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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22461 “Dynamic
Graph Algorithms”, which took place from November 13 to November 18, 2022.

The field of dynamic graph algorithms studies algorithms for processing graphs that are
changing over time. Formally, the goal is to process an interleaved sequence of update and query
operations, where an update operation changes the input graph (e.g. inserts/deletes an edge),
while the query operation is problem-specific and asks for some information about the current
graph – for example, an s-t path, or a minimum spanning tree. The field has evolved rapidly
over the past decade, and this Dagstuhl Seminar brought together leading researchers in dynamic
algorithms and related areas of graph algorithms.
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1 Executive Summary
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The field of dynamic graph algorithms has evolved rapidly over the past decade. New
techniques, new problems, new lower bounds, and new approaches have yielded an extremely
fruitful research environment. This seminar provided a venue for the community to establish
the main challenges that remain and to actively shape the direction of the field going forward.

The seminar brought together the leading researchers and “rising stars” of the field as
well as experts in “neighboring” areas such as distributed algorithms, parallel algorithms,
streaming algorithms, online algorithms, approximation algorithms, data structures, fine-
grained and parameterized complexity, and optimization. Many participants were also actively
researching algorithms engineering for dynamic graph problems, which added interesting
perspectives on the prevalent theory-practice gap and fundamental methodological challenges.
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Several participants gave talks that were highlighting “cutting-edge” advances in the field,
including results that very recently appeared in top theory venues such as STOC, FOCS
and SODA (and in some cases won the best paper award). Some participants explored
connections to other related areas in algorithms research such as distributed and streaming
algorithms or differential privacy. Many of the talks also included suggestions on future
directions and highlighted the main challenges in the area.

In two open problem sessions, the participants explicitly identified several central open
problems that continue to resist progress. We hope that the resulting list of open problems
will be a valuable resource for future research in this field.

During and after the sessions, attendees participated in vibrant discussions. Such
interactions enhanced the overall experience and made a clear distinction to a traditional
conference-like format. In addition to the research activities, there were many social activities
(such as board games, poker, music night, hiking, and ping pong) that made the workshop also
a great networking opportunity, in particular for the relatively large fraction of participants
who were first-time visitors to Schloss Dagstuhl.
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3 Overview of Talks

3.1 Dynamic Distributed Subgraph Finding
Keren Censor-Hillel (Technion – Haifa, IL)
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© Keren Censor-Hillel

This talk is a discussion on exciting recent progress in distributed subgraph finding (static
and dynamic) and describing some of the many intriguing open questions.

3.2 Stronger 3-SUM Lower Bounds for Approximate Distance Oracles
via Additive Combinatorics

Nick Fischer (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Nick Fischer

Joint work of Amir Abboud, Karl Bringmann, Nick Fischer
Main reference Amir Abboud, Karl Bringmann, Nick Fischer: “Stronger 3-SUM Lower Bounds for Approximate

Distance Oracles via Additive Combinatorics”, CoRR, Vol. abs/2211.07058, 2022.
URL https://doi.org/10.48550/arXiv.2211.07058

In this work we prove conditional lower bounds against approximate distance oracles in static
and dynamic settings. The seminal Thorup-Zwick distance oracles achieve stretch 2k ± O(1)
after preprocessing a graph in O(mn1/k) time. For the same stretch, and assuming the query
time is no(1), Abboud, Bringmann, Khoury and Zamir (STOC ’22) proved an Ω(m1+ 1

12.7552·k )
lower bound on the preprocessing time; we improve it to Ω(m1+1/2k) which is only a factor 2
away from the upper bound. Additionally, we obtain tight bounds for stretch 3 − ϵ and
higher lower bounds for dynamic shortest paths.

3.3 Deterministic Incremental APSP with Polylogarithmic Update Time
and Stretch

Sebastian Forster (Universität Salzburg, AT)
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Joint work of Sebastian Forster, Yasamin Nazari, Maximilian Probst Gutenberg
Main reference Sebastian Forster, Yasamin Nazari, Maximilian Probst Gutenberg: “Deterministic Incremental APSP

with Polylogarithmic Update Time and Stretch”, CoRR, Vol. abs/2211.04217, 2022.
URL https://doi.org/10.48550/arXiv.2211.04217

We provide the first deterministic data structure that given a weighted undirected graph
undergoing edge insertions, processes each update with polylogarithmic amortized update
time and answers queries for the distance between any pair of vertices in the current graph
with a polylogarithmic approximation in O(log log n) time.

Prior to this work, no data structure was known for partially dynamic graphs, i.e., graphs
undergoing either edge insertions or deletions, with less than no(1) update time except for
dense graphs, even when allowing randomization against oblivious adversaries or considering
only single-source distances.
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3.4 Incremental Approximate Maximum Flow in m1/2+o(1)pdate time
Gramoz Goranci (ETH Zürich, CH)
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Joint work of Gramoz Goranci, Monika Henzinger
Main reference Gramoz Goranci, Monika Henzinger: “Incremental Approximate Maximum Flow in m1/2+o(1)

update time”, CoRR, Vol. abs/2211.09606, 2022.
URL https://doi.org/10.48550/arXiv.2211.09606

We show a (1 + ϵ)-approximation algorithm for maintaining maximum s-t flow under m edge
insertions in m1/2+o(1)ϵ−1/2 amortized update time for directed, unweighted graphs. This
constitutes the first sublinear dynamic maximum flow algorithm in general sparse graphs
with arbitrarily good approximation guarantee.

3.5 Fully Dynamic Graph Algorithms in Practice: (Some) Lessons
Learned

Kathrin Hanauer (Universität Wien, AT)

License Creative Commons BY 4.0 International license
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Joint work of Kathrin Hanauer, Monika Henzinger, Christian Schulz, Leonhard Paul Sidl
Main reference Kathrin Hanauer, Monika Henzinger, Christian Schulz: “Fully Dynamic Single-Source Reachability

in Practice: An Experimental Study”, in Proc. of the Symposium on Algorithm Engineering and
Experiments, ALENEX 2020, Salt Lake City, UT, USA, January 5-6, 2020, pp. 106–119, SIAM, 2020.

URL https://doi.org/10.1137/1.9781611976007.9

Fully dynamic graph algorithms have received growing attention in experimental work
recently, though still by far not as much as they have in theory. In this talk, we will consider
different approaches to maintain reachability information in a graph as it undergoes a series
of insertions and deletions and analyze their behavior in practice on different types of fully
dynamic instances.

The study of fully dynamic algorithms in practice is complicated by a lack of real-world,
“real-dynamic” instances that are available publicly. In this talk will take a closer look at how
the characteristics of an update sequence can influence the behavior of dynamic algorithms
for reachability and subgraph counting and also review different approaches that are currently
in use to overcome the shortage in fully dynamic instances in practice.

The talk concludes with a summary of lessons learned when engineering specifically
dynamic graph algorithms.
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3.6 Strongly polynomial dynamic algorithms for minimum-weight cycle
and related problems

Adam Karczmarz (University of Warsaw, PL & and IDEAS NCBR – Warsaw, PL)

License Creative Commons BY 4.0 International license
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Main reference Adam Karczmarz: “Fully Dynamic Algorithms for Minimum Weight Cycle and Related Problems”,
in Proc. of the 48th International Colloquium on Automata, Languages, and Programming, ICALP
2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), LIPIcs, Vol. 198, pp. 83:1–83:20,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

URL https://doi.org/10.4230/LIPIcs.ICALP.2021.83

A relatively small portion of the known dynamic algorithms for shortest paths and related
problems have strongly polynomial update bounds. This means, roughly speaking, that in
most cases the update bounds either do not hold for real-weighted graphs or depend on
the magnitude of the graph’s weights. One notable exception is the fully dynamic APSP
algorithm of Demetrescu and Italiano [J.ACM’04].

In this talk, we will consider maintaining negative/minimum-weight/minimum-mean cycles
in dynamic real-weighted digraphs. The best-known static strongly polynomial algorithms
for these classical problems run in O(nm) time. For some of these problems, non-trivial
strongly polynomial update bounds can be obtained. For others, we will try to identify some
challenges.

3.7 Dynamic Algorithms for Packing-Covering LPs via Multiplicative
Weight Updates

Peter Kiss (University of Warwick – Coventry, GB)

License Creative Commons BY 4.0 International license
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Joint work of Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak
Main reference Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak: “Dynamic Algorithms for

Packing-Covering LPs via Multiplicative Weight Updates”, CoRR, Vol. abs/2207.07519, 2022.
URL https://doi.org/10.48550/arXiv.2207.07519

In the dynamic linear program (LP) problem, we are given an LP undergoing updates and
we need to maintain an approximately optimal solution. Recently, significant attention
(e.g., [Gupta et al. STOC’17; Arar et al. ICALP’18, Wajc STOC’20]) has been devoted
to the study of special cases of dynamic packing and covering LPs, such as the dynamic
fractional matching and set cover problems. But until now, there is no non-trivial dynamic
algorithm for general packing and covering LPs. In this work, we settle the complexity of
dynamic packing and covering LPs, up to a polylogarithmic factor in update time. More
precisely, in the partially dynamic setting (where updates can either only relax or only
restrict the feasible region), we give near-optimal deterministic ϵ-approximation algorithms
with polylogarithmic amortized update time. Then, we show that both partially dynamic
updates and amortized update time are necessary; without any of these conditions, the
trivial algorithm that recomputes the solution from scratch after every update is essentially
the best possible, assuming SETH. To obtain our results, we initiate a systematic study of
the multiplicative weights update (MWU) method in the dynamic setting. As by-products
of our techniques, we also obtain the first online (1 + ϵ)-competitive algorithms for both
covering and packing LPs with polylogarithmic recourse, and the first streaming algorithms
for covering and packing LPs with linear space and polylogarithmic passes.
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3.8 Balanced Allocations: The Heavy Case With Deletions
William Kuszmaul (MIT – Cambridge, US)

License Creative Commons BY 4.0 International license
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Joint work of Nikhil Bansal, William Kuszmaul
Main reference Nikhil Bansal, William Kuszmaul: “Balanced Allocations: The Heavily Loaded Case with Deletions”,

CoRR, Vol. abs/2205.06558, 2022.
URL https://doi.org/10.48550/arXiv.2205.06558

In the 2-choice allocation problem, m balls are placed into n bins, and each ball must choose
between two random bins i, j ∈ [n] that it has been assigned to. It has been known for more
than two decades, that if each ball follows the Greedy strategy (i.e., always pick the less-full
bin), then the maximum load will be m/n + O(log log n) with high probability in n (and
m/n + O(log m) with high probability in m). It has remained an open question whether the
same bounds hold in the dynamic version of the same game, where balls are inserted/deleted
with no more than m balls present at a time.

We show that, somewhat surprisingly, these bounds do not hold in the dynamic setting:
already on 4 bins, there exists a sequence of insertions/deletions that cause the Greedy
strategy to incur a maximum load of m/4 + Ω(

√
m) with probability Ω(1), This raises the

question of whether any 2-choice allocation strategy can offer a strong bound in the dynamic
setting. Our second result answers this question in the affirmative: we present a new strategy,
called ModulatedGreedy, that guarantees a maximum load of m/n + O(log m), at any
given moment, with high probability in m.

3.9 Optimal Decremental Connectivity in Non-Sparse Graphs
Jakub Łącki (Google – New York, US)

License Creative Commons BY 4.0 International license
© Jakub Łącki

Joint work of Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen, Mikkel
Thorup

Main reference Anders Aamand, Adam Karczmarz, Jakub Lacki, Nikos Parotsidis, Peter M. R. Rasmussen, Mikkel
Thorup: “Optimal Decremental Connectivity in Non-Sparse Graphs”, CoRR, Vol. abs/2111.09376,
2021.

URL https://arxiv.org/abs/2111.09376

We show an algorithm for decremental maintenance of connected components and 2-edge
connected components , which handles any sequence of edge deletions in O(m + npolylogn)
time and answers queries in constant time. This talk focuses on three ideas behind this result:
a new sparse connectivity certificate, which can be updated dynamically, a new way of using
the XOR-trick, which allows one detect small cuts, and a self-check technique, which allows
us to obtain a Las Vegas randomized algorithm based on a Monte Carlo data structure.
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3.10 Online Routing and Network Design with Predictions
Nicole Megow (Universität Bremen, DE)

License Creative Commons BY 4.0 International license
© Nicole Megow

Joint work of Nicole Megow, Giulia Bernardini, Alexander Lindermayr, Alberto Marchetti-Spaccamela, Leen
Stougie, Michelle Sweering

Online optimization refers to solving problems where an initially unknown input is revealed
incrementally, and irrevocable decisions must be made not knowing future requests. The
assumption of not having any prior knowledge about future requests seems overly pessimistic.
Given the success of machine-learning methods and data-driven applications, one may expect
to have access to predictions about future requests. However, simply trusting them might
lead to very poor solutions as these predictions come with no quality guarantee. In this talk
we present recent developments in the young line of research that integrates such error-prone
predictions into algorithm design to break through worst case barriers. We discuss algorithmic
challenges with a focus on online routing and network design and present algorithms with
performance guarantees depending on a novel error metric.

3.11 Deterministic Fully Dynamic Distance Approximation
Yasamin Nazari (Universität Salzburg, AT)

License Creative Commons BY 4.0 International license
© Yasamin Nazari

Joint work of Jan van den Brand, Sebastian Forster, Yasamin Nazari
Main reference Jan van den Brand, Sebastian Forster, Yasamin Nazari: “Fast Deterministic Fully Dynamic Distance

Approximation”, CoRR, Vol. abs/2111.03361, 2021.
URL https://arxiv.org/abs/2111.03361

The first part of the talk focuses on our deterministic fully dynamic algorithms for computing
approximate distances in a graph. Specifically, we are given an unweighted and undirected
graph G = (V, E) undergoing edge insertions and deletions, and a parameter 0 < ϵ ≤ 1, and
our goal is to maintain (1 + ϵ)-approximate distances between a single pair (st distance), a
single source to all nodes (SSSP), or all pairs (APSP). We discuss how combinatorial tools
such as emulators can be combined with algebraic data structures to obtain deterministic
algorithms with improved worst-case guarantees for these problems.

The second part of the talk focuses on future directions for obtaining improved fully
dynamic algorithms for weighted or directed graphs. We explore possible candidate com-
binatorial structures that could be used and the challenges in maintaining them in the fully
dynamic settings.
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3.12 Scalable dynamic graph processing with low latency: insights and
challenges

Nikos Parotsidis (Google Research – Zürich, CH)

License Creative Commons BY 4.0 International license
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In this talk we discuss insights from the development of a scalable system for processing
dynamic graph algorithms with low latency inside Google. We discuss applications, require-
ments, and challenges that arise in such a real-world system. The three challenges that
we discuss are 1) how to maintain a solution that does not change very drastically during
the execution of the algorithm, 2) how to process a graph in a distributed and dynamic
fashion; which is mandated by the scale of the data, and 3) how to process a large volume of
concurrent updates, each within low latency. These challenges naturally lead us in exploring
new models (and evaluating the suitability of existing models) for tackling them.

3.13 A Blackbox Reduction for Adaptive Adversaries using Differential
Privacy

Thatchaphol Saranurak (University of Michigan – Ann Arbor, US)

License Creative Commons BY 4.0 International license
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Main reference Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak, Uri Stemmer:
“Dynamic Algorithms Against an Adaptive Adversary: Generic Constructions and Lower Bounds”,
CoRR, Vol. abs/2111.03980, 2021.

URL https://arxiv.org/abs/2111.03980

This talk is a tutorial on how to use differential privacy to obtain a black-box reduction that
can transform any dynamic algorithm for any estimation problem that works against an
oblivious adversary to another algorithm against an adaptive adversary.

3.14 Recent Results in Engineering Dynamic Graph Algorithms
Christian Schulz (Universität Heidelberg, DE)

License Creative Commons BY 4.0 International license
© Christian Schulz

In recent years, significant advances have been made in the design and analysis of fully
dynamic algorithms. However, these theoretical results have received very little attention
from the practical perspective. Few of the algorithms are implemented and tested on real
datasets, and their practical potential is far from understood. In this talk, we give a brief
overview of results in engineering dynamic graph algorithms that we achieved recently.
To this end, we give a high level overview of dynamic algorithms and their performance
for (hyper) graph (b-)matching, independent sets, edge-orientation, reachability as well as
k-center clustering and minimum cuts.
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3.15 Queuing Safely for Elevator Systems Amidst a Pandemic
Clifford Stein (Columbia University, US)
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Joint work of Sai Mali Ananthanarayanan, Charles C. Branas, Adam Elmachtoub, Clifford Stein, Yeqing Zhou
Main reference Sai Mali Ananthanarayanan, Charles C. Branas, Adam Elmachtoub, Clifford Stein, Yeqing Zhou:

“Queuing Safely for Elevator Systems Amidst a Pandemic” (December 21, 2020). Production and
Operations Management, 00 1– 18. Available at SSRN.

URL https://doi.org/10.1111/poms.13686

The requirement of social distancing during the COVID-19 pandemic has presented significant
challenges for high-rise buildings, which heavily rely on elevators for vertical transportation.
In particular, the need for social distancing has reduced elevator capacity typically by at
least two-thirds or as much as over 90% the normal amount. This reduction is a serious
concern, as reduced elevator capacities cause large queues to build up in lobbies, which
makes social distancing difficult and results in large wait times. The objective of this study
is to safely manage the elevator queues by proposing simple, technology-free interventions
that drastically reduce the waiting time and length of lobby queues. We use mathematical
modeling, epidemiological expertise, and simulation to design and evaluate our interventions.
The key idea is to explicitly or implicitly group passengers that are going to the same floor
into the same elevator as much as possible. In the Cohorting intervention, we attempt to find
passengers going to the same floor as the first person in the queue. In the Queue Splitting
intervention, we create a different queue for different groups of floors. Based on simulation
and analytical findings, Cohorting and Queue Splitting can significantly reduce queue length
and wait time, while also maintaining safety from viral transmission in otherwise crowded
elevators, building lobbies, and entrances. These interventions are generally accessible for
many buildings since they do not require programming the elevators, and rely on only using
signage and/or a queue manager to guide passengers.

3.16 Dynamic Graph Sketching: To Infinity And Beyond
David Tench (Rutgers University – Piscataway, US)
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Joint work of David Tench, Evan West, Victor Zhang, Michael A. Bender, Abiyaz Chowdhury, J. Ahmed Dellas,
Martin Farach-Colton, Tyler Seip, Kenny Zhang

Main reference David Tench, Evan West, Victor Zhang, Michael A. Bender, Abiyaz Chowdhury, J. Ahmed Dellas,
Martin Farach-Colton, Tyler Seip, Kenny Zhang: “GraphZeppelin: Storage-Friendly Sketching for
Connected Components on Dynamic Graph Streams”, in Proc. of the SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 – 17, 2022, pp. 325–339, ACM,
2022.

URL https://doi.org/10.1145/3514221.3526146

Existing graph stream processing systems must store the graph explicitly in RAM which
limits the scale of graphs they can process. The graph semi-streaming literature offers
algorithms which avoid this limitation via linear sketching data structures that use small
(sublinear) space, but these algorithms have not seen use in practice to date.This talk
explores what is needed to make graph sketching algorithms practically useful, and as a
case study present a sketching algorithm for connected components and a corresponding
high-performance implementation. Finally, we give an overview of the many open problems
in this area, focusing on improving query performance of graph sketching algorithms.
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3.17 Dynamic Matching with Better-than-2 Approximation in
Polylogarithmic Update Time

David Wajc (Stanford University, US)
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Joint work of Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, David Wajc
Main reference Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, David Wajc: “Dynamic Matching with

Better-than-2 Approximation in Polylogarithmic Update Time”, CoRR, Vol. abs/2207.07438, 2022.
URL https://doi.org/10.48550/arXiv.2207.07438

We present dynamic algorithms with polylog update time for the value version of the dynamic
matching problem with approximation ratio strictly better than 2. Specifically, we obtain a
1 + 1/

√
2 + ϵ ≈ 1.707 + ϵ approximation in bipartite graphs and a 1.973 + ϵ approximation in

general graphs.

3.18 Dynamic Distance Oracles in Planar Graphs
Oren Weimann (University of Haifa, IL)

License Creative Commons BY 4.0 International license
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A distance oracle is a data structure for answering distance queries on a graph. While on
general graphs efficient distance oracles must settle for approximate answers, on planar
graphs recent progress has lead to exact oracles with almost linear space and polylogarithmic
query time (i.e. almost optimal). However, in the dynamic setting (when the underlying
graph is subject to updates) there has been no significant progress in recent years. The
state of the art is an exact oracle from more than 20 years ago that given a planar graph
supports both updates and queries in Õ(n2/3) time. On the lower-bound side, conditioned
on the APSP hypothesis, in any dynamic exact distance oracle (in fact, even in the offline
setting) either the update or the query must take Ω(n1/2) time, leaving an intriguing gap. For
approximate distances, the currently fastest oracle requires Õ(n1/2) time for both updates
and queries (and there is no known lower bound), and in the offline setting there is an almost
optimal solution with polylogarithmic time for both updates and queries. In this talk we will
describe these upper and lower bounds (for exact distances), the tight connections in planar
graphs between distance oracles and maximum-flow (or minimum-cut) oracles, concrete open
problems, and possible directions for solving them.

3.19 Optimal resizable arrays
Uri Zwick (Tel Aviv University, IL)
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Joint work of Robert E. Tarjan, Uri Zwick
Main reference Robert E. Tarjan, Uri Zwick: “Optimal resizable arrays”, CoRR, Vol. abs/2211.11009, 2022.

URL https://doi.org/10.48550/arXiv.2211.11009

A resizable array is an array that can grow and shrink by the addition or removal of items
from its end, or both its ends, while still supporting constant-time access to each item
stored in the array given its index. Since the size of an array, i.e., the number of items
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in it, varies over time, space-efficient maintenance of a resizable array requires dynamic
memory management. A standard doubling technique allows the maintenance of an array
of size N using only O(N) space, with O(1) amortized time, or even O(1) worst-case time,
per operation. Sitarski and Brodnik et al. describe much better solutions that maintain a
resizable array of size N using only N + O(

√
N) space, still with O(1) time per operation.

Brodnik et al. give a simple proof that this is best possible.
We distinguish between the space needed for storing a resizable array, and accessing its

items, and the temporary space that may be needed while growing or shrinking the array. For
every integer r ≥ 2, we show that N + O(N1/r) space is sufficient for storing and accessing
an array of size N , if N + O(N1−1/r) space can be used briefly during grow and shrink
operations. Accessing an item by index takes O(1) worst-case time while grow and shrink
operations take O(r) amortized time. Using an exact analysis of a growth game, we show
that for any data structure from a wide class of data structures that uses only N + O(N1/r)
space to store the array, the amortized cost of grow is Ω(r), even if only grow and access
operations are allowed. The time for grow and shrink operations cannot be made worst-case,
unless r = 2.

4 Open problems

4.1 Reducing weighted matching to unweighted matching
Aaron Bernstein (Rutgers University – New Brunswick, US)

License Creative Commons BY 4.0 International license
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In dynamic unweighted matching, the goal is to maintain an (approximate) maximum cardin-
ality matching in a graph that is changing over time. There is an extensive literature on this
problem, with many different state-of-the-art results; these achieve different approximation-
ratio/update-time tradeoffs, and also vary on secondary parameters (e.g. worst-case vs.
amortized, adaptive vs. oblivious adversary, fully dynamic vs. decremental vs. incremental).

For almost all of these trade-offs, the state-of-the-art for maximum weighted matching
lags far behind that for unweighted matching. One could try to adapt each unweighted
algorithm separately to the weighted case, but it would be nice to have a single all-purpose
tool.

There has been some partial progress in this direction. In 2017, Stubbs and Vassilevska
Williams showed how to transform any algorithm for unweighted matching into one for
weighted matching, but at the cost of a (1/2 − ϵ) approximation [2]. In 2021, Bernstein,
Dudeja, and Langley reduced the approximation overhead to 2/3 − −ϵ in non-bipartite
graphs and 1 − ϵ in bipartite graphs [1]. That is, in bipartite graphs, this paper shows
a black-box conversion from any algorithm for unweighted matching to one for weighted
matching that is essentially as good: the approximation guarantee reduces by 1 − ϵ, while
the update time increases by log(W ). Moreover, this transformation preserves all secondary
parameters (worst-case, deterministic, etc.); it also works in multiple other models (e.g.
streaming, MPC).

The above algorithm gives us a blueprint for the kind of result we would like, but it only
works in bipartite graphs. (In non-bipartite graphs the approximation overhead is 3/2, which
in matching is a big drawback.) Is it possible to get a similar transformation in non-bipartite
graphs?
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Open Problem

Is there a black-box transformation that converts any algorithm for dynamic unweighted
matching in non-bipartite graphs into one for dynamic weighted matching, while only reducing
the approximation guarantee by (1−ϵ), and only increasing the update time by polylog(nW )?

References
1 Aaron Bernstein, Aditi Dudeja, and Zachary Langley. A framework for dynamic matching

in weighted graphs. In STOC, pages 668–681. ACM, 2021.
2 Daniel Stubbs and Virginia Vassilevska Williams. Metatheorems for dynamic weighted

matching. In ITCS, pages 58:1–58:14, 2017.

4.2 Communication Complexity of Max-Flow
Joakim Blikstad (KTH Royal Institute of Technology – Stockholm, SE)
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Suppose the edges of a graph G (with n vertices and m edges) are partitioned between two
parties Alice and Bob. They wish to solve the (s, t)-max-flow problem on their graph with
as few bits of communication as possible (in any number of interactive rounds).

Open Problem

It is an open problem to settle this communication complexity of max-flow. Specifically,
are there near linear in n communication protocols, or can we show higher lower bounds?
Another direction is looking at the round-communication tradeoff (relevant for streaming,
distributed, etc.) of max-flow and related problems.

Some known “results”:

Trivial algorithm Õ(m): Alice sends all her edges to Bob.
Interior point method Õ(n

√
n): One can simulate the O(

√
n)-round interior point method

for max-flow in O(n) communication each rounds. (not verified, but should work)
Ω(n log n) lower bound.

Evidence that a Õ(n) communication protocol might / might not exist:

The related problem of bipartite matching and its variants (max-cost b-matching, vertex
capacitated s, t-flow, transshipment, negative weight SSSP) admit Õ(n) communication
protocol [1] (based on a straightforward cutting planes approach).
The Õ(n

√
n)-communication interior point method shows that O(m) is not the answer.

Experience says that sequential O(mα) graph algorithms usually translate into O(nα)
communication protocols. However, it is unclear if the sequential O(m1+o(1)) time max-
flow algorithm [2] would help in the communication setting (it uses O(m) IPM rounds,
and relies on complicated data structures).
The answer can consist of up to O(m) edges. So any o(m) protocol cannot let the parties
know the actual edges of the flow (but only a more “compact” representation). This is
unlike all the bipartite-matching problems listed above that only use O(n) edges in their
optimal flows.
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4.3 Dynamic Complexity of Low-Stretch Spanning Trees
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In this low-stretch spanning tree problem, we are given an undirected graph G with n

vertices and m edges, and the goal is to compute a spanning tree T of G that minimizes
av-strT (G) := (1/m)

∑
e=(u,v)∈E(G) distT (u, v), referred to as the average stretch of T . This

problem and its variants lie at the core of algorithm design and have found applications
in online and approximation algorithms, fast algorithms for computing maximum flows
on graphs and solving Laplacian systems, and constructing competitive oblivious routing
schemes, among others. It is known that every graph admits a spanning tree of average
stretch O(log n log log n) which can be computed in O(m log n log log n) [1]. The stretch
guarantee is tight up to a O(log log n) factor since any spanning tree of a n-vertex grid graph
requires Ω(log n) average stretch [2].

In the fully dynamic setting, the graph G undergoes an intermixed sequence of edge
insertions and deletions, and the goal is to maintain a spanning tree T of G with small
average stretch. The first work in this setting [4] gave a dynamic algorithm that supports
edge updates in n1/2+o(1) amortized update and ensures that the maintained spanning tree
has average stretch no(1). The update time was subsequently improved to no(1) while keeping
the stretch guarantee the same [3]. Both works make use of randomization and assume an
oblivious adversary.

Open Problems

Does there exist a fully dynamic algorithm for maintaining a spanning tree with
O(poly(log n)) average stretch in sub-linear update time? The question is interesting
even in the decremental/deletions-only setting.
Are there deterministic or randomized algorithms that work against adaptive adversaries
for the dynamic low-stretch spanning tree problem?

References
1 Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch spanning

tree. SIAM J. Comput., 48(2):227–248, 2019.
2 Noga Alon, Richard M. Karp, David Peleg, and Douglas B. West. A graph-theoretic game

and its application to the k-server problem. SIAM J. Comput., 24(1):78–100, 1995.
3 Shiri Chechik and Tianyi Zhang. Dynamic low-stretch spanning trees in subpolynomial

time. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 463–475.
SIAM, 2020.
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4 Sebastian Forster and Gramoz Goranci. Dynamic low-stretch trees via dynamic low-diameter
decompositions. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June
23-26, 2019, pages 377–388. ACM, 2019.

4.4 Polylog query time for a dynamic all-pairs problem in plane directed
graphs

Adam Karczmarz (University of Warsaw – Warsaw, PL & and IDEAS NCBR – Warsaw,
PL)
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Plane directed graphs allow non-trivial dynamic reachability and distance oracles support-
ing arbitrary point-to-point queries. For example, one can achieve Õ(

√
n) update/query

time bound for fully dynamic reachability [2], or incremental distances [1], and Õ(n2/3)
update/query time for fully dynamic distances [3]. For decremental reachability, one can
get polylog(n) amortized update time and Õ(

√
n) query time [4]. However, to the best my

knowledge, no tradeoff with polylog(n) query time and Õ(n0.99) amortized update time is
known for any kind of dynamic all-pairs oracle problem on plane digraphs. Probably the
easiest specific problem addressing this should be the following.

Open Problem

Suppose a plane digraph G is given. Initially, all edges are switched off, and G undergoes edge
switch-ons. Design a data structure supporting polylog(n)-time arbitrary-pair reachability
queries (in the switched on subgraph) and edge switch-ons within Õ(n1.99) total update time.

References
1 Debarati Das, Maximilian Probst Gutenberg, and Christian Wulff-Nilsen. A near-optimal

offline algorithm for dynamic all-pairs shortest paths in planar digraphs. In Proceedings of
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/ Alexandria, VA, USA, January 9 – 12, 2022, pages 3482–3495. SIAM, 2022.

2 Krzysztof Diks and Piotr Sankowski. Dynamic plane transitive closure. In Algorithms – ESA
2007, 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007, Proceedings,
volume 4698 of Lecture Notes in Computer Science, pages 594–604. Springer, 2007.

3 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006.

4 Adam Karczmarz. Decremental transitive closure and shortest paths for planar digraphs and
beyond. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 73–92. SIAM,
2018.
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4.5 Breaking CountMin Sketches Inside a Greedy Outer Loop
Richard Peng (University of Waterloo, CA)
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Consider the following way of estimating cardinalities of subsets of [n] = {1 . . . n}:
1. Pick a random permutation π of 1, 2, . . . , n.
2. For a set S ⊆ [n] with size at least 1000 log n, store the smallest 100 log n values of

π (S) = {π (i) : i ∈ S} ,

and take their max.
Call this value Sketchπ(S).

It can be shown using a reasonably ‘standard’ use of Chernoff bound that if |S1| < 2|S2|,
then with probability at least 1 − −n−3 (over the choices of π), Sketchπ(S1) < Sketchπ(S2).
Also, as the sketches have size O(log n), such a schema gives a low storage method for
approximating tracking sizes of sets under mergers. The fun, then happens when one starts
to use the output of the data structures to dictate the next merge. That is, consider starting
with n sets S1...Sn (of size at least 1000 log n, which is easy to enforce by having ‘dummy’
elements that are in all sets), and after generating an initial random permutation π, repeatedly
perform the following simplification of the min-degree heuristic:
1. For t = 1 . . . n − 2

a. Let i and j be the two remaining sets with the minimum / second minimum sketch
values computed w.r.t. π.

b. Replace Si, Sj in the collection of sets by their union, Si ∪ Sj .

Open Problem

Exhibit an initial state such that with probability at least 0.1 over the choices of π, at some
iteration of the algorithm, one of Si and Sj has size more than twice the minimum / second
minimum respectively. Alternatively, prove this cannot happen, that is, for any starting
configurations of S1, S2, . . . , Sn, things are happy with probability > 0.1 (over choices of π).

A stronger form of the latter version is showing that in absences of deletions, so just
queries and merges, things work.
References:

Paper that showed approximate min-degree orderings can be solved in almost-linear time
by re-introducing randomness to decorrelate intermediate states: https://arxiv.org/
abs/1804.04239.
The analysis of randomized Gaussian elimination (which does combine such randomness
against adversarial users) by Kyng and Sachdeva: https://arxiv.org/abs/1605.02353,
and a follow up that defined a ‘resparsification game’: https://arxiv.org/abs/1611.
06940.
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4.6 Dynamic Maximal Matching
Shay Solomon (Tel Aviv University, IL)
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In the dynamic maximal matching (MM) problem, the goal is to maintain a maximal matching
in a dynamic n-vertex graph that is subject to edge updates. There is a naive deterministic
algorithm with a worst-case update time of O(n), and this is the state-of-the-art update time
of deterministic algorithms in general graphs, and also of randomized algorithms against an
adaptive adversary, even allowing amortization.

It should be noted that in some graph classes, better results are known. In particular,
for sparse graphs, there is a deterministic algorithm [2] with a worst-case update time of
O(

√
m), where m is the dynamic number of edges in the graph.

This problem provides a prime example of an exponential gap between algorithms that
cope against oblivious versus adaptive adversaries. Indeed, allowing randomization against
an oblivious adversary, one can achieve a constant amortized update time [3] and a poly-log
worst-case update time [1]. We also note that, while the O(n) (or O(

√
m)) deterministic

bound has resisted any improvement, no lower bound whatsoever is known.

Open Problem

Is there a deterministic algorithm, or a randomized one against an adaptive adversary, for
maintaining MM in o(n) update time in general graphs? Can we push the update time
towards a poly-log or even further? Is there any ω(1) lower bound for such algorithms?

References
1 Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization approach for

dynamic spanner and dynamic maximal matching. In 30th SODA, pages 1899–1918. SIAM,
2019.

2 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
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3 Shay Solomon. Fully dynamic maximal matching in constant update time. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 325–334, 2016.

4.7 Dynamic Derandomization
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License Creative Commons BY 4.0 International license
© David Wajc

A common theme in derandomization is the construction of small near-independent probability
spaces. The following definition, due to Naor and Naor [1], captures (some) such notions,
and generalizes the perhaps more familiar notion of k-wise independence.

Definition. Let U be the uniform distribution on n binary variables. A distribution D on
n binary variables is (δ, k)-dependent if for any event A that is determined by k or fewer
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random variables,

Pr
Y⃗ ∼U

[A] − −δ ≤ Pr
Y⃗ ∼D

[A] ≤ Pr
Y⃗ ∼U

[A] + δ.

Equivalently, D satisfies that for any subset of k or fewer indices, I ⊆ [m], |I| ≤ k,

∑
v⃗∈{0,1}|I|

∣∣∣∣∣Pr
[∧

i∈I

(Yi = vi)
]

− 2−|I|

∣∣∣∣∣ ≤ δ.

Similarly, up to constants, another way of stating the above is that the total variation
distance between the distribution of any subset of k variables from the uniform distribution
is O(δ). For example, k-wise independent distributions, under which any k variables take
on all 2k realizations with probability 2−k, are precisely (0, k)-dependent distributions. The
interest in these distributions is due to the following lemma of [1].

Lemma. For any δ > 0, a (δ, k)-dependent distribution D on n binary variables can be con-
structed using log log n + O(k + log( 1

δ )) random bits.1 Moreover, after polytime preprocessing,
each random variable can be sampled from D in O(k · log n) time.
The utility of the above for derandomization should be apparent: given a randomized al-
gorithm whose analysis hinges on events determined by few random variables, and allows for
small error compared to a fully independent distribution, we can simply try out all random
seeds!

In more detail, given an algorithm A using n random bits, but whose analysis carries
through unchanged with (δ, k)-dependent variables, construct a deterministic algorithm A′

that runs a copy of A for all 2log log n+O(k+log(1/δ)) = log n · 2O(k)+log(1/δ) many random
seeds for the appropriate distribution. So, for example, for constant k and δ, the obtained
deterministic algorithm A′ is only slower than A by some polynomial additive term (to build
D) and a polylogarithmic multiplicative factor (due to trying all seeds for D).

The above approach has found applications in derandomization numerous areas since
its introduction. A non-exhaustive list of application areas include parallel computing [8],
streaming [7], local computation [6], the Color Coding technique [5], matrix multiplication
witnesses [4], and recently in (partially derandomizing) online algorithms [3].

Conspicuously missing from the above list (and its extensions) is the area of dynamic
algorithms, where derandomizing via this approach would incur a logarithmic overhead (for
sufficiently small k and δ) by running one copy of the random algorithm for each random
seed. This suggests the following open question.

Open Problem

Find an application of (δ, k)-dependent distributions in derandomizing dynamic algorithms,
possibly with only a polylogarithmic overhead.
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