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Abstract
This report documents the programme and the outcomes of Dagstuhl Seminar 22382 “Machine
Learning for Science: Bridging Data-Driven and Mechanistic Modelling”.

Today’s scientific challenges are characterised by complexity. Interconnected natural, tech-
nological, and human systems are influenced by forces acting across time- and spatial-scales,
resulting in complex interactions and emergent behaviours. Understanding these phenomena
– and leveraging scientific advances to deliver innovative solutions to improve society’s health,
wealth, and well-being – requires new ways of analysing complex systems.

The transformative potential of AI stems from its widespread applicability across disciplines,
and will only be achieved through integration across research domains. AI for science is a
rendezvous point. It brings together expertise from AI and application domains; combines
modelling knowledge with engineering know-how; and relies on collaboration across disciplines
and between humans and machines. Alongside technical advances, the next wave of progress in
the field will come from building a community of machine learning researchers, domain experts,
citizen scientists, and engineers working together to design and deploy effective AI tools.

This report summarises the discussions from the seminar and provides a roadmap to suggest
how different communities can collaborate to deliver a new wave of progress in AI and its
application for scientific discovery.
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1 Executive Summary
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Today’s scientific challenges are characterised by complexity. Interconnected natural, techno-
logical, and human systems are influenced by forces acting across time- and spatial-scales,
resulting in complex interactions and emergent behaviours. Understanding these phenomena
– and leveraging scientific advances to deliver innovative solutions to improve society’s health,
wealth, and well-being – requires new ways of analysing complex systems.

Artificial intelligence (AI) offers a set of tools to help make sense of this complexity. In an
environment where more data is available from more sources than ever before – and at scales
from the atomic to the astronomical – the analytical tools provided by recent advances in AI
could play an important role in unlocking a new wave of research and innovation. The term
AI today describes a collection of tools and methods, which replicate aspects of intelligence in
computer systems. Many recent advances in the field stem from progress in machine learning,
an approach to AI in which computer systems learn how to perform a task, based on data.

Signals of the potential for AI in science can already be seen in many domains. AI has
been deployed in climate science to investigate how Earth’s systems are responding to climate
change; in agricultural science to monitor animal health; in development studies, to support
communities to manage local resources more effectively; in astrophysics to understand the
properties of black holes, dark matter, and exoplanets; and in developmental biology to map
pathways of cellular development from genes to organs. These successes illustrate the wider
advances that AI could enable in science. In so doing, these applications also offer insights
into the science of AI, suggesting pathways to understand the nature of intelligence and the
learning strategies that can deliver intelligent behaviour in computer systems.

Further progress will require a new generation of AI models. AI for science calls for
modelling approaches that can: facilitate sophisticated simulations of natural, physical,
or social systems, enabling researchers to use data to interrogate the forces that shape
such systems; untangle complicated cause-effect relationships by combining the ability to
learn from data with structured knowledge of the world; and work adaptively with domain
experts, assisting them in the lab and connecting data-derived insights to pre-existing domain
knowledge. Creating these models will disrupt traditional divides between disciplines and
between data-driven and mechanistic modelling.

The roadmap presented here suggests how these different communities can collaborate to
deliver a new wave of progress in AI and its application for scientific discovery. By coalescing
around the shared challenges for AI in science, the research community can accelerate
technical progress, while deploying tools that tackle real-world challenges. By creating
user-friendly toolkits, and implementing best practices in software and data engineering,
researchers can support wider adoption of effective AI methods. By investing in people
working at the interface of AI and science – through skills-building, convening, and support
for interdisciplinary collaborations – research institutions can encourage talented researchers
to develop and adopt new AI for science methods. By contributing to a community of
research and practice, individual researchers and institutions can help share insights and
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expand the pool of researchers working at the interface of AI and science. Together, these
actions can drive a paradigm shift in science, enabling progress in AI and unlocking a new
wave of AI-enabled innovations.

The transformative potential of AI stems from its widespread applicability across dis-
ciplines, and will only be achieved through integration across research domains. AI for
science is a rendezvous point. It brings together expertise from AI and application domains;
combines modelling knowledge with engineering know-how; and relies on collaboration across
disciplines and between humans and machines. Alongside technical advances, the next wave
of progress in the field will come from building a community of machine learning researchers,
domain experts, citizen scientists, and engineers working together to design and deploy
effective AI tools.
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3 Introduction: bridging data driven and mechanistic modelling

The 21st century has been characterised as the century of complexity.1 Shifting social,
economic, environmental, and technological forces have created increasingly interconnected
communities, affected by “wicked” problems in domains such as health, climate, and economics
[1]. This complexity is reflected in today’s scientific agenda: whether in natural, physical,
medical, environmental, or social sciences, researchers are often interested in the dynamics of
complex systems and the phenomena that emerge from them.

Science has always proceeded through the collection of data. Through their experiments
and observations, researchers collect data about the world, use this data to develop models or
theories of how the world works, make predictions from those models, then test those predic-
tions, leading to further refinements to the model and the underpinning theory. Digitisation
of daily activities–in the lab, and elsewhere – means that researchers today have access to
more data from a greater range of sources than ever before. In parallel, more sophisticated
tools to collect data have opened new scales of scientific inquiry, from detailed patterns of
gene expression to light signals from other galaxies. Data proliferation is both a signal of the
complexity of today’s environment, and an opportunity to make sense of such complexity.

Advances in artificial intelligence (AI) have produced new analytical tools to make sense
of these data sources. The term “AI” today describes a collection of methods and approaches
to create computer systems that can perform tasks that would typically be associated with
“intelligent” behaviour in living systems.2 In this document, the term AI is used broadly, to
refer to algorithmic decision-making systems that combine data, mathematical models, and
compute power to make predictions about the world.

AI is already unlocking progress across research disciplines:
In Earth sciences, it is helping researchers investigate how different parts of the Earth’s
biosphere interact, and are affected by climate change.3
In climate science, it supports modelling efforts to reconstruct historical climate patterns,
enabling more accurate predictions of future climate variability.4
In agricultural science, it is helping farmers access faster diagnoses of animal diseases,
enabling more effective responses.5
In astrophysics, it is advancing understandings of the nature of dark matter and its role
in the Universe.6
In developmental biology, it is generating insights into the genetic processes that shape
how cells develop and differentiate into specialist roles.7
In environmental science, it allows researchers to analyse the features of natural environ-
ments more accurately, aiding land and resource managers.8
In neuroscience, it can help model how different neural circuits fire to deliver different
behaviours in animals.9

1 This quote is attributed to Stephen Hawking, in an interview with the San Jose Mercury News in
January 2000.

2 While not the only branch of the field, machine learning is the approach to AI that has delivered many
of the recent advances in AI. Machine learning is an approach to AI in which models process data,
learning from that data to identify patterns or make predictions. In this document, the terms machine
learning and AI are used interchangeably.

3 These examples are inspired by talks given at the Dagstuhl Seminar; these are provided later in the
document. This example is inspired by Markus Reichstein’s talk.

4 This example is inspired by Ieva Kazlauskaitė’s talk.
5 This example is inspired by Dina Machuve’s talk.
6 This example is inspired by Siddharth Mishra-Sharma’s talk.
7 This example is inspired by Maren Büttner’s talk.
8 This example is inspired by Christian Igel’s talk.
9 This example is inspired by Jakob Macke’s talk.
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The diversity of these successes illustrates the transformative potential of AI for research
across the natural, physical, social, medical, and computer sciences, arts, humanities, and
engineering. By enabling researchers to extract insights from a greater volume of data, drawn
from a wider variety of sources, and operating across multiple dimensions and scales, AI
could unlock new understandings of the world. In so doing, AI could influence the conduct of
science itself. AI-enabled analytical tools mean researchers can now generate sophisticated
simulations of natural or physical systems, creating “digital siblings” of real-world systems
that can be used for experimentation and analysis. Machine learning models that combine
the ability to learn adaptively from data with the ability to make structured predictions
reflecting the laws of nature can help researchers untangle the web of cause-effect relationships
that drive the dynamics of complex systems. AI-assisted laboratory processes could increase
the efficiency of experiments, and support researchers to develop and test new hypotheses.

Achieving this potential will require advances in the science of AI, the design of AI
systems that serve scientific goals, and the engineering of such systems to operate safely
and effectively in practice. These advances in turn rely on interdisciplinary collaborations
that connect domain expertise to the development of machine learning models, and feed the
insights generated by such models back into the domain of study. As interest in the potential
of AI to drive a new wave of research grows, the challenge for the field is to identify technical
and operational strategies to realise this potential. In the process, new questions arise about
the future of “AI for science”; whether this will emerge as a distinct field, characterised by
its own research agenda and priorities, or whether its benefits can be best achieved through
separate, domain-focused sub-fields, which seek to integrate AI into business-as-usual across
research disciplines.

In response, this document proposes a roadmap for “AI for science”. Synthesising insights
from recent attempts to deploy AI for scientific discovery, it proposes a research agenda
that can help develop more powerful AI tools and the areas for action that can provide an
enabling environment for their deployment. It starts by exploring core research themes –
in simulation, causality, and encoding domain knowledge – then draws from these ideas to
propose a research agenda and action plan to support further progress. The ideas presented
are inspired by discussions at “Machine Learning for Science: Bridging Mechanistic and Data
Driven Modelling Approaches”, a Dagstuhl Seminar convened in September 2022. Abstracts
from the talks given at the seminar are shown throughout this document. These talks and
the discussions they provoked should be credited for the ideas that have shaped it. Thank
you to the speakers and participants for their thoughtful contributions to both the seminar
and the development of this work.

References
1 Horst W. J. Rittel and Melvin M. Webber. Dilemmas in a general theory of planning.

Policy sciences, 4(2):155–169, 1973. Reprinted in N. Cross, ed. Developments in design
methodology, pp. 135–44. Chichester: J. Wiley & Sons, 1984.

4 Snapshots of AI in science

Across domains, AI is being deployed to advance the frontiers of science. The snapshots
below introduce some current areas of research in AI for science, and explore the issues raised
by these research projects. Across these snapshots, some common themes emerge:

How can researchers most effectively combine observations, data-driven models, and
physical models to enhance understanding of complex systems? To answer this question,
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methods are needed to integrate different types of model, operating across different
levels of granularity, while managing the impact of the uncertainties that emerge when a
machine learning model is integrated in a wider system. New approaches to simulation
and emulation can support progress in tackling these challenges, alongside new strategies
for examining the robustness or performance of machine learning models.
How do the outputs from an AI system align with what researchers already know about the
world, and how can such systems help uncover causal relationships in data? Advances in
causal machine learning are needed to connect the laws and principles already established
in many areas of research with data-driven methods.
How can AI be integrated into the scientific process safely and robustly? Effective
integration will rely on the ability to encode domain knowledge in AI systems, the design
of interfaces that facilitate interaction between humans and AI, and the development of
mechanisms for sharing knowledge and know-how about how to use AI in practice.

4.1 In Earth sciences
The Earth is a complex system,10 comprised of terrestrial, marine, and atmospheric
biospheres that interact with each other and are shaped by biological, chemical, and physical
processes that exchange energy across scales from the molecular to the planetary. It is also a
unique system: researchers have yet to discover other planets that replicate its dynamics.
Studies of the Earth system therefore rely on observations and physical models, which
describe the dynamics of energy exchange from first principles and use those principles to
build models of the Earth’s sub-systems. As climate change perturbs this complex system,
it is increasingly important to have accurate models that can be used to analyse how the
Earth will respond to increasing carbon dioxide levels. The challenge for Earth system
science is to build more complex models that represent the web of relationships between
biospheres under changing conditions, without generating overwhelming uncertainties and
while generating actionable insights that can be used by individuals, organisations, and
policymakers to understand the localised impact of changing environmental conditions [1].

For example, how much carbon dioxide is absorbed by different biospheres can be affected
by diverse factors including volume and type of vegetation cover, water and drought stress
in different areas, and local temperature, which have implications for how carbon dioxide
contributes to climate change. Researchers have access to data that describes local uptake of
carbon dioxide by some ecosystems, such as tropical rainforest, European beech forest, or
Mediterranean savanna, for example, but lack sufficient observational coverage to scale from
these local observations to accurate global representations of carbon exchange. One response
to this challenge is to leverage data-driven models to knit together the different mechanistic
models that describe (for example) carbon, water, and energy cycles in different biospheres.

By starting with observational data and combining this with physics-informed modelling,
researchers can leverage machine learning to create simulations that can generate new under-
standings of how complex systems function. Taking this approach, the FLUXNET project
combines observed data on carbon emissions from different sources to generate a data-driven
picture of global carbon dynamics. By combining data across scales to establish a statistical
model of global carbon dynamics, this project can generate simulations of how the Earth

10 This example is inspired by Markus Reichstein’s talk, the abstract for which is provided later in this
document.
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breathes [2]. The ability to integrate across scales and combine models of different Earth sub-
systems can also contribute to wider efforts to build a “digital twin” of the Earth, with the aim
of better understanding the implications of climate change across biospheres and communities.

As the Earth’s climate changes,11 researchers anticipate that local environmental condi-
tions will change and extreme weather events will increase. Understanding the impact of
these changes is important for those seeking to develop appropriate responses, for example
developing environmental management plans or planning human activities.

How a landscape responds to changing environmental conditions will vary depending on
the local climate, characteristics of the terrain (vegetation type, for example), and human
activities in the area. Under changing climate conditions, as extrapolation beyond known
limits becomes necessary, the assumptions or abstractions that form the basis of a model
can be rendered invalid. Relying solely on either mechanistic descriptions of the system
– the impact of temperature on plant growth, for example12 – or statistical models could
result in inaccuracies. Machine learning can help respond to this challenge, through the
creation of hybrid models that combine an understanding of the physical laws with model
parameters learned from data. Researchers often already have access to known physical
parameters for a system (for example, the equations that govern how water evaporates to air).
These parameters can be fed into a machine learning model that will learn other patterns.
Known equations specify the chemical and physical processes; machine learning can then
help elucidate the other biological forces at play. Integrating this physical structure in the
model helps make it both more interpretable to the domain scientists and more reliable in
its predictions. The resulting model can accurately forecast the impact of climate change on
the features of local landscapes, operating within the bounds set by the laws of physics [4].

Ice loss13 has been the greatest contributor to sea-level rise in recent decades [5]. Large
volumes of fresh water are stored as ice: NASA estimates that if all the world’s glaciers
and ice sheets melted, sea levels globally would rise by over 60 metres, flooding all coastal
cities [6]. Researchers can estimate the contribution that melting ice makes to sea level rise
through mechanistic models that describe the underlying physical processes (that turn ice to
water) and through observational data about the velocity of ice sheet movement. Machine
learning could offer a toolkit to make these models more accurate, connecting ice sheet
models to ocean and atmospheric models, and integrating different data types in hybrid
mechanistic-data models.

Efforts to build such models, however, illustrate the complexity of designing tools to
meet domain needs. Projects in this space have considered emulating the ice sheet system
– or its individual components – to see if models could be run faster; though successful
methodologically, it has not been clear that such efforts address a clear research need. Another
approach is to use machine learning to streamline simulations, for instance by identifying the
most effective level of granularity for different models (is a spatial breakdown of 5km or 10km
more interesting?). An important lesson from such collaborations is the specificity of domain
needs: machine learning is a tool for research, but just because researchers have a hammer,

11 This example is inspired by Markus Reichstein’s talk, the abstract for which is provided later in this
document.

12 Under conditions of extreme temperature, patterns of stomatal opening and closing in plants changes.
See, for example [3].

13 This example is inspired by Ieva Kazlauskaitė’s talk, the abstract for which is provided later in this
document.
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does not mean every research problem is a nail. Effectively deploying machine learning for
research requires both suitable AI toolkits and an understanding of which toolkits are best
deployed for which challenges.

4.2 In environmental and agricultural sciences
Poultry farming14 is a vital source of income and food for many communities in Tanzania.
4.6 million households in the country raise approximately 36 million chickens, but despite
the importance of this activity, poultry farming suffers from relatively low productivity due
to the prevalence of disease. Efforts to tackle poultry diseases such as Salmonella, Newcastle
disease, and coccidiosis are held back by the accessibility of diagnostic processes and lack of
data. Diagnosis currently requires lab analysis of droppings, which can take 3-4 days. Once
disease is confirmed, farmers often lose their entire farm’s flock.

Farm-level tests and diagnostics could increase the effectiveness of disease surveillance
and treatment, giving farmers rapid access to information about the diseases affecting their
flock and action plans about how to manage outbreaks. With mobile phones ubiquitous
across the country – there are almost 49 million mobile phone subscriptions in Tanzania –
there are opportunities for new uses of local data to detect disease outbreaks.

By collecting images of droppings from farms, researchers have been creating a dataset
to train a machine learning system that can identify the symptoms of these diseases. Fecal
images are taken on farms, annotated with diagnostic information from agricultural disease
experts and the results of lab tests, then used to train an image recognition system to
automate the diagnosis process [7]. System robustness and accuracy is vital, given the
significant implications of a positive diagnosis, and careful design is necessary to incentivise
farmers to make use of the app.

Collaboration with experts from different domains is central to developing this system.
Input from farmers is needed to collect data and test the system in practice; from veterinary
pathologists to help annotate the data and ensure the system’s accuracy; and from technolo-
gists to develop an AI system that is effective in deployment as an app on mobile phones.
These collaborations also open opportunities for new forms of citizen science, as farmers and
local communities are engaged in efforts to develop and maintain an open toolkit for disease
diagnosis, providing a gateway for communities to take ownership of machine learning as a
tool to serve their needs.

Trees and forests15 play a crucial role in maintaining healthy ecosystems. Despite this,
an estimated ten million hectares of forest are lost globally each year due to reforestation,
with only around half of this balanced by tree-planting efforts [8]. Africa experienced an
annual rate of forest loss of approximately 3.9 million hectares per year from 2010-2020. This
loss has implications for biodiversity and people, with trees a vital contributor to ecosystem
services such as carbon storage, food provision, and shelter. In this shifting landscape,
understanding the number and distribution of trees is important for the development of
forestry management plans and for understanding the carbon storage implications of changes
to land use.

14 This example is inspired by Dina Machuve’s talk, the abstract for which is provided later in this
document.

15 This example is inspired by Christian Igel’s talk, the abstract for which is provided later in this document.
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To estimate the number and biomass of trees in the West African Sahara and Sahel,
researchers have used satellite imagery of 90,000 trees from 400 sampling sites to create a
labelled dataset for use in machine learning. Using an image segmentation tool to identify the
location of trees, an automated system was able to count the number of trees, with domain
experts guiding the system to distinguish trees from surrounding vegetation. This tree count
can then be used to estimate the biomass of trees in the area, and predict the amount of
carbon they store; the prediction is generated using allometric calculations, which translate
the properties of the tree to its carbon storage potential. In this approach, machine learning
measures the properties of the ecosystem from satellite images, then these properties are
used to feed mechanistic models that describe the ecosystem’s physical functions [9]. This
opens the possibility of new tools to estimate tree cover, leveraging these insights for more
effective environmental management. However, in the process, care is needed to manage the
type and nature of the uncertainties created by different modelling approaches. Different
allometric models, for example, can be more or less suited to different types of tree cover [10],
meaning that the method for estimating biomass from satellite imagery can be subject to
biases when applied across a large area. A small error in the calculation of the biomass from
one tree can have a cumulatively large effect when that method is scaled to country-level.
The type and nature of such uncertainties need to be considered when a machine learning
model is used within a wider system.

Vector borne diseases16 account for more than 17% of diseases in people and over
700,000 deaths annually [11]. Changes to the climate and patterns of land use, amongst
other factors, are bringing human populations into contact with new vectors of disease. In
Africa, for example, populations of mosquitoes carrying malaria that might previously have
been found mainly in rural areas are spreading into cities.

Tools to characterise building features from satellite imagery have already been developed
and made available for use.17 Leveraging these to analyse multi-scale data – from household
to city-level–researchers are investigating how the built environment influences people’s risk
of contracting mosquito-borne disease. For example, it has been found that the prevalence of
mosquitos in an area is related to the type of roofing used in construction; metal roofing tends
to be associated with lower mosquito prevalence, potentially due to the high temperatures
they attract during the day [13]. These insights can be deployed by policymakers in the
development of appropriate policy responses [14].

Decisions made on the basis of insights generated by machine learning models will be
influenced by the assumptions made in those models. In the context of housing, for example,
the decision about which type of housing to identify as “at risk” or which building materials
to flag as “problematic” may have significant consequences for individuals or communities.
When those decisions are assimilated within a model or analysis before a downstream “policy
decision”, the implications for those communities of different courses of action may be
obscured, creating a risk of marginalising or disadvantaging individuals or groups. The
assumptions are built into the model, and how visible those assumptions are made to different
user groups, can have significant social and scientific consequences.

16 This example is inspired by Christian Igel’s talk, the abstract for which is provided later in this document.
17 For example: [12].
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4.3 In physical sciences
Understanding the nature of dark matter18 is one of the biggest unsolved challenges
of particle physics today. The matter that researchers can measure using cosmological
observations makes up about 5% of the Universe [15]. While not directly observable, evidence
for the existence of dark matter can be found in a variety of phenomena not otherwise
accounted for by currently known laws of physics: stars rotate around galaxies faster than
might be expected; the pattern of fluctuations in primordial microwave observations indicate
that there were sources of gravitation in the early Universe beyond ordinary matter; light
bends around galaxy clusters due to gravitational effects from dark matter.

Despite knowing that dark matter exists and that it plays an important role in how
the Universe formed, its particle composition or properties remains unclear. Investigating
these properties is the focus of large-scale experimental studies, for example in particle
colliders.19 A variety of data could contain information about the properties of dark matter,
from studies of cosmic rays, cosmic microwave radiation, properties of stars, gravitational
lensing studies, and more. These datasets are complex: they are typically high-dimensional,
represent complex relationships between the micro-physics and macro-phenomenon in a
system, and may contain artefacts or noise from the instruments used to collect them. To
make use of this data, researchers need to account for this complexity and tether their models
to assumptions about physical processes.

The challenge for machine learning in astro-particle physics research is to extract insights
about the particle composition of dark matter from the macroscopic patterns that can be
observed in the Universe. For example, gravitational lensing is a phenomenon in which the
pathway of light traveling through the Universe is deflected due to the influence of gravity
from an intervening mass, distorting how this background light is observed [17]. Gravitational
lensing effects arising from dark matter clumps (“substructure”) could hold information about
the structure of dark matter at a microscopic level. To infer the presence of substructure
of these lensing systems, researchers need models that describe the effect of dark matter,
ordinary matter, and the wider environment while simultaneously modelling the form of the
background light, which can be a morphologically-complex galaxy. By letting a machine
learning model, like a neural network, describe the complex background light source, it is
possible to make predictions about how the light might appear after being lensed with and
also without the impact of dark matter clumps. By performing many simulations considering
various possibilities, researchers can compare these with observations from telescopes and
understand which dark matter theories are compatible with the data.

Rapid progress in this field is generating a variety of models and approaches. In its
next wave of development, further research is needed to test how trustworthy these methods
are, by assessing their performance in generating physically plausible results and robust
constraints on the properties of dark matter and other forms of new physics [18].

How particles move20 across their environment is a shared area of interest for many
domains. In chemistry, for example, researchers are often interested in how molecules diffuse,
and where they end up distributed, based on the physical forces that shape their movement

18 This example is inspired by Siddharth Mishra Sharma’s talk, as well as insights from Gilles Louppe’s
talk, the abstracts for which are provided later in this document.

19 For example: [16]
20 This example is inspired by Francisco Vargas’s talk, the abstract for which is provided later in this

document.
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over time. The analogy of particle movement can also be applied as an abstraction of larger
scale physical processes, such as in agent-based models for crowd simulation.21 In these
systems the initial system state is represented in an initial probability distribution, the
scientific objective can then also be represented as a target distribution. The dynamics
underpinning this diffusion are formalised mathematically in the Schrödinger bridge problem.
This long-standing problem is concerned with finding the most likely paths along which
particles move from their starting distribution to their distribution at a defined point in
time, based on experimentally-observed start and end positions. In general, finding analytic
solutions to the Schrödinger bridge problem is intractable, but machine learning tools are
providing new approaches for finding approximate numerical solutions that can be deployed
across domains [21].

4.4 In biological sciences
The development and differentiation of cells into tissues and organs22 is a complic-
ated process, shaped by hormonal and genetic influences on cell growth [22]. Advances in
genomics have allowed researchers to characterise the genetic material of different organisms;
more recent progress in single-cell genomics extends this ability to the single-cell level,
unlocking detailed analysis of how genetic activity determines cellular function.

Single-cell RNA studies examine how ribonucleic acids (RNA) shape cellular properties
and development pathways. The RNA profiles created by genetic sequencing techniques
allow researchers to identify which genes are active in a cell. The question for the field today
is how to move from these single-cell analyses to an atlas of cell development that shows how
cells specialise and form tissues or organs.

By combining statistical and machine learning techniques, researchers can reconstruct the
gene dynamics – which genes are activated at which time – that influence cell development
[23]. Cells in the small intestine, for example, undergo a pattern of differentiation that takes
them from their base state to highly specialised units, able to variously secrete mucus, absorb
nutrients, or respond to hormones. By studying what genes are expressed in a cell at an early
stage, researchers can predict how the cell will specialise and identify which genetic changes
are associated with that specialisation, opening opportunities to treat intestinal diseases [24].

Building these models relies on effective data management. Lab processes can inject arte-
facts into datasets, for example batch effects arising from how cells were grown or harvested
for study, which need to be removed from data before analysis. Effective data correction
maintains biologically-relevant information, while removing noise from the data. A variety of
tools exist for this correction, including regression models, dimensionality reduction, graph
methods, and deep learning. For domain researchers to be able to identify the tools that
are useful for them, benchmarking studies are vital in identifying the most effective data
integration method for their purpose [25]. However, there remain open questions about how
best to benchmark the performance of a system when there are complex pipelines of analysis
involved. Understanding the end-to-end nature of an analytical pipeline can be difficult, and
new approaches to assessing performance may be needed.

21 Examples of agent-based models for crowd simulation include: [19, 20].
22 This example is inspired by Maren Büttner’s talk, the abstract for which is provided later in this

document.
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To understand how the brain works,23 neuroscientists develop mathematical mod-
els that describe the activity of individual neurons, and how these connect across brain
networks. Models on the mechanistic level take the form of differential equations. These
models are based on experimental data, from experiments that examine how neurons respond
to different signals or perturbations. To build a computational model from this data, it is first
necessary to find which factors influence how a neuron acts, creating a set of parameters that
determine how the model works. This process of finding parameters is often labour-intensive,
relying on trial-and-error, which limits researchers’ ability to scale models across complex
neural networks. Machine learning can help streamline that model definition process, by
predicting which models are more likely to be compatible with data. By automatically identi-
fying model parameters, researchers can rapidly develop simulations of complex structures,
such as brains or nervous systems in different animals [26].
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5 Talks given during this seminar session

5.1 Machine-learning-model-data-integration for a better understanding
of the Earth System

Markus Reichstein (MPI für Biogeochemistry – Jena, DE)

License Creative Commons BY 4.0 International license
© Markus Reichstein

The Earth is a complex dynamic networked system. Machine learning, i.e. derivation of
computational models from data, has already made important contributions to predict
and understand components of the Earth system, specifically in climate, remote sensing
and environmental sciences. For instance, classifications of land cover types, prediction
of land-atmosphere and ocean-atmosphere exchange, or detection of extreme events have
greatly benefited from these approaches. Such data-driven information has already changed
how Earth system models are evaluated and further developed. However, many studies
have not yet sufficiently addressed and exploited dynamic aspects of systems, such as
memory effects for prediction and effects of spatial context, e.g. for classification and change
detection. In particular new developments in deep learning offer great potential to overcome
these limitations. Yet, a key challenge and opportunity is to integrate (physical-biological)
system modelling approaches with machine learning into hybrid modelling approaches, which
combines physical consistency and machine learning versatility. A couple of examples are
given with focus on the terrestrial biosphere, where the combination of system-based and
machine-learning-based modelling helps our understanding of aspects of the Earth system.

5.2 Poultry Diseases Diagnostics Models using Deep Learning
Dina Machuve (DevData Analytics – Arusha, TZ)

License Creative Commons BY 4.0 International license
© Dina Machuve

Coccidiosis, Salmonella, and Newcastle are the common poultry diseases that curtail poultry
production if they are not detected early. In Tanzania, these diseases are not detected early
due to limited access to agricultural support services by poultry farmers. Deep learning
techniques have the potential for early diagnosis of these poultry diseases. In this study, a deep
Convolutional Neural Network (CNN) model was developed to diagnose poultry diseases by
classifying healthy and unhealthy fecal images. Unhealthy fecal images may be symptomatic
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of Coccidiosis, Salmonella, and Newcastle diseases. We collected 1,255 laboratory-labeled
fecal images and fecal samples used in Polymerase Chain Reaction diagnostics to annotate
the laboratory-labeled fecal images. We took 6,812 poultry fecal photos using an Open Data
Kit. Agricultural support experts annotated the farm-labeled fecal images. Then we used a
baseline CNN model, VGG16, InceptionV3, MobileNetV2, and Xception models. We trained
models using farm and laboratory-labeled fecal images and then fine-tuned them. The test
set used farm-labeled images. The test accuracies results without fine-tuning were 83.06% for
the baseline CNN, 85.85% for VGG16, 94.79% for InceptionV3, 87.46% for MobileNetV2, and
88.27% for Xception. Finetuning while freezing the batch normalization layer improved model
accuracies, resulting in 95.01% for VGG16, 95.45% for InceptionV3, 98.02% for MobileNetV2,
and 98.24% for Xception, with F1 scores for all classifiers above 75% in all four classes.
Given the lighter weight of the trained MobileNetV2 and its better ability to generalize, we
recommend deploying this model for the early detection of poultry diseases at the farm level.
There are open questions about the deployment of the model at the farm level and potential
areas for further research.

5.3 Simulation-based approaches to astrophysics dark matter searches
Siddharth Mishra-Sharma (MIT – Cambridge, US)

License Creative Commons BY 4.0 International license
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We are at the dawn of a data-rich era in astrophysics and cosmology, with the capacity to
extract useful scientific insights often limited by our ability to efficiently model complex
processes that give rise to the data rather than the volume and nature of observations itself.
I will describe recent progress in applying mechanistic forward modeling techniques to a
range of astrophysical observations with the goal of searching for signatures of new physics,
in particular the nature of dark matter. These leverage developments in machine learning-
aided inference, e.g. using simulation-based inference as well as differentiable probabilistic
programming, while encoding domain knowledge, in order to maximize the scientific output
of current as well as future experiments.

5.4 Single-cell transcriptomics
Maren Büttner (Helmholtz Zentrum München, DE & Universität Bonn, DE)

License Creative Commons BY 4.0 International license
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Cells are the fundamental units of life. Understanding cellular processes is a basis for
improving human health, disease diagnosis and monitoring. The advent of single-cell
transcriptomics (scRNA-seq) allows characterizing the gene expression patterns of entire
organs and organisms at single cell resolution. The human genome encodes more than 30.000
genes, and high-throughput scRNA-seq methods create samples with tens of thousands of
cell measurements. The analysis of such data requires a variety of methods from the machine
learning field, e.g. dimensionality reduction techniques from PCA to variational autoencoders,
graph-based clustering, classification of cell types, trajectory inference and causal inference
of gene regulation to understand cell fate decision making. To date, scRNA-seq is a widely
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applied research technique, which has the potential for standard application in the clinics.
My presentation focusses on current approaches for large-scale scRNA-seq data, current open
questions, and implications for human health.

5.5 Estimating ecosystem properties: Combining machine learning and
mechanistic models

Christian Igel (University of Copenhagen, DK)
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Joint work of Christian Igel, Martin Brandt, Rasmus Fensholt, Compton J. Tucker, Ankit Kariryaa, Kjeld
Rasmussen, Christin Abel, Jennifer Small, Jerome Chave, Laura Vang Rasmussen, Pierre Hiernaux,
Abdoul Aziz Diouf, Laurent Kergoat, Ole Mertz, Fabian Gieseke, Sizhuo Li, Katherine Melo
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Progress in remote sensing technology and machine learning algorithms enables scaling up
the monitoring of ecosystems. This leads to new knowledge about their status and dynamics,
which will be helpful in land degradation assessment (e.g., deforestation), in mitigating
poverty (e.g., food security, agroforestry, wood products), and in managing climate change
(e.g., carbon sequestration).

We apply deep learning for the mapping of individual trees and forests. Tree crowns
are segmented in satellite imagery using fully convolutional neural networks. This provides
detailed measurements of the canopy area and of the distribution of trees within and outside
forests. Allometric equations are applied to estimate the biomasses (and thereby the stored
carbon) of the individual trees. We use iterative gradient-based optimization of the allometric
models and suggest techniques such as jackknife+ for quantifying the uncertainty of the
model predictions. Tree biomass can also be directly inferred from LiDAR (laser imaging,
detection, and ranging) measurements using 3D point cloud neural networks. This leads to
highly accurate results without requiring a digital elevation model.

In a new project, we consider risk assessment of vector-borne diseases based on deep
learning and remote sensing. Malaria risk is related to the housing conditions, for example,
the type of roofing material, which can be determined from satellite images.

5.6 Partial differential equations and Variational Bayes
Ieva Kazlauskaite (University of Cambridge, GB)
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Inverse problems involving partial differential equations (PDEs) are widely used in science
and engineering. Although such problems are generally ill-posed, different regularisation
approaches have been developed to ameliorate this problem. Among them is the Bayesian
formulation, where a prior probability measure is placed on the quantity of interest. The
resulting posterior probability measure is usually analytically intractable. The Markov
Chain Monte Carlo (MCMC) method has been the go-to method for sampling from those
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posterior measures. MCMC is computationally infeasible for large-scale problems that arise
in engineering practice. Lately, Variational Bayes (VB) has been recognised as a more
computationally tractable method for Bayesian inference, approximating a Bayesian posterior
distribution with a simpler trial distribution by solving an optimisation problem. The talk
covered some recent experiences of applying Bayesian inference, generative models and
probabilistic programming languages in the context of learning material properties in civil
engineering and in ice sheet and ice core modelling. The main shortcomings of PPLs and
differentiable problems were highlighted.

5.7 The Schrödinger bridge problem
Francisco Vargas (University of Cambridge, GB)

License Creative Commons BY 4.0 International license
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Recent works in diffusion-based models have been achieving competitive results across
generative modelling and inference, in this presentation we propose to explore a unifying
framework based on Schrodinger bridges to explore/explain diffusion-based methodology.
The Schrödinger bridge problem (SBP) finds the most likely stochastic evolution between
two probability distributions given a prior (reference) stochastic evolution. Recently SBP
based methodology has made its way into generative modelling, sampling, and inference. In
this talk we propose the exploration of a unifying framework for the aforementioned works
based on the renowned IPF/Sinkhorn algorithm. The motivation behind this is to cast a
unifying lens via the Schrodinger perspective relating inference, sampling and transport, in
a way that we can leverage many of the useful techniques and heuristics from each field to
benefit each other.

6 Building effective simulations

6.1 Moving upstream
Science proceeds through hypothesis, observation and analysis. For hundreds of years,
researchers have advanced the frontiers of knowledge by collecting data, compressing those
observations into a model, then computing that model to create representations of how the
world works, generating new insights about natural and physical phenomena and theories
about the systems from which those phenomena emerge in the process [1]. These mathematical
models rely on numerical methods: algorithms that help solve mathematical problems where
no analytical solution is available. Today, data collection and the basic computational
tasks involved in its analysis – linear algebra, optimisation, simulation, and so on – remain
consistent features of the scientific process. Progress in machine learning, however, has
changed the modelling landscape.

“AI for science” offers a data-centric approach to modelling and simulating the world.
Operating alongside the traditional mathematical models that are central to many disciplines,
machine learning provides data-centric analytical methods that can be integrated across
the scientific pipeline, for example enabling sophisticated simulations of real-world systems.
These simulations can be used to inform model development, test hypotheses and shape
areas of research focus, or unlock insights from complex data.
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6.2 Nurturing a diversity of approaches
Simulations are a well-established tool for scientific discovery. Their fundamental task is to
allow data sampling from a model where the differences between simulation and the real
world are reduced as far as feasible, to enable experimentation or testing of the impact of
different perturbations, while allowing some measure of simplification of the system. Effective
simulators allow researchers to move from theory to an understanding of what data should
look like.

Domains such as particle physics, protein folding, climate science, and others, have
developed complex simulations that use known theories and parameters of interest to make
predictions about the system of study. AI for science can be brought in to speed up some of
these through surrogate models. Machine learning can complement “traditional” approaches
to scientific simulation, adding components that model the most uncertain elements of
a system to strongly mechanistic models that might otherwise be too restrictive in their
assumptions.

Much early excitement surrounding AI for science was rooted in the reverse process,
asking: instead of starting with theory, could researchers instead start with the large amounts
of data available in many areas of research and, from that data, build an understanding
of what an underpinning theory might be? Given a set of observations, is it possible to
find parameters for a model that result in simulations that reflect the measured data? Such
simulation-based inference (SBI) offers the opportunity to generate novel insights across
scientific disciplines.

To enable such analysis, machine learning methods are needed that can extract insights
from high-dimensional, multi-modal data, in ways that are labour- and compute-efficient
[2]. The field of probabilistic numerics offers a way to flexibly combine information from
mechanistic models with insights from data, solving numerical problems through statistical
approaches [3]. Operationalising these methods to create effective data-driven simulations
requires balancing different model characteristics. The model’s parameters must be specified
to a sufficient level of granularity to describe the real-world system, while operating at a
level of abstraction that is amenable to analysis and computation; almost all models are
“wrong” or falsifiable because of this, but some level of abstraction is necessary to make them
useful for analysis. The simulation must also be designed to be robust, and able to generate
inferences that align with real-world observations.

6.3 Truth, truthiness, and interfacing with the real world
The excitement underpinning AI for science stems from the aspiration to unearth new
understandings of the world, leveraging data to advance the frontiers of knowledge. While
subject to their own limitations, the scientific community has developed checks and balances
to scrutinise new knowledge and maintain the rigour of scientific inquiry. Recent years have
seen a variety of challenges or benchmarks emerge in the machine learning community that
have come to represent the field’s expected standards of performance from algorithms on
defined tasks. However, these standards do not necessarily align with the expectations of
domain researchers [4]. As data-centric simulations are integrated into scientific process,
machine learning researchers must consider their responsibility in maintaining the integrity
of the domains into which they are deployed, raising the question: what guardrails are
needed to ensure researchers can be confident in the outputs from machine learning-enabled
simulations?
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A variety of diagnostic tests can help. Core to many of these diagnostics is analysis
of whether a model is computationally faithful. In short: the inferences generated by a
simulation should reflect those from observations [4]. One approach to checking this alignment
is to consider the consistency of distributions from inferred and observed datasets. If the
model is a good fit, the data it generates should broadly match the data observed through
experimentation.

Underpinning these diagnostics is a fundamental question about how to manage uncer-
tainty, in a context where different failure modes have different implications. Put simply:
when a model fails, is it worse to be over-confident in its results, or over-conservative? In the
scientific context, over-confidence seems more likely to result in negative outcomes, whether
through giving misleading interpretations or results or driving lines of enquiry in unproductive
directions. Machine learning methods can be designed for conservatism, reducing the risk of
false positives.

Implementing a schedule of model building, computing, critiquing, and repeating can refine
this process. One lesson from experiences of building machine learning-enabled simulations
is that there can be a disconnect between how machine learning approaches inference and
model building, and how the same task is approached by domain scientists. From a domain
perspective, model building seems naturally an iterative process: collect data, fit a model,
find errors or areas for improvement, update the model, and so on. This iterative process is
guided by expert intuition and knowledge; deep understanding of the system under study and
how it responds to perturbation. Machine learning research has developed practices for prior
elicitation – using domain knowledge to shape the structure of probabilistic models – but
the nuances of this domain intuition are often not easily captured a priori, instead emerging
when models fail as an informal sense of what “feels” like it should be true. This qualitative
input is vital in building effective simulations. It requires close collaboration, which in turn
requires an investment of time and energy from domain communities, generated through
mutual trust, incentives, and long-term relationship-building.

6.4 Connecting simulation to practice
Computational tools are central to the effective deployment of machine learning-enabled
simulation. The function and form of such tools must align with the requirements of the
community deploying them. Designing computational systems to match user needs – and work
effectively in practice – requires both effective software engineering and close collaboration
with domain groups that can articulate the requirements and expectations of those working
in the field. To remain effective over the longer-term, such systems must leverage effective
software engineering practices, including embedding version control and building interfaces
that work with other models and systems. Those practices, and the software systems that
emerge from them, must be designed for the needs of those using the system, drawing from
existing best practices in software engineering, but adapting those practices to reflect the
needs of the domain for deployment.

Constructing computational tools requires a mix of technical insight and craft skill – of
knowledge and know-how. Tools produced by the machine learning community differ in their
usefulness on different problems: some work well for certain tasks, but not for others. Without
access to such craft skills, those outside the “AI for science” community can find it challenging
to determine which tools to use for which purposes, reducing the generalisability of existing
methods and approaches. This challenge becomes particularly visible when practitioners
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are tightly integrated into the analysis pipeline, such as in applications in developmental
biology, in the developing world, and in data-centric engineering. Widening access to the
field will require user guides that characterise which simulations are effective for which tasks
or purposes, supported by case studies or user stories that help demystify how machine
learning can work in practice.

6.5 Directions
Machine learning typically requires an explicit representation of a likelihood, but these are
often difficult to compute. Further advances in SBI are necessary to allow researchers to
identify model parameters from data.

Techniques such as likelihood-free inference can enhance existing Bayesian methods for
inferring posterior estimations [5].
Building surrogate models,24 using Bayesian approaches for simulation planning to
optimise information gain,25 or deploying emulations [8] can also enhance the efficiency
of simulations.
Probabilistic numerics offers a route to develop statistically-optimal algorithms that
are amenable to comprehensive uncertainty quantification, leveraging Gaussian Process-
based Ordinary Differential Equation (ODE) solvers to pursue simulation as an inference
problem [9].

Operationalising these approaches will also require new toolkits to support implementation
of probabilistic numerical methods.26

Computational faithfulness – alignment of inferred parameters with scientific knowledge –
can be achieved through:

Diagnostic checks in the self-consistency of the Bayesian joint distribution, which measure
the scientific quality of the regions computed by Bayesian SBI methods [4, 11]. Checking
for self-consistency gives a sense whether the model is “good enough” (ie whether the
inference engine gives a good sense of the posterior).
Enforcing conservative neural ratio estimation through binary classifier specification,
producing more conservative posterior approximations [12].
Hybrid modelling, which combines machine learning components learned from data with
the mechanistic components specified by existing domain knowledge [13].
Further study of the impact of model misspecification could also help generate new
robustness diagnostic checks [14].

“Digital twins” have recently received much attention as a tool to exploit sophisticated
simulations. In Earth sciences, for example, ambitious efforts to develop a digital twin of
the Earth propose to allow more accurate forecasting, visualisation, or scenario-testing of
the impact of climate change and efforts to mitigate it.27 The challenge is to integrate
different models or components of a system – for example, connecting atmospheric models,
with land models, with models of human behaviour – in a way that represents the complete

24 See above, and [6].
25 See, for example, [7].
26 See, for example, the previous Dagstuhl meeting on this topic: https://www.probabilistic-numerics.

org/meetings/2021_Dagstuhl/ and [10].
27 For example: [15].
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Earth system. That requires consideration of the different levels of granularity with which
these different models operate: economic models of human behaviour, for example, operate
with different assumptions and levels of enquiry in comparison to physical models of ocean
circulation. The full range of granularities becomes apparent when considering that specific
applications, such as disease monitoring on poultry farms, sit within the wider ecosystem of
the natural and built environment. A digital twin needs to make choices about what levels of
granularity it is operating at, from the scale of the poultry farm to the planet. The questions
that emerge from such ambitions is: what level of granularity is helpful or necessary to
deliver effective results? And what interfaces between diverse models might be possible?
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7 Talks given during this seminar session

7.1 Information from data and compute in scientific inference
Philipp Hennig (Universität Tübingen, DE)
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Simulations are central to scientific inference. Simulators are typically treated as black
boxes, with the inference loop wrapped around them. This approach is convenient for
the programming scientists, but can be highly inefficient. Probabilistic numerical methods
represent computational and empirical data in the same language, which allows for inference
from mechanistic knowledge and empirical data in one combined step. I will argue that
scientific computing needs to embrace such new computational paradigms to truly leverage
ML in science, which also requires rethinking scientific codebases.

7.2 ODE filters and smoothers: probabilistic numerics for mechanistic
modelling

Hans Kersting (INRIA – Paris, FR)
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Probabilistic numerics (PN) unifies statistical and numerical approximations by formulating
them in the same language of statistical (Bayesian) inference. For ODEs, a well-established
probabilistic numerical method is ODE filters and smoothers which can help to deal more
aptly with uncertainty in mechanistic modeling. In the first half of this talk, we will first
introduce PN and then present ODE filters/smoothers as a specific instance of PN. In the
second half, we will discuss how ODE filters/smoothers can improve mechanistic modeling in
the natural sciences and present a recent application of inferring the parameters of real-word
dynamical system.
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7.3 Four short stories on simulation-based inference
Jakob Macke (Universität Tübingen, DE)

License Creative Commons BY 4.0 International license
© Jakob Macke

Many fields of science make extensive use of simulations expressing mechanistic forward
models, requiring the use of simulation-based inference methods. I will share experiences and
lessons learned from four applications: Describing the dynamics and energy consumptions
of neural networks in the stomatogastric ganglion; inferring parameters of gravitational
wave models; optimising single-molecule localisation microscopy, and building computational
models of the fly visual system. I will try to convey some thoughts on the challenges and
shortcomings of current approaches.

7.4 Towards reliable simulation-based inference and beyond
Gilles Louppe (University of Liège, BE)
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Modern approaches for simulation-based inference build upon deep learning surrogates to
enable approximate Bayesian inference with computer simulators. In practice, the estimated
posteriors’ computational faithfulness is, however, rarely guaranteed. For example, Hermans
et al., 2021 have shown that current simulation-based inference algorithms can produce
posteriors that are overconfident, hence risking false inferences. In this talk, we will review
the main inference algorithms and present Balanced Neural Ratio Estimation (BNRE), a
variation of the NRE algorithm designed to produce posterior approximations that tend to
be more conservative, hence improving their reliability.

7.5 Modeling the data collection process: My journey
Thomas G. Dietterich (Oregon State University – Corvallis, US)
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In this talk, I will describe three examples of my attempts to integrate subject-matter know-
ledge with machine learning. The first example involves predicting grasshopper infestations.
I will sketch the methodology in which we first modeled the life cycle of the grasshoppers to
capture the factors that affect their population. Unfortunately, most variables of interest were
not measured, so we used the model to guide the construction of proxy variables. Ultimately,
this project did not succeed, but it is hard to determine whether this is due to modeling
problems or to the chaotic nature of the biological phenomenon.
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8 Connecting data to causality

8.1 Causality in science and data
Most scientific endeavours have a causal element: researchers want to characterise how a
system works, why it works that way, and what happens when it is perturbed. How researchers
identify cause-and-effect relationships varies across domains. For some disciplines, the process
of hypothesis design – data collection – model development provides the core structure
for interrogating how a system works. In others, where experimentation is more difficult,
researchers may rely on natural experiments and observations to compare the response of a
system under different conditions. Those studying the Earth system, for example, have little
scope to replicate planetary conditions, so instead rely on observational data and modelling
to identify the impact of different interventions. These different approaches, however, share a
modelling approach in which researchers provide variables to create structural, causal models.

In contrast, machine learning proceeds by learning representations or rules from data,
based on statistical information, rather than structured rules about how a system works (such
as physical laws). Causal inference – the ability to identify cause-and-effect relationships in
data – has been a core aim of AI research, in service of both wider ambitions to replicate
intelligence in machines and efforts to create AI systems that are robust in deployment.
However, in many respects efforts to integrate causal inference into AI systems have yet to
deliver [1].

An apocryphal story in AI tells of efforts by US researchers during the 1980s to train a
computer system that could distinguish between images of tanks from the US and USSR.
The resulting system delivered high accuracy on its training data, but failed repeatedly
in practice. The system was subsequently found to be classifying images based on their
resolution and background features – is the image grainy? Does it contain snow? – rather
than the tanks themselves. It found patterns in the data that were co-incident, rather than
causal. That same error has real-world implications for the AI systems deployed today. In
medical sciences, AI systems trained to detect collapsed lungs from medical images have been
proven inaccurate, after the model was found to have learned to detect the tube inserted into
the lung to enable a patient to breath as a response to its collapse, rather than the physical
features of the lung itself [2]. In medical sciences, deployment of such systems could put
patient care at risk. In social sciences, these AI design and data bias failures can combine to
marginalise vulnerable populations [3].

Conversely, an understanding of the structures within data can improve the accuracy of
machine learning analyses. In exoplanet discovery, for example, machine learning is used
as a tool to detect variations in light signals from large-scale astronomical datasets. The
movement of exoplanets around stars results in periodic changes to the light signals from
those stars, as the planet obscures them in its transit. Machine learning can detect those
signals and predict where exoplanets might be located, but the data is often noisy. Noticing
that the structure of this noise was consistent across a number of stars, which were too
distant from each other to be interacting, researchers concluded that instrumentation effects
were distorting the data, and developed a method to model those effects and remove them
from exoplanet predictions. The result was an efficient method for exoplanet identification
that subsequently contributed to the discovery of the first potentially habitable planet [4].
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8.2 Causal models as a route to advancing the science of AI and AI for
science

Many of these errors in misdiagnosing cause-effect relationships arise from a core assumption in
many machine learning methods: that data follows an independent and identical distribution
(IID). In practice, almost all data from real-world, or complex, systems will violate this
assumption, given the interconnectedness of different variables. The task of causality in
machine learning is to create models that can manage this violation, distinguishing between
patterns in data that simply co-occur and patterns that are causal. The resulting AI systems
would be able to solve a task in many different environments, based on an understanding
of the fundamental causal mechanisms in a system [5]. They would be more robust in
deployment, being less likely to make incorrect predictions as the environment in which they
operate changes, and could be more efficient to train and deploy. They would also represent
a step towards replicating human- or animal-like intelligence, being able to solve a task in
many different environments.

In these regards, causal machine learning offers a route to balancing the widespread
utility of statistical modelling with the strengths of physical models. Causality allows models
to operate at a level of abstraction beyond strongly mechanistic approaches, such as those
based on differential equations, moving along a continuum from mechanistic to data-driven
modelling. They provide researchers with the ability to make accurate predictions under
conditions of dataset shift (enable out of distribution generalisation); can provide insights
into the physical processes that drive the behaviour of a system; unlock progress towards AI
systems that “think” in the sense of acting in an imagined space; while also leveraging insights
that can be learned from data, but not otherwise detected.28 They also offer opportunities to
explore counterfactuals in complex systems, asking what the impact of different interventions
could have been, opening a door to the development of simulation-based decision-making
tools.29

Achieving this potential requires technical developments in a number of directions, but
can also yield more effective AI systems. Such systems would:

Be able to operate on out of distribution data, performing the task for which they are
trained in environments with varying conditions.
Be able to learn how to perform a task based on relatively few examples of that task in
different conditions, or be able to rapidly adapt what they have learned for application in
new environments through transfer, one-shot, or lifelong learning approaches.
Support users to analyse the impact of different interventions on a system, providing
explanations or ways of attributing credit to different actions.
Respond to different ways of transmitting information between individuals and groups,
enabling effective communication with their users or other forms of cultural learning.

8.3 From methods to application
Achieving the level of technical sophistication required for causal modelling requires careful
model design, based on close collaboration between machine learning and domain scientists.
The process of specifying what to represent in a causal machine learning system involves

28 For reference, see the table on page 11 of reference [4].
29 Such tools may have particular relevance in policy. For example: [6].
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a series of “micro-decisions” about how to construct the model, negotiated by integrating
machine learning and domain expertise. In this regard, causal machine learning can be
a positive catalyst for deeper interdisciplinary collaboration; model construction can be a
convening point for sharing understandings between domains. However, the level of detail
required can also be in tension with efforts to promote widespread adoption of AI methods
across research. The availability of easy-to-use, off-the-shelf AI tools has been an enabler for
adoption in many domains. The hand-crafted approach inherent to current causal methods
renders them less accessible to non-expert users. Part of the challenge for the field is to make
such methods more broadly accessible through open-source toolkits or effective software
engineering practices.

This tension between specification and learning also highlights the importance of nurturing
a diversity of methods across the spectrum from data-driven to mechanistic modelling. The
domain (or, how much prior knowledge is available and what knowledge should be included),
research question of interest, and other practical factors (including, for example, compute
budget), will shape where along this spectrum researchers wish to target their modelling
efforts.

While pursuing practical applications, advances in causal inference could help answer
broader questions about the nature of intelligence and the role of causal representations in
human understanding of how the worlds work. Much of human understanding of the world
arises from observing cause and effect; seeing what reaction follows an intervention – that an
object falls when dropped, for example – in a way that generalises across circumstances and
does not require detailed understanding of mathematical or physical laws. Integrating this
ability into machine learning would help create systems that could be deployed on a variety
of tasks. The process of building causal machine learning forces researchers to interrogate
the nature of causal representations – What are they? How are they constructed from the
interaction between intelligent agents and the world? By what mechanism can such agents
connect low-level observations to high-level causal variables? – which may in turn support
wider advances in the science of AI.

8.4 Directions
Causality in machine learning is a long-standing and complex challenge. In the context of
scientific discovery, learning strategy, model design, and encoding domain knowledge all play
a role in helping identify cause-effect relationships.

Different learning strategies can improve the “generalisability” of machine learning,
increasing its performance on previously unseen tasks, based on learning underlying structure
of a task or environment in ways that can contribute to broader understandings of causality.
Such learning strategies include:

Transfer learning, taking learning from one task or domain and applying it in another.
Multi-task learning, enabling a system to solve multiple tasks in multiple environments.
Adversarial learning, to reduce the vulnerability of models to performance degradation
on out-of-distribution data.
Causal representation learning, defining variables that are related by causal models [4].
Reinforcement learning strategies that reward agents for identifying policies based on
invariances over different conditions.

Across these new learning approaches, attempts to establish causal mechanisms are also
prompting progress in machine learning theory, through statistical formulations of core
principles [7].
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Combining different methods can also enhance the functionality of an AI system. For
example:

Neural ODEs have been shown to identify causal structures in time series data [8].
Describing causal effects as objective functions in constrained optimisation problems can
deliver a form of stochastic causal programming [9].
Technical interventions [10] can constrain or optimise a model towards causal outcomes. As
with simulation design, diagnostic checks can also help identify cause-effect relationships
by examining model outputs against “reality criteria”,30 which compare outputs to
real-world results.

There are also a variety of approaches to representing existing scientific knowledge in
machine learning models, notably by specifying the assumptions made about the world
through symmetries, invariances, and physical laws (see Figure 1).
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9 Talks given during this seminar session

9.1 Causality, causal digital twins, and their applications
Bernhard Schölkopf (MPI für Intelligente Systeme – Tübingen, DE)

License Creative Commons BY 4.0 International license
© Bernhard Schölkopf

1. Desiderata for causal machine learning: work with (and benefit from) non-IID data,
multi-task/multi-environment, sample-efficient, OOD, generalisation from observation of
marginals, interventional.

2. Modelling taxonomy: differential equations, causal models, statistical models.
3. How to get from one level to the next.
4. How to transfer between statistical models that share the same underlying causal model.
5. The assumption of independent causal mechanisms (ICM) (for example, invariance/au-

tonomy) and sparse mechanism design.
6. How to derive the arrow of time from ICM and algorithmic information theory.
7. Statistical formulation of ICM: causal de Finetti.
8. Application to exoplanet discovery and Covid-19 vaccine scenarios.
9. Causal representations as (a) causal digital twins and (b) AI models.

9.2 Invariance: From Causality to Distribution Generalization
Jonas Peters (University of Copenhagen, DK)

License Creative Commons BY 4.0 International license
© Jonas Peters

Assume that we observe data from a response Y and a set of covariates X under different
experimental conditions (or environments). Rather than focusing on the model that is most
predictive, it has been suggested to take into account the invariance of a model. This can
help us to infer causal structure (Which covariates are causes of Y ?) and find models that
generalize better (How well does the model perform on an unseen environment?). We show a
few applications of these general principles and discuss first steps towards understanding the
corresponding theoretical guarantees and limits.

9.3 Can we discover dynamical laws from observation?
Niki Kilbertus (TU München, DE & Helmholtz AI München, DE)

License Creative Commons BY 4.0 International license
© Niki Kilbertus

I will start with a brief introduction to identifiability of ODE systems from a unique
continuous or discrete observed solution trajectory. Then, I will provide an overview of
modern approaches to inferring dynamical laws (in the form of ODEs) from observational
data with a particular focus on interpretability and symbolic methods. Finally, I will describe
our recent attempts and results at inferring scalar ODEs in symbolic form from a single
irregularly sampled, noisy solution trajectory.
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9.4 Invariances and equivariances in machine learning
Soledad Villar (Johns Hopkins University – Baltimore, US)

License Creative Commons BY 4.0 International license
© Soledad Villar

In this talk, we give an overview of the progress in the last few years by several research
groups in designing machine learning methods that repeat physical laws. Some of these
frameworks make use of irreducible representations, some make use of high-order tensor
objects, and some apply symmetry enforcing constraints. Our work shows that it is simple
to parameterise universally approximating functions that are equivariant under actions of
the Euclidean, Lorentz, and Poincare group at any dimensionality. The key observation is
that O(d)-equivariant (and related group-equivariant) functions can be universally expressed
in terms of a lightweight collection of dimensionless scalars (scalar products and scalar
contractions of the scarla, vector, and tensor inputs). We complement our theory with
numerical examples that show that the scalar-based method is simple and efficient, and
mention ongoing work on cosmology simulations.

9.5 Divide-and-Conquer Equation Learning with R2 and Bayesian Model
Evidence

Bubacarr Bah (AIMS South Africa – Cape Town, ZA)

License Creative Commons BY 4.0 International license
© Bubacarr Bah

Deep learning is a powerful method for tasks like predictions and classification, but lacks
interpretability and analytic access. Instead of fitting up to millions of parameters, an
intriguing alternative for a wide range of problems would be to learn the governing equations
from data. Resulting models would be concise, parameters can be interpreted, the model can
adjust to shifts in data, and analytic analysis allows for extra insights. Common challenges
are model complexity identification, stable feature selection, expressivity, computational
feasibility, and scarce data. In our work, the mentioned challenges are addressed by combining
existing methods in a novel way. We choose multiple regression as a framework and argue
how a surprisingly large space of model equations can be captured. For feature selection, we
exploit the computationally cheap coefficient of determination (R2) to loop through millions
of models, and by using a divide-and-conquer strategy, we are able to rule out remaining
models in the equation class. Final model selection is achieved by exact values of the Bayesian
model evidence with empirical priors, which is known to identify suitable model complexity
without relying on mass data. Random polynomials, and a couple of chaotic systems are
used as examples.

10 Encoding domain knowledge

10.1 Where’s My [Science] Jetpack?
Humans have a long history of imagining futures where human progress is accelerated by
intelligent machines. Embedded in these visions for the future are aspirations that AI
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Figure 1 Models along a spectrum from classical i.i.d models to strongly mechanistic differential
equation models introduce aspects of causality and symmetries to create a continuum between
mechanistic and data-driven worlds. Statistical or data-driven models are weakly mechanistic (i.e.
they include smoothness assumptions or similar).

can be a faithful servant, easing daily activities or enhancing human activities [16]. As
with many emerging technologies, the reality of AI today looks different to these Sci-Fi
futures.31 Practical experiences of deploying AI highlights a range of potential failure
modes, often rooted in insufficient contextual awareness, misspecification of user needs, or
misunderstanding of environmental dynamics [14].

Today’s science builds on thousands of years of attempts to understand the world, which
can be leveraged to design AI that serves scientific goals. The result should be a collaborative
endeavour between humans and machines. Researchers need the analytical power of AI to
make sense of the world, while AI needs input from human understandings of the domain in
which it is deployed to function effectively; both need well-designed human-machine interfaces
to make this collaboration work. In this context, effective integration of domain knowledge
into AI systems is vital, and three (broad) strategies have emerged to facilitate this encoding:
algorithmic design; AI integration in the lab; and effective communication and collaboration.

10.2 Encoding domain knowledge through model design
Traditional modelling approaches make use of well-defined rules or equations that explain the
dynamics of the system under study. The laws of physics, for example, describe how energy
moves through a system, based on conservation principles. These laws are complemented by
mathematical symmetries that arise from our abstract representations of physical objects and
describe what features of an object remain consistent, despite changes or transformations in
a system [17]. There may also be known invariances in a system: factors that do not change
under any perturbations or that change in a defined way [11]. Building on this existing
knowledge, and connecting to efforts to generate causal understandings of the world through
machine learning, an area of growing interest has been the design of machine learning models
that respect these rules or symmetries.

The principle underpinning this design strategy is that it is possible to move across a
continuum from statistical (data-driven) models to strongly mechanistic models, creating
hybrid systems whose outputs should be constrained by what is physically feasible, while
also leveraging insights from data (Figure 1).

31 The title of this section is inspired by: https://www.fantasticfiction.com/w/daniel-h-wilson/
where-s-my-jetpack.htm

https://www.fantasticfiction.com/w/daniel-h-wilson/where-s-my-jetpack.htm
https://www.fantasticfiction.com/w/daniel-h-wilson/where-s-my-jetpack.htm


P. Berens, K. Cranmer, N. D. Lawrence, U. von Luxburg, and J. Montgomery 183

Adding 
invariances to 

data-driven models

Simulation 
based inference

Include information 
in the models as 
prior knowledge

Emulation and 
surrogate modelling

Augmenting data 
with invariances

Integrating 
domain insights

Include information 
in data for the model

Figure 2 Strategies for integrating domain insights: including information in data and including
information as prior knowledge.

At one end of that continuum, mechanistic models would obey known laws or principles
in a strongly deterministic way; at the other, statistical models encode fewer assumptions and
rely more on data [10]. The addition of invariances and symmetries, alongside other forms of
domain knowledge, allows bridging between these two model classes (Figure 1). Models that
describe how much heat is absorbed by the oceans under conditions of climate change, for
example, should obey the laws of thermodynamics and energy conservation. By encoding
the domain knowledge that has yielded these fundamental laws, such as the conservation of
momentum or energy, researchers can ensure the outputs of a machine learning model will
have a physically allowable expression. This encoding can come from integrating equations,
symmetries, or invariances into model design. These encodings constrain the operation of a
machine learning system to align with the known dynamics of physical systems. The resulting
models might be expected to produce more accurate results, with smaller generalisation
errors, and with better out-of-distribution generalisation.

10.3 Scientific centaurs
Complementing modelling strategies to encode scientific knowledge are deployment strategies
to use AI in the lab. The lab has long provided a physical hub for collaboration and
knowledge-generation, its function and form having remained broadly consistent across
centuries of scientific progress. Today, the digitisation of experimental equipment and
laboratory processes offers opportunities to integrate AI in experimental design and create
new virtual labs.
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By combining data from measurement devices, simulations of laboratory processes, and
computational models of research or user objectives, these virtual labs provide a digital
sibling of in-person research activities that can be used to optimise such activities. In drug
discovery, for example, virtual labs could accelerate the testing and analysis processes that
identify candidate drugs from potential drug targets. Instead of relying on physical testing of
such starting molecules, multiple rounds of virtual testing can rapidly simulate the processes
of drug design, manufacture, testing, and analysis to assess which starting molecules are
more (or less) likely to be viable candidate drugs [8]. As a result, AI can help accelerate the
research process.

Advances in machine learning methods to enable effective simulations, causal modelling,
and encoding pre-existing domain insights – while packaging such methods into usable toolkits
– are all necessary foundations for such digital siblings. Moving from virtual laboratory to
“AI assistants” requires further advances in AI system design to create AI agents that can
elicit guidance or input from their domain experts. Such agents would not only provide
useful intuitions for scientific modelling, but would serve as “scientific sidekicks”, actively
helping researchers to drive their research.

This new type of AI assistant would combine the ability to model the research problem of
interest with the ability to model the goals and preferences of their expert users, even when
the user themselves might not be able to clearly articulate those goals. As a starting point,
these systems would need to support forms of user interaction that can extract user knowledge,
leveraging this to identify appropriate courses of action. To operate in contexts where user
goals might be uncertain and user behaviour might change in response to the outputs of
the AI system, these AI sidekicks will need insights from cognitive science, studies of team
decision-making, and new learning strategies based on limited examples. The sophisticated
user modelling so-created would unlock new forms of human-AI collaboration; scientific
centaurs that combine both human and machine intelligence [3].

10.4 Enabling communication across domains
Underpinning these efforts to integrate pre-existing knowledge into the design and deployment
of AI systems is a feedback loop between domain and machine learning research, in which each
elicits from and feeds into the other. This loop requires the ability to exchange knowledge
and insights across disciplines through interdisciplinary collaboration and communication.

Matching model to user need requires shared understandings of the research question at
hand, the constraints – whether from data, compute, funding, or time and energy available –
that affect different collaborators, and the user needs of the domain environment. While AI
researchers might be tempted to develop complex models, showcasing assorted theoretical
and methodological advances in the field, from a domain perspective, a relatively “simple”
model may seem preferable. Collaborators need to be able to mutually explore what is
possible, while also considering what is useful.

To complete the loop, outputs from machine learning models need to feed back into the
application domain: insights from AI need to be accessible in ways that allow the transfer of
learning from model to user. This implies some level of explainability. It is not sufficient for
an AI system to produce highly accurate results; those results must also be interpretable by
a domain researcher. As the complexity of AI systems increases, however, understanding
why these systems have produced a particular result becomes increasingly challenging. While
not an issue for all machine learning methods, this complexity often results in difficulties
explaining the functioning of AI systems.
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In response, AI researchers have developed a variety of different methods to interrogate
how AI systems work, or why a particular output has been produced. Again, to understand
which of these methods is desirable in the context of a scientific application, researchers
must collaborate closely with domain experts. In the context of pharmaceutical experiments
where the aim is to measure how many target cells are killed off at different dosages of a
drug (or drug combination), for example, researchers might be seeking to “sense-check” how
different drug dosages affect the model, before investigating specific drugs more rigorously.
In astronomical studies, researchers are often working with high-dimensional datasets with
many confounding correlations. For example, gravitational waves are ripples in space-time
catalysed by the movement of massive bodies in space, such as planets or stars [13]. These
invisible phenomena are studied at observatories across the world,32 based on models to
describe wave signals and the “noise” generated by instruments that measure them [4].
Measurements of gravitational waves can be used to infer the properties of black holes that
create them, such as their location, mass, and spin, using simulation-based inference to
characterise the source of a wave, given the data that detects it. To make such methods more
efficient than existing analytical tools, researchers need to take into account the structure
that sits underneath it: for example, gravitational wave detectors are located across the
globe, and their location affects the angle at which they detect waves hitting the Earth. This
structure can be exploited through data sampling strategies to help make machine learning
more efficient [4]. An alternative, however, is to use deterministic models that already reflect
relevant physical laws [2]. Across these approaches, software packages play an important role
in enabling communication and dissemination of methods for wider use.33

10.5 Directions
New modelling approaches and mathematical innovations offer exciting opportunities to
integrate domain knowledge, symmetries and invariances into AI systems [18]. Integration
can be achieved in different ways:

Data augmentation can help exploit invariances and symmetries, resulting in improved
model performance, by including in the data domain knowledge for a model to ingest.
Symmetries can be embedded in the design of deep learning systems, for example by
using the same convolutional filters in different locations of an image, CNNs can leverage
translation and rotation symmetries.
Latent force models allow representations of known symmetries alongside probabilistic
factors, enabling integration of mechanistic models with unknown forces [1, 19].
Architectural features can restrict model focus to outputs that satisfy symmetries, for
example using weight sharing, irreducible representations, or invoking symmetries as
constraints.34

Loss functions can be deployed to penalise predictions that fail to satisfy physical
constraints or symmetries.

In the process, emerging mathematical questions include: how can AI learn invariances
from data? And is it possible to quantify the performance gain achieved through this?

32 See, for example, the LIGO project. Information available at: https://www.ligo.caltech.edu
33 See, for example: https://lscsoft.docs.ligo.org/bilby/
34 See, for example: [9, 12, 6]
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Research to develop AI assistants in the lab raises interesting questions about learning
strategies and human-machine collaboration. These AI agents would need to be able to learn
how to assist another agent, in a multi-agent decision-making scenario, where goals might be
unclear, uncertain, or changeable. To tackle this challenge:

Decision-making with delayed reward or zero-shot learning can help agents solve tasks
when there is little or nothing known about the reward function, and no previous behaviour
to learn from.
Interactive knowledge elicitation [15], combining prior knowledge from cognitive science
with learning from data [7], and generative user models [5] can support more effective
interactions between user and machine.

Across these areas, care is needed in the design of the points of interaction between
human and AI system. A core question here is: how can AI researchers extract domain
knowledge from relevant experts and integrate it into a machine learning model? Insights
from human-machine interaction studies and collaborative decision-making systems are
necessary to create effective interfaces between human and machine, based on factors such
as:

What forms of visualisation are helpful for human users?
What types of interpretability or explainability are needed for a user to achieve their
desired interactions?
What might be the unintended consequences of human-machine interaction, such as
over-confidence in results or over-reliance on the AI system?
What “theory of mind” is needed to anticipate how human users might be likely to
respond to an AI system?

A challenge in these interactions is that much of the relevant knowledge held by the
domain expert might be qualitative: an intuition of how a system works, developed over a
long period of study, rather than quantifiable insights.
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11 Talks given during this seminar session

11.1 Virtual laboratories for science, assisted by collaborative AI
Samuel Kaski (Aalto University, FI)

License Creative Commons BY 4.0 International license
© Samuel Kaski

I introduced two ideas: virtual laboratories for science, aiming to introduce an interface
between algorithms and domain science that enables AI-driven scale advantages, and AI-based
‘sidekick’ assistants, able to help other agents research their goals, even when they are not
able to yet specify the goal explicitly, or it is evolving. Such assistants would ultimately be
able to help human domain experts run experiments in the virtual laboratories. I invited
researchers to join the virtual laboratory movement, both domain scientists in hosting a
virtual laboratory in their field and methods researchers in contributing new methods to
virtual laboratories, simply by providing compatible interfaces in their code. For developing
the assistants, I introduced the basic problem of agents that are able to help other agents
reach their goals, also in zero-short settings, formulated the problem, and introduced solutions
in the simplified setting of prior knowledge elicitation, and in AI-assistted decision and design
tasks.

11.2 Making data analysis more like classical physics
David W. Hogg (New York University, US)

License Creative Commons BY 4.0 International license
© David W. Hogg

The laws of physics are very structured: They involve coordinate-free forms, they are
equivariant to a panoply of group actions, and they can be written entirely in terms of
dimensionless, invariant quantities. We find that many existing machine-learning methods
can be very straightforwardly modified to obey the rules that physical law must obey;
physics structure can be implemented without big engineering efforts. We also find that
these modifications often lead to improvements in generalization, including out-of-sample
generalization, in natural-science contexts. We have some intuitions about why.

The second example is work by Dan Sheldon on analysis of doppler radar to extract bird
biomass and motion. The radar measures the radial velocity modulo a constant (i.e., the
velocity wraps around to zero). Previous work had attempted to "unwrap" the data using
heuristics. Dan instead incorporated the modulus operation into the likelihood function and
then developing an algorithm for maximizing this somewhat nasty likelihood. The result
has revolutionized radar analysis and has been deployed in the BirdCast product from the
Cornell Lab of Ornithology.

The third example is the species occupancy model introduced by MacKenzie et al (2002).
When human observers conduct wildlife surveys, they may fail to detect a species even
though the species is present. The occupancy model combines this detection probability
with a habitat model. However, the expressiveness of the two models (detection and habitat)
must be carefully controlled. Rebecca Hutchinson and I learned this when we tried to replace
the linear logistic regression models with boosted trees.

https://creativecommons.org/licenses/by/4.0/
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In all cases, downstream use of the estimates that come from such data collection models
must be aware of the measurement uncertainties. How can we correctly quantify those
uncertainties and incorporate them in the downstream analysis? Maybe there are lessons
ecologists can learn from physicists?

11.3 Latent force models
Mauricio A. Álvarez (University of Manchester, GB)

License Creative Commons BY 4.0 International license
© Mauricio A. Álvarez

A latent force model is a Gaussian process with a covariance function inspired by a differen-
tial operator. Such a covariance function is obtained by performing convolution integrals
between Green’s functions associated with the differential operators, and covariance functions
associated with latent functions. Latent force models have been used in several different
fields for grey box modelling and Bayesian inversion. In this talk, I will introduce latent
force models and several recent works in my group where we have extended this framework
to non-linear problems.

11.4 Translating mechanistic understandings to stochastic models
Carl Henrik Ek (University of Cambridge, GB)

License Creative Commons BY 4.0 International license
© Carl Henrik Ek

Statistical learning holds the promise of being the glue that allows us to improve knowledge
parametrised explicitly by a mechanistic model with implicit knowledge through empirical
evidence. Statistical inference provides a narrative of how to integrate these two sources
of information leading to an explanation of the empirical evidence in "light" of the explicit
knowledge. While the two sources of knowledge are exchangeable in terms of predictive
performance they are not if our focus is that of statistical learning as a tool for science where
we want to derive new knowledge.

In this talk we will focus on challenges associated with translating our mechanistic
understanding into stochastic models such that they can be integrated with data. In
particular, we will focus on the challenges of translating composite knowledge. We will show
how these structures and the computational intractabilities they lead to make knowledge
discovery challenging.

The perceived “success” of machine learning comes from application where we have large
volumes of data such that only simple and generic models are needed in order to regularise
the problem. This means that much of the progress that have been made with predictive
models are challenging to translate into useful mechanisms for scientific applications. In this
talk we will focus on challenges associated with translating our mechanistic understanding
into stochastic models such that they can be integrated with data. In specific we will focus
on the challenges of translating composite knowledge. We will show how these structures
and the computational intractabilities they lead to makes knowledge discovery challenging.
We will discuss properties that we desire from such structures and highlight the large gap
that exists with current inference mechanism.
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12 A research agenda in AI for science

“AI for science” sits at a nexus of disciplines, methods, and communities. Both AI and
“science” (broadly defined) share a core interest in learning from data. From this interest
emerge different research directions: for AI, questions about the nature of intelligence and
how to understand the learning process in humans and machines; for science, the outputs of
this learning process are the focus, with the aim of adding new knowledge about natural,
physical, and social systems. A distinctive feature of the emerging “AI for science” agenda is
the ability to move between these worlds, using AI to drive progress in science and taking
inspiration from science to inspire progress in AI. The result is a continuum of modelling
approaches along a spectrum from strongly mechanistic to statistical models, which allow
researchers to introduce or operate at different levels of abstraction.

The AI for science community therefore combines the ambitions of AI research with
domain-specific goals to advance the frontiers of research and innovation in their discipline,
with an engineering focus on designing systems that work in deployment, while operating
across scales from the nano- to the interstellar. From these interfaces emerges a research
agenda that – if successful – promises to accelerate progress across disciplines. Inspired by
discussions at the Dagstuhl Seminar, a list of research questions arising from this agenda is
given in Annex 2. These span three themes:
Building AI systems for science: Attempts to deploy AI in the context of scientific
discovery have exposed a collection of gaps in current machine learning and AI capabilities.
Further work is needed to develop the technical capabilities that will allow AI to be used more
effectively in research and innovation; developing those capabilities also offers opportunities
to contribute to wider attempts to deliver sophisticated AI systems. Areas for progress
include:

Advancing methods, software and toolkits for high-quality simulation and emulation,
which integrate effective uncertainty quantification and leverage advances in machine
learning robustness to ensure they operate safely and effectively.
Detecting scientifically meaningful structure in data, through advances in causal machine
learning.
Encoding domain knowledge in AI systems through integration of scientific laws, principles,
symmetries, or invariances in machine learning models, and through virtual, autonomous
systems to make research more effective.

Combining human and machine intelligence: Effective deployment of AI in science
requires effective interactions between human, domain and machine intelligence across all
stages of the deployment pathway. AI systems can be made more effective by integrating
pre-existing knowledge about the system of study, but mechanisms are needed to extract
and encode that knowledge. Effective interfaces are also required in the reverse direction.
Translating the outputs of AI analysis to increased human capability requires an understanding
of what insights are relevant, how they are best communicated, and the cultural environment
that shapes the conduct of science. Areas for progress include:

Designing interfaces between humans and machines or AI agents that can extract,
formalise, and assimilate knowledge that domain researchers have acquired, including
tacit knowledge, and that communicate new knowledge back to the user as actionable
insights.
Building mechanisms for explainability that allow researchers to interrogate why and how
an AI system delivered a particular result, with the explanations provided being tailored
to user need.



P. Berens, K. Cranmer, N. D. Lawrence, U. von Luxburg, and J. Montgomery 191

Creating new interfaces

Mechanistic 
models

Data-driven 
models

AI researchers
Domain 

researchers

Integrating modelling approaches to create 
a continuum of methods from data-driven 

to mechanistic. 

Interdisciplinary collaborations to co-design novel 
AI-enabled solutions.

Extracting insights from 
data-driven models and 
feeding them into domain 
models to create more 
effective systems. 

Developing high-performing 
AI methods and tools, 
through building effective 
simulations, developing 
causal machine learning, 
and encoding domain 
knowledge. 

Figure 3 Interfaces between machine learning and domain researchers, and between data-driven
and mechanistic models.

Accelerating the pace of knowledge creation and use, through systems that mine the
existing research knowledge base or that automate repetitive or time-consuming elements
of the research process.

Influencing practice and adoption: By learning from recent experiences of deploying
AI for science, the field has an opportunity to promote wider uptake and progress in both
scientific domains and in AI research. This requires capturing both the knowledge that the
community has already generated, about how to design AI systems, and the know-how about
how to overcome practical challenges that accompanies it, while taking action to grow the
community of researchers excited about the potential of AI in science. Areas for progress
include:

Supporting new applications, through challenge-led research programmes that promote
interdisciplinary collaborations and support co-design of AI systems to help tackle scientific
challenges.
Developing toolkits and user guides that allow researchers to understand which AI tools
are suitable for which purposes, and how to deploy those tools in practice.
Sharing skills and know-how, through community outreach that disseminates knowledge
and know-how in how to use AI.

Together, these areas for action highlight the importance of interfaces – between researchers
and between modelling approaches – in shaping the development of AI for science (Figure 3).
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13 Accelerating progress in AI for science

Building on the impressive advances that machine learning has already supported in many
domains, widespread adoption of AI for research has the potential to catalyse a new wave
of innovations that in turn could drive greater health, wealth, and wellbeing. The question
facing researchers, funders, and policymakers today is how to harness that potential. The
challenge is to build capability across the research landscape, connect areas of expertise to
areas of need, and to accelerate the transfer of successful ideas between domains.

The experiences of deploying AI for science described in this document, and the research
agenda that results from these experiences, suggest a roadmap for action. That roadmap
charts a pathway to create an enabling environment for AI in science, by advancing research
that delivers AI methods to support scientific discovery, building tools and resources to
make AI accessible, championing interdisciplinary research and the people pursuing it, and
nurturing a community at the interface of these different domains. Progress across these
areas can unlock scientific and methodological advances in AI for science, while also helping
answer an emerging question about whether there exists a core discipline of “AI for science”.
The shared themes and interests that emerge from research projects at the interface of AI and
scientific domains suggest that there is potential for “AI for science” to surface as a distinct
speciality in computer science. In parallel, domain-specific efforts to drive the adoption of
AI as an enabler of innovation are also needed to deliver the benefits of AI for scientific
discovery.

13.1 Advance new methods and applications
Efforts to deploy AI in the context of research have highlighted cross-cutting challenges
where further progress in AI methods and theory is needed to create tools that can be used
more reliably and effectively in the scientific context. Effective simulations are needed to
study the dynamics of complex systems; causal methods to understand why those dynamics
emerge; and integration of domain knowledge to relate those understandings to the wider
world. While elements of these research challenges are shared with other fields – topics such
as robustness, explainability, and human-machine interaction also come to the fore in fields
such as AI ethics, for example – they share an intersection in the use of AI for science, in the
context of efforts to bridge mechanistic and data-driven modelling.

Alongside these “AI” challenges are a collection of “science” challenges, where researchers,
policymakers and publics have aspirations for AI to deliver real-world benefits.35 Such
challenges offer the opportunity to accelerate progress in AI, while facilitating interdisciplinary
exchanges, and opening the field to input from citizen science or other public engagement
initiatives. In developing these research missions, care is needed to define cross-cutting
questions or challenges that broaden scientific imaginations, rather than restricting them.
The process of converting a complicated scientific problem into something tractable with AI
necessarily involves some narrowing of focus; to be successful, mission-led innovation efforts
must achieve this focus without losing meaning, or creating benchmarks that misrepresent
the complexity of the real-world challenge.

Defining shared challenges could help rally the AI for science community and drive progress

35 See, for example: the EU’s Innovation Missions https://research-and-innovation.ec.europa.
eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/
eu-missions-horizon-europe_en and UN SDG’s https://sdgs.un.org/goals

https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe_en
https://sdgs.un.org/goals
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in both methods and applications of AI in science. There already exists examples of how such
challenges can build coalitions of researchers across domains from which the field can draw
inspiration. These include the GREAT08 project, which developed image analysis techniques
to study gravitational lensing [1]; the Open Problems in Single Cell Biology challenge, which
convened the machine learning community to make progress in Multimodal Single-Cell Data
Integration;36 and the SENSORIUM challenge, focused on advancing understandings of
how the brain processes visual inputs.37 In pursuing this agenda, researchers can leverage
well-established protocols in open-sourcing materials and sharing documentation to help
ensure research advances are rapidly and effectively disseminated across disciplines. The
result should be more effective methods, and an agile research environment where researchers
can flex methods across disciplines.

13.2 Invest in tools and toolkits
Complementing these efforts to build and share knowledge, well-designed software tools
can help make accessible the craft skills (or know-how) that make AI for science projects
successful. Modelling is a core component of all AI for science projects. In some aspects,
the task for the field can be thought of as charting a path between the statistician, whose
effectiveness comes from proximity to the domain but whose methods struggle to scale, and
the mathematician, whose tools are adopted across domains but with some loss of meaning
as the distance between method-generator and adopter increases.

The energy already invested in building effective machine learning models can be lever-
aged for wider progress across domains through investment in toolkits that support the
generalisation of effective approaches. Wide-spectrum modelling tools could offer “off the
shelf” solutions to common AI for science research questions. The challenge for such toolkits
is to create an effective interface between tool and user. Connecting with the field of human-
computer interaction could generate design insights or protocols to help create more effective
human-AI interfaces.

Best practices in software engineering can help, through documentation that supports
users to successfully deploy modelling tools. User guides – or taxonomies of which models
are best suited for which purposes and under what circumstances – can also help make
accessible to non-expect users the accumulated know-how that machine learning researchers
have gained through years of model development and deployment.

A related engineering challenge is that of data management and pipeline-building. To
interrogate how a model works, why a result was achieved, or whether an AI system is
working effectively, researchers often benefit from being able to track which data contributed
to which output. The data management best practices that allow such tracking need to
be embedded across AI for science projects. Data management frameworks – such as the
FAIR data principles – have already been developed with the intention of making data more
available, and useful, for research. Further investment is now needed in efforts to implement
those principles in practice.

Investment in these foundational tools and resources can help build understanding of
which AI methods can be used and for what purposes, lowering the barriers to adopting AI
methods across disciplines.

36 For further information, see: https://openproblems.bio/neurips_2021/
37 For further information, see: https://sensorium2022.net/home
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13.3 Build capability across disciplines
Central to progress in both research and toolkit engineering is the availability of talented
researchers with a passion for advancing science through AI. People matter at all stages of
the AI development and deployment pipeline. Successful projects rely on researchers who
are motivated to work at the interface of different domains; collaborators who can explain
and communicate core concepts in their work across disciplinary boundaries; engineers who
can translate the needs of different users into AI toolkits; and convenors that can inspire
wider engagement with the AI for science agenda.

Building these capabilities requires multiple points of engagement. Domain researchers
need access to learning and development activities that allow them to understand and
use foundational methods in machine learning, whether as formal training or through the
availability of tutorials or user guides. AI researchers need access to the scientific knowledge
that should shape the methods they develop, the skills to translate their advanced knowledge
to materials that can be shared for wider use, and the capacity to dedicate time and resource
to learning about domain needs.38 Both need skills in communication, organisation, and
convening to operate across disciplines. Without such capability-building, disciplines risk
remaining siloed; domains developing unrealistic expectations about what AI can deliver
in practice, and AI losing touch with the scientific questions that are most meaningful to
domains.

Institutional incentives shape how individuals engage (or not) with such interdisciplinary
exchanges. Interdisciplinary research often takes longer and lacks the outlets for recognition
available to those working in single domains, affecting both the motivation of and opportunities
for career progression that are open to those working at the interface of different disciplines.
Much of the engineering work required to make data and AI accessible beyond a specific project
and useful to a wider community is also traditionally unrecognised by academic incentive
structures. Aligning individual and institutional incentives in support of interdisciplinarity is
a long-standing challenge in research, and one that becomes more critical to address in the
context of developments in AI. In this context, there may be new opportunities to recognise
and reward successes in AI for science, whether through new fellowships, prizes, or ways of
promoting the work done by those at this interface.

13.4 Grow communities of research and practice
The areas for action described above feed into and from each other. Progress in research and
application can be leveraged to inspire a generation of researchers to pursue interdisciplinary
projects; effective toolkits can make such progress more likely; skills-building initiatives can
prime researchers to be able to use these toolkits; and so on, to create an environment where
researchers and research advances transition smoothly across disciplines, leading to a rising
AI tide that lifts all disciplines. Communities of research and practice are the backdrop for
creating such positive feedback loops.

A collection of AI for science initiatives are already building links across the research
landscape. The Machine Learning for Science Cluster of Excellence at the University of
Tübingen is leveraging the strength of its local ecosystem in AI to drive wider progress in

38 A comparison here can be drawn with the development of statistics as an enabling discipline for many
domains: statisticians have devoted time to understanding domain practices and integrating their work
within those practices, often dedicating significant resource to understand the nature of the datasets
with which they are working, before introducing modelling ideas.
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research and innovation;39 the Accelerate Programme for Scientific Discovery at the University
of Cambridge is building bridges across disciplines, building a community passionate about
opportunities in AI for science;40 the University of Copenhagen’s SCIENCE AI Centre
provides a focal point for AI research and education in its Faculty for Science;41 New York
University’s Center for Data Science hosts interdisciplinary faculty pursuing innovative
research and education;42 the University of Wisconsin-Madison’s American Family Insurance
Data Science Institute is developing strategic partnerships to accelerate the use of data
science in research;43 new investments by Schmidt Futures across a network of research
institutions are supporting new postdoctoral fellowships at the interface of AI and sciences
[2]. Together, these initiatives demonstrate the appetite for progress in AI for science.

There is an opportunity today to leverage these emerging interests into a wider movement.
Existing initiatives can drive capability-building, by making training and user guides open,
reaching out to engage domain researchers in skills-building activities, and fostering best
practice in software and data engineering across disciplines. The links they establish across
research domains can form the basis of new communication channels, whether through
discussion forums, research symposia, or newsletters to share developments at the interface
of AI and science. These communications can be deployed to raise the profile of people and
projects at this interface, celebrating successes, sharing lessons, and demonstrating the value
of interdisciplinary work. Together, they can help develop an infrastructure for AI in science.

That infrastructure may also benefit from new institutional interventions to address long-
standing challenges in interdisciplinary AI. New journals could provide an outlet to publish
and recognise high-quality AI for science research, bringing in contributions from multiple
disciplines and helping translate lessons across areas of work. Membership organisations
could help foster a sense of belonging and community for researchers working at the interface
of AI, science, and engineering, developing career pathways and incentives. Efforts to convene
across disciplines can also catalyse new connections and collaborations.

Emerging from these efforts is a paradigm shift in how to drive progress in science.
Historically, a small number of foundational texts have been the catalyst that changed how
researchers studied the world; Newton’s Principia; Darwin’s Origin of Species; and so on. For
much of its modern history, scientific knowledge has been transmitted through textbooks;
canonical descriptions of the current state of knowledge. Today, the transformative potential
of AI is driven by its pervasiveness; its impact in science will be achieved through integration
across disciplines. This integration requires widespread mobilisation, convening machine
learning researchers, domain experts, citizen scientists, and affected communities to shape
how AI technologies are developed and create an amenable environment for their deployment.
It takes a community.

39 Programme website available at: https://uni-tuebingen.de/en/research/core-research/
cluster-of-excellence-machine-learning/home/.

40 Programme website available at: https://acceleratescience.github.io.
41 Programme website available at: https://ai.ku.dk.
42 Programme website available at: https://cds.nyu.edu.
43 Programme website available at: https://datascience.wisc.edu/institute/.
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13.5 AI and science: building the interface
Advances in AI have disrupted traditional ways of thinking about modelling in science.
Where researchers might previously have conceptualised models as mechanistic – reflecting
known forces in the world – or data-driven, the “AI for science” methods that are emerging
today reject this separation. They are both, combining insights from mechanistic and data-
driven methods, integrating methods to create something new. What follows from these
developments is a spectrum of modelling approaches, which researchers can deploy flexibly
in response to the research question of interest.

Today, the field of AI for science is characterised by intersections. Between AI and
scientific domains; between science and engineering; between knowledge and know-how;
between human and machine. It operates across disciplinary boundaries, across scales from
the atomic to the universal, and across both the mission to understand intelligence and the
quest to deploy human intelligence to understand the world. Emerging from these missions is
a continuum of models and methods that allow researchers to work across domains, extracting
the knowledge that humans have acquired, and levels of inquiry, enhancing that knowledge
and returning it in actionable form.

As both a domain itself and an enabler of other disciplines, the power of AI in science lies
in its ability to convene diverse perspectives in ways that accelerates progress across research
areas. AI for science is a rendezvous point. Its next wave of development will come from
taking strength from its diversity, and bringing more people into its community.
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What new forms of explainability or interpretability could facilitate the deployment of AI
in science?
How could AI support generalisation from a small number of observations? What methods
could enable few- or one-shot learning?
How can AI researchers build meaningful models from data to accurately represent causal
mechanisms in the system of study? How can researchers identify the most effective
model for their system of study?
What does it mean to understand a model? How can researchers combine explainability
with complexity?
How can AI methods be made robust and easy to use in deployment by domain scientists?
How can advances in simulation methods be applied in domains where the system at
hand is less easily described by equations?
What advances are needed to expand the use of simulations in science? How can AI help
simulate laboratory experiments or environments, helping make more efficient different
elements of the scientific process? How might this be expanding in the long-term, for
example to planning experimental design or helping identify where data is missing?
How can “digital siblings” be used to explore the impact of different interventions on
complex systems?

Combining human and machine intelligence
How can AI researchers best extract, formalise and assimilate the knowledge that domain
researchers have acquired? What forms of knowledge representation can formalise scientific
understandings of the world, translating these to objective functions for AI systems?
What forms of human-AI engagement can make use of the “qualitative” knowledge – or
intuitions about a system – that domain researchers have accumulated?
How can AI capture the qualitative understanding that researchers have of their domain
to more accurately or effectively characterise a system?
How can AI be effectively deployed to mine the existing research knowledge base – for
example, papers, databases, and so on – to extract new insights?
Where can automation support research progress? Which elements of the scientific process
could be automated, and where is human input vital?
What forms of collaboration are needed to effectively specify helpful outputs from an AI
system?
How can insights from AI analysis be returned to researchers in an actionable way?
What mix of AI design, engineering, social interaction, and education can make effective
interfaces between domain researchers and AI systems?
How can the outputs of AI systems be made interpretable for scientific users?
How can AI researchers better understand and design for the forms of interpretability
that resonate with domain researchers?
What processes of collaboration or co-design can help describe what scientists “need to
know” from an AI system?
What best practices or methods can be deployed to effectively communicate uncertainty
from AI systems to human users?
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A.1 Influencing practice and adoption
What are the craft skills in AI for science? What “know-how” is necessary to make AI
work effectively in practice?
What skills-building or forms of outreach can help take AI tools out of the AI community
and into “the lab”?
How has machine learning been used most effectively for research and innovation? What
best practices, or lessons, do existing efforts in AI for science offer?
Which AI tools are suitable for which purposes, disciplines, or experimental designs? Is it
possible to create a taxonomy for science?
Are there generalisable methods or conclusions that can be taken from domain-specific
efforts to deploy AI for science?
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