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Abstract
Let P be a set of n points in R2. For a parameter ε P p0, 1q, a subset C Ď P is an ε-kernel of P if
the projection of the convex hull of C approximates that of P within p1 ´ εq-factor in every direction.
The set C is a weak ε-kernel of P if its directional width approximates that of P in every direction.
Let kεpP q (resp. kw

ε pP q) denote the minimum-size of an ε-kernel (resp. weak ε-kernel) of P . We
present an OpnkεpP q log nq-time algorithm for computing an ε-kernel of P of size kεpP q, and an
Opn2 log nq-time algorithm for computing a weak ε-kernel of P of size kw

ε pP q. We also present a fast
algorithm for the Hausdorff variant of this problem.

In addition, we introduce the notion of ε-core, a convex polygon lying inside chpP q, prove that it
is a good approximation of the optimal ε-kernel, present an efficient algorithm for computing it, and
use it to compute an ε-kernel of small size.
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1 Introduction

Coresets have been successfully used as geometric summaries to develop fast approximation
algorithms for a wide range of geometric optimization problems. Agarwal et al. [2] introduced
the notions of ε-kernels/coresets for approximating the convex hull of a point set P in Rd: For
an interval J “ ra, bs, let p1´εqJ “ ra`pε{2q |J | , b´pε{2q |J |s be its scaling down by a factor
of 1 ´ ε around its center. For a direction v P S, let IvpP q denote the projection of chpP q in
direction v, which is an interval. A subset C Ď P is an ε-kernel if IvpCq Ě p1 ´ εqIvpP q for
all directions v P S, see Definition 4. The weak ε-kernels impose a weaker requirement that
|IvpCq| ě p1 ´ εq |IvpP q| for all v P S, see Definition 6. See Figure 1.

It is known that there exists an ε-kernel (as well as a weak ε-kernel) of P of size
Opε´pd´1q{2q and that it can be computed efficiently [2]. However there may exist an ε-kernel
of P of much smaller size, as is often the case in practice, see, e.g. [23]. Let kεpP q be the
minimum size of an ε-kernel of P . An interesting question is whether an ε-kernel of P of
size kε can be computed efficiently, i.e., computing an instance-optimal ε-kernel. A similar
question can be asked for weak ε-kernels. These problems are known to be NP-Hard for
d ě 3. Although it is generally believed that an instance-optimal ε-kernel or weak ε-kernel
in the plane can be computed in polynomial time using dynamic programming, we are
unaware of any paper that presents such an algorithm. See below for related work on this
problem. In this paper, we settle this question by presenting fast algorithms for computing
instance-optimal ε-kernels and weak ε-kernels for d “ 2.
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4:2 Computing Instance-Optimal Kernels in Two Dimensions

Figure 1 Somewhat oversimplifying the difference, a regular kernel has to conceptually include
a “shrunken” middle portion (left), while the weak kernel (right) only has to approximate the
projections. Specifically, on the left, the projection interval of the approximation has to include the
projection interval of the green region. On the right, the approximation projection interval needs to
be sufficiently long but it does not have the inclusion constraint.

Related work. As mentioned above, Agarwal et al. [2] proved the existence of an ε-kernel
of size Opε´pd´1q{2q for any set of points in Rd and presented fast algorithms for computing
such an ε-kernel. These algorithms were subsequently improved and generalized, see [9, 5, 3].
Yu et al. [23] studied practical algorithms for computing coresets/kernels, and suggested an
incremental algorithm that seems to provide a good approximation to the optimal kernel.

The NP-Hardness of computing an instance-optimal kernel in R3 follows from that of
polytope approximation [12], see also [4, 8]. Clarkson [11] studied the problem of polytope
approximation as a hitting-set problem, providing a logarithmic approximation in the optimal
size, that can be used for approximating the optimal kernel. For d “ 3, the approximation
factor can be improved to Op1q [7]. Using a greedy approach, Blum et al. [6] studied the
problem of approximating optimal kernels in high dimensions, and presented polynomial-time
algorithms for computing an ε-kernel of size Opdkε log kεq or an pε ` 8ε1{3q-kernel of size
Opkεε

´2{3q.
More recently, there has been some work on computing variants of ε-kernels of minimum

size, though none of them compute an instance-optimal ε-kernel. Wang et al. [22] use a
different definition of kernel, so comparing the results of this paper to their work is somewhat
confusing. Specifically, Wang et al. [22] presented a cubic-time algorithm that computes a
minimum-size subset Q of P with the property that maxpPP p1 ´ εq xv, py ď maxqPQ xv, qy ,

assuming that P is α-fat for some constant α; they refer to such a subset as a ε-core-set of
P . A shortcoming of this definition is that it is neither translation nor non-uniform-scaling
invariant. However, it can be shown that their algorithm computes an ε-kernel of size
at most kε{3 (observe that kε{3 can be much larger than kε). Klimenko and Raichel [16]
provided an Opn2.53q time algorithm for computing a minimum-size subset Q such that
HpchpP q, chpQqq, the Hausdorff distance between chpP q and chpQq, is at most ε.1 They
also tackle the case when P is convex, which they solve in Opn log2 nq time. The standard
approach for computing small kernels, is to apply an affine transformation to the point set
to make it “fat”, then apply an algorithm for Hausdorff approximation, with parameter ε{c
where c depends on the fatness of the mapped point set and its diameter. Using the algorithm

1 Recall that for two sets A, B P R2, HpA, Bq “ maxthpA, Bq, hpB, Aqu, where hpX, Y q “

maxxPX minyPY }x ´ y}.
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in [16], an ε-kernel of size at most kε{2 can be computed in Opn2.53q time. We note that since
ε is an absolute error, the size of Hausdorff-approximation can be Ωpnq in the worst case. If
we set the error parameter to be ε ¨ diampP q, then there exists an ε-Hausdorff approximation
Q of size Opε´pd´1q{2q but Q may not be an ε-kernel since for a direction v P S, |IvpQq|

maybe as small as |IvpP q| ´ εdiampP q, while ε-kernel requires IvpQq Ě p1 ´ εqIvpP q. As
such while the width or minimum-enclosing-box of an ε-kernel approximates that of P , a
Hausdorff approximation does not offer such a guarantee and thus not always suitable for
approximating extent measures of P .

There is also some connection between our problem and minimum-link distance and
polygon approximation, see [13, 14, 18, 19, 21, 20] for some relevant results.

Our results. Let P be a set of n points in R2, and let ε ą 0 be a parameter. There are
three main results in this paper:

Optimal kernel. We present (in Section 4) an Opkεn lognq-time algorithm for comput-
ing an ε-kernel of P of size kε :“ kεpP q; recall that kε “ Opε´1{2q.
Optimal weak kernel. We present (in Section 5) an Opn2 lognq-time algorithm for
computing a weak ε-kernel of P of size kw

ε pP q, the minimum size of a weak ε-kernel of P .

Our algorithm for computing the optimal kernel can be adapted to computing an optimal
Hausdorff approximation of chpP q:

Optimal Hausdorff approximation. We present (in [1]) an Opkh
εn lognq-time algo-

rithm for computing a set Q Ď P of size kh
ε such that HpchpP q, chpQqq ď ε, where kh

ε is
the size of the minimum such subset.

We obtain these results by reducing the computation of (weak) optimal kernel to the following
two covering problems, which are of independent interest:

Optimal arc cover. Given a set Ξ of n arcs of the unit circle S, compute its smallest
subset that covers S. Lee and Lee [17] had presented an Opn lognq-time algorithm for
this problem, which is optimal in the worst case. Here we present a somewhat simpler
algorithm with the same running time (see [1]), which is more intuitive and which we
adapt to the computation of weak kernels.
Optimal star cover. Given a polygon P that is star shaped with respect to the origin
o and a set of lines L, compute a smallest subset of lines (i.e., cuts) in L that separate o
from BP. Alternatively, this can be interpreted as covering BP by the (outer) halfplanes
defined by the lines of L. We reduce this problem to the above arc-cover problem, but
the number of candidate arcs can be quadratic. We use a greedy algorithm to prune the
number of candidate arcs to Opknq, in Opkn lognq time, where k is the size of the optimal
solution, and then compute an arc cover in Opkn lognq time using the above algorithm.
We reduce the computation of ε-kernel to this covering problem by using the polarity
transform (see Section 4)

Finally, we introduce (in [1]) the concept of core of a point set, prove its properties, and
describe an algorithm for computing it. A convex body C can be represented as the
intersection of all the minimal slabs that contains it. The ε-core is the result of intersecting
all these slabs after shrinking them by a factor of 1 ´ ε. It induces an affine-invariant inner
approximation of C. For a point set P , its ε-core is a convex polygon lying inside chpP q. We
describe an Opn lognq-time algorithm for computing the ε-core of P .

We show that the convex hull of any ε-kernel of P contains the ε-core of P , and that
any subset C Ď P whose convex hull contains the ε-core is a 4ε-kernel of P , see [1]. Thus
the ε-core is an approximation to the optimal ε-kernel, which has the benefit of being well

SoCG 2023



4:4 Computing Instance-Optimal Kernels in Two Dimensions

defined for any bounded convex shape. We believe this notion of ε-core is new, and is of
independent interest. We present an Opn lognq-time algorithm for computing the smallest
subset of P such that its convex-hull contains the ε{4-core of P , which yields an ε-kernel of
P of size at most kε{4.

2 Preliminaries

Let P be a set of n points in R2, and let ε P p0, 1q be a parameter. Without loss of generality
assume that the origin o lies in the interior of chpP q, where chpP q denotes the convex-hull
of P (if o R chpP q, one can choose three arbitrary points of P and translate P so that their
centroid becomes o).

Normal diagram. A direction in R2 can be represented as a unit vector in R2. The set of
unit vectors (directions) in R2 is denoted by S “

␣

p P R2
ˇ

ˇ}p} “ 1
(

.

▶ Definition 1. For a line l not passing through the origin, let h “ hplq (resp. h “ hplq)
be the (closed) halfplane bounded by l and containing (resp. not containing) the origin.

For a direction v P S and a point q P R2, let hvpqq be the halfplane that is bounded by the
line normal to direction v and passing through q, and that contains o.

▶ Definition 2 (Extremal point, supporting line). For a direction v P S, let pv be the extremal
point of P in the direction v. That is pv “ arg maxpPP xv, py . The point pv is unique if
v is not the outer normal of an edge of chpP q. Similarly, let lv be the supporting line of
chpP q normal to v and passing through pv. Let hv “ hplvq and hv “ hplvq. Observe that
chpP q Ă hv.

For a real number ψ, let hv a ψ and hv a ψ be the halfplanes formed by translating hv

and hv, respectively, towards the origin by distance ψ.

▶ Definition 3. The normal diagram of P is the partition of S into maximal intervals
so that the extremal point pv remains the same for all directions within an interval. The
endpoints of these intervals correspond to the outer normals of the edges of chpP q. The
normal diagram can be further refined so that for all directions v within each interval, both
pv and p´v remain the same. Such a pair of points are antipodal pairs. Let N “ N pP q

denote this refinement of the normal diagram, and observe that |N | ď 2n. See Figure 2.

(A) (B) (C)

Figure 2 (A) Point set P , chpP q, and ε-kernel of P (say, for ε “ 0.2). (B) Directions in which a
point is extremal. (C) Normal diagram of P and its refinement N pP q, Iv.
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Directional width and ε-kernel. For a direction v P S, let

IvpP q “

”

min
pPP

xv, py , max
pPP

xv, py

ı

denote the projection interval of P in direction v. Its length ωpv, P q “ }Iv} is the
directional width of P in the direction of v. Note that Iv “ ´I´v and ωpv, P q “ ωp´v, P q.
For an ε P p0, 1q and an interval J “ rx, ys, let p1 ´ εqJ be the shrinking of J by a factor of
p1 ´ εq, i.e., p1 ´ εqJ “ rx` pε{2q |J | , y ´ pε{2q |J |s.

▶ Definition 4. A set X Ď chpP q is an ε-approximation of P if IupXq Ě p1 ´ εqIupP q for
all directions u P S. A subset C Ď P is a “strong” ε-kernel of P if it is an ε-approximation
of P . Let kεpP q denote the minimum size of an ε-kernel of P . See Figure 3 for an example.

(A) (B) (C)

Figure 3 (A) A point set and its convex hull. (B) Its 0.2-core. (C) Its optimal 0.2-kernel –
observe that it contains points that are not on the convex-hull.

We emphasize that the shrinking here is done for every direction individually around
the center of the projection interval – in particular, there is no center point of the chpP q

around which we do the scaling – to some extent this gives rise to most of the technical
difficulties in constructing and approximating an optimal kernel. The following property of
ε-approximation will be useful later on.

▶ Lemma 5 ([2]). Let P be a point set in Rd, X Ď chpP q, and T an affine map in Rd. X is
an ε-approximation for P ðñ T pXq is an ε-approximation of T pP q.

A slightly weaker notion of ε-kernel was used by Agarwal et al. [2], that is potentially
(significantly) smaller than their “strong” counterparts but somewhat harder to compute.

▶ Definition 6. A subset C Ď P is a weak ε-kernel of P if ωpu,Cq ě p1 ´ εqωpu, P q for
all u P S.

This weaker definition was sufficient for the purposes of Agarwal et al.. However, it is less
intuitive than the stronger variant, and it is harder to compute the optimal weak kernel.

Computing optimal circular arc cover. Let Ξ denote a set of n circular arcs on S, each
of length less than π, that cover S.2 As mentioned in the introduction, an Opn lognq-time
algorithm for computing the smallest subset of Ξ that cover S was proposed in [17]. In
the full version [1] we present an alternative Opn lognq time algorithm for computing the
smallest-size arc cover from Ξ, which we believe is simpler and more intuitive. The basic
idea is to use the greedy algorithm. Picking a start arc, and then going counterclockwise
as far one can adding arcs in a greedy fashion results in a cover of size k ` 1, where k is
the optimal size. After an Opn lognq preprocessing, the greedy algorithm can be executed
in Opkq time. To reduce the size of the solution to k, one has to guess a starting arc that
belongs to the optimal solution. We show that the least covered point on the circle is covered

2 By computing the union of arcs in Ξ, we can decide, in Opn log nq time, whether Ξ covers S.

SoCG 2023



4:6 Computing Instance-Optimal Kernels in Two Dimensions

by Opn{kq intervals. This implies that one has to try only Opn{kq starting arcs and thus run
the greedy algorithm Opn{kq times. The overall running time is thus Opn lognq. See [1] for
full details. We will use this algorithm as a subroutine in Section 4 and [1] and a variant of
it in Section 5. In particular, we get the following result:

▶ Theorem 7. Let Ξ be a set of n circular arcs on S. The optimal cover of S by the arcs of
Ξ, if there exists one, can be computed in Opn lognq time.

3 Covering a Star Polygon by Halfplanes

The input is a set of L of n lines and a polygon Z with Opnq vertices that is star-shaped
with respect to the origin o (i.e., for every point p P Z, op Ď Z). Formally, the task at
hand is to compute a minimum set of lines C Ď L, such that for any point p P BZ, intpopq

intersects a line of C. Geometrically, FopCq :“
Ş

lPC hplq, the intersection of inner halfplanes
bounded by lines in C, is contained in Z. An alternative interpretation of this problem is
that BZ Ă

Ť

lPC hplq.

3.1 Reduction to arc cover
BZ can be viewed as the image of a function Z : S Ñ R2. Specifically, for a direction u P S,
Zpuq is the intersection point of BZ with the ray from the origin in direction u. A line l

blocks the direction u if l intersects the segment oZpuq. A subset G Ď L is a blocking set
of Z if each direction in S is blocked by at least one line of G (i.e., FopGq Ă Z).

Fix a line l P L. Let l[ Z denote the set of connected components (i.e., segments) of
lX Z. For a segment s P l[ Z, let ?s “ top{}op} P S | p P su be the circular arc induced by
s. All directions in ?s are blocked by l. Let ?l“ t?s | s P l[ Zu be the set of all circular
arcs that are induced by blocking segments of l. Let Ξ “

Ť

lPL ?l be the set of all circular
arcs defined by the lines of L. For a subset Γ Ď Ξ, let LpΓq “ tl P L | γ P ?l, γ P Γu be the
original subset of lines of L supporting the arcs of Γ.

▶ Lemma 8. (i) If Γ Ď Ξ is an arc cover, i.e.,
Ť

Γ “ S, then LpΓq is a blocking set.
(ii) There is an arc cover Γ Ď Ξ of size k if and only if there is a blocking set G Ď L of

size k.

Proof. (i) If Γ is an arc cover, then for every direction u P S, there is an arc ?s P Γ that
blocks the direction u. If ?s P ?l, for a line l P LpΓq, then the segment oZpuq intersects l.
Since this condition holds for all directions in S, it follows LpΓq Ď L is a blocking set.

(ii) If there is an arc cover Γ Ď Ξ of size k, then by part (i), LpΓq is a blocking set of
size at most k. Conversely, let G be a blocking set for Z. Without loss of generality, we
can assume that each line of G appears as an edge on the boundary of the face F of ApGq

that contains the origin, because otherwise we can remove the line from G. For each line
l P G, let sl P l[ Z be the segment that contains the edge of F lying on l. Since F Ď Z,
the segment oZpuq intersects an edge of F for every u P S. Hence, t?sl | l P Gu is an arc
cover of size at most |G|. ◀

By Lemma 8, it suffices to compute smallest-size arc cover from Ξ. But |Ξ| “ Θpn2q in
the worst case. Therefore computing Ξ explicitly and then using Theorem 7 to compute an
arc cover take Opn2 lognq time. In the following, we show how to improve the running time
to Opnk lognq, where k is the optimal solution size.
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3.2 Computing an almost-optimal blocking set
We extend the greedy algorithm used in the circular arc cover (see Section 2 and [1]) to
compute an arc cover in Ξ without computing Ξ explicitly. For clarity, we describe the greedy
algorithm in terms of computing a blocking set.

For a pair of directions u, v P S, let Zpu, vs Ď Z be the semiopen subchain of Z from
Zpuq to Zpvq in the counterclockwise direction, which contains the endpoint Zpvq but not
Zpuq. As such, we have Zpu, us “ Z.

We define a (partial) function s : S ˆ L Ñ R4, as follows. For a pair u P S and a line
l P L, if l does not intersect the segment oZpuq, then spu, lq is not defined. Otherwise,
it is the segment of l[ Z that intersects oZpuq. Similarly, we define a (partial) function
f : S ˆ L Ñ S, that is the first point of spu, lq in the counter-clockwise direction after Zpuq

(note, that l might intersect the boundary Z many times). Set λpuq “ arg maxlPLfpu, lq,
i.e., among the feasible segments that intersect oZpuq, λpuq is the last one to exit Z in the
counterclockwise direction.

The algorithm consists of the following steps: Set v0 :“ p1, 0q, l0 :“ λpv0q, G :“ tl0u,
and i :“ 1. In the ith iteration, the algorithm does the following: it sets vi “ fpvi´1, li´1q,
li “ λpviq, and G “ G Y tliu. The algorithm then continues to the next iteration till
FopGq Ď intpZq. Let v1

1 be the first intersection point of l0 with Z in the clockwise direction
from v0, i.e., the segment Zpv1qZpv1

1q lies inside Z. Then the terminating condition is the
same as fpvi, liq lying after v1

1 (from vi) in the counterclockwise direction. By construction,
FopGq Ă Z. Since this is a greedy algorithm for computing an arc cover, |G| ď k ` 1. The
polygon Z can be preprocessed, in Opn lognq time, into a data structure of linear size so
that for a pair u P S and a line l P L, fpu, lq can be computed in Oplognq time [10, 15]. The
algorithm performs Opnkq such queries, so the total running time is Opnk lognq.

▶ Lemma 9. Let L be a set of n lines, Z be a polygon with Opnq vertices that is star shaped
with respect to o and that contains FopLq, and let k be the size of the smallest blocking set in
L for Z. A blocking set G Ď L of size at most k ` 1 can be computed in Opkn lognq time.

3.3 Computing an optimal solution
Let G be the blocking set computed by the above greedy algorithm. For each line l P L we
compute its intersection points with the lines of G. For each such intersection point ξ, if ξ
lies inside Z, let sξ P P [ l be the segment that contains ξ. Let S1 be the set of resulting
Opnkq segments. Let

S2 “
ď

lPG

l[ P

be the set of all segments induced by the lines of G. Set S “ S1 Y S2. The computes the
set Γ “ t?s | s P Su, and then computes the minimal size arc cover C of S by the arcs of Γ.
The returned set is K “ tl P l | ?s P C, s Ă lu.

▶ Lemma 10. The set Γ contains an arc cover of size k.

Proof. Suppose for the sake of contradiction that Γ does not contain an arc cover of size k.
Let C Ă Ξ be an arc cover of size k. Then C contains an arc ?s such that s lies on a line of
LzG and s does not intersect any line of G, i.e., it lies in the interior of a face of ApGq, the
arrangement of G.

If s lies in the face corresponding to FopGq, then s must intersect BFopGq, as the endpoints
of s lies on BZ and IpGq Ď Z, contradicting the assumption that s does not intersect any
line of G.
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P

I I

I(G)

o

I
s

s′

p

o

l′

I(G)

q

(A) (B)

Figure 4 (A) A hitting set G of size at most k ` 1. (B) Illustration of the proof of Lemma 10.

Next, suppose s lies in some other face of ApGq. Let p be an endpoint of s. The segment
po must intersect a line l1 P G at a point q. In particular, let s1 P l1 X Z be the segment
of l containing q. Clearly, s1 is a blocker for all the points on s, so we can obtain another
optimal solution by replacing ?s with ?s1 (see Figure 4), and this solution has one more arc
of Γ, a contradiction.

Hence, we can conclude that Γ contains an optimal arc cover. ◀

Computing the set G takes Opnk lognq time. Observe that |S1| “ Opnkq, as each line
of L induces at most k ` 1 segments in this set. Similarly, as |G| “ k ` 1, we have that
|S2| “ Opnkq. It follows that computing S1 and S2 requires Opnkq ray-shooting queries in Z,
and these queries overall take Opnk lognq time. Hence, we obtain the following:

▶ Lemma 11. Let L be a set of n lines in the plane, and let Z be a polygon with Opnq

vertices that is star shaped with respect to o and that contains FopLq. Then a blocking set
from L of Z of size k can be computed, in Opkn lognq time, where k is the size of the optimal
solution.

4 Computing Optimal ε-Kernel

Let P be a set of n points in R2 and ε P p0, 1q a parameter. We describe an Opnkε lognq-time
algorithm for computing an ε-kernel of size kε. We use polarity to construct a set L of n
lines and a star polygon Z that contains FopLq “

Ş

lPC hplq. An ε-kernel of P corresponds
to a blocking set in L for Z.

▶ Definition 12 (ε-shifted supporting line). For a direction u P S and a parameter ε ą 0,
let lu,ε be the boundary line of hu,ε “ hu a pε{2qωpu, P q, see Definition 2. Let hu,ε be the
(closed) complement halfplane to hu,ε.

Set Hε “ thu,ε | u P Su. The following lemma is immediate from the definition of ε-kernel.

▶ Lemma 13. Given a point set P in R2 and a parameter ε P p0, 1q, a subset C Ď P is an
ε-kernel of P if and only if hv,ε X C ‰ H for all u P S, i.e., C is a hitting set of Hε.

The problem of computing an ε-kernel thus reduces to computing a minimum-size hitting
set of the infinite set Hε. It will be convenient to use the polarity transform and work in the
mapped plane, so we first describe the polar of ε-kernel and then describe the algorithm.
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Polarity. For a point p ‰ o, its inversion, through the unit circle, is the point p´1 “ p{ }p}
2.

Observe that p, p´1, o are collinear, }p}
›

›p´1
›

› “ 1, and p and p´1 are on the same side of the
origin on this line. We use the polarity transform, which maps a point p “ pa, bq ‰ o to the
line

pd ” ax` by ´ 1 “ 0 ” xp, px, yqy ´ 1 “ 0 ”

C

p, px, yq ´
p

}p}
2

G

“ 0.

Namely, the line pd is orthogonal to the vector op, and the closest point on pd to the origin
is p´1. Geometrically, a point p is being mapped to the line passing through the inverted
point p´1 and orthogonal to the vector op´1. Similarly, for a line l, its polar point ld is
q´1, where q is the closest point to the origin on l. Observe that pldq

d
“ l and ppdq

d
“ p

for any line l and any point p.

o

l

l+

h
l⊙

h⊙

p

p⊙

p

p⊙

I

Figure 5 Left: A point p lies in the halfplane hplq ðñ pd intersects the segment old.
Right: A convex hull of a point set, and the corresponding “polar” polygon formed by the intersection
of halfplanes.

If a point p lies on a line l then ld P pd. If p lies in the halfplane hplq (by Definition 1,
we have o R hplq) if and only if pd intersects the segment old, see Figure 5 (left). Set
Pd “ tpd | p P P u and Fo :“ FopPdq “

Ş

pPP hppdq. Then the polygon Fo is the polar of
chpP q, namely:

I. If p P P is a vertex of chpP q then pd contains an edge of Fo, see Figure 5 (right).
II. The polar of line l missing (resp. intersecting) chpP q is a point lying in (resp. out) Fo.

III. For a point p P chpP q, Fo Ă hppdq.

Consider any direction u P S. Let pu be the extremal point of P in direction u, and let
lu be the corresponding supporting line, see Definition 2. The point ld

u lies on the edge of Fo
supported by pd

u , and ld
u { }ld

u } “ u. Similarly, the polar of the shifted supporting line lu,ε

(see Definition 12), is the point ld
u,ε which lies outside Fo on the ray induced by u (starting at

the origin).

Kernel and polarity. Returning to ε-kernels, let N be the refinement of the normal diagram
of chpP q, see Definition 3. Recall that N is centrally symmetric. The supporting lines lu
and ĺ u support the same pair of vertices of chpP q for all directions u lying inside an interval
of N . For each interval γ P N , let ´γ denote its antipodal interval. For each interval γ P N ,
let pγ be the supporting vertex of chpP q for all directions in γ.
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(A)

Iε(P ⋆)

I

(B)

Iε(P ⋆)

J

Figure 6 (A) chpP q, IpP d
q, IεpP d

q. (B) ε-kernel C and its polar Cd; chpP q Ď IP d
Ď IεpCd

q.

Let pγ,ε “ p1 ´ ε{2qpγ ` pε{2qp´γ . It can be verified that the line lv,ε for v P γ passes
through pγ,ε. Therefore the polar of the set of lines tlv,ε | v P γu is a segment eγ that lies on
the line ppγ,εqd and outside Fo. The sequence xeγ | γ P Γy forms the boundary of a polygon
IεpPdq that is star shaped with respect to o and that contains Fo in its interior. See Figure 6.
Putting everything together, we obtain the following lemma, which characterizes the ε-kernel
after polarity.

▶ Lemma 14. Let P be a set of n points in R2 and ε P p0, 1q a parameter. The star-shaped
polygon IεpPdq can be computed in Opn lognq time. Furthermore, a subset C Ď P is an
ε-kernel of P if and only if Cd is a blocking set for IεpPdq (see Figure 6).

Computing the smallest set C Ď P thus reduces to the star-polygon-cover problem. Using
Lemma 11 and that there is an ε-kernel of size Opε´1{2q [2], we obtain the following:

▶ Theorem 15. Let P be a set of n points in R2, and let ε P p0, 1q a parameter. An optimal
ε-kernel of P of size k can be computed in Opkn lognq time. In the worst case, k “ Opε´1{2q,
and the running time is Opε´1{2n lognq.

Below we show that there exists a set P of points such that there are quadratic number
of intersections between Pd and IεpPdq. This suggest that our somewhat more involved
algorithm using greedy algorithm to prune the set of arcs used is necessary even in this case.
It will be more convenient to use the duality transform instead of polarity for describing the
lower-bound construction.

Duality and ε-kernel. The duality transform provides a similar mapping to polarity. The
dual point to the line l ” y “ ax ` b is the point l‹ “ pa,´bq. Similarly, for a point
p “ pc, dq its dual line is p‹ ” y “ cx ´ d. Namely, for p “ pa, bq, the dual line is
p‹ ” y “ ax ´ b, and for a line l ” y “ c1x ` d1 the dual point is l‹ “ pc1,´d1q. The
following interpretation of kernels in the dual is standard, and goes back to the original work
of Agarwal et al. [2]. As such, we state the problem in these settings without proving the
equivalence.

For a set of lines L “ P ‹ “ tp‹ | p P P u in the plane (i.e., L is a set of affine functions
from R to R), let

òL pxq “ max
fPL

fpxq and óL pxq “ min
fPL

fpxq,
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⇑(x)
↑(x)

⇓(x)↓(x)

C(x) =
(
⇑(x)+ ⇓(x)

)
/2

Figure 7 Lower and upper envelopes, and their ε-approximations.

be the upper and lower envelopes of L, respectively. The function ò pxq is convex, while
ó pxq is concave. The extent of L is

õL pxq “òL pxq´ óL pxq.

For a fixed ε P p0, 1q, the ε-upper envelope and ε-lower envelope are

ÒL pxq “òL pxq ´
ε

2 õL pxq “

´

1 ´
ε

2

¯

òL pxq `
ε

2 óL pxq

ÓL pxq “óL pxq `
ε

2 õL pxq “
ε

2 òL pxq `

´

1 ´
ε

2

¯

óL pxq,

respectively. Unfortunately, these functions are not necessarily convex, as demonstrated in
Figure 7.

Computing an optimal ε-kernel for P is equivalent to computing a set of lines M Ď L,
such that òM pxq lies above ÒL pxq (and of course below òL pxq), for all x. And similarly,
óM pxq lies below ÓL pxq, for all x.

Lower-bound construction. Here we show that in the worst case the set
Ť

lPLpl[ Pq can
have quadratic size. In particular, we construct a set of lines L, where the lines of L have
quadratic number of intersections with Ò p¨q and Ó p¨q.

Consider the parabolas fpxq “ 2
ε px2 ` 1q and gpxq “ ´ 1

1´ε{2 px2 ` 1q. Fix parameters
n and ε. Let pi “

`

i{2n, fpi{2nq
˘

and qi “
`

i{2n, gpi{2nq
˘

, for i “ 0, . . . , 2n. For a pair of
distinct points p, q P R2, let lpp, qq denote the line passing through p and q. Let

Lf “ tlppi, pi`2q | i “ 0, 2, 2n´ 2u and Lg “ tlpqi, qi`2q | i “ 1, 3, 2n´ 3u .

The upper envelope of Lf in the range r0, 1s is above fpxq, except for touching it at the
points p0, p2, . . . , p2n. Similarly, the lower envelope of Lg, in the range I “ r1{2n, 1 ´ 1{2ns

lies below g, except for touching it at the points q1, q3, . . . , q2n´1.
It is easy to verify that the lines of Lf and Lg do not intersect each other in the range

x P r0, 1s. As such, the upper envelope (resp. lower envelope) of L “ Lf YLg in this range is
realized by the upper envelope (resp. lower envelope) of Lf (resp. Lg).

Consider a value x P t1{2n, 3{2n, . . . , p2n ´ 1q{2nu. We have that òL pxq ą fpxq and
óL pxq “ gpxq. As such, we have

ÒL pxq “
ε

2 òL pxq `

´

1 ´
ε

2

¯

óL pxq ąąą
ε

2fpxq `

´

1 ´
ε

2

¯

gpxq “ x2 ` 1 ´ px2 ` 1q “ 0.
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Similarly, for x P t2{2n, 4{2n, . . . , p2n ´ 2q{2nu, we have òL pxq “ fpxq and óL pxq ă gpxq.
As such, we have

ÒL pxq “
ε

2 òL pxq `

´

1 ´
ε

2

¯

óL pxq ăăă
ε

2fpxq `

´

1 ´
ε

2

¯

gpxq “ 0.

We thus obtain the following.

▶ Lemma 16. For any ε ą 0 and for any n ě 1, there exists a set of 2n lines in R2 whose
ε-upper envelope crosses the x-axis at least 2n´ 2 times.

Next, we replicate the x-axis by sufficiently close (almost parallel) n lines that lie between
the lower and upper envelopes of L, and we add them to L. Then there are Ωpn2q intersection
points between ÒL and the lines of L. We thus get the following result.

▶ Lemma 17. There exists a set L of n lines in R2 such that the number of intersection
points between IεpLq and L is Ωpn2q.

5 Optimal Weak Kernel

The above results dealt with the stronger notion of a kernel, but the original work of
Agarwal et al. [2] defined a weaker notion of a kernel, see Definition 6. In this section, we
present an Opn2 lognq-time algorithm for computing an optimal weak ε-kernel, by reducing
it to computing a smallest arc cover, with some additional properties, in a set of Opn2q unit
arcs (i.e., arcs on the unit circle).

Let P be a set of n points in R2 and ε P p0, 1q a parameter. We parametrize S with the
orientation in the range r´π, πs (with the two endpoints of this interval being glued together),
and let upθq “ pcos θ, sin θq. Recall that a subset C Ď P is an weak ε-kernel of P if

ωpupθq, Cq ě p1 ´ εqωpupθq, P q (1)

for all θ P r´π, πs. Since ωpupθq, P q “ ωpup´θq, P q, it suffices to satisfy Eq. (1) for the
angular interval r´π{2, π{2s. However, it will be convenient to work with the entire S, so let

õP pθq “ ωpupθ{2q, P q for θ P r´π, πs.

A subset C Ď P is a weak ε-kernel if and only if

õC pθq ě p1 ´ εq õP pθq @θ P r´π, πs.

For a pair 1 ď i ă j ď n and θ P r´π, πs, we define γij P r´π, πs Ñ Rě0 as

γijpθq :“ | xupθ{2q, pi ´ pjy | “ |pai ´ ajq cospθ{2q ` pbi ´ bjq sinpθ{2q|,

where pi “ pai, biq. Set Γ “ tγij | 1 ď i ă j ď nu. It is easily seen that òΓ pθq “õP pθq. For
a pair 1 ď i ă j ď n, we define Iij “ tθ P r´π, πs | γijpθq ě p1 ´ εq òΓ pθqu.

▶ Lemma 18. The set Iij is a single connected circular arc.

Proof. It is convenient to reparameterize γij . More precisely, we define the function ξij :
R Ñ Rě0 as

ξijpxq “ |pai ´ ajq ` pbi ´ bjqx| for x P R. (2)
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Set

Ξ “ tξij | 1 ď i ă j ď nu and Jij “ tx P R | ξijpxq ě p1 ´ εq òΞ pxqu .

Note that

γijpθq “
1

a

1 ` tan2pθ{2q
ξij

`

tanpθ{2q
˘

,

therefore tanpθ{2q P Jij if and only if θ P Iij .
The graph of ξij is a cone with axis of symmetry around the y-axis and apex on the x-axis

– specifically, there are two numbers αij , βij such that ξijpxq “ αij |x´ βij |. The number αij

is the slope of ξij . The function p1 ´ εq òΞ is a convex chain, which is the upper envelope of
the functions p1 ´ εqξij , see Figure 8 (A).

⇑Ξ

(1− ε) ⇑
Ξ

(1− ε)ξuvξij

ξuv

(A) (B)

Figure 8 Illustration of the proof of Lemma 18. (A) Upper envelope òΞ, and lower-bound curve
p1 ´ εq òΞ. (B) A cone with higher slope “buries” at least one leg of the other cone.

Since the graph of ξij is composed of two rays, Jij is potentially the union of two intervals
(potentially infinite rays). If Jij does not contain any finite interval, i.e., consists of two rays,
then Iij is a single arc containing the orientation π. So assume that Jij contains a finite
interval, see Figure 8 (B). This implies that there are indices u, v, such that p1 ´ εqξuv has
higher slope than ξij . But then p1 ´ εqξuv is completely above one of the two rays forming
the image of ξij , implying that Jij can only be a single interval in this case. This in turn
implies that Iij consists of a single arc. This completes the proof of the lemma. ◀

A 2-approximation algorithm. Let I “ tIij | 1 ď i ă j ď nu. Using the algorithm of
Theorem 7, we compute, in Opn2 lognq time, a minimum arc cover J Ď I. Each interval
Iij P J corresponds to two points pi, pj of P . Set C :“ tpi, pj | Iij P J u.

▶ Lemma 19. C is an weak ε-kernel of size at most twice the optimal size.

Proof. Since J is an arc cover, for any θ P r´π, πs, there is pair pi, pj P C such that
γijpθq ě p1 ´ εq òΓ pθq. Therefore õC pθq ě p1 ´ εq òΓ pθq “ p1 ´ εq õP pθq, implying that C
is a weak ε-kernel.

Conversely, let C˚ be an optimal weak ε-kernel. We construct an arc cover J ˚ as follows.
The points in C˚ are in convex position. Consider N “ N pC˚q the refined normal diagram
of C, which is a centrally symmetric partition of S into 2|C˚| intervals such that each pair of
antipodal intervals of is associated with an antipodal pair of points pi, pj P C˚. For each
such pair pi, pj , we add the interval Iij to J ˚; |J ˚| “ |C˚|. For θ P r´π, πs, suppose pi, pj

is the supporting pair in directions upθ{2q and ´upθ{2q, respectively. Then γijpθq “õC˚ pθq.
Since õC˚ pθq ě p1 ´ εq òΓ pθq, θ P Iij P J ˚. Hence, J ˚ is an arc cover.

We can thus conclude that |C| ď 2|C˚|. ◀
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An exact algorithm. The above algorithm is a 2-approximation because it uses two po-
tentially new points for each interval. We can change the arc-cover problem to account for
this. We label every arc in I by two indices i, j P JnK – indices of the pair of points in P

that define it. An arc cover J Ă I of S is admissible if every pair of intersecting arcs in J
share exactly one label. For any admissible arc cover J , the size of the set tpi, pj | Iij P J u

is at most |J |. Furthermore, the arc cover constructed from a weak kernel in the proof of
Lemma 19 is admissible. Therefore it suffices to compute a minimum-size admissible arc
cover in I.

To compute the smallest admissible arc cover, we follow the ideas in the algorithm of
for the arc-cover [1]. While |I| “ Opn2q, there must be a direction u P S that is covered
by at most Opn2{kq intervals of I, where k is the size of the optimal weak ε-kernel. Let
J Ď I be the set of intervals covering u (u and J can be computed in Opn2 lognq time).
For each one of these intervals, we now perform the greedy algorithm, as in [1] . The only
difference is that instead of having a global data structure for all intervals, we break them
into n groups. Specifically, for i “ 1, . . . , n, let Ii Ă I be the set of all arcs I with i being
one of the two indices in its label. Now, we build the necessary data-structure used in [1] for
each such group. Now, if the current interval is Iij , the algorithm uses the data-structures
for Ii and Ij to generate two candidate intervals to be used by the greedy algorithm. The
algorithm uses the one that extends further clockwise. The rest of the algorithm is the same
as in [1]. This algorithm computes the smallest admissible circular arc cover J ˚. We return
the set tpi, pj | Iij P J ˚u, which in view of the above discussion is an optimal weak ε-kernel.
Putting everything together we obtain the following:

▶ Theorem 20. Given a set P of n points in the plane and a parameter ε P p0, 1q, an optimal
weak ε-kernel of P can be computed in Opn2 lognq time.

6 Conclusions

In this paper, we studied the problem of computing optimal kernels in the plane, both in
the strong and weak sense. Surprisingly, this very natural problem had not received much
attention when kernels were developed around twenty years ago. The problem has surprisingly
non-trivial structure, and getting near linear running time to compute them exactly required
non-trivial ideas and care. A natural open question is whether an instance-optimal ε-kernel
of n points in R2 can be computed in Opn lognq time.
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