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Abstract
This report documents the outcomes of Dagstuhl Seminar 22412 “Intelligent Security: Is “AI
for Cybersecurity” a Blessing or a Curse”. The seminar brought together 25 attendees from 10
countries (Canada, Croatia, Czech Republic, France, Germany, Netherlands, Singapore, Sweden,
Switzerland, and the USA). There were 17 male and 8 female participants. Three participants
were from the industry, and the rest were from academia.
The gathered researchers are actively working in the domains of artificial intelligence and cyber-
security, emphasizing hardware security, fuzzing, physical security, and network security. The
seminar aims to foster sharing experiences and best practices between various cybersecurity
applications and understand how and when certain approaches are transferable. The first two days
were devoted to 20-minute self-introductions by participants to achieve these goals. At the end of
the second day, we made a list of topics that were decided to be the focus of the seminar and that
will be discussed in the groups in the next few days. On the third and fourth days, the work was
conducted in four discussion groups where at the end of each day, all participants gathered to
report the results from the discussion groups and to align the goals. On the last day, we again
worked in one group to summarize the findings and foster networking among participants. A hike
was organized in the afternoon of the third day. The seminar was a success. The participants
actively participated in the working groups and the discussions and went home with new ideas and
collaborators. This report gathers the abstracts of the presented talks and the conclusions from
the discussion groups, which we consider relevant contributions toward better interdisciplinary
research on artificial intelligence and cybersecurity.
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1 Executive Summary

Stjepan Picek (Radboud University, NL)
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In recent years, artificial intelligence (AI) has become an emerging technology to assess
security and privacy. Moreover, we can see that AI does not represent “only” one of the
options for tackling security problems but instead a state-of-the-art approach. Besides
providing better performance, AI also brings automated solutions that can be faster and
easier to deploy but are also resilient to human errors. We can only expect that future AI
developments will pose even more unique security challenges that must be addressed across
algorithms, architectures, and hardware implementations. While there are many success
stories when using AI for security, there are also multiple challenges. AI is commonly used
in the black-box setting, making the interpretability or explainability of the results difficult.
Furthermore, research on AI and cybersecurity commonly look at the various sub-problems
in isolation, mostly relying on best practices in the domain. As a result, we often see how
techniques are “reinvented”, but also that strong approaches from one application domain
are introduced to another only after a long time.

The Dagstuhl Seminar 22412 on Intelligent Security: Is “AI for Cybersecurity” a Blessing
or a Curse brought together experts from diverse domains of cybersecurity and artificial
intelligence with the goal of facilitating the discussion at different abstraction levels to
uncover the links between scaling and the resulting security, with a special emphasis on the
hardware perspective. The seminar started with two days of contributed talks by participants.
At the end of the second day, every participant suggested topics to be discussed in more
detail. From the initial pool of nine topics, we decided to concentrate on four topics on the
third and fourth day of the seminar: 1) the explainability of AI for cybersecurity, 2) AI and
implementation attacks, 3) AI and fuzzing, and 4) the security of machine learning. The first
group approached the problem of the explainability of AI for cybersecurity. The discussion
mainly revolved around scenarios where deep learning is used as the attack method, but
explainability is necessary to understand why the attack worked and, more importantly,
how to propose new defense mechanisms that will be resilient against such AI-based attacks.
During the discussion, we considered two perspectives: a) understanding the features and b)
understanding deep neural networks.
The second group focused on how AI can improve the performance of implementation
attacks. More precisely, we discussed the side-channel analysis and fault injection. Most of
the discussion aimed at usages of deep learning for side-channel analysis and evolutionary
algorithms for fault injection. However, we also discussed how the lessons learned from
one domain could be used in another one. The third group worked on the topic of security
fuzzing. We discussed how techniques like evolutionary algorithms are used for evolving
diverse mutations and mutation scheduling. At the same time, machine learning is (for
now) somewhat less used, but there are many potential scenarios to explore. For instance,
instead of using evolutionary algorithms, it should be possible to use reinforcement learning
to find mutation scheduling. The fourth group discussed the topic of the security of machine
learning. More precisely, it focused on backdoor attacks and federated learning settings.
While both attack and defense perspectives were discussed, the discussion group emphasized
the need for stronger defenses. Each group followed a cross-disciplinary setting where the
participants exchanged groups based on their interests. We had one group switch per day
to allow sufficient time to discuss a topic. At the end of each day, all participants joined a

22412

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


108 22412 – Is “AI for Cybersecurity” a Blessing or a Curse

meeting to discuss the findings and tweak the topics for the discussion groups. On the last
day of the seminar, all participants worked together on fine-tuning the findings and discussing
possible collaborations. The reports of the working groups, gathered in the following sections,
constitute the main results from the seminar. We consider them the necessary next step
toward understanding the interplay between artificial intelligence and cybersecurity, as well
as the interplay among diverse cybersecurity domains using AI. Moreover, we expect that the
seminar (and this report) will help better understand the main open problems and how to
use techniques from different domains to tackle cybersecurity problems. This will encourage
innovative research and help to start joint research projects addressing the issues.
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3 Overview of Talks

3.1 Can AI clone the microarchitecture of a microcontroller?
Ileana Buhan (Radboud University Nijmegen, NL)

License Creative Commons BY 4.0 International license
© Ileana Buhan

Early attempts to create automated tooling and the recently increased efforts toward this
purpose prove the appeal of leakage simulators. A leakage simulator translates a sequence
of assembly instructions into a power trace. The challenge for the wide-scale adoption lies
in the manual effort required to create a leakage simulator. ABBY is the first post-silicon
leakage simulator, where we used deep learning to automate the profiling of the target.

3.2 Deep Learning Application for Side-Channel Analysis and Fault
Injection

Lukasz Chmielewski (Radboud Universiteit Nijmegen, NL & Masaryk University – Brno, CZ)

License Creative Commons BY 4.0 International license
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Joint work of Guilherme Perin, Lejla Batina, Stjepan Piecek, Madura Shelton, Niels Samwel, Markus Wagner, Leo
Weissbart, Yuval Yarom

Main reference Guilherme Perin, Lukasz Chmielewski, Lejla Batina, Stjepan Picek: “Keep it Unsupervised:
Horizontal Attacks Meet Deep Learning”, IACR Trans. Cryptogr. Hardw. Embed. Syst.,
Vol. 2021(1), pp. 343–372, 2021.

URL https://doi.org/10.46586/tches.v2021.i1.343-372
Main reference Lukasz Chmielewski, Leo Weissbart: “On Reverse Engineering Neural Network Implementation on

GPU”, in Proc. of the Applied Cryptography and Network Security Workshops – ACNS 2021
Satellite Workshops, AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI, SecMT, and SiMLA,
Kamakura, Japan, June 21-24, 2021, Proceedings, Lecture Notes in Computer Science, Vol. 12809,
pp. 96–113, Springer, 2021.

URL https://doi.org/10.1007/978-3-030-81645-2_7
Main reference Madura A. Shelton, Lukasz Chmielewski, Niels Samwel, Markus Wagner, Lejla Batina, Yuval Yarom:

“Rosita++: Automatic Higher-Order Leakage Elimination from Cryptographic Code”, in Proc. of the
CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 – 19, 2021, pp. 685–699, ACM, 2021.

URL https://doi.org/10.1145/3460120.3485380

This presentation covers selected topics in Deep Learning (DL) applications to physical
attacks, including Side-Channel Analysis (SCA) and Fault Injection (FI). The following
topics are covered: horizontal attack against Elliptic Curve Cryptography (ECC) and RSA,
XYZ hotspot selection (SCA & FI), attacks against hardware DL accelerators, and DL-based
power simulators.
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3.3 Backdoor Detection in Federated Learning via Deep Layer
Predictions

Alexandra Dmitrienko (Universität Würzburg, DE)
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Joint work of Phillip Rieger, Torsten Krauß, Markus Miettinen, Alexandra Dmitrienko, Ahmad-Reza Sadeghi
Main reference Phillip Rieger, Torsten Krauß, Markus Miettinen, Alexandra Dmitrienko, Ahmad-Reza Sadeghi:

“Close the Gate: Detecting Backdoored Models in Federated Learning based on Client-Side Deep
Layer Output Analysis”, CoRR, Vol. abs/2210.07714, 2022.

URL https://doi.org/10.48550/arXiv.2210.07714

This talk discusses the challenges of backdoor detection in federated learning (FL) related to
adaptive attackers and non-independent and identically distributed (non-IID) data. It then
presents an approach to identify backdoored local contribution of FL clients by analyzing
local client predictions of deep learning layers and comparing those to predictions made by
a global model. The approach can handle an extended non-IID scenarios compare to the
related work and is resilient to adaptive adversaries.

3.4 Breaking cryptographic algorithms using power and EM
side-channels

Elena Dubrova (KTH Royal Institute of Technology – Kista, SE)

License Creative Commons BY 4.0 International license
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Side-channel attacks are one of the most efficient physical attacks against implementations
of cryptographic algorithms at present. They exploit the correlation between physical
measurements (power consumption, electromagnetic emissions, timing) taken at different
points during the algorithm’s execution and the secret key. In this talk, I will give an
introduction to power and EM-based side-channel attacks and present some of our recent
results.

3.5 Blockchain tools for privacy-preserving machine learning
Oğuzhan Ersoy (TU Delft, NL)

License Creative Commons BY 4.0 International license
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In recent years, blockchain technology get the attention of both industry and academia.
Thanks to the interest, there are several cryptographic tools developed for decentralized
systems that can be used in other domains including machine learning. Among these tools,
VDF, VRF, and adaptor signatures are mentioned in this talk. Firstly, VDFs (Verifiable Delay
Functions) allow a prover to show a verifier that a certain amount of time running a function
was spent. In a machine learning setting, VDFs can be used to limit the number of queries
on a machine learning model. Specifically, by requesting parties to provide VDF proofs when
they query the model, we can restrict the number of queries sent to the system. Compared to
proof-of-work-based techniques [1], VDF-based query limitations would also guarantee that
the adversary cannot parallelize the VDF challenge. Secondly, VRFs (Verifiable Random
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Functions) are used to generate random numbers that can be verifiable by all parties involved.
In collaborative machine learning, this can be used, for example, cryptographic sortition and
leader selection [2]. In this selection, an adversary would not be able to predict the leader in
advance. Finally, adaptor signatures allow parties to embed a condition into the signature. It
has been used to improve the fungibility of transactions in the blockchain domain. However,
it is yet an open question how to utilize adaptor signatures in the machine learning domain.

References
1 Adam Dziedzic; Muhammad Ahmad Kaleem; Yu Shen Lu; Nicolas Papernot, Increasing

the Cost of Model Extraction with Calibrated Proof of Work, International Conference on
Learning Representations (ICLR), 2022.

2 Rui Wang; Oğuzhan Ersoy; Hangyu Zhu; Yaochu Jin; Kaitai Liang, FEVERLESS: Fast
and Secure Vertical Federated Learning based on XGBoost for Decentralized Labels, IEEE
Transactions on Big Data, 1–15, 2022.

3.6 Mitigating Backdoor Attacks in Federated Learning (FL) using
Frequency Analysis of the Local Model updates

Hossein Fereidooni (TU Darmstadt, DE) and Ahmad-Reza Sadeghi (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
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Joint work of Hossein Fereidooni, Alessandro Pegoraro, Phillip Rieger, Ahmad-Reza Sadeghi

Federated learning (FL) is a distributed machine learning technique enabling participating
clients to collaboratively learn a shared global model without sharing their potentially private
data. Despite its benefits (i.e., communication efficiency and reduced requirements for
hardware), federated learning has been shown to be vulnerable to adversarial threats such
as backdoor attacks where the adversary stealthily manipulates the global model so that
adversary-selected inputs result in adversary-selected outputs. Although there are multiple
defense mechanisms proposed by previous works, the backdoor attacks with sophisticated
hiding techniques still pose a threat to FL. Existing defense solutions cannot fully mitigate
backdoor attacks and have a number of deficiencies such as unrealistic assumptions for data
distributions and attack strategies. The core idea of this talk is that backdoored model
might be related to frequency analyses of neural networks. We are going to we investigate
a relationship between backdoor and frequency components of the model parameters (i.e.,
weights) that can be used for model filtering during the aggregation process in FL to implement
backdoor attack defense. More specifically, we set up the FL process and implement state-of-
the-art backdoor attacks (i.e., Semantic attack, Stealthy Model Poisoning, etc.) and then
transform tensor weights (i.e., local model updates) to the frequency domain and apply
frequency analysis (i.e., Discrete Cosine Transform – DCT) to find a relationship between
backdoor patterns and frequency components of the weights.

References
1 E. Bagdasaryan, Andreas Veit, Yiqing Hua, D. Estrin, and Vitaly Shmatikov. How to

backdoor federated learning. In AISTATS, 2020.
2 A. Bhagoji, Supriyo Chakraborty, Prateek Mittal, and S. Calo. Analyzing federated learning

through an adversarial lens. In ICML, 2019.
3 Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. Mitigating sybils in federated

learning poisoning. ArXiv, abs/1808.04866, 2018.
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4 Tianyu Gu, Brendan Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. ArXiv, abs/1708.06733, 2017.

5 Hongyi Wang, Kartik K. Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh
Agarwal, Jy yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails:
Yes, you really can backdoor federated learning. ArXiv, abs/2007.05084, 2020.

6 Chen Wu, Xiangwen Yang, Sencun Zhu, and P. Mitra. Mitigating backdoor attacks in
federated learning. ArXiv, abs/2011.01767, 2020.

7 Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural
network in frequency domain. ArXiv, abs/1807.01251, 2019.

8 Yi Zeng, Won Park, Z. M. Mao, and R. Jia. Rethinking the backdoor attacks’ triggers: A
frequency perspective. ArXiv, abs/2104.03413, 2021.

3.7 Neural Networks: predators and prey
Fatemeh Ganji (Worcester Polytechnic Institute, US)
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Main reference Rabin Yu Acharya, Fatemeh Ganji, Domenic Forte: “Information Theory-based Evolution of Neural

Networks for Side-channel Analysis”, IACR Trans. Cryptogr. Hardw. Embed. Syst., Vol. 2023(1),
pp. 401–437, 2023.

URL https://doi.org/10.46586/tches.v2023.i1.401-437
Main reference Mohammad Hashemi, Steffi Roy, Domenic Forte, Fatemeh Ganji: “HWGN2: Side-Channel Protected

NNs Through Secure and Private Function Evaluation”, in Proc. of the Security, Privacy, and
Applied Cryptography Engineering – 12th International Conference, SPACE 2022, Jaipur, India,
December 9-12, 2022, Proceedings, Lecture Notes in Computer Science, Vol. 13783, pp. 225–248,
Springer, 2022.

URL https://doi.org/10.1007/978-3-031-22829-2_13

This talk covers two main topics relevant to how neural networks (NNs) have become a
powerful tool to assess the security of cryptographic primitives and how NNs themselves have
been targeted to extract their assets. The first part of the talk is devoted to NN-enabled side-
channel analysis (SCA), in particular, profiled SCA that leverages leakage from cryptographic
implementations to extract the secret key. It is known that when combined with advanced
methods in NNs, profiled SCA can successfully attack even crypto-cores with protection
devised to impair the effectiveness of SCA. Similar to other machine learning tasks, a range
of questions have remained unanswered about NN-enabled SCA, namely: how to choose an
NN with an adequate configuration, how to tune the NN’s hyperparameters, when to stop the
training, etc. This talk introduces “InfoNEAT,” which tackles these issues in a natural way.
InfoNEAT relies on the concept of neural structure search (NAS), enhanced by information-
theoretic metrics to guide the evolution, halt it with novel stopping criteria, and improve
time-complexity and memory footprint. Besides the considerable advantages regarding
the automated configuration of NNs, InfoNEAT demonstrates significant improvements
over other approaches for effective key recovery in terms of the number of epochs and the
number of attack traces compared to both MLPs and CNNs, as well as a reduction in the
number of trainable parameters compared to MLPs. Furthermore, through experiments, it is
demonstrated that InfoNEAT’s models are robust against noise and desynchronization in
traces.

In the second part of the talk, SCA against NNs has been taken into account. In fact,
recent work has highlighted the risks of intellectual property (IP) piracy of deep learning (DL)
models from the side-channel leakage of DL hardware accelerators. In response, fundamental
cryptographic approaches, specifically built upon the notion of multi-party computation,
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could potentially improve the robustness against side-channel leakage. To examine this and
weigh the costs and benefits, we introduce hardware garbled NN (HWGN2), a DL hardware
accelerator implemented on FPGA. HWGN2 also provides NN designers with the flexibility to
protect their IP in real-time applications, where hardware resources are heavily constrained,
through a hardware-communication cost trade-off. Concretely, we apply garbled circuits,
implemented using a MIPS architecture that achieves up to 62.5× fewer logical and 66×
less memory utilization than the state-of-the-art approaches at the price of communication
overhead. Further, the side-channel resiliency of HWGN2 is demonstrated by employing the
test vector leakage assessment (TVLA) test against both power and electromagnetic side
channels.

3.8 AI for Cybersecurity: a taste of things to come... or papers of
future past?

Domagoj Jakobovic (University of Zagreb, HR)

License Creative Commons BY 4.0 International license
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Designing a secure system requires a lot of expertise in the security domain. In that process,
some of the tasks can be automated with the help of Artificial Intelligence (AI). The use
of AI methods does not aim to replace the human designer; rather, they can help in the
design optimization process, where standardized algorithms can be readily applied to increase
the efficiency. As long as a complex system design task can be decomposed into simpler
elements, AI methods can substantially facilitate the optimization of individual components.
Furthermore, most methods can be used to optimize an arbitrary (set of) design criteria.

However, although there are problems that can be efficiently solved with AI techniques,
it is not always obvious which AI technique or optimization algorithm should be applied. In
practice, a bit of knowledge in both domains is needed to select the appropriate method and
to efficiently apply it to the problem at hand. Even then, for many AI methods there are
no formal guarantees of efficiency, which is especially evident for obscure machine learning
models such as deep neural networks.

Ideally, the AI component should provide explainability, so the decision making process
can be justified at each step. We may even employ less efficient but explainable models to
evaluate obscure models which bring performance. There are use cases in which a part of
a black-box model may be replaced with an equivalent white-box component offering the
same level of performance. Additionally, different optimization algorithms may be used to
prune “fat” models, either to provide insight into their functionality or to reduce application
complexity. In this regard, neuroevolution methods may be used to design and optimize the
structure and hyperparameters of deep neural models.

The application of the above techniques can be found in model building efforts in various
domains; the usual goals are knowledge representation, model parameter optimization,
feature extraction and selection, etc. Some of the efficient examples of this paradigm are
already evident in cryptology and security where different AI techniques, most notably
evolutionary algorithms, have been applied. Here, the focus was mainly on the design of
different cryptography primitives, such as Boolean functions, S-boxes and pseudo-random
number generators. Successful applications also include fault injection, intrusion detection,
hyper-parameter optimization etc. Recently, evolutionary algorithm methods have also
been applied to fuzzing, where they obtained competitive performance in a target-based
comparison with commonly used solutions.
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3.9 Hardware Security and Deep Learning
Dirmanto Jap (Nanyang TU – Singapore, SG)
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In this presentation, we provided the discussion on two main direction on the area of hardware
security and deep learning (DL). First, we discussed about the use of feature extraction
or pre-processing techniques, which could help improving the performance of DL based
side-channel attacks (SCA). In most of the research works done, the main goal is towards
the direction of designing an efficient network that can provide the best attacks against
each side-channel trace dataset. On the other hand, little work has been done to investigate
the possibility of strengthening DL architecture with the capability of integrating existing
side-channel pre-processing or filtering techniques, which have been thoroughly investigated
over the past decades. As such, one of the aim is to minimize the necessity for architecture
adjustments while enabling seamlessly integration of pre-processing method for attack. In our
work, we propose to incorporate feature extraction and classification in a single framework
by using a multi-branch model. The experimental results indicated that the model can
perform better than the benchmark model even though it is not specifically tailored for the
dataset. These show that it is an inherent property of MCNN which allows it to learn more
feature representations and result in better attacks. As for the potential future direction, we
discussed the possibility of using other DL based approach as a way to further automate the
feature pre-processing method.

Next, we discussed about the vulnerability of DL implementation on physical device
against side-channel and fault attacks. Due to the rapid growth of DL application, more and
more efforts are being allocated to build and train critical DL models. These DL models
have then become valuable Intellectual Properties (IPs) that cost companies lots of time
and resources, which inadvertently attract malicious parties to steal them. We presented
the work on model extraction and reverse engineering of the neural networks model through
electromagnetic (EM) side-channel leakage. We also presented alternative work for reverse
engineering of neural network models through cold boot attacks. The work is then conducted
targeting edge AI hardware accelerators, Intel Neural Compute Stick 2 (NCS2). It is based
on the observation that the model architecture and parameters have to be loaded to Intel
NCS2 before the inference, and thus, by performing cold boot attack on host device, it is
possible to recover the information, albeit with correction required. As for potential future
direction, we proposed to investigate different target devices or more complex architectures.
We also discussed on possible countermeasures for the implementation as well as the security
evaluation of these countermeasures.
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3.10 AI for fault injection
Marina Krcek (TU Delft, NL)
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Fault injection types such as laser FI, electromagnetic FI, or voltage glitching have different
parameters to define. Nevertheless, the parameter search space becomes large for all types
because of many parameters and possibilities. Since the search space is large, commonly used
methods like grid and random search lead to suboptimal performance/results. We use AI
techniques discussed in this talk to improve the efficiency of the search. Specifically, genetic
and memetic algorithms from evolutionary computation were shown to find more parameter
combinations that lead to erroneous outputs compared to random search [1]. Additionally,
hyperparameter tuning methods like successive halving and reinforcement learning from the
machine learning domain were also shown to be quite successful [2, 3]. On the other hand,
machine learning can be helpful for transferability issues in fault injection. As discussed
during the talk, we can use prior knowledge from tested devices and parameter combinations
generalized with decision trees to find more vulnerabilities on a new target or bench in the
same amount of tested parameters.
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3.11 Assessing the Trustworthiness of AI Sytems
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Despite the topic of AI (cyber)security has received lots of academic and industrial attention
in recent years, these communities have started to realize the need for a holistic approach
related to this topic. We do not mean only from a system perspective, where the different
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implementation layers (e.g., cloud) also contribute to the security (and even to the attack
surface) of the AI-application, but also from equally important features like privacy, trans-
parency/explainability, bias, and safety (to name just a few). Extrapolating relevant security
research to this much needed holistic approach is critical for the uptake of trusted AI system.
This talk discusses some relevant industrial and regulation-related aspects on the field of
AI trustworthiness, along with few identified challenges which are being tackled from an
EU perspective. One of the main points relates to the need of developing a framework for
supporting the assessment of AI systems for cybersecurity certification purposes. The referred
framework should be able to leverage realistic levels of automation which can pave the road
for continuous (automated) certification. It is expected that such a framework might provide
support for accelerating the uptake of relevant standards and regulations like the EU AI Act.

3.12 Use cases of side-channel data analysis
Damien Marion (IRISA – Rennes, FR)
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Abstract. In this talk, we went through different use cases of side- channel analysis for
different security purposes. The first use case was the analysis of micro-architectural leakage,
in order to address the gap between leakage and unknown micro-architectures. The second
use case was the usage of electromagnetic leakage to classify and/or detect malware and
rootkits[1, 2]. Then the talk quickly tackled some problems of securing PQ-cryptography
from side-channel point of view. From a more general point of view, side-channel analysis
could be viewed as a subpart of data analysis for security. How to extract or quantify sensitive
information present in huge amounts of noise data, this where IA (or machine learning) can
solve existing issues.
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3.13 New Directions in AI-Based Cryptography
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In this talk, we give a general overview of AI methods and computational models to design
cryptographic primitives. These include the use of bio-inspired optimization techniques
(particularly evolutionary algorithms) to construct symmetric primitives with good crypto-
graphic properties, like Boolean functions and S-boxes. The approach leverages also on the
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use of AI computational models like Cellular Automata (CA) as an efficient representation
technique for such primitives. In the second part of the talk, new directions of research are
illustrated based on the experience gained with regard to the above AI methods and models.
In particular, we focus on the use of evolutionary algorithms to design algebraic constructions
of symmetric primitives, to evolve differential distinguishers for small symmetric ciphers,
and to explore the space of adversarial examples in machine learning models. Particular
emphasis is given to the inherent interpretability and explainability of the solutions provided
by evolutionary algorithms, specifically in the case of Genetic Programming (GP).

3.14 High-throughput network intrusion detection based on deep
learning

Nele Mentens (Leiden University, NL)
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The evolution of our digital society relies on networks that can handle an increasing amount of
data, exchanged by an increasing number of connected devices at an increasing communication
speed. With the growth of the online world, criminal activities also extend onto the Internet.
Network Intrusion Detection Systems (NIDSs) detect malicious activities by analyzing network
data. While neural network-based solutions can effectively detect various attacks in an offline
setting, it is not straightforward to deploy them in high-bandwidth online systems. This talk
elucidates why Field-Programmable Gate Arrays (FPGAs) are the preferred platforms for
online network intrusion detection, and which challenges need to be overcome to develop
FPGA-based NIDSs for Terabit Ethernet networks.

3.15 Fuzz testing with machine learning
Irina Nicolae (Robert Bosch GmbH, Bosch Center for AI – Stuttgart, DE)
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Fuzzing – testing software and hardware with randomly generated inputs – has gained
significant traction due to its success in exposing program vulnerabilities automatically.
Machine learning has increasingly been applied to different parts of the fuzzing loop, with
the goal of improving fuzzing efficiency. In this talk, we examine neural program smoothing
for fuzzing, a family of methods that approximate the tested program with a neural network
for novel test case generation. We uncover fundamental and practical limitations of neural
program smoothing, which prevent it from reaching its advertised performance and limit its
practical interest.
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3.16 Explainability of deep learning-based side-channel analysis
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Deep learning-based side-channel analysis is an extremely powerful option as it can work
without feature engineering and defeats various hiding and masking countermeasures. Still,
from the evaluator’s perspective, even after a successful evaluation (attack), a crucial detail
is missing: how did the neural network break the target? Thus, the explainability of deep
learning-based side-channel analysis becomes an important issue. Unfortunately, up to now,
there are only sporadic attempts to understand how neural network defeats countermeasures
and none that gives the complete answer. Some early explored techniques include SVCCA [1]
and ablation [2]. While good first steps, these techniques do not provide enough information
to understand how countermeasures are circumvented. This talk concentrated on a recent
approach to explaining the deep learning-based side-channel attack: layer-wise explainability
and its comparative advantages over previous approaches.
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3.17 Engineering Models versus Scientific Models
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Cybersecurity implementations, in hardware or software, are created from engineering models,
not from scientific models. Scientific models reflect the laws of nature in formulae, while
engineering models aim at the opposite: we use the laws of nature to mimic an abstraction.

The observations of secure implementations in the real world are noisy distortions from
the ideal, noiseless engineering models. However, we know that the ground truth corresponds
to the engineering model, which is noiseless and undistorted.

This has an important consequence on machine learning applications. We can use
simulation (of engineering models) to create a ground truth to improve inference on measured,
distorted implementation. For example, using simulated data, we can build attacks on real-
world systems that outperform real-world measurements [1].
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3.18 Remote Electrical-Level Attacks on Cloud FPGAs: The Role of AI
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Field-programmable gate arrays (FPGAs) have made their way into the cloud, allowing users
to gain remote access to the state-of-the-art reconfigurable fabric and implement their custom
accelerators. As FPGAs are large enough to accommodate multiple independent designs, the
multi-tenant user scenario may soon be prevalent in cloud computing environments. However,
shared FPGAs are vulnerable to remote power-side channel and fault-injection attacks [1, 3, 4].
Machine learning (ML) further broadens the attack space: (1) ML accelerators may be the
targets of remote attacks, (2) ML techniques can be used to infer the type of workloads or
the computations the FPGA is running [2], and (3) ML can help detecting malicious circuits
in FPGA bitstreams. This talk has two parts: In the first, the techniques enabling remote
electrical-level attacks on cloud FPGAs are explained. In the second, the opportunities for
using ML for detecting and locating malicious activity, or for guiding the cloud hypervisors
in managing the FPGA users in a security-aware manner are discussed.
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3.19 AI-Assisted System-level Tamper Detection
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To mount physical attacks adversaries might need to place probes in the proximity of the
integrated circuits (ICs) package, create physical connections between their probes/wires
and the system’s PCB, or physically tamper with the PCB’s components, chip’s package,
or substitute the entire PCB to prepare the device for the attack. In this talk, inspired
by methods known from the field of power integrity analysis, we show how the impedance
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characterization of the system’s power distribution network (PDN) using an on-chip circuit-
based network analyzer can detect various categories of tamper events. By analyzing the
frequency response of the system different classes of tamper events from board to chip level
are revealed. Using the Wasserstein Distance as a metric, we demonstrate that we can
confidently detect tamper events. We demonstrate that even environment-level tampering
activities, e.g., proximity of contactless EM probes to the IC package or slightly polished IC
package, can be detected using on-chip impedance sensing.

3.20 Peek into the Black-Box: Interpretable Neural Network using SAT
Equations in Side-Channel Analysis

Trevor Yap (Nanyang TU – Singapore, SG)
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Deep neural networks (DNN) have become a significant threat to the security of cryptographic
implementations with regards to side-channel analysis (SCA), as they automatically combine
the leakages without any preprocessing needed, leading to a more efficient attack. However,
these DNNs for SCA remain mostly black-box algorithms that are very difficult to interpret.
Benamira et al. recently proposed an interpretable neural network called Truth Table Deep
Convolutional Neural Network (TT-DCNN), which is both expressive and easier to interpret.
In particular, a TT-DCNN has a transparent inner structure that can entirely be transformed
into SAT equations after training. This talk gives a brief outline of why we need explainability,
and on what TT-DCNN is. The talk also presented a way to analyse the SAT equations of
TT-DCNN and show some results. Furthermore, we give a possible direction to analyse this
paper.

4 Working Groups

4.1 Explainability of AI in Cybersecurity
Stjepan Picek (Radboud University, NL)
Nele Mentens (Leiden University, NL)
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The explainability of AI in cybersecurity represents an important problem since often, it is
not sufficient to only have a successful solution. Still, we also must explain why that solution
works. For instance, in side-channel analysis, from the perspective of a security evaluator, it
is important to know how secure a target is. But, if the target gets broken, a necessary step
is to report back to the implementation designers and explain what went wrong (e.g., how a
countermeasure got broken). Unfortunately, while deep learning can break various targets,
the explainability part is still very much unexplored and vague [6, 4, 7]. For instance, in
deep learning-based side-channel analysis, the state-of-the-art approaches can easily break
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implementations protected with various countermeasures (masking, hiding, or a combination
of masking and hiding). At the same time, understanding why the attack works is based
on intuition or general terms from the machine learning domain, e.g., desynchronization is
defeated due to the spatial invariance of convolutional neural networks.

Furthermore, deep learning has recently been shown to be a very powerful option in
mounting cryptanalysis attacks where the neural networks serve as distinguishers. More
precisely, the differential-neural distinguishers are based on distinguishing ciphertext-pairs
that belong to a fixed plaintext difference from random ones. While the approach works well,
and for several ciphers, the researchers managed to find attacks that are at least competitive
with classical approaches. Unfortunately, even after the successful attack, the question
remains why the attack works and how to fix the cipher to make it more secure. Works
addressing such issues are sparse and far from conclusive [2, 1, 3, 5].

The discussion centered on two questions we consider at the core of explainability.
Finally, the discussion from this group was also connected with other discussion groups since
explainability is of relevance whenever applying AI in cybersecurity.

Why?
To improve the model: more efficient implementation, more powerful in solving the
intended task (e.g., getting the key, increasing the performance metrics, lowering the
number of false alarms), more efficient test cases for fuzzing.
To improve the security of the implementation against attacks (e.g., SCA, crypto):
understand the vulnerabilities of the implementation under attack, fix the implementa-
tion based on the position of the leakage, and fix the countermeasure based on the
discovered vulnerabilities.
To improve trust in the model: important in intrusion detection systems, lower the
number of false positives and false negatives, enable application in online systems.
To contribute to the security of AI: discover which parts are weak against backdoors,
etc.

How?
Understand the features:
∗ Feature visualization: activation maximization, code inversion.
∗ Feature attributions: LIME, occlusion, delivery maps, Shapley values.
∗ Rule extraction: DeepRed, scalability challenges (data, model).
Understand the neural network:
∗ ablation.
∗ SVCCA.
∗ layer-wise explainability for side-channel analysis.
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Implementation attacks aim at the weaknesses of the implementation and not the algorithm.
The most common options for implementation attacks are side-channel attacks and fault
injection attacks. In both domains, AI is used extensively. In side-channel attacks, it is
common to use machine learning in the profiling attack scenario. There, the attacker has a
copy of the device to be attacked under control and uses it to build a model of a device. Later,
the model is used to attack the target and obtain secret information. Machine learning attacks
in such a setup have been used for over a decade and show excellent attack performance.
More recent results with deep learning provide even better attack performance against targets
protected with countermeasures and with no need to conduct feature engineering [3]. Still,
multiple open issues need to be resolved. For instance, the attacks assume that the attacker
has access to a copy of a device to be attacked, which is often not a realistic assumption. As
such, one of the big challenges to be solved is how to mount non-profiling deep learning-based
attacks [2]. Next, leakage assessment is important as it provides the first information on
whether the target has secure implementation or if there is some leakage. The results
with deep learning are promising but sparse [4]. Mounting an attack once the device is
produced is a common setup but results in large expenses for manufacturers once security
vulnerabilities are detected. As such, it is important to understand whether we can use
various simulation-based approaches and techniques to construct synthetic measurements
to assess the security of devices even before they are produced [5, 8]. Finally, as previously
discussed, the explainability perspective is important for side-channel attacks. While most of
the AI-based approaches for side-channel analysis use machine (deep) learning, there are also
some efforts in feature engineering or hyperparameter tuning [1, 7]. More open challenges
discussed during the workshop can be found in [6].

On the other hand, in fault injection, AI is mostly used to allow fast characterization of
the target (cartography). In that context, various evolutionary and local search algorithms
are used [11, 9]. More recently, deep learning is also used to predict if a point on a target will
result in a faulty response [10]. We identified the research gaps in making the approaches
more stable and maintaining the balance between exploring various regions of the target and
fast convergence to a region with many faulty responses. Finally, research rarely explores
how to use the located faults in mounting the attacks (which could help understand if all
located faults are equally important).

Finally, implementation attacks can be used to attack machine learning, connecting this
topic with the security of AI [12, 13].
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Vulnerabilities caused by programming errors are a major threat to today’s programs. For
instance, memory corruption vulnerabilities can lead to uncontrolled behavior in the program,
which attackers can often abuse. A modern strategy to uncover such programming errors is
automated software testing using fuzz testing (fuzzing). Fuzzing automatically generates
inputs from testcases and feeds them to the program under test while monitoring it. If a
programming error has been reached, the fuzzer notices that the program hangs or crashes.
Mutational fuzzing requires a set of program inputs (seeds) that can be obtained from
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testcases or real inputs. The process of mutation can be influenced by 1) the location in
the input that gets mutated and 2) the mutation that is applied, with the selection done
randomly or guided by a heuristic. A common option is to use evolutionary algorithms for
such goals [1]. While the approach works well, there are issues. Due to a wide number of
available evolutionary algorithms, selecting what algorithm to use and how to customize it
for the task is not trivial. Moreover, since evolutionary algorithms are guided through an
objective function, appropriate evaluations should be done. Machine learning is also used in
fuzzing for various tasks like seed file generation, testcase generation, or mutation operator
selection [2]. It is important to understand whether evolutionary algorithms or machine
learning produce better results for tasks that can be achieved by both (e.g., mutation operator
selection) and in what scenarios to select a specific AI technique. For instance, finding the
states in stateful fuzzing is not easy, and machine learning could be used for this task.
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Machine (deep) learning found its place in various real-world applications, where many
applications have security requirements. Unfortunately, as these systems become more
pervasive, understanding how they fail becomes more challenging. There are several failure
modes in machine learning, but one category received significant attention in the last few
years: backdoor attacks. Backdoor attacks aim to make a model misclassify some of its
inputs to a preset-specific label while other classification results behave normally. This
misclassification is activated when a specific property is included in the model input. This
property is called the trigger and can be anything the targeted model understands. Deep
learning is evaluated in either a centralized or distributed setting. While the centralized
one is simpler, it poses privacy concerns due to the need to have the training data available
(and, for instance, shared in the case of online training). Then, a common option is to use
federated learning as a distributed learning paradigm that works on isolated data. In federated
learning, clients can collaboratively train a shared global model under the orchestration
of a central server while keeping the data decentralized. Multiple backdoor attacks and
defenses exist on machine learning systems (centralized and distributed) and for diverse
data types: computer vision (e.g., images, video), sound, text, and graph data. While many
observations can be transferred from one setup to another, unique characteristics also require
detailed experimentalism [1, 2]. We need more systematic evaluations of diverse attack
factors in different domains and with larger (more realistic) datasets and neural network
models. Finally, more effort must be given to designing powerful, transferable, and efficient
defenses [4, 3].
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