI system. For
example:

Neural ODEs have been shown to identify causal structures in time series data [8].
Describing causal effects as objective functions in constrained optimisation problems can
deliver a form of stochastic causal programming [9].
Technical interventions [10] can constrain or optimise a model towards causal outcomes. As
with simulation design, diagnostic checks can also help identify cause-effect relationships
by examining model outputs against “reality criteria”,30 which compare outputs to
real-world results.

There are also a variety of approaches to representing existing scientific knowledge in
machine learning models, notably by specifying the assumptions made about the world
through symmetries, invariances, and physical laws (see Figure 1).
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9 Talks given during this seminar session

9.1 Causality, causal digital twins, and their applications
Bernhard Schölkopf (MPI für Intelligente Systeme – Tübingen, DE)
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1. Desiderata for causal machine learning: work with (and benefit from) non-IID data,
multi-task/multi-environment, sample-efficient, OOD, generalisation from observation of
marginals, interventional.

2. Modelling taxonomy: differential equations, causal models, statistical models.
3. How to get from one level to the next.
4. How to transfer between statistical models that share the same underlying causal model.
5. The assumption of independent causal mechanisms (ICM) (for example, invariance/au-

tonomy) and sparse mechanism design.
6. How to derive the arrow of time from ICM and algorithmic information theory.
7. Statistical formulation of ICM: causal de Finetti.
8. Application to exoplanet discovery and Covid-19 vaccine scenarios.
9. Causal representations as (a) causal digital twins and (b) AI models.

9.2 Invariance: From Causality to Distribution Generalization
Jonas Peters (University of Copenhagen, DK)
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Assume that we observe data from a response Y and a set of covariates X under different
experimental conditions (or environments). Rather than focusing on the model that is most
predictive, it has been suggested to take into account the invariance of a model. This can
help us to infer causal structure (Which covariates are causes of Y ?) and find models that
generalize better (How well does the model perform on an unseen environment?). We show a
few applications of these general principles and discuss first steps towards understanding the
corresponding theoretical guarantees and limits.

9.3 Can we discover dynamical laws from observation?
Niki Kilbertus (TU München, DE & Helmholtz AI München, DE)
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I will start with a brief introduction to identifiability of ODE systems from a unique
continuous or discrete observed solution trajectory. Then, I will provide an overview of
modern approaches to inferring dynamical laws (in the form of ODEs) from observational
data with a particular focus on interpretability and symbolic methods. Finally, I will describe
our recent attempts and results at inferring scalar ODEs in symbolic form from a single
irregularly sampled, noisy solution trajectory.
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9.4 Invariances and equivariances in machine learning
Soledad Villar (Johns Hopkins University – Baltimore, US)
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In this talk, we give an overview of the progress in the last few years by several research
groups in designing machine learning methods that repeat physical laws. Some of these
frameworks make use of irreducible representations, some make use of high-order tensor
objects, and some apply symmetry enforcing constraints. Our work shows that it is simple
to parameterise universally approximating functions that are equivariant under actions of
the Euclidean, Lorentz, and Poincare group at any dimensionality. The key observation is
that O(d)-equivariant (and related group-equivariant) functions can be universally expressed
in terms of a lightweight collection of dimensionless scalars (scalar products and scalar
contractions of the scarla, vector, and tensor inputs). We complement our theory with
numerical examples that show that the scalar-based method is simple and efficient, and
mention ongoing work on cosmology simulations.

9.5 Divide-and-Conquer Equation Learning with R2 and Bayesian Model
Evidence

Bubacarr Bah (AIMS South Africa – Cape Town, ZA)
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Deep learning is a powerful method for tasks like predictions and classification, but lacks
interpretability and analytic access. Instead of fitting up to millions of parameters, an
intriguing alternative for a wide range of problems would be to learn the governing equations
from data. Resulting models would be concise, parameters can be interpreted, the model can
adjust to shifts in data, and analytic analysis allows for extra insights. Common challenges
are model complexity identification, stable feature selection, expressivity, computational
feasibility, and scarce data. In our work, the mentioned challenges are addressed by combining
existing methods in a novel way. We choose multiple regression as a framework and argue
how a surprisingly large space of model equations can be captured. For feature selection, we
exploit the computationally cheap coefficient of determination (R2) to loop through millions
of models, and by using a divide-and-conquer strategy, we are able to rule out remaining
models in the equation class. Final model selection is achieved by exact values of the Bayesian
model evidence with empirical priors, which is known to identify suitable model complexity
without relying on mass data. Random polynomials, and a couple of chaotic systems are
used as examples.

10 Encoding domain knowledge

10.1 Where’s My [Science] Jetpack?
Humans have a long history of imagining futures where human progress is accelerated by
intelligent machines. Embedded in these visions for the future are aspirations that AI
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Figure 1 Models along a spectrum from classical i.i.d models to strongly mechanistic differential
equation models introduce aspects of causality and symmetries to create a continuum between
mechanistic and data-driven worlds. Statistical or data-driven models are weakly mechanistic (i.e.
they include smoothness assumptions or similar).

can be a faithful servant, easing daily activities or enhancing human activities [16]. As
with many emerging technologies, the reality of AI today looks different to these Sci-Fi
futures.31 Practical experiences of deploying AI highlights a range of potential failure
modes, often rooted in insufficient contextual awareness, misspecification of user needs, or
misunderstanding of environmental dynamics [14].

Today’s science builds on thousands of years of attempts to understand the world, which
can be leveraged to design AI that serves scientific goals. The result should be a collaborative
endeavour between humans and machines. Researchers need the analytical power of AI to
make sense of the world, while AI needs input from human understandings of the domain in
which it is deployed to function effectively; both need well-designed human-machine interfaces
to make this collaboration work. In this context, effective integration of domain knowledge
into AI systems is vital, and three (broad) strategies have emerged to facilitate this encoding:
algorithmic design; AI integration in the lab; and effective communication and collaboration.

10.2 Encoding domain knowledge through model design
Traditional modelling approaches make use of well-defined rules or equations that explain the
dynamics of the system under study. The laws of physics, for example, describe how energy
moves through a system, based on conservation principles. These laws are complemented by
mathematical symmetries that arise from our abstract representations of physical objects and
describe what features of an object remain consistent, despite changes or transformations in
a system [17]. There may also be known invariances in a system: factors that do not change
under any perturbations or that change in a defined way [11]. Building on this existing
knowledge, and connecting to efforts to generate causal understandings of the world through
machine learning, an area of growing interest has been the design of machine learning models
that respect these rules or symmetries.

The principle underpinning this design strategy is that it is possible to move across a
continuum from statistical (data-driven) models to strongly mechanistic models, creating
hybrid systems whose outputs should be constrained by what is physically feasible, while
also leveraging insights from data (Figure 1).

31 The title of this section is inspired by: https://www.fantasticfiction.com/w/daniel-h-wilson/
where-s-my-jetpack.htm
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Figure 2 Strategies for integrating domain insights: including information in data and including
information as prior knowledge.

At one end of that continuum, mechanistic models would obey known laws or principles
in a strongly deterministic way; at the other, statistical models encode fewer assumptions and
rely more on data [10]. The addition of invariances and symmetries, alongside other forms of
domain knowledge, allows bridging between these two model classes (Figure 1). Models that
describe how much heat is absorbed by the oceans under conditions of climate change, for
example, should obey the laws of thermodynamics and energy conservation. By encoding
the domain knowledge that has yielded these fundamental laws, such as the conservation of
momentum or energy, researchers can ensure the outputs of a machine learning model will
have a physically allowable expression. This encoding can come from integrating equations,
symmetries, or invariances into model design. These encodings constrain the operation of a
machine learning system to align with the known dynamics of physical systems. The resulting
models might be expected to produce more accurate results, with smaller generalisation
errors, and with better out-of-distribution generalisation.

10.3 Scientific centaurs
Complementing modelling strategies to encode scientific knowledge are deployment strategies
to use AI in the lab. The lab has long provided a physical hub for collaboration and
knowledge-generation, its function and form having remained broadly consistent across
centuries of scientific progress. Today, the digitisation of experimental equipment and
laboratory processes offers opportunities to integrate AI in experimental design and create
new virtual labs.
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By combining data from measurement devices, simulations of laboratory processes, and
computational models of research or user objectives, these virtual labs provide a digital
sibling of in-person research activities that can be used to optimise such activities. In drug
discovery, for example, virtual labs could accelerate the testing and analysis processes that
identify candidate drugs from potential drug targets. Instead of relying on physical testing of
such starting molecules, multiple rounds of virtual testing can rapidly simulate the processes
of drug design, manufacture, testing, and analysis to assess which starting molecules are
more (or less) likely to be viable candidate drugs [8]. As a result, AI can help accelerate the
research process.

Advances in machine learning methods to enable effective simulations, causal modelling,
and encoding pre-existing domain insights – while packaging such methods into usable toolkits
– are all necessary foundations for such digital siblings. Moving from virtual laboratory to
“AI assistants” requires further advances in AI system design to create AI agents that can
elicit guidance or input from their domain experts. Such agents would not only provide
useful intuitions for scientific modelling, but would serve as “scientific sidekicks”, actively
helping researchers to drive their research.

This new type of AI assistant would combine the ability to model the research problem of
interest with the ability to model the goals and preferences of their expert users, even when
the user themselves might not be able to clearly articulate those goals. As a starting point,
these systems would need to support forms of user interaction that can extract user knowledge,
leveraging this to identify appropriate courses of action. To operate in contexts where user
goals might be uncertain and user behaviour might change in response to the outputs of
the AI system, these AI sidekicks will need insights from cognitive science, studies of team
decision-making, and new learning strategies based on limited examples. The sophisticated
user modelling so-created would unlock new forms of human-AI collaboration; scientific
centaurs that combine both human and machine intelligence [3].

10.4 Enabling communication across domains
Underpinning these efforts to integrate pre-existing knowledge into the design and deployment
of AI systems is a feedback loop between domain and machine learning research, in which each
elicits from and feeds into the other. This loop requires the ability to exchange knowledge
and insights across disciplines through interdisciplinary collaboration and communication.

Matching model to user need requires shared understandings of the research question at
hand, the constraints – whether from data, compute, funding, or time and energy available –
that affect different collaborators, and the user needs of the domain environment. While AI
researchers might be tempted to develop complex models, showcasing assorted theoretical
and methodological advances in the field, from a domain perspective, a relatively “simple”
model may seem preferable. Collaborators need to be able to mutually explore what is
possible, while also considering what is useful.

To complete the loop, outputs from machine learning models need to feed back into the
application domain: insights from AI need to be accessible in ways that allow the transfer of
learning from model to user. This implies some level of explainability. It is not sufficient for
an AI system to produce highly accurate results; those results must also be interpretable by
a domain researcher. As the complexity of AI systems increases, however, understanding
why these systems have produced a particular result becomes increasingly challenging. While
not an issue for all machine learning methods, this complexity often results in difficulties
explaining the functioning of AI systems.
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In response, AI researchers have developed a variety of different methods to interrogate
how AI systems work, or why a particular output has been produced. Again, to understand
which of these methods is desirable in the context of a scientific application, researchers
must collaborate closely with domain experts. In the context of pharmaceutical experiments
where the aim is to measure how many target cells are killed off at different dosages of a
drug (or drug combination), for example, researchers might be seeking to “sense-check” how
different drug dosages affect the model, before investigating specific drugs more rigorously.
In astronomical studies, researchers are often working with high-dimensional datasets with
many confounding correlations. For example, gravitational waves are ripples in space-time
catalysed by the movement of massive bodies in space, such as planets or stars [13]. These
invisible phenomena are studied at observatories across the world,32 based on models to
describe wave signals and the “noise” generated by instruments that measure them [4].
Measurements of gravitational waves can be used to infer the properties of black holes that
create them, such as their location, mass, and spin, using simulation-based inference to
characterise the source of a wave, given the data that detects it. To make such methods more
efficient than existing analytical tools, researchers need to take into account the structure
that sits underneath it: for example, gravitational wave detectors are located across the
globe, and their location affects the angle at which they detect waves hitting the Earth. This
structure can be exploited through data sampling strategies to help make machine learning
more efficient [4]. An alternative, however, is to use deterministic models that already reflect
relevant physical laws [2]. Across these approaches, software packages play an important role
in enabling communication and dissemination of methods for wider use.33

10.5 Directions
New modelling approaches and mathematical innovations offer exciting opportunities to
integrate domain knowledge, symmetries and invariances into AI systems [18]. Integration
can be achieved in different ways:

Data augmentation can help exploit invariances and symmetries, resulting in improved
model performance, by including in the data domain knowledge for a model to ingest.
Symmetries can be embedded in the design of deep learning systems, for example by
using the same convolutional filters in different locations of an image, CNNs can leverage
translation and rotation symmetries.
Latent force models allow representations of known symmetries alongside probabilistic
factors, enabling integration of mechanistic models with unknown forces [1, 19].
Architectural features can restrict model focus to outputs that satisfy symmetries, for
example using weight sharing, irreducible representations, or invoking symmetries as
constraints.34

Loss functions can be deployed to penalise predictions that fail to satisfy physical
constraints or symmetries.

In the process, emerging mathematical questions include: how can AI learn invariances
from data? And is it possible to quantify the performance gain achieved through this?

32 See, for example, the LIGO project. Information available at: https://www.ligo.caltech.edu
33 See, for example: https://lscsoft.docs.ligo.org/bilby/
34 See, for example: [9, 12, 6]
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Research to develop AI assistants in the lab raises interesting questions about learning
strategies and human-machine collaboration. These AI agents would need to be able to learn
how to assist another agent, in a multi-agent decision-making scenario, where goals might be
unclear, uncertain, or changeable. To tackle this challenge:

Decision-making with delayed reward or zero-shot learning can help agents solve tasks
when there is little or nothing known about the reward function, and no previous behaviour
to learn from.
Interactive knowledge elicitation [15], combining prior knowledge from cognitive science
with learning from data [7], and generative user models [5] can support more effective
interactions between user and machine.

Across these areas, care is needed in the design of the points of interaction between
human and AI system. A core question here is: how can AI researchers extract domain
knowledge from relevant experts and integrate it into a machine learning model? Insights
from human-machine interaction studies and collaborative decision-making systems are
necessary to create effective interfaces between human and machine, based on factors such
as:

What forms of visualisation are helpful for human users?
What types of interpretability or explainability are needed for a user to achieve their
desired interactions?
What might be the unintended consequences of human-machine interaction, such as
over-confidence in results or over-reliance on the AI system?
What “theory of mind” is needed to anticipate how human users might be likely to
respond to an AI system?

A challenge in these interactions is that much of the relevant knowledge held by the
domain expert might be qualitative: an intuition of how a system works, developed over a
long period of study, rather than quantifiable insights.
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11 Talks given during this seminar session

11.1 Virtual laboratories for science, assisted by collaborative AI
Samuel Kaski (Aalto University, FI)

License Creative Commons BY 4.0 International license
© Samuel Kaski

I introduced two ideas: virtual laboratories for science, aiming to introduce an interface
between algorithms and domain science that enables AI-driven scale advantages, and AI-based
‘sidekick’ assistants, able to help other agents research their goals, even when they are not
able to yet specify the goal explicitly, or it is evolving. Such assistants would ultimately be
able to help human domain experts run experiments in the virtual laboratories. I invited
researchers to join the virtual laboratory movement, both domain scientists in hosting a
virtual laboratory in their field and methods researchers in contributing new methods to
virtual laboratories, simply by providing compatible interfaces in their code. For developing
the assistants, I introduced the basic problem of agents that are able to help other agents
reach their goals, also in zero-short settings, formulated the problem, and introduced solutions
in the simplified setting of prior knowledge elicitation, and in AI-assistted decision and design
tasks.

11.2 Making data analysis more like classical physics
David W. Hogg (New York University, US)

License Creative Commons BY 4.0 International license
© David W. Hogg

The laws of physics are very structured: They involve coordinate-free forms, they are
equivariant to a panoply of group actions, and they can be written entirely in terms of
dimensionless, invariant quantities. We find that many existing machine-learning methods
can be very straightforwardly modified to obey the rules that physical law must obey;
physics structure can be implemented without big engineering efforts. We also find that
these modifications often lead to improvements in generalization, including out-of-sample
generalization, in natural-science contexts. We have some intuitions about why.

The second example is work by Dan Sheldon on analysis of doppler radar to extract bird
biomass and motion. The radar measures the radial velocity modulo a constant (i.e., the
velocity wraps around to zero). Previous work had attempted to "unwrap" the data using
heuristics. Dan instead incorporated the modulus operation into the likelihood function and
then developing an algorithm for maximizing this somewhat nasty likelihood. The result
has revolutionized radar analysis and has been deployed in the BirdCast product from the
Cornell Lab of Ornithology.

The third example is the species occupancy model introduced by MacKenzie et al (2002).
When human observers conduct wildlife surveys, they may fail to detect a species even
though the species is present. The occupancy model combines this detection probability
with a habitat model. However, the expressiveness of the two models (detection and habitat)
must be carefully controlled. Rebecca Hutchinson and I learned this when we tried to replace
the linear logistic regression models with boosted trees.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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In all cases, downstream use of the estimates that come from such data collection models
must be aware of the measurement uncertainties. How can we correctly quantify those
uncertainties and incorporate them in the downstream analysis? Maybe there are lessons
ecologists can learn from physicists?

11.3 Latent force models
Mauricio A. Álvarez (University of Manchester, GB)

License Creative Commons BY 4.0 International license
© Mauricio A. Álvarez

A latent force model is a Gaussian process with a covariance function inspired by a differen-
tial operator. Such a covariance function is obtained by performing convolution integrals
between Green’s functions associated with the differential operators, and covariance functions
associated with latent functions. Latent force models have been used in several different
fields for grey box modelling and Bayesian inversion. In this talk, I will introduce latent
force models and several recent works in my group where we have extended this framework
to non-linear problems.

11.4 Translating mechanistic understandings to stochastic models
Carl Henrik Ek (University of Cambridge, GB)

License Creative Commons BY 4.0 International license
© Carl Henrik Ek

Statistical learning holds the promise of being the glue that allows us to improve knowledge
parametrised explicitly by a mechanistic model with implicit knowledge through empirical
evidence. Statistical inference provides a narrative of how to integrate these two sources
of information leading to an explanation of the empirical evidence in "light" of the explicit
knowledge. While the two sources of knowledge are exchangeable in terms of predictive
performance they are not if our focus is that of statistical learning as a tool for science where
we want to derive new knowledge.

In this talk we will focus on challenges associated with translating our mechanistic
understanding into stochastic models such that they can be integrated with data. In
particular, we will focus on the challenges of translating composite knowledge. We will show
how these structures and the computational intractabilities they lead to make knowledge
discovery challenging.

The perceived “success” of machine learning comes from application where we have large
volumes of data such that only simple and generic models are needed in order to regularise
the problem. This means that much of the progress that have been made with predictive
models are challenging to translate into useful mechanisms for scientific applications. In this
talk we will focus on challenges associated with translating our mechanistic understanding
into stochastic models such that they can be integrated with data. In specific we will focus
on the challenges of translating composite knowledge. We will show how these structures
and the computational intractabilities they lead to makes knowledge discovery challenging.
We will discuss properties that we desire from such structures and highlight the large gap
that exists with current inference mechanism.
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12 A research agenda in AI for science

“AI for science” sits at a nexus of disciplines, methods, and communities. Both AI and
“science” (broadly defined) share a core interest in learning from data. From this interest
emerge different research directions: for AI, questions about the nature of intelligence and
how to understand the learning process in humans and machines; for science, the outputs of
this learning process are the focus, with the aim of adding new knowledge about natural,
physical, and social systems. A distinctive feature of the emerging “AI for science” agenda is
the ability to move between these worlds, using AI to drive progress in science and taking
inspiration from science to inspire progress in AI. The result is a continuum of modelling
approaches along a spectrum from strongly mechanistic to statistical models, which allow
researchers to introduce or operate at different levels of abstraction.

The AI for science community therefore combines the ambitions of AI research with
domain-specific goals to advance the frontiers of research and innovation in their discipline,
with an engineering focus on designing systems that work in deployment, while operating
across scales from the nano- to the interstellar. From these interfaces emerges a research
agenda that – if successful – promises to accelerate progress across disciplines. Inspired by
discussions at the Dagstuhl Seminar, a list of research questions arising from this agenda is
given in Annex 2. These span three themes:
Building AI systems for science: Attempts to deploy AI in the context of scientific
discovery have exposed a collection of gaps in current machine learning and AI capabilities.
Further work is needed to develop the technical capabilities that will allow AI to be used more
effectively in research and innovation; developing those capabilities also offers opportunities
to contribute to wider attempts to deliver sophisticated AI systems. Areas for progress
include:

Advancing methods, software and toolkits for high-quality simulation and emulation,
which integrate effective uncertainty quantification and leverage advances in machine
learning robustness to ensure they operate safely and effectively.
Detecting scientifically meaningful structure in data, through advances in causal machine
learning.
Encoding domain knowledge in AI systems through integration of scientific laws, principles,
symmetries, or invariances in machine learning models, and through virtual, autonomous
systems to make research more effective.

Combining human and machine intelligence: Effective deployment of AI in science
requires effective interactions between human, domain and machine intelligence across all
stages of the deployment pathway. AI systems can be made more effective by integrating
pre-existing knowledge about the system of study, but mechanisms are needed to extract
and encode that knowledge. Effective interfaces are also required in the reverse direction.
Translating the outputs of AI analysis to increased human capability requires an understanding
of what insights are relevant, how they are best communicated, and the cultural environment
that shapes the conduct of science. Areas for progress include:

Designing interfaces between humans and machines or AI agents that can extract,
formalise, and assimilate knowledge that domain researchers have acquired, including
tacit knowledge, and that communicate new knowledge back to the user as actionable
insights.
Building mechanisms for explainability that allow researchers to interrogate why and how
an AI system delivered a particular result, with the explanations provided being tailored
to user need.
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Creating new interfaces

Mechanistic 
models

Data-driven 
models

AI researchers
Domain 

researchers

Integrating modelling approaches to create 
a continuum of methods from data-driven 

to mechanistic. 

Interdisciplinary collaborations to co-design novel 
AI-enabled solutions.

Extracting insights from 
data-driven models and 
feeding them into domain 
models to create more 
effective systems. 

Developing high-performing 
AI methods and tools, 
through building effective 
simulations, developing 
causal machine learning, 
and encoding domain 
knowledge. 

Figure 3 Interfaces between machine learning and domain researchers, and between data-driven
and mechanistic models.

Accelerating the pace of knowledge creation and use, through systems that mine the
existing research knowledge base or that automate repetitive or time-consuming elements
of the research process.

Influencing practice and adoption: By learning from recent experiences of deploying
AI for science, the field has an opportunity to promote wider uptake and progress in both
scientific domains and in AI research. This requires capturing both the knowledge that the
community has already generated, about how to design AI systems, and the know-how about
how to overcome practical challenges that accompanies it, while taking action to grow the
community of researchers excited about the potential of AI in science. Areas for progress
include:

Supporting new applications, through challenge-led research programmes that promote
interdisciplinary collaborations and support co-design of AI systems to help tackle scientific
challenges.
Developing toolkits and user guides that allow researchers to understand which AI tools
are suitable for which purposes, and how to deploy those tools in practice.
Sharing skills and know-how, through community outreach that disseminates knowledge
and know-how in how to use AI.

Together, these areas for action highlight the importance of interfaces – between researchers
and between modelling approaches – in shaping the development of AI for science (Figure 3).

22382



192 22382 – Machine Learning for Science

13 Accelerating progress in AI for science

Building on the impressive advances that machine learning has already supported in many
domains, widespread adoption of AI for research has the potential to catalyse a new wave
of innovations that in turn could drive greater health, wealth, and wellbeing. The question
facing researchers, funders, and policymakers today is how to harness that potential. The
challenge is to build capability across the research landscape, connect areas of expertise to
areas of need, and to accelerate the transfer of successful ideas between domains.

The experiences of deploying AI for science described in this document, and the research
agenda that results from these experiences, suggest a roadmap for action. That roadmap
charts a pathway to create an enabling environment for AI in science, by advancing research
that delivers AI methods to support scientific discovery, building tools and resources to
make AI accessible, championing interdisciplinary research and the people pursuing it, and
nurturing a community at the interface of these different domains. Progress across these
areas can unlock scientific and methodological advances in AI for science, while also helping
answer an emerging question about whether there exists a core discipline of “AI for science”.
The shared themes and interests that emerge from research projects at the interface of AI and
scientific domains suggest that there is potential for “AI for science” to surface as a distinct
speciality in computer science. In parallel, domain-specific efforts to drive the adoption of
AI as an enabler of innovation are also needed to deliver the benefits of AI for scientific
discovery.

13.1 Advance new methods and applications
Efforts to deploy AI in the context of research have highlighted cross-cutting challenges
where further progress in AI methods and theory is needed to create tools that can be used
more reliably and effectively in the scientific context. Effective simulations are needed to
study the dynamics of complex systems; causal methods to understand why those dynamics
emerge; and integration of domain knowledge to relate those understandings to the wider
world. While elements of these research challenges are shared with other fields – topics such
as robustness, explainability, and human-machine interaction also come to the fore in fields
such as AI ethics, for example – they share an intersection in the use of AI for science, in the
context of efforts to bridge mechanistic and data-driven modelling.

Alongside these “AI” challenges are a collection of “science” challenges, where researchers,
policymakers and publics have aspirations for AI to deliver real-world benefits.35 Such
challenges offer the opportunity to accelerate progress in AI, while facilitating interdisciplinary
exchanges, and opening the field to input from citizen science or other public engagement
initiatives. In developing these research missions, care is needed to define cross-cutting
questions or challenges that broaden scientific imaginations, rather than restricting them.
The process of converting a complicated scientific problem into something tractable with AI
necessarily involves some narrowing of focus; to be successful, mission-led innovation efforts
must achieve this focus without losing meaning, or creating benchmarks that misrepresent
the complexity of the real-world challenge.

Defining shared challenges could help rally the AI for science community and drive progress

35 See, for example: the EU’s Innovation Missions https://research-and-innovation.ec.europa.
eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/
eu-missions-horizon-europe_en and UN SDG’s https://sdgs.un.org/goals

https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe_en
https://sdgs.un.org/goals


P. Berens, K. Cranmer, N. D. Lawrence, U. von Luxburg, and J. Montgomery 193

in both methods and applications of AI in science. There already exists examples of how such
challenges can build coalitions of researchers across domains from which the field can draw
inspiration. These include the GREAT08 project, which developed image analysis techniques
to study gravitational lensing [1]; the Open Problems in Single Cell Biology challenge, which
convened the machine learning community to make progress in Multimodal Single-Cell Data
Integration;36 and the SENSORIUM challenge, focused on advancing understandings of
how the brain processes visual inputs.37 In pursuing this agenda, researchers can leverage
well-established protocols in open-sourcing materials and sharing documentation to help
ensure research advances are rapidly and effectively disseminated across disciplines. The
result should be more effective methods, and an agile research environment where researchers
can flex methods across disciplines.

13.2 Invest in tools and toolkits
Complementing these efforts to build and share knowledge, well-designed software tools
can help make accessible the craft skills (or know-how) that make AI for science projects
successful. Modelling is a core component of all AI for science projects. In some aspects,
the task for the field can be thought of as charting a path between the statistician, whose
effectiveness comes from proximity to the domain but whose methods struggle to scale, and
the mathematician, whose tools are adopted across domains but with some loss of meaning
as the distance between method-generator and adopter increases.

The energy already invested in building effective machine learning models can be lever-
aged for wider progress across domains through investment in toolkits that support the
generalisation of effective approaches. Wide-spectrum modelling tools could offer “off the
shelf” solutions to common AI for science research questions. The challenge for such toolkits
is to create an effective interface between tool and user. Connecting with the field of human-
computer interaction could generate design insights or protocols to help create more effective
human-AI interfaces.

Best practices in software engineering can help, through documentation that supports
users to successfully deploy modelling tools. User guides – or taxonomies of which models
are best suited for which purposes and under what circumstances – can also help make
accessible to non-expect users the accumulated know-how that machine learning researchers
have gained through years of model development and deployment.

A related engineering challenge is that of data management and pipeline-building. To
interrogate how a model works, why a result was achieved, or whether an AI system is
working effectively, researchers often benefit from being able to track which data contributed
to which output. The data management best practices that allow such tracking need to
be embedded across AI for science projects. Data management frameworks – such as the
FAIR data principles – have already been developed with the intention of making data more
available, and useful, for research. Further investment is now needed in efforts to implement
those principles in practice.

Investment in these foundational tools and resources can help build understanding of
which AI methods can be used and for what purposes, lowering the barriers to adopting AI
methods across disciplines.

36 For further information, see: https://openproblems.bio/neurips_2021/
37 For further information, see: https://sensorium2022.net/home
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13.3 Build capability across disciplines
Central to progress in both research and toolkit engineering is the availability of talented
researchers with a passion for advancing science through AI. People matter at all stages of
the AI development and deployment pipeline. Successful projects rely on researchers who
are motivated to work at the interface of different domains; collaborators who can explain
and communicate core concepts in their work across disciplinary boundaries; engineers who
can translate the needs of different users into AI toolkits; and convenors that can inspire
wider engagement with the AI for science agenda.

Building these capabilities requires multiple points of engagement. Domain researchers
need access to learning and development activities that allow them to understand and
use foundational methods in machine learning, whether as formal training or through the
availability of tutorials or user guides. AI researchers need access to the scientific knowledge
that should shape the methods they develop, the skills to translate their advanced knowledge
to materials that can be shared for wider use, and the capacity to dedicate time and resource
to learning about domain needs.38 Both need skills in communication, organisation, and
convening to operate across disciplines. Without such capability-building, disciplines risk
remaining siloed; domains developing unrealistic expectations about what AI can deliver
in practice, and AI losing touch with the scientific questions that are most meaningful to
domains.

Institutional incentives shape how individuals engage (or not) with such interdisciplinary
exchanges. Interdisciplinary research often takes longer and lacks the outlets for recognition
available to those working in single domains, affecting both the motivation of and opportunities
for career progression that are open to those working at the interface of different disciplines.
Much of the engineering work required to make data and AI accessible beyond a specific project
and useful to a wider community is also traditionally unrecognised by academic incentive
structures. Aligning individual and institutional incentives in support of interdisciplinarity is
a long-standing challenge in research, and one that becomes more critical to address in the
context of developments in AI. In this context, there may be new opportunities to recognise
and reward successes in AI for science, whether through new fellowships, prizes, or ways of
promoting the work done by those at this interface.

13.4 Grow communities of research and practice
The areas for action described above feed into and from each other. Progress in research and
application can be leveraged to inspire a generation of researchers to pursue interdisciplinary
projects; effective toolkits can make such progress more likely; skills-building initiatives can
prime researchers to be able to use these toolkits; and so on, to create an environment where
researchers and research advances transition smoothly across disciplines, leading to a rising
AI tide that lifts all disciplines. Communities of research and practice are the backdrop for
creating such positive feedback loops.

A collection of AI for science initiatives are already building links across the research
landscape. The Machine Learning for Science Cluster of Excellence at the University of
Tübingen is leveraging the strength of its local ecosystem in AI to drive wider progress in

38 A comparison here can be drawn with the development of statistics as an enabling discipline for many
domains: statisticians have devoted time to understanding domain practices and integrating their work
within those practices, often dedicating significant resource to understand the nature of the datasets
with which they are working, before introducing modelling ideas.
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research and innovation;39 the Accelerate Programme for Scientific Discovery at the University
of Cambridge is building bridges across disciplines, building a community passionate about
opportunities in AI for science;40 the University of Copenhagen’s SCIENCE AI Centre
provides a focal point for AI research and education in its Faculty for Science;41 New York
University’s Center for Data Science hosts interdisciplinary faculty pursuing innovative
research and education;42 the University of Wisconsin-Madison’s American Family Insurance
Data Science Institute is developing strategic partnerships to accelerate the use of data
science in research;43 new investments by Schmidt Futures across a network of research
institutions are supporting new postdoctoral fellowships at the interface of AI and sciences
[2]. Together, these initiatives demonstrate the appetite for progress in AI for science.

There is an opportunity today to leverage these emerging interests into a wider movement.
Existing initiatives can drive capability-building, by making training and user guides open,
reaching out to engage domain researchers in skills-building activities, and fostering best
practice in software and data engineering across disciplines. The links they establish across
research domains can form the basis of new communication channels, whether through
discussion forums, research symposia, or newsletters to share developments at the interface
of AI and science. These communications can be deployed to raise the profile of people and
projects at this interface, celebrating successes, sharing lessons, and demonstrating the value
of interdisciplinary work. Together, they can help develop an infrastructure for AI in science.

That infrastructure may also benefit from new institutional interventions to address long-
standing challenges in interdisciplinary AI. New journals could provide an outlet to publish
and recognise high-quality AI for science research, bringing in contributions from multiple
disciplines and helping translate lessons across areas of work. Membership organisations
could help foster a sense of belonging and community for researchers working at the interface
of AI, science, and engineering, developing career pathways and incentives. Efforts to convene
across disciplines can also catalyse new connections and collaborations.

Emerging from these efforts is a paradigm shift in how to drive progress in science.
Historically, a small number of foundational texts have been the catalyst that changed how
researchers studied the world; Newton’s Principia; Darwin’s Origin of Species; and so on. For
much of its modern history, scientific knowledge has been transmitted through textbooks;
canonical descriptions of the current state of knowledge. Today, the transformative potential
of AI is driven by its pervasiveness; its impact in science will be achieved through integration
across disciplines. This integration requires widespread mobilisation, convening machine
learning researchers, domain experts, citizen scientists, and affected communities to shape
how AI technologies are developed and create an amenable environment for their deployment.
It takes a community.

39 Programme website available at: https://uni-tuebingen.de/en/research/core-research/
cluster-of-excellence-machine-learning/home/.

40 Programme website available at: https://acceleratescience.github.io.
41 Programme website available at: https://ai.ku.dk.
42 Programme website available at: https://cds.nyu.edu.
43 Programme website available at: https://datascience.wisc.edu/institute/.
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13.5 AI and science: building the interface
Advances in AI have disrupted traditional ways of thinking about modelling in science.
Where researchers might previously have conceptualised models as mechanistic – reflecting
known forces in the world – or data-driven, the “AI for science” methods that are emerging
today reject this separation. They are both, combining insights from mechanistic and data-
driven methods, integrating methods to create something new. What follows from these
developments is a spectrum of modelling approaches, which researchers can deploy flexibly
in response to the research question of interest.

Today, the field of AI for science is characterised by intersections. Between AI and
scientific domains; between science and engineering; between knowledge and know-how;
between human and machine. It operates across disciplinary boundaries, across scales from
the atomic to the universal, and across both the mission to understand intelligence and the
quest to deploy human intelligence to understand the world. Emerging from these missions is
a continuum of models and methods that allow researchers to work across domains, extracting
the knowledge that humans have acquired, and levels of inquiry, enhancing that knowledge
and returning it in actionable form.

As both a domain itself and an enabler of other disciplines, the power of AI in science lies
in its ability to convene diverse perspectives in ways that accelerates progress across research
areas. AI for science is a rendezvous point. Its next wave of development will come from
taking strength from its diversity, and bringing more people into its community.
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What new forms of explainability or interpretability could facilitate the deployment of AI
in science?
How could AI support generalisation from a small number of observations? What methods
could enable few- or one-shot learning?
How can AI researchers build meaningful models from data to accurately represent causal
mechanisms in the system of study? How can researchers identify the most effective
model for their system of study?
What does it mean to understand a model? How can researchers combine explainability
with complexity?
How can AI methods be made robust and easy to use in deployment by domain scientists?
How can advances in simulation methods be applied in domains where the system at
hand is less easily described by equations?
What advances are needed to expand the use of simulations in science? How can AI help
simulate laboratory experiments or environments, helping make more efficient different
elements of the scientific process? How might this be expanding in the long-term, for
example to planning experimental design or helping identify where data is missing?
How can “digital siblings” be used to explore the impact of different interventions on
complex systems?

Combining human and machine intelligence
How can AI researchers best extract, formalise and assimilate the knowledge that domain
researchers have acquired? What forms of knowledge representation can formalise scientific
understandings of the world, translating these to objective functions for AI systems?
What forms of human-AI engagement can make use of the “qualitative” knowledge – or
intuitions about a system – that domain researchers have accumulated?
How can AI capture the qualitative understanding that researchers have of their domain
to more accurately or effectively characterise a system?
How can AI be effectively deployed to mine the existing research knowledge base – for
example, papers, databases, and so on – to extract new insights?
Where can automation support research progress? Which elements of the scientific process
could be automated, and where is human input vital?
What forms of collaboration are needed to effectively specify helpful outputs from an AI
system?
How can insights from AI analysis be returned to researchers in an actionable way?
What mix of AI design, engineering, social interaction, and education can make effective
interfaces between domain researchers and AI systems?
How can the outputs of AI systems be made interpretable for scientific users?
How can AI researchers better understand and design for the forms of interpretability
that resonate with domain researchers?
What processes of collaboration or co-design can help describe what scientists “need to
know” from an AI system?
What best practices or methods can be deployed to effectively communicate uncertainty
from AI systems to human users?
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A.1 Influencing practice and adoption
What are the craft skills in AI for science? What “know-how” is necessary to make AI
work effectively in practice?
What skills-building or forms of outreach can help take AI tools out of the AI community
and into “the lab”?
How has machine learning been used most effectively for research and innovation? What
best practices, or lessons, do existing efforts in AI for science offer?
Which AI tools are suitable for which purposes, disciplines, or experimental designs? Is it
possible to create a taxonomy for science?
Are there generalisable methods or conclusions that can be taken from domain-specific
efforts to deploy AI for science?
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Cognitive Robotics is concerned with endowing robots or software agents with higher level
cognitive functions that involve reasoning, for example, about goals, perception, actions,
the mental states of other agents, collaborative task execution, etc. This research agenda
has historically been pursued by describing, in a language suitable for automated reasoning,
enough of the properties of the robot, its abilities, and its environment, to permit it to
make high-level decisions about how to act. Such properties were typically encoded by a
human, but with recent advances in machine learning, many of these properties, and the
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determination of how to act, can be learned or adapted through experience. This in turn
raises the question of how we can ensure that robots, or other intelligent agents, can be
constructed in a manner that is compatible with human values and modes of interactions.

The Cognitive Robotics workshop series has been running since 1998 and includes a
Dagstuhl Seminar held in 2010. While progress in Cognitive Robotics has undoubtedly been
made over the past twenty years, it is fair to say that we are still far away from creating
truly cognitive robots. In particular, the years since the previous Dagstuhl Seminar have
seen tremendous progress in many areas that touch on the realisation of cognitive robots
such as advances in human-robot interaction and machine learning.

This seminar featured sessions devoted to the following four themes:
Cognitive Robotics and KR: While knowledge representation and reasoning (KR) has played

a role in robotic systems for many years, for example, by incorporating domain knowledge
in the form of description logic-based ontologies or using automated planning systems for
high-level robot control, obstacles remain, which prevent today’s robots from benefiting
from the true potential of KR. In this session we re-visited the state of the art of how KR
is used in robotics and discussed challenges and possible benchmark problems that would
demonstrate the need and benefit of KR techniques for cognitive robots. The session was
organized by Michael Beetz, University of Bremen.

Verification of Cognitive Robots: Verification has been an active research area in formal
methods for many years. It is also an important topic when it comes to cognitive robots,
especially when it comes to achieving trustworthiness. However, the sheer complexity
of the interplay between a robot’s hard- and software components makes verification
particularly challenging. In this session we discussed where we currently stand in terms
of verifying cognitive robots and what challenges lie ahead. The session was organized by
Michael Fisher, University of Manchester.

Human-robot Interaction and Robot Ethics: For cognitive robots to be useful in human
environments, effective human-robot interaction (HRI) plays a crucial role. Besides
the technological challenges such as multi-modal communication, ethical considerations
have become more and more important. These range from robots observing norms and
conventions to humans viewing robots as moral agents. In this session we discussed the
many facets of robot ethics in the context of HRI and identified a number of future
challenges and open problems. The session was organized by Matthias Scheutz, Tufts
University.

Planning and Learning: While planning and learning have traditionally been separate re-
search tracks in cognitive robotics, recent work has shown how action primitives that
form the basis of planning can be learned from data without background knowledge,
thus avoiding the need for hand-crafted solutions. In this sessions this work and related
proposals were discussed and a roadmap with short- and long-term challenges was drawn
up. The session was organized by Hector Geffner, ICREA and Universitat Pompeu
Fabra, Spain. The format of the sessions varied and consisted of one or more plenary
talks, plenary discussions and/or working groups. Working groups for all four themes
discussed challenges and roadmaps for the future, and one representative of each group
presented their findings on the last day of the seminar. Besides talks and discussions
that centered around the four themes, the seminar also featured two invited talks by Luis
Lamb, Universidade Federal Do Rio Grande Do Sul, on neurosymbolic AI and by Jan
Peters, TU Darmstadt, on robot learning. In addition, a number of participants gave
poster presentations on their research.
The organizers of the seminar wish to thank Schloss Dagstuhl for providing such an

excellent environment for exchanging ideas on how to move the field of cognitive robotics
forward.
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3 Overview of Talks

3.1 Knowledge Representation and Reasoning for Cognition-enabled
Robot Manipulation

Michael Beetz (Universität Bremen, DE)
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Robotic agents that can accomplish manipulation tasks with the competence of humans
have been the holy grail for AI and robotics research for more than 50 years. However,
while the fields made huge progress over the years, this ultimate goal is still out of reach. I
believe that this is the case because the knowledge representation and reasoning methods
that have been proposed in AI so far are necessary but still too abstract. In this talk I
propose to endow robots with the capability to mentally “reason with their eyes and hands,”
that is to internally emulate and simulate their perception-action loops based on photo-
realistic images and faithful physics simulations, which are made machine-understandable
by casting them as virtual symbolic knowledge bases. These capabilities allow robots to
generate huge collections of machine-understandable manipulation experiences, which they
can then generalize into commonsense and intuitive physics knowledge applicable to open
manipulation task domains. The combination of learning, representation, and reasoning will
equip robots with an understanding of the relation between their motions and the physical
effects they cause at an unprecedented level of realism, depth, and breadth, and enable
them to master human-scale manipulation tasks. This breakthrough will be achievable by
combining simulation and visual rendering technologies with mechanisms to semantically
interpret internal simulation data structures and processes.

3.2 Online Replanning with Human-in-The-Loop for Non-Prehensile
Manipulation in Clutter – A Trajectory Optimization based
Approach

Tony Cohn (University of Leeds, GB)
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Joint work of RafaelPapalla, Anthony G. Cohn, Mehmet R. Dogar

We are interested in the problem where a number of robots, in parallel, are trying to solve
reaching through clutter problems in a simulated warehouse setting. In such a setting, we
investigate the performance increase that can be achieved by using a human-in-the-loop
providing guidance to robot planners. These manipulation problems are challenging for
autonomous planners as they have to search for a solution in a high- dimensional space. In
addition, physics simulators suffer from the uncertainty problem where a valid trajectory
in simulation can be invalid when executing the trajectory in the real-world. To tackle
these problems, we propose an online-replanning method with a human-in-the-loop. This
system enables a robot to plan and execute a trajectory autonomously, but also to seek high-
level suggestions from a human operator if required at any point during execution. This
method aims to minimize the human effort required, thereby increasing the number of robots
that can be guided in parallel by a single human operator. We performed experiments in
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simulation and on a real robot, using an experienced and a novice operator. Our results show
a significant increase in performance when using our approach in a simulated warehouse
scenario and six robots.

3.3 Joint Perceptual Learning and Natural Language Acquisition for
Autonomous Robots

Tony Cohn (University of Leeds, GB)

License Creative Commons BY 4.0 International license
© Tony Cohn

Joint work of Muhannad Alomari, Fangjun Li, David C. Hogg, Anthony G. Cohn

In this work, the problem of bootstrapping knowledge in language and vision for autonomous
robots is addressed through novel techniques in grammar induction and word grounding
to the perceptual world. In particular, we demonstrate a system, called OLAV, which is
able, for the first time, to (1) learn to form discrete concepts from sensory data; (2) ground
language (n-grams) to these concepts; (3) induce a grammar for the language being used to
describe the perceptual world; and moreover to do all this incrementally, without storing all
previous data. The learning is achieved in a loosely-supervised manner from raw linguistic
and visual data. Moreover, the learnt model is transparent, rather than a black-box model
and is thus open to human inspection. The visual data is collected using three different
robotic platforms deployed in real-world and simulated environments and equipped with
different sensing modalities, while the linguistic data is collected using online crowdsourcing
tools and volunteers. The analysis performed on these robots demonstrates the effectiveness
of the framework in learning visual concepts, language groundings and grammatical structure
in these three online settings.

3.4 Verifying Autonomous Systems
Michael Fisher (University of Manchester, GB)

License Creative Commons BY 4.0 International license
© Michael Fisher

Autonomy represents a step-change in systems development and requires new approaches to
system architectures, to systems analysis and to effective usage.

In this presentation, I describe an approach that utilises the modularity and heterogeneity
of (robotic) software architectures to provide a hybrid agent architecture. Then, a range of
verification techniques can be applied to the different components, from formal verification
applied to the core autonomous decision-making through to varieties of testing used in other
parts of the system.

Finally, an important component is the use of runtime verification (or runtime monitoring)
to check for anomolies and violations. Together, these mechanisms provide a basis for more
relaible, transparent, trustworthy and verifiable autonomous systems.
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3.5 Top-down Representation Learning for Acting and Planning
Hector Geffner (ICREA and Universitat Pompeu Fabra, ES)

License Creative Commons BY 4.0 International license
© Hector Geffner

Recent breakthroughs in AI have shown the remarkable power of deep learning and deep
reinforcement learning. These developments, however, have been tied to specific tasks, and
progress in out-of-distribution generalization has been limited. While it is assumed that these
limitations can be overcome by incorporating suitable inductive biases in neural nets, this is
left vague and informal, and does not provide meaningful guidance. In this talk, I articulate
a different learning approach where representations are learned over domain-independent
target languages whose structure and semantics yield a meaningful and strongly biased
hypothesis space. The learned representations do not emerge then from biases in a low level
architecture but from a general preference for the simplest hypothesis that explain the data.
I illustrate this general idea by considering three learning problems in AI planning: learning
general actions models, learning general policies, and learning general subgoal structures
(“intrinsic rewards”). In all these cases, learning is formulated and solved as a combinatorial
optimization problem although nothing prevents the use of deep learning techniques instead.
Indeed, learning representations over domain-independent languages with a known structure
and semantics provides an account of what is to be learned, while learning representations
with neural nets provides a complementary account of how representations can be learned.
The challenge and the opportunity is to bring the two approaches together.

3.6 Better Autonomy Through Uncertainty
Nick Hawes (Oxford University, GB)

License Creative Commons BY 4.0 International license
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Due to the challenges of perception and action, and inevitable inaccuracies in world modelling,
the results of a robot’s interactions with its environment are inherently stochastic. To
successfully complete extended missions under such conditions it is therefore essential that
autonomous robots use techniques from decision-making under uncertainty to plan goal-
directed behaviour. In this talk I will give an overview of our recent work on planning under
uncertainty for autonomous robots, drawing examples from mobile service robots, underwater
vehicles, and quadrupeds.

3.7 Cognitive Robotics – A KR Perspective
Gerhard Lakemeyer (RWTH Aachen University, DE)

License Creative Commons BY 4.0 International license
© Gerhard Lakemeyer

In this overview talk I address some of the main representation and reasoning techniques
that have been used in robotic systems. On the representation side, these include simple
databases (logical literals), description logics, and geometric or topological maps with semantic
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annotations. On the reasoning side, we find methods for temporal, spatial, and uncertainty
reasoning as well as automated planning techniques. I also touch upon the need for execution
monitoring and failure diagnosis. At the end of my talk I briefly introduce the RoboCup
Logistics League, where robots interact with machines in a production logistics scenario and
which can serve as a benchmark for applying KR in robotics, both in simulation and on real
robots.

3.8 Learning and Reasoning in Neurosymbolic AI
Luis Lamb (Universidade Federal Do Rio Grande Do Sul, BR))

License Creative Commons BY 4.0 International license
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Neurosymbolic AI aims to bring together the statistical nature of machine learning and
the logical essence of reasoning in AI systems. Recently, leading technology companies and
research groups have put forward agendas for the development of the field, as modern AI
systems require sound reasoning and improved explainability. In this talk, we highlight
Neurosymbolic AI research results that led to applications and novel developments towards
building richer AI systems. We summarize how the field evolved over the years and how it
can potentially contribute to improved explainability and the effective integration of learning
and reasoning in robust AI.

3.9 Learning Grounded Language for Human Interaction
Cynthia Matuszek (University of Maryland, Baltimore County, US)

License Creative Commons BY 4.0 International license
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Robots deployed today largely perform a predefined set of tasks in limited, controlled
environments. In order to handle the complexity of human-centric spaces, it is necessary
to learn about the world and tasks from human end users, and natural language is a key
modality for such learning. Two high level approaches to understanding and learning from
such language are, first, learning probabilistic grammars describing the perceptual state of
the world and, second, learning directly from speech, without any textual intermediary. This
talk describes work on using a combination of language and perceptual data to learn about
how people describe objects in the world, with the long-term goal of understanding tasks and
instructions presented in natural language by non-specialist end users. The importance of
using speech directly is discussed, and the effectiveness of using featurized speech is compared
to ASR-based approaches. Using speech not only improves performance on the language
grounding task, but also reduces performance differences among different demographic groups,
leading to more immediately deployable robotic systems.
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3.10 Reward Machines: Formal Languages and Automata for
Reinforcement Learning

Sheila McIlraith (University of Toronto, CA)

License Creative Commons BY 4.0 International license
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Reinforcement Learning (RL) is proving to be a powerful technique for building sequential
decision-making systems in cases where the complexity of the underlying environment
is difficult to model. Two challenges that face RL are reward specification and sample
complexity. Specification of a reward function – a mapping from state to numeric value –
can be challenging, particularly when reward-worthy behaviour is complex and temporally
extended. Further, when reward is sparse, it can require millions of exploratory episodes for
an RL agent to converge to a reasonable quality policy. In this talk I’ll show how formal
languages and automata can be used to represent complex non-Markovian reward functions.
I’ll present the notion of a Reward Machine, an automata-based structure that provides a
normal form representation for reward functions, exposing function structure in a manner
that greatly expedites learning. Finally, I’ll also show how these machines can be generated
via symbolic planning or learned from data, solving (deep) RL problems that otherwise could
not be solved.

3.11 Model Learning for Plannning
Christian Muise (Queens University – Kingston, CA)

License Creative Commons BY 4.0 International license
© Christian Muise

Model learning can primarily be characterized across three dimensions: (1) the input data
format; (2) the output model components; and (3) the priors/partial models that we start
with. Here, we explore two settings where model learning for planning has been studied.

First, we detail the Model Acquisition Toolkit (MACQ): a library dedicated to learning
action theories from state traces of various forms. Each technique in the library comes with
its own priors, but collectively the library provides the most comprehensive treatment to
date of extracting action theories from discrete time series data.

The second work explores how strong priors influenced by planning concepts can aid in
learning planning models from image pairs alone. By embedding strong notions of action
representation into the learning architecture itself, we are able to learn action theories and
state representations that can be given to off-the-shelf planners.

These are but two modern examples of how model learning is being explored in the
context of planning.
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3.12 Hardware Acceleration: Why, What, How, Use Cases?
Bernhard Nebel (Universität Freiburg, DE)

License Creative Commons BY 4.0 International license
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This talk does not report on research results, but rather on perspectives of how hardware
acceleration can be exploited for automatic planning. Focusing on RPG-style heuristics,
it is sketched how such heuristics estimators can be compiled into sequential circuits for
moderately large planning tasks, which opens up the possibility to implement that on standard
FPGAs. Since 80-90% of the compute time in planning systems is spent on computing
heuristic estimates, this could result in a speedup of one order of magnitude.

3.13 Robot Learning: Quo Vadis?
Jan Peters (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
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Autonomous robots that can assist humans in situations of daily life have been a long standing
vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal
is to create robots that can learn tasks triggered by environmental context or higher level
instruction. However, learning techniques have yet to live up to this promise as only few
methods manage to scale to high-dimensional manipulator or humanoid robots. In this talk,
we investigate the challenges for robot learning from both the symbolic and subsymbolic
perspective! We show how symbols can arise in a robot learning system and can used to
further the general application of robot learning. We also discuss how classically disjunct
approaches from first order insight can be used as inductive biases for faster learning using
the simulation based approach. We describe the work in various robotic scenarios ranging
from tactile manipulation to robot juggling.

3.14 HRI and Robot Ethics
Matthias Scheutz (Tufts University – Medford, US)

License Creative Commons BY 4.0 International license
© Matthias Scheutz

Robot ethics is no different from bioethics, information ethics, environmental ethics, etc. in
that as a technology it has impact on humans human societies. It is different from all other
technologies in that AI enables the development and deployment of autonomous systems that
perceive their environment and determine their actions without human ado. AI/robot ethics
thus raises the question of whether these systems can operate in human societies and interact
with humans in a way that is ethical and acceptable to humans, not causing any harm. For
this, robots need to be able to learn human norms from observations and instructions and
follow them. When norm conflicts arise, they need to be able to determine the best course of
action and justify their choices by appealing to principles used for their decisions. How to
build a robotic architecture capable of all of this is the main challenge of ethical HRI!
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3.15 Active Learning in Risky Environments: Exploring Deep-Sea
Volcanoes and Ocean Worlds

Brian Williams (MIT – Cambridge, US)

License Creative Commons BY 4.0 International license
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Machine learning is a powerhouse in information rich environments. However, machine
learning remains challenging when data is sparse, is costly to collect, and is dangerous
and complex to acquire. As two examples, ocean exploration and subsea inspection use
autonomous vehicles to perform information gathering, to answer questions about the
environment. In these applications, communication is limited, vehicles need to be autonomous,
environments are risky, and resources are constrained.

Our vision is to create systems that answer information queries by performing active
learning in risky environments. These systems 1) generate information gathering plans that
bound risk, while maximizing information with respect to a set of questions being asked, 2)
continuously adapt plans based on what is observed and what remains unanswered and 3)
incorporates informative measures and risk within operational plans, at multiple levels of
abstraction.

The talk introduces a series of model-based agent programming paradigms that support
this process of active learning in risky environments, starting with state and decision-
theoretic programming. The talk then focuses on planning and learning methods that are
needed to support two new programming paradigms – information theoretic and risk-aware
programming. These approaches are demonstrated in the context of a 2019 ocean campaign,
to explore the Columbo volcano in the Mediterranean Sea.

4 Poster Presentations

All participants provided a brief oral introduction and an overview of their research at the
outset of the 5-day seminar. All participants were also given the opportunity to present their
work in a poster session. The following is a list of participants who presented their research
as posters.

Mohamed Behery and Gerhard Lakemeyer

Poster: Assistive Robot Teleoperation Using Phase Switching Behavior Trees
Authors: Mohamed Behery, Minh Trinh, Christian Brecher, Gerhard Lakemeyer
Related Publications: Not published yet.

Anthony G Cohn

Poster: A framework for categorising AI evaluation instruments
Authors: A G Cohn, José Hernández-Orallo, Julius Sechang Mboli, Yael Moros-Daval,
Zhiliang Xiang, Lexin Zhou
Related Publications: https://ceur-ws.org/Vol-3169/paper3.pdf
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Jasmin Grosinger

Poster: Proactivity
Author: Jasmin Grosinger
Related Publications: Not published yet.

Till Hofmann and Gerhard Lakemeyer

Poster: Controlling Golog Programs against MTL Constraints
Authors: Till Hofmann, Stefan Schupp, Gerhard Lakemeyer
Related Publications: Not published yet.

Mikhail Khodak

Poster: Learning Algorithms and Learning Algorithms
Authors: Mikhail Khodak
Related Publications: listed at the bottom of the poster.

Sven Koenig

Poster: Multi-Agent Path Finding (MAPF) and Its Applications
Authors: Many, as listed on poster
Related Publications: http://idm-lab.org/project-p.html

Yves Lespérance

Poster: Plan Recognition in a High Level Belief-Based Programming Language
Authors: Yves Lespérance, Alistair Scheuhammer, Yu Chen, and Petros Faloutsos

Setareh Maghsudi

Poster: Multi-Agent Reinforcement Learning
Authors: Setareh Maghsudi
Related Publications: based on several publications as listed in the poster,

Sheila McIlraith

Poster: LTL and Beyond: Formal Languages for Reward Function Specification in
Reinforcement Learning
Authors: Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano,
Sheila A. McIlraith
Related Publications: based on several publications as listed in the poster.

Bernhard Nebel

Poster: The Complexity of MAPF on Directed Graphs & The Small Solution Hypothesis
Authors: Bernhard Nebel
Related Publications: The Small Solution Hypothesis for MAPF on Strongly Connected
Directed Graphs is True, arXiv:2210.04590.
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Maayan Shvo

Poster: Proactive Robotic Assistance via Theory of Mind
Authors: Maayan Shvo, Ruthrash Hari, Ziggy O’Reilly, Sophia Abolore, Nina Wang, Sheila
A. McIlraith
Related Publications: Proactive Robotic Assistance via Theory of Mind, IROS 2022.

5 Working groups

The seminar focused on four themes central to cognitive robotics, with one expert among the
participants organizing a session around each theme: cognitive robotics and KR (Michael
Beetz), verification of cognitive robots (Michael Fisher), HRI and robot ethics (Matthias
Scheutz), and planning and learning (Hector Geffner). The format of the sessions varied
and consisted of one or more plenary talks, plenary discussions and/or working groups.
Working groups for all four themes discussed challenges and roadmaps for the future, and
one representative of each group presented their findings on the last day of the seminar:
Gerhard Lakemeyer (cognitive robotics and KR), Fredrik Heintz (verification of cognitive
robots), Cynthia Matuszek (HRI and robot ethics), Christian Muise (planning and learning).
Here is a summary.

5.1 Cognitive Robotics and KR
Knowledge Representation and Reasoning (KR) has been a concern in cognitive robotics for
many years, beginning with the robot Shakey developed at SRI in the late sixties. While
ontological knowledge, formalized using description logics, and automated planning systems,
among other things, can be found in many robotic applications, KR has yet to play a central
role in building cognitive robots. In this working group, we discussed and collected some
of the challenges that remain in order to leverage the true potential of KR for cognitive
robotics. The following lists the main findings and recommendations.

5.1.1 Challenges

How does a robot know when system 2 is needed (meta cognition)?
Finding suitable open-ended robotic tasks that demonstrate the need for KR.
Industrial use cases, where humans and robots collaborate during production (issues in
planning, HRI).
Addressing problems with long-tail phenomena, which are best solved with commonsense.
How to acquire commonsense for specific tasks.
Standardization of KR formalisms would help with the uptake (as has happened with
OWL).
Creating a NELL (lifelong learned KB) for robots.
How to control the complexity of a task? Compilation techniques?
How can a robot be taught like a human or, how to transfer conceptual representations
of a human to a robot?
How to build a system that can perform a task after watching a video that shows how to
do it. How to do it with tools different from those in the video.
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How to build systems that can introspect on their own actions and explain what they are
doing.
How to build robots with a theory of mind (going beyond traditional BDI, which does
not consider action, perception, failures, uncertainty).

5.1.2 Reasons why KR is not yet central to robotics and possible ways to
overcome this

When working with robots, 90% of the time is spent on things other than KR. For
roboticist, KR issues are often an afterthought, while KR people cannot grapple with the
complexity of robots.
KR for robotics is lacking a “playground” such as benchmarks suitable for testing/e-
valuating implemented systems. ( Attempts like RoboCup Logistics in simulation were
not taken up by the planning people because of the complexity, see also Multi-Agent
Programming)
Appropriate environments need to be developed (RoboCup?)
Those need to be spread and advertized via tutorials at the KR and ICAPS conferences.
Similarly, KR tools need to be created for use by roboticists.

5.1.3 Roadmap (5–10 years)

Principled approaches to abstraction of perception.
Goal reasoning for robots.
Rationalizing existing implemented KR systems like KnowRob.
A theory of explainable behavior and its realization in cognitive robots.
A theory of mind for robots.

5.2 Verification of Cognitive Robots
Verification and validation of complex cognitive robots is very challenging and existing
methods, mainly from formal verification, can only be applied to relatively simple cases. This
section summarizes the challenges, directions for future research and provides a roadmap
towards verification of cognitive robots.

5.2.1 Challenges

Correct-by-design
End-to-end verification
Composing verified components into verified systems
Combining partial/abstract offline verification with complete/detailed online verification
Minimum assumption verification, combined with a risk model to assess the risk involved
in the assumptions, combined with runtime verification of the assumption to get the
minimum risk system
Systematic combination of partial verification and testing, verify those parts that can be
verified, and then systematically test the rest
Verify models that are used by for example solvers
Understand the limitations of what is verifiable
How to build systems that can be verified? What architectures enables verification?
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Verifying learning systems
Verifying systems that interact with people
Continuous (online) verification of learning and interacting systems

5.2.2 General Direction of Development

From static deterministic simple environments to dynamic non-deterministic complex
adversarial environments
From one-off large-scale efforts for verifying particular components to systematic methods
for verifying components to tools that automate the verification of components
From simple components to complex components to simple static systems to complex
dynamic systems of components to open, dynamic and learning systems-of-systems

5.2.3 Roadmap

5-years
Develop verified plan verifiers that can verify plan instances
Verified solvers, such as planners, which are guaranteed to generate verified solutions
Verified skills under (potentially strong) assumptions about sensors and external
behaviors
Principled combination of testing, off-line verification and on-line verification of static
systems
Early involvement with regulators to jointly agree on what to verify, also related
to translating high-level abstract properties into things that can be quantified and
(probabilistically) verified

10-years
A formal understanding of what can be verified
Methods for formally verifying solvers
Methods for verifying skills (and other robot behaviors) and reducing the assumptions
under which these are guaranteed to work
Verified (simple) cognitive robots using (verified) solvers and (verified) skills to achieve
non-trivial goals
Principled (off-line/on-line) verification of (simple) cognitive robots that improve their
behavior over time (learning)

5.3 HRI and Robot Ethics
Human-robot interaction (HRI) with its many facets and interdisciplinary nature is of key
importance for cognitive robotics, with ethical concerns playing an important role as well. In
this working group challenges for HRI and robot ethics were discussed and collected along
several dimensions: humans modeling robots and vice versa, norms, communication and
information flow, and proactive behavior. In the following, we summarize our main findings.

5.3.1 Humans modeling robots

How can we build systems where it is possible for people to have an accurate model of
the robot’s capabilities and internal state?
Possibly we will always interpret its behavior or lack thereof as if it were a human.

Does it matter if it is human-shaped?
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We will update our mental model over time to more accurately capture the robot’s
state.
How can we design a robot such that people’s model of it is more accurate?

Maybe a principle of robot design should be to work with the model of the robot that
people have, rather than trying to affect that model.
Transparency – where does the data come from for learning?

5.3.2 Robots modeling humans

Understanding/demonstrating social behavior:
Depends in part on reasoning about plans, beliefs, goals
Timing, dialog, cutting in, . . .

What can we learn from cognitive science interests, e.g., human-human interaction
studies?

Some characteristics can be learned from data, but not all.
What are the features that such a representation would need to learn that model
humans?
It is different if you are learning ethical principles.

Need to consider roles and role-switching to handle such learning.
Speeds up planning in a collaborative setting to have an understanding of acceptable
behavior/social norms.

5.3.3 Norms: representing, learning, following them

What is the best formalism to express norms/ethical principles?
Need dialog/some capability of learning from being “told.”
Need more general reasoning and more commonsense/general knowledge

It depends on how expensive plan changes are, how long the planning horizon is, etc.
How to learn norms? From observations, instructions, . . . ?

Norms vary in importance, consequences.
We learn norms from a variety of mechanisms:
important things are written down, less important things are told, some things are
just learned from demonstrations.

Important for norm learners: must be able to learn norms online.
Can’t do a single model and then be done with it.
Online learning and online adaptation.

Do we have to learn norms in context?
General vs. specific vs. culturally-modulated norms.

Challenge: doing online learning, but not trying stupid things that violate social require-
ments.

But children push boundaries to improve understanding.
Learn in simulation?

Concept of risk, balancing information gain with possible seriousness of a transgression.
Four choices: be extremely conservative to try to minimize norm violations; watch and
see; ask; or try it and see what happens

What can we do in simulation?
Norms can be complex/contradictory/overlapping.

Learning sufficiently to act appropriately is difficult.
Need to watch for signals and adjust norms over time.
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How do you know how to adjust behaviors?
How do you recognize signals that you have violated a norm?

There is a gradation from benign to strong social norms (mild vs. serious), long-term vs
short-term – is there a spatio-temporal hierarchy?

People violate norms all the time.
Challenge: what do we start with?
Challenge: a lot has to happen in parallel; there is a control problem of making the layers
of the robot architecture work together with timing.

5.3.4 Communication and information flow

For HRI, humans and robots need to communicate.
Many modalities of interagent communication.
Language, legible behavior, . . .

Need some model of information flow that is deliberate on the part of at least one actor.
There exists work on recognition and activity/plan recognition–what else is there that
robots can learn from passive observation?

How can we communicate by inferring from behavior?
If you act to make your model clear via inference, you are communicating.
Some things are also best conveyed via being told, e.g., driving regulations.

Just conveying information is not enough.

5.3.5 Proactive behavior

Desirable for robots to be not purely reactive, but
More of a problem for the robot to get things wrong when assisting than to do nothing.

Do people have a charitable view of a robot if the robot meant well but messed up?
Apologizing helps.
Depends partly on horizon – for how long will it be bad at something before it becomes
good/helpful?

5.3.6 Grand and small challenges

Supermarket:
Sub-problem: socially aware spill detector;
Sub-problem: getting something from the shelf for someone.

Polite restaurant server:
When to interrupt, how long to leave the table alone, . . .

Shared manipulation/physical HRI:
Joint manipulation (putting all the dishes on the trolley);
Joint cooking.

Seeing-eye Spot robot
Intelligent disobedience;
Epistemic reasoning about human’s beliefs, intentions.
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5.4 Planning and Learning
Planning and learning have traditionally been two separate research tracks within cognitive
robots. Lately, several research groups have started to study the combination and integration
of planning and learning. For example learning symbols or primitives from observations.
To achieve this, it is important to use the right inductive biases in learning to ground the
AI system in the world. The key to complex behavior is being able to compose these into
more complex plans or composite behaviors, thus planning based on these learned primitives
clearly adds a significant value. This section provides a roadmap to achieve this in the form
of three short-term challenges and four longer term challenges.

5.4.1 Roadmap

Short-term Challenge 1: Bootstrap the knowledge – preliminary information, partial
models

Examples of success: Given a partial PDDL for any planning model learning approach,
and observing an improved performance in acquiring the rest of the model. Easy for
aspects like SAT/ASP-based learning, but not so clear for deep learning methods that
try to acquire things in an end-to-end way.
ETA 4 years

Short-term Challenge 2: Life-long learning – models will drift, change, no longer be valid,
etc

Example of success: Reliably able to detect when the model is no longer valid and
how it has changed. Detect when new object types or new instances of an object are
introduced. Being able to modify existing knowledge/model so that action which failed
after world change now succeeds. Taking advantage of past experiences to quickly
adapt to new environments.
ETA: 4 years

Short-term Challenge 3: Leveraging our model specifications / formal languages to
help traditional learning, e.g. interpretability/explainability: “why did my model do
this?”; robustness: ensuring a DL system performs as expected; fairness: detecting biases,
establishing and verifying fairness criteria

Example of success: Reasoning-based approach to verify / validate the concepts learned
by traditional DL systems (e.g., interrogating LLM’s for consistent reasoning)
ETA: 4 years

Long-term Challenge 1: Integration of learned dynamics and hand-crafted models. Under-
standing the aspects of the models learned by agents – aligning / grounding the symbols
specified & learned (including grounding language).

This challenge includes generating high level plans to deal with all kinds of complex
environment which could include those with non-rigid objects (e.g. bed sheets) but
also cluttered environments, uncertain environments, environments with other agents
who change the environment dynamically.
Example of success: Creating plans that involve learning dynamics e.g., folding a bed
sheet.
ETA: 10+ years

Long-term challenge 2: HRI-style Model Acquisition. How to ground symbols interactively
(with human users) to iteratively build a planning model (including objects, fluents, actions,
etc). Aligning agent’s internal language to the one used by the human. Extension –
ability to align to multiple humans, using different concepts and languages/phrasing.
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Example of success: Robot being capable of interactively receiving instructions (while
clarifying) and performing the task given by human operators. ALFRED may be an
initial starting point (language is all pre-known, as are the goals).
ETA: 10+ years

Long-term challenge 3: Exploration based learning – i..e the robot actively exploring
the world and trying to perform experiments to learn more about the world, and its
capabilities and how actions affect the world.

Example of success: Simulated environment to place an egocentric agent in – success
measured in properly acquiring a correct (or correct enough) planning model
ETA: 10+ years

Long-term challenge 4: Multi-agent/human collaboration – learning how to collaborate
with another agent to perform a task

Example of success: learning how to hand over an object, or jointly moving some large
object, or collaborating to build some object (one agent holding the work-piece to
resist forces such as sawing or drilling being applied by a second agent).
ETA: 5+ years
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Introduction
Many scientific fields face a replication crisis: A sizable portion of quantitative research
studies could not be replicated. When these studies were re-run with higher statistical power
(i.e., more participants), their results yielded effects substantially weaker or even opposite of
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that in the original studies. This lack of replicability threatens the credibility of research
claims and undermines the general public’s trust in science. The replication crisis motivated
the Open Science movement that promotes transparency throughout the scientific
process: research funding, research design, data collection and analysis, peer reviewing, and
knowledge dissemination. These phenomena attracted the interest of researchers in the fields
of Human–Computer Interaction (HCI) and Visualization (VIS) for two reasons.
Like other fields, HCI and VIS researchers face challenges in promoting transparency among
their peers, effectively implementing and educating transparent practices, and incorporating
transparency in the research evaluation processes. However, HCI and VIS researchers have
the methods and skills to empirically study these phenomena and design potential solutions.
The fields of HCI and VIS also provide a challenging testbed for these inventions.

This Dagstuhl seminar initiated and advanced works on these issues by bringing together
23 researchers from HCI, VIS, statistics, psychology, data science, and philosophy. They
were from Australia, Austria, Canada, Denmark, Finland, France, Germany, the Netherlands,
Sweden, Switzerland, the UK, and the USA. Three participants joined online due to the
COVID situation and travel difficulties.

Program
We worked in groups to identify problem areas and prototype potential solutions in a
Hackathon. We solicited feedback on these prototypes from conference and journal editors
and community leaders. The seminar unfolded as follows:

Day 1: After a brief introduction to the purpose of the seminar and the overall plan,
participants discussed in small groups to identify problems and challenges to work on in
the Hackathon. These discussions were intentionally designed to be free-form to avoid
prematurely limiting the areas of interest. To stimulate discussions and spark ideas, we
provided the participants access to free-text responses to a survey on the perception of
research transparency that we collected from HCI researchers in the weeks before the
seminar. Four rounds of discussion were interleaved with three-minute presentations of
intermediate results in the plenary to facilitate convergence and consolidation.
In each plenary round, we also asked a few participants to interview each other in front
of the room to acquaint everyone with their background and research interest. Day 1
concluded with four clusters of topics to be worked on: (1) Educating researchers, (2)
Clarifying the threats from the lack of transparency, (3) Clarifying the “transparency”
concept, and (4) Working on how to influence policy and procedures in the publication
process.

Day 2: Participants joined the problem cluster according to their interests and started
the Hackathon. We provided each group with collaborative workspaces on Google
Docs and Miro (an online whiteboard platform). After two Hackathon sessions in the
morning, we further stimulated their work with an input lecture from Tim Errington, the
Senior Director of Research at the Center for Open Science (see below for an abstract).
This lecture highlighted challenges in promoting research transparency and provided
a framework for changing research culture at multiple levels: from top-down research
funding policy and bottom-up to ease the implementation of transparent practices by
providing infrastructure and incentives. After the lecture, the Hackathon continued.
We wrapped up the day with a 3-minute presentation from each group and a plenary
discussion.
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Day 3: The Hackathon continued in the morning. We gave the participants prompts to
encourage them to hone in on a concrete idea and realize a prototype that demonstrates
the idea’s essence. The afternoon is free time for the participants to self-organize group
activities to promote trust and informal interactions. We did not organize an excursion
because the transportation companies were unavailable.

Day 4: The Hackathon continued in the morning. In the afternoon, the participants presented
their preliminary results to four panelists who joined online. The panelists hold influential
positions in the research publication process in HCI and VIS: the SIGCHI President, the
TOCHI editor-in-chief, the TVCG Associate Editor in Chief and Eurographics Publication
Board, CG&A Associate Editor-in-chief, TVCG Associate Editor, and the vice-chair
of the IEEE VIS Steering Committee. A discussion on feedback from policy-making
perspectives followed each presentation. The conversation with the panelists broadened
participants’ views about stakeholders and potential concerns. After the discussion, there
was a plenary discussion to process the input from the panel collectively. We identified
four areas to work on in the manifesto: definition, benefits, subfield-suitability, and
progressive transparency.

Day 5: Participants worked in groups to draft a manifesto on research transparency. The
seminar concluded with a plenary session where we identified possible future projects,
their follow-up actions, and coordinators.

Results
The tangible results of the seminar comprise four prototypes from the Hackathon and a draft
manifesto:
1. To influence research funders’ policies, we drafted a list of policy suggestions for incen-

tivizing research transparency and Open Science.
2. To inspire researchers and students, we prototyped how we could collect, analyze, and

showcase papers in the visualization field that are exemplary in their transparent practices.
3. To improve infrastructure, we identified low-hanging fruits in improving the user interfaces

of the ethical review and publication processes to encourage transparent practices.
4. To ease the adoption of transparency practices, we prototyped a cheat sheet that provides

reminders for considering transparent practices at each of the research stages. The cheat
sheet also provides pointers to relevant guides and resources.

The draft manifesto clarifies the definition of research transparency, describes its benefit,
calls for each subfield to identify its suitable set of transparent practices, and argues how
transparent practices could be viewed as a progression instead of demanding everyone to be
perfect at their first try. These results provide a starting point for future follow-up research
and educational activities that will advance the understanding and adoption of research
transparency in HCI, VIS, and beyond.
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3 Input Lecture

3.1 How science knows what it knows: Challenges in research
transparency

Timothy M. Errington (Center for Open Science – Charlottesville, US, tim@cos.io)

License Creative Commons BY 4.0 International license
© Timothy M. Errington

In large-scale replication studies such as in Psychology and Cancer Biology, many replication
studies yielded a smaller effect size than the original study [1, 2]. Low replicability challenges
the credibility of science. Replicability is associated with several research best practices,
such as preregistration, using large samples, and sharing research materials [3]. However,
this knowledge seems inadequate to change scientists’ behaviors widely. To change the
research culture, we need to address both the lack of know-how and the lack of motivation.
Both top-down and bottom-up efforts are necessary as shown in Figure 1: Funders should
design incentives and policies that will change the norm of research practices. Conversely,
research communities must establish infrastructures and invent technologies to facilitate
these practices.

Figure 1 Center for Open Science strategy for scale sustainable adoption of open behaviors by
researchers. Source: Center for Open Science www.cos.io/blog/continuing-acceleration-new-strategic-
plan (Creative Commons BY 4.0 International license).
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3.2 Summary of Q&A and discussion
Lahari Goswami (University of Lausanne, CH, lahari.goswami@unil.ch)
Chat Wacharamanotham (Swansea University, GB & University of Zurich, CH,
chat@acm.org)
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Temporary changes. Trying out proof-of-concept solutions to transparency may require a
shift in the incentives involved in the research process. Such a shift could be agreed upon to
be temporary and to be adapted as needed.

Scaling up. Proof-of-concept solutions that are implemented in smaller conferences/journals
require reflecting on the actual changes and their results. The transfer is more likely to
happen by abstracting the lessons learned.

Methodological diversity. For fields that use more than quantitative research methodology
– including HCI and VIS – preregistration could be a common starting point because it is
widely applicable. Dialogues are needed with people from those methodologies to develop
suitable infrastructure. For example, the preregistration template for qualitative research
was developed by the lead from qualitative researchers.

Synergy across practices. To maximize the effectiveness of various novel transparent
practices introduced into the scientific process, educating researchers on how these practices
are connected to each other as an ecosystem is necessary. Such consideration could also help
reduce researchers’ effort, e.g., by aligning the information required for ethical review with
those in preregistration.

4 Working Groups

After the first day of the seminar, we formed four working groups to address different aspects
of research transparency. Below is a summary of the results from each working group ordered
top-down: from the policy level to a concrete checklist for individual researchers.

4.1 Influencing research funders’ policies
Contributors in alphabetical order:
Chat Wacharamanotham (Swansea University, GB & University of Zurich, CH,
chat@acm.org)
Duong Nhu (Monash University – Clayton, AU, duong.nhu1@monash.edu)
Lynda Hardman (CWI – Amsterdam, NL & Utrecht University, NL,
Lynda.Hardman@cwi.nl)
Sophia Crüwell (University of Cambridge, GB, slbc2@cam.ac.uk)

License Creative Commons BY 4.0 International license
© Chat Wacharamanotham, Duong Nhu, Lynda Hardman, and Sophia Crüwell

We reviewed the existing policies from funding agencies: Australia ARC and NHMRC,
European ERC, the Netherlands’ NWO, and UK’s UKRI. Although these policies encourage
open-access publication and sharing of research data, they lack other transparency practices.
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We also found the policies focus on goals without adequately providing resources and infras-
tructure. Therefore, we drafted seven policy recommendations. For each recommendation,
we discussed the status quo, its benefits, possible barriers, and possible improvements. Below
is a summary of each recommendation:

R1: Mandate Open Science as the default in all funding schemes, with open-access
publication as a required minimum. Several research funders already required open access to
research publications. Where ethically feasible, researchers should make all data and analysis
methods available on FAIR-compatible repositories and annotate them with appropriate
domain-specific metadata.

R2: Provide funding for infrastructure and personnel to implement Open Science practices.
Institutions, departments, or individual researchers may need more resources or knowledge
to meet all requirements of conducting Open Science research. Funding should be made
available for (inter)national infrastructures and repositories for secure data storage and
controlled access to data.

R3: Include Open Science practices as an independent dimension in evaluating proposals,
individual researchers, and departments. Open Science practices take additional resources
(e.g., time, money, personnel). Instead of spending resources on Open Science practices,
researchers channel these resources to write more papers. However, more papers that are not
transparent increase noise in the body of knowledge. Therefore, when evaluating research
proposals, researchers, and department performance, Open Science practices should be
incorporated as an independent dimension that could be considered in the context of other
metrics such as grant income or publication count.

R4: Positive discrimination of researchers who use or have used Open Science. Adoption
of Open Science practices may lead to a disadvantage in the current system, which is focused
on quantity and novelty over quality. If engagement with Open Science is only optional, we
could punish Open Science pioneers, thus disincentivizing engagement with Open Science.
Funders can address this problem by giving special consideration to researchers whose track
records demonstrate Open Science practices.

R5: Develop recommendations and rules for sharing research artifacts. Funders should
mandate or recommend types of licenses and – where available – specialized repositories for
sharing research artifacts. These rules or recommendations will facilitate data dissemination
and reuse.

R6: Encourage Open Science Best practices. Best practices in Open Science evolves as
innovation are developed and tested in various subfields. Funders can accelerate these pro-
cesses by publishing and periodically updating lists of recognized best practices. Additionally,
funders should invest in developing Open Science innovations and maintaining essential Open
Science infrastructures.

R7: Provide Open Science training for all personnel involved in research. Researchers at
different career stages have different training needs: Junior researchers might need awareness
and practical skills in implementing Open Science practices. Established researchers will
need to be convinced of the relevance of Open Science and why they are relevant in a new
norm of scientific practices. Funding agencies should open calls for research projects to
develop innovative educational materials for Open Science and to evaluate their effectiveness.
Additionally, funding agencies could incentivize institutions to allocate resources and provide
competence in training Open Science knowledge and skills.
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After presenting this draft to the panelists, we received feedback that buy-in from the
research community is essential to make changes, especially for the fields of HCI and VIS,
where there’s a wide range of research methods and contribution types. Any policy changes
mustn’t marginalize any research methodologies or domains. The follow-up action for this
work is to refine the recommendations further to address the methodological diversity concern
and engage in conversation with funding organizations.

4.2 Positive Examples of Research Transparency
Contributors in alphabetical order:
Eunice Jun (University of Washington – Seattle, US, emjun@cs.washington.edu)
Lonni Besançon (Linköping University, SE, lonni.besancon@gmail.com)
Michael Sedlmair (Universität Stuttgart, DE,
michael.sedlmair@visus.uni-stuttgart.de)
Pierre Dragicevic (INRIA – Bordeaux, FR, pierre.dragicevic@inria.fr)
Theophanis Tsandilas (Université Paris-Saclay, Orsay, FR & Inria – Orsay, FR,
fanis@lri.fr)
Wesley Willett (University of Calgary, CA, wesley.willett@ucalgary.ca)
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We saw an opportunity to encourage transparent research practices by curating a set of
examples from visualization research. These examples will serve as a starting point for
teaching transparent research, motivating visualization researchers to practice research
transparency, and motivating the community to invent new creative transparent methods.
Toward these goals, we identified forms of transparency: (1) research process and methods, (2)
artifacts, (3) data, and (4) claims and limitations. Combining these forms with a taxonomy
of visualization contribution types (Munzner, 2008) resulted in a matrix for the examples.
As a prototype for this seminar, we brainstormed and discussed how some papers we knew
fit into this matrix.

From the panelists’ feedback, we realized the importance of clarifying that these examples
show the possibilities of transparency. Some contribution types may lend themselves to
some forms of transparent practices easier than others. The paper should be framed as a
recommendation instead of a checklist to avoid alienating some research contributions.

For the next step, we plan to collect examples that span this matrix by conducting a
survey targeting visualization experts, and we drafted survey questions. We plan to publish
this work in IEEE Computer Graphics and Applications (CG&A) as a viewpoint paper with
extensive supplementary materials on OSF.

References
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4.3 Tweaks to the Ethics Review & Publication Pipeline that
Encourages Transparency

Contributors in alphabetical order:
Julien Gori (Sorbonne University – Paris, FR, gori@isir.upmc.fr)
Kavous Salehzadeh Niksirat (University of Lausanne, CH,
kavous.salehzadehniksirat@unil.ch)
Olga Iarygina (University of Copenhagen, DK, olia@di.ku.dk)
Ulrik Lyngs (University of Oxford, GB, ulrik.lyngs@cs.ox.ac.uk)
Yvonne Jansen (CNRS – Talence, FR, yvonne.jansen@cnrs.fr)
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We looked at the steps of the research pipeline, from ethics application to published articles,
as shown in Figure 2. We identified several opportunities to encourage open and transparent
research practices along this pipeline. Instead of looking to impose the “sticks” – punishments
or requirements – we focus on “carrots”, emphasizing selfish benefits to incentivize the
practices. This analysis results in minor changes to ethics review templates, transparency
statements on the CHI website, PCS submission interface, and acceptance notifications.
These all emphasize reasons for authors to strive for transparency in their research.

make it easier to 
write my paper

get my paper 
accepted

get my paper 
cited

save time

Figure 2 Research process and selfish benefits that could be used to incentivize research trans-
parency.

For the ethics review template, we prototyped additions of instructions that could remind
researchers to consider preregistration, documenting their data analysis process or making
them reproducible, and repositories to share their data.

Specifically to the ACM CHI Conference on Human Factors in Computing Systems (CHI)
– a major HCI conference, we drafted an update to the Guides for Authors to provide concrete
suggestions and be more concise. We also created a mockup of the paper submission form
(Figure 3) and acceptance email message that will encourage researchers to think about
different types of research artifacts and data to share.

We also discussed an idea of repurposing the comments fields from the paper websites,
e.g., the ACM Digital Library, for the authors to point to research materials that become
available post-publication. Reference manager software could alert researchers of these
updates – similar to Retraction Watch alert plug-in for Zotero.

https://creativecommons.org/licenses/by/4.0/
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Figure 3 A mock-up of a change in the user interface of the paper submission form to promote
awareness and sharing of research artifacts.

The panelists are positive about a minor modification to the submission form and
suggested that this idea could be tested in small conference venues by convincing their paper
chairs. As for the evolving paper idea, a panelist warned that a side effect of this feature
might discourage authors from submitting materials on the paper deadline. Lastly, although
placing reminders in the ethics review form is helpful, not all research activities go through
the ethics approval process. Besides, several countries may still need to implement an ethics
approval process.

The following steps in this direction are to refine the draft items for ethics submission
templates, solicit feedback from local ethics committees, and publish a guiding resource for
local ethics boards that wish to include open research practices in ethics review.

4.4 Infrastructure for evolving research and mega studies
Contributors in alphabetical order:
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We challenged the idea that research ends with publications. Instead, research should be
considered evolving scholarly records where scholarly discussions are added and refined over
time. Although this idea has been previously discussed [1], a technical infrastructure must be
developed. We discussed the requirements of such technical infrastructure and its necessity
to support the research lifecycle from pre-publication, such as preregistrations and internal
reviews. We discuss the pros and cons of repurposing version control systems (e.g., GitHub)
or tools like hypoths.is that overlay upon existing infrastructure. We also discussed the
emerging trend of mega studies where multiple labs collaborate on one study to enable
larger sample sizes. These studies lend themselves to transparent practices because much
information must be digitally shared among collaborators. However, there are also challenges
in tracing rationale in study design and data analyses across multiple actors.

The panelists pointed out challenges. Requiring the reviews to be public may discourage
potential reviewers, such as junior researchers, who risk their careers if their review disagrees
with senior paper authors. Signed public reviewing could face copyright issues, while
anonymous public reviewing might lead to spam.
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4.5 A Cheatsheet for a Transparent CHI Paper
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In recent years there has been an upsurge of high-quality and accessible learning materials for
Open Science practices (e.g., FORRT, FOSTER1). However, these have yet to see widespread
use in the CHI community. Therefore, we offer CHI authors a tailored cheat sheet as an
easy-to-use reference and guide to existing resources, allowing for convenient integration of
these practices into their current workflow. We identified typical research phases in HCI
studies and brainstormed relevant guides and resources for each stage. These pieces of
information are assembled on two-page cheat sheets that briefly explain the rationale for each
practice, provide concrete and concise action items, and point to resources to learn more
(Figure 4). The current version of the cheat sheet is available on OSF2. Further contributions
are welcome on the GitHub repository3.

Figure 4 Left: An early draft of the design of the cheat sheet. Right: The realized cheatsheet as
of December 2022.

1 https://forrt.org/, https://www.fosteropenscience.eu/
2 https://doi.org/10.17605/OSF.IO/YHWUQ
3 https://github.com/jvornhagen/ACheatSheetForTheTransparentCHIPaper/
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5 A Manifesto for Transparent Quantitative Research

We distilled lessons learned from the seminar into the following manifesto.

5.1 Definition
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“Transparency in research refers to honesty and clarity in all communications about the
research processes and outcomes – to the extent possible.”

We unpack each facet of this definition as follows:
Honesty and clarity are both necessary. A paper that is very clear but makes misleading

claims is not transparent. But a paper written by authors who are fully honest but
unskilled at clear communication is not fully transparent either.

Communications include communications between the researchers and their colleagues,
peers, institutions, the press, and the general public.

The research process includes all the known, crucial decisions made to achieve the reported
outcome.

The research outcomes include research materials (including data and software), findings,
and communication artifacts (research papers, videos). Being transparent about research
outcomes includes sharing material (e.g., code and data) but also being clear about the
limitations of the research.

To the extent possible. Transparent research practices operate within ethical, resource,
legal, and other constraints. These include ethics constraints (such as participant rights
and protections), legal constraints (such as data protection laws), and resource constraints
(such as access to data repositories). We also acknowledge that there is information that
is not accessible by the researchers; we can only ask them to communicate the information
they can reasonably know.
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5.2 Benefits
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Transparent research practices support the refinement, reuse, and verifiability of
published research as well as its extension through follow-on research and meta-analyses.
Transparent practices also support the use of research materials and findings for instruction
and can increase the visibility, perceived credibility, and citation of both individual research
findings and broader research areas. Transparent sharing of materials may also allow for more
error detection and correction, thus fostering a larger error-correction culture. Furthermore,
making research materials available to other researchers to use in their contexts will reduce
duplication of effort while also helping grow and diversify research communities.

5.3 Transparency needs tailoring
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Transparent research is not about rigid box-checking. Not all transparent research
practices apply to all kinds of research, and the specific implementation of
any given transparent practice depends on the subfield and research type. The
practices that are useful for, for example, in-depth interview studies differ from those that
are useful for iterative design & user testing studies or for large-scale online experimental
work. Therefore, we do not want to make specific, one-size-fits-all recommendations. Instead,
we suggest questions researchers can ask themselves and their field. Thinking about the
typical research process and outputs in your field, consider the following:
1. What elements would help build credibility for your work for reviewers and readers?
2. If another researcher wanted to build on your work, what elements would be helpful?

These questions could be used to build transparency guidelines for a particular subfield or
guide an individual researcher in implementing transparent practices in their own research.
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5.4 Transparency could be progressive
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Becoming transparent requires our research community to give up old research practices and
adopt new research methods. Transparency is a progressive process that starts with small
steps before it becomes a long-term, well-established practice. It can seem intimidating at
first, but here are some steps that can guide you on your journey to making your research
practice more transparent:

Become aware. Understanding and adopting transparent practices for the first time can
seem difficult and complicated. There is no one-size-fits-all mechanism for adopting trans-
parent practices. So it is essential not to set unrealistic expectations for ourselves when
starting. Let’s start with the easy step, which is documenting our research process – initially
for ourselves. An example would be maintaining a research journal. Understanding that
transparent practices depend on the context of our research is crucial – as a result, one
should self-regulate, reflect and learn from our process. The documentation should be refined
for others to comprehend.

Learn. Learn from others. Other practitioners have spent numerous hours learning about
transparent research practices and incorporating those into their research. Use this valuable
resource. Learn by example – look for good examples of papers related to your area of
research that showcase how this particular type of research can be made more transparent.
Also, you are not alone in this. Discuss with the people in your immediate environment, e.g.,
peers, supervisors, and other colleagues, how you can collaborate to make your work more
transparent and learn from each other.

Adopt. Transparency can be adopted step by step. Researchers should consider what parts
of the project can be shared and plan from the beginning of the project, from grant proposal
to ethics application. Transparency is not only about sharing but also about self-reflection
and learning from your progress. Documenting the project’s progress is an easy task and an
excellent start to integrating transparency into your research. It will help better understand
the research problem, detect mistakes early, and make it easier to review and evaluate
later. This documentation will eventually become a foundation for writing comprehensive
documentation for sharing with the community.

Educate. Your practice of transparent research methods can serve as an example for your
students and your community. A minimal step is to share your open research knowledge
with your peers and, if you are a teacher, to incorporate it into your teaching materials.

Influence. We can take advantage of our roles within our institution and research community
to advance transparent research practices. We can encourage and reward openness and
transparency as reviewers and program committee members. Criteria of transparency
may vary across subcommunities in our field, so we need to work with our peers in these
communities to understand better how transparency applies to their research methods.
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