
Constant-Hop Spanners for More Geometric
Intersection Graphs, with Even Smaller Size
Timothy M. Chan #

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Zhengcheng Huang #

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Abstract
In SoCG 2022, Conroy and Tóth presented several constructions of sparse, low-hop spanners in
geometric intersection graphs, including an O(n log n)-size 3-hop spanner for n disks (or fat convex
objects) in the plane, and an O(n log2 n)-size 3-hop spanner for n axis-aligned rectangles in the plane.
Their work left open two major questions: (i) can the size be made closer to linear by allowing larger
constant stretch? and (ii) can near-linear size be achieved for more general classes of intersection
graphs?

We address both questions simultaneously, by presenting new constructions of constant-hop
spanners that have almost linear size and that hold for a much larger class of intersection graphs.
More precisely, we prove the existence of an O(1)-hop spanner for arbitrary string graphs with
O(nαk(n)) size for any constant k, where αk(n) denotes the k-th function in the inverse Ackermann
hierarchy. We similarly prove the existence of an O(1)-hop spanner for intersection graphs of
d-dimensional fat objects with O(nαk(n)) size for any constant k and d.

We also improve on some of Conroy and Tóth’s specific previous results, in either the number of
hops or the size: we describe an O(n log n)-size 2-hop spanner for disks (or more generally objects
with linear union complexity) in the plane, and an O(n log n)-size 3-hop spanner for axis-aligned
rectangles in the plane.

Our proofs are all simple, using separator theorems, recursion, shifted quadtrees, and shallow
cuttings.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Hop spanners, geometric intersection graphs, string graphs, fat objects,
separators, shallow cuttings

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.23

Related Version Full Version: https://arxiv.org/abs/2303.16303

Funding Timothy M. Chan: Work supported by NSF Grant CCF-2224271.

1 Introduction

Spanners – subgraphs of a given graph that preserve distances up to some multiplicative
factor – have numerous applications and have been studied extensively in both the graph
algorithms and the computational geometry literature [4, 37]. Traditionally, in computational
geometry, the focus has been on Euclidean spanners or metric spanners (i.e., spanners for a
weighted complete graph defined by n points, where the edge weights are Euclidean distances
or distances under some metric).

Recently, spanners for geometric intersection graphs have gained more attention. A
geometric intersection graph is an unweighted, undirected graph formed by n geometric
objects, where the vertices are the objects, and we place an edge between two objects iff
they intersect. Such graphs are popularly studied in computational geometry (e.g., see
[11, 12, 21, 22, 31]), and arise naturally in applications to wireless communication.

© Timothy M. Chan and Zhengcheng Huang;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tmc@illinois.edu
https://orcid.org/0000-0002-8093-0675
mailto:zh3@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2023.23
https://arxiv.org/abs/2303.16303
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Constant-Hop Spanners for More Geometric Intersection Graphs

Formally, in the unweighted setting, a t-hop spanner of a graph G is a subgraph Ĝ of G,
such that for each edge uv ∈ E(G), there is a path of at most t edges in Ĝ from u to v. (It
is sometimes just called a t-spanner, but the term “hop” emphasizes that we are considering
unweighted graph distances here.) The parameter t is called the hop stretch. For an arbitrary
unweighted graph with n vertices, it is known [5] that there exists a t-hop spanner with
O(n1+1/⌈t/2⌉) size (i.e., number of edges) for any constant integer t ≥ 3; this bound is tight
assuming the Erdős girth conjecture [27]. Our goal is to obtain better bounds in the setting
of geometric intersection graphs.

Previous results. Several papers studied hop spanners in the case of unit-disk graphs, i.e.,
intersection graphs of unit disks in the plane: Yan et al. [38] obtained 15-hop spanners
with O(n log n) size. Catusse et al. [13] obtained 5-hop spanners with O(n) size (with
improvements on the hidden constant factor in the size bound by Biniaz [10] and Dumitrescu
et al. [26]). Dumitrescu et al. [26] also obtained 3-hop spanners with O(n) size and 2-hop
spanners with O(n log n) size. Finally, Conroy and Toth [24] obtained 2-hop spanners with
O(n) size.

Conroy and Toth [24] also initiated the study of hop spanners for other families of
geometric intersection graphs. They obtained:

2-hop spanners for fat rectangles1 (e.g., squares) in the plane with O(n log n) size. (In
fact, they proved a nearly matching lower bound of Ω(n log n/ log log n) for squares, or
for homothets of any fixed convex object in the plane.)
3-hop spanners for fat convex objects (e.g., disks) in the plane with O(n log n) size.
3-hop spanners for arbitrary rectangles in the plane with O(n log2 n) size.

Main questions. Conroy and Tóth’s work represented significant progress on hop spanners
in geometric intersection graphs, but it also raised a number of intriguing questions:
1. Can the size of hop spanners be made closer to linear for the classes of graphs they

considered? Their bounds for arbitrary disks, rectangles, etc. all have extra logarithmic
factors. At the end of their paper, Conroy and Tóth explicitly asked: “is there a constant
t ∈ N for which every intersection graph of n disks or rectangles admits a t-hop spanner
with O(n) edges?”

2. Ignoring logarithmic factors, can near-linear size hop spanners be obtained for larger
classes of geometric intersection graphs than the ones they considered? In particular, no
O(n polylog n) size bounds were known for arbitrary line segments or arbitrary triangles
in the plane, or arbitrary balls in Rd for d ≥ 3. At the end of their paper, Conroy and
Tóth wrote: “it would be interesting to see other classes of intersection graphs (e.g., for
strings or convex sets in R2, set systems with bounded VC-dimension or semi-algebraic
sets in Rd) for which the general bound of O(n1+1/⌈t/2⌉) edges for t-hop spanners can be
improved”.

To appreciate the difficulty of these questions, it is worth mentioning the connection
to biclique cover size. A biclique cover of a graph G refers to a collection of bicliques
A1 × B1, . . . , As × Bs, such that E(G) =

⋃s
i=1(Ai × Bi). The size of the cover refers to

M =
∑s

i=1(|Ai| + |Bi|). Biclique covers are a standard technique closely related to range
searching, and have many applications in computational geometry (e.g., see [2, 17, 19]). Most
classes of geometric intersection graphs admit biclique covers with subquadratic size; in

1 All rectangles, squares, and hypercubes are axis-aligned throughout this paper.

T. M. Chan and Z. Huang 23:3

fact, for rectangles or axis-aligned boxes, there are standard constructions of biclique covers
with O(n polylog n) size (similar to the construction of range trees [3, 25]). Given a biclique
cover of size M , it is easy to build a 3-hop spanner of size O(M), as noted by Conroy and
Tóth [24], by just keeping two stars per biclique. In particular, Conroy and Tóth’s 3-hop,
O(n log2 n)-size spanners for rectangles were obtained essentially by using range-tree-style
divide-and-conquer.

However, biclique cover constructions typically require multiple logarithmic factor. This
makes the first question challenging for rectangles. For non-axis-aligned objects, the biclique
cover size is even larger; for example, for line segments, the known upper bound is near
n4/3 (e.g., see [19]). Thus, this would not yield better bounds than for general graphs for
hop stretch t ≥ 5. The situation is even worse for string graphs, i.e., intersection graphs of
curves (which could have large description complexity) in the plane. New ideas are needed
to address the second question.

Main new results. We make progress towards both of the above questions at once, by
obtaining the following result:

Ok(1)-hop spanners with O(nαk(n)) size for arbitrary string graphs.

Here, subscripts in the O notation indicate variables that are assumed to be constant; the
hidden constant factor may depend on such variables. The function αk(·) denotes the k-th
function in the inverse Ackermann hierarchy: α0(n) = n/2, α1(n) = log n, α2(n) = log∗ n

(the iterated logarithm), α3(n) = log∗∗ n (the iterated iterated logarithm), etc. Since these
functions are extremely slow-growing as k increases, we thus get constant-hop spanners
with almost linear size. Although inverse Ackermann has arisen in some past work on
Euclidean spanners before (namely, on the trade-off between size and hop-diameter [7, 33]),
its appearance here for hop spanners in geometric intersection graphs is still surprising.

String graphs include intersection graphs of arbitrary regions enclosed by closed curves in
the plane (e.g., see [34, Lemma 4]). Thus, our result is very general, encompassing arbitrary
line segments and triangles in R2 for the first time, and also including all the previous types
of geometric objects considered by Conroy and Tóth, such as disks, rectangles, and fat convex
objects in R2 – our result shows that fatness is not needed in R2.

We obtain a similar result also for higher-dimensional fat objects:

Ok(1)-hop spanners with Od,k(nαk(n)) size for intersection graphs of fat objects in Rd.

In particular, this includes the case of arbitrary balls in Rd, for which there were no prior
results for d ≥ 3. (In d = 2 dimensions, compared to Conroy and Tóth’s previous result on
fat objects, we work with a different definition of fatness that does not require convexity.)

More new results. The above new results improve previous size bounds for sufficiently large
hop stretch, but do not necessarily improve Conroy and Tóth’s 2-hop and 3-hop spanners.
We have additional new constructions that directly improve some of their specific results.
Notably, we obtain:

2-hop spanners with O(n log n) size for objects with linear union complexity in the plane.

Classes of objects with linear union complexity include arbitrary disks, pseudodisks, and
fat rectangles in R2. Thus, our result strictly improves the hop stretch in Conroy and
Tóth’s 3-hop, O(n log n)-size spanners for the case of disks, and also generalizes their 2-hop,

SoCG 2023

23:4 Constant-Hop Spanners for More Geometric Intersection Graphs

O(n log n)-size spanners for the case of fat rectangles. So, our result significantly enlarges
the class of geometric intersection graphs that admit sparse 2-hop spanners.

In addition, we obtain:

3-hop spanners with O(n log n) size for rectangles in the plane.

This is a logarithmic-factor improvement over Conroy and Tóth’s previous result.
A summary of our results can be found in Table 1.

Techniques. Our proofs use interesting techniques. For string graphs, our approach (see
Section 2) is based on divide-and-conquer via graph separators. Separator theorems for string
graphs have been developed in a series of papers [28, 36, 34], but sublinear-size separators
exist only if the string graph is not too dense. On the other hand, if the graph is dense, there
exist high-degree vertices, whose neighborhoods form large stars. The key is to realize that
each such star can be viewed as a single object, since a connected union of strings can be
regarded as a new string. Besides recursion in the parts produced by the separator, we use
an extra recursive call to handle these stars. (Luckily, the separator bound for string graphs
is not influenced by how complicated the strings are.) This double recursion eventually leads
to inverse Ackermann complexity. The overall construction is simple.

Curiously, even if we are only interested in the very special case of vertical/horizontal line
segments (or rectangles), it is still important to generalize to strings with the above approach.
(In fact, we started this research more modestly with the case of vertical/horizontal segments,
using more traditional divide-and-conquer, but the above string-graph separator approach
wins out at the end.)

For fat objects in Rd, the approach is similar, except that we use shifted quadtrees
[9, 14, 16] and tree partitioning [30] to do divide-and-conquer (see Section 3). The key is to
view a union of fat objects containing a common point as a new fat object. Again, we get a
double recursion leading to inverse Ackermann.

For our 2-hop spanners for objects with linear union complexity in R2, we use logarith-
mically many layers of shallow cuttings (see Section 4). Shallow cuttings [35] have many
applications, for example, to static data structures for halfspace range searching [15] and
orthogonal range searching [1], dynamic geometric data structures [18], levels in arrange-
ments [15], incidences [20], epsilon-nets [35], and geometric set cover [23]. Interestingly, our
work adds one more (unexpected) application to the list. Given the shallow cutting lemma,
our proof is simple, this time, not even needing recursion; in fact, it is simpler than Conroy
and Tóth’s previous proofs for their 2-hop spanners for fat rectangles, as well as their 3-hop
spanners for fat convex objects in R2.

Our 3-hop spanners for rectangles in R2 (see Section 5) is perhaps the least exciting.
It is similar to Conroy and Tóth’s previous proof, using straightforward range-tree-style
divide-and-conquer, but exploiting known spanners in one dimension (namely, points and
intervals on the real line) as a base case.

2 String Graphs

Our spanner constructions for string graphs will use a separator theorem by Lee [34] (which
was an improvement over previous versions by Fox and Pach [28] and Matoušek [35]).

▶ Lemma 1 (String-graph separator [34]). For every string graph G with n vertices and
m edges, there exists a partition of V (G) into subsets V1, V2, X with |V1|, |V2| ≤ 2n/3,
|X| = O(

√
m), such that there are no edges between V1 and V2.

T. M. Chan and Z. Huang 23:5

Table 1 Our results on O(1)-hop spanners for different classes of geometric intersection graphs.

hop stretch size

String graphs 3 O(n log3 n)
Ok(1) O(nαk(n))

Fat objects in Rd 3 O(n log n)
Ok(1) Od,k(nαk(n))

Objects with union complexity U(·) 2 O(U(n) log n)
Rectangles in R2 3 O(n log n)

We first warm up by describing a 3-hop spanner with O(n log3 n) size, and a 7-hop
spanner with O(n log log n) size, before generalizing it to a larger-hop spanner with inverse
Ackermann complexity.

2.1 3-Hop Spanner with O(n log3 n) Size
String Graph Construction I

1. Repeatedly pick a vertex with degree larger than ∆, for a parameter ∆ to be chosen later,
and remove the vertex along with its neighborhood, until there are no vertices with at
most degree ∆ in the remaining graph. Let G′ be the remaining graph. A vertex and its
neighborhood forms a star, and at most n/∆ such stars are removed. Add the edges of
these stars (O(n) in total) to the output spanner Ĝ.

2. For each vertex u ∈ V (G) and for each star removed in step 1 that contains a vertex
adjacent to u, add an edge between u and an arbitrary such vertex in the star to Ĝ. At
most O(n · n/∆) edges are added this way.

3. Apply Lemma 1 to G′ to obtain V1, V2, X. Since G′ has O(∆n) edges, |X| = O(
√

∆n).
Recursively construct a 3-hop spanner for the subgraph induced by V1 ∪ X and for the
subgraph induced by V2 ∪ X. Add all their edges to Ĝ.

Hop stretch. For any edge uv, if both u and v belong to G′, then u and v are connected
by 3 hops by induction. Otherwise, one of its vertices, say, v, belongs to a star removed in
step 1. By step 2, the spanner Ĝ connects u to some vertex v′ in the same star as v. The
star connects v′ and v by 2 hops, so u and v are connected by 3 hops (see Figure 1).

Sparsity. The size S(n) of the spanner follows the recurrence

S(n) ≤ max
n1,n2≤2n/3: n1+n2≤n

(S(n1 + O(
√

∆n)) + S(n2 + O(
√

∆n)) + O(n · n/∆)).

By setting ∆ = n/ log2 n, the recurrence solves to S(n) = O(n log3 n).

▶ Theorem 2. Every string graph with n vertices admits a 3-hop spanner of size O(n log3 n).

2.2 7-Hop Spanner with O(n log log n) Size
To obtain hop spanners with still smaller size, we need a generalized version of Theorem 1
that partitions into multiple subsets (analogous to “r-divisions” in planar graphs [29]):

▶ Lemma 3 (String-graph separator: multiple-subsets version). Given parameters r and ∆
with ∆ = o(r), for every string graph G with n vertices and maximum degree ∆, there exist
O(n/r) subsets V i ⊂ V (G) of at most r vertices each, such that E(G) ⊂

⋃
i(V i × V i), and

the boundary complexity, defined as
∑

i |V i| − |V (G)|, is at most O(
√

∆n/
√

r).

SoCG 2023

23:6 Constant-Hop Spanners for More Geometric Intersection Graphs

v u

v′

Figure 1 The light blue circle represents the star containing v. The blue dot at the center
represents the center of the star.

Proof. Apply Lemma 1 to obtain V1, V2, X, with |X| = O(
√

∆n), and recursively generate
subsets for the subgraph induced by V1 ∪ X and for the subgraph induced by V2 ∪ X. When
a subgraph has fewer than r vertices, output its vertex set.

Let B(n) count the boundary complexity of the subsets produced by the above division
procedure on an n-vertex string graph. We have the recurrence

B(n) ≤

{
max

n1,n2≤2n/3: n1+n2≤n
(B(n1 + O(

√
∆n)) + B(n2 + O(

√
∆n)) + O(

√
∆n)) if n ≥ r

0 if n < r

The recurrence solves to B(n) = O(
√

∆n/
√

r). ◀

String Graph Construction II

1. Follow step 1 of Construction I.
2. For each vertex u ∈ V (G) that is adjacent to a vertex of at least one star, add an edge

between u and an arbitrary such vertex in such a star to Ĝ. At most O(n) edges are
added this way.

3. For each pair of stars removed in step 1 such that there is a 2-hop path between them,
add an arbitrary such 2-hop path to Ĝ. At most O((n/∆)2) edges are added this way.

4. Apply Lemma 3 to G′ to obtain the subsets V i. Recursively construct a 7-hop spanner
for the subgraph induced by each V i. Add all their edges to Ĝ.

Hop stretch. For any edge uv, if both u and v belong to G′, then u and v are connected
by 7 hops by induction. Otherwise, one of its vertices, say, v belongs to a star removed in
step 1. By step 2, the spanner Ĝ connects u to some vertex v′ in a possibly different star.
By step 3, these two stars are connected by 2 hops in Ĝ. Inside a star, 2 hops suffice. Thus,
u and v are connected by 7 hops (see Figure 2).

Sparsity. The size of the spanner follows the recurrence

S(n) ≤ max
n1,n2,...≤r:

∑
i

ni≤n+O(
√

∆n/
√

r)

(∑
i

S(ni) + O(n + (n/∆)2)
)

.

By choosing ∆ =
√

n and r = n0.9, the recurrence solves to S(n) = O(n log log n).

▶ Theorem 4. Every string graph with n vertices admits a 7-hop spanner of size O(n log log n).

2.3 Ok(1)-Hop Spanner with O(nαk(n)) Size
Let t1 = 3 and tk = 5tk−1 + 3 for all k > 1. This implies tk = 3

4 (5k − 1). We next modify
the preceding construction to obtain a tk-hop spanner. The key is the following observation:

T. M. Chan and Z. Huang 23:7

v

v′

u

Figure 2 If uv ∈ E(G), then Ĝ connects u and v by 7 hops. The purple paths represent the
arbitrary 2-hop path added in step 3.

▶ Observation 5. The union C of strings that form a connected string graph may be viewed
as a string.

Proof. We can first eliminate cycles from C by removing infinitesimally small arcs, and
can then take an Euler traversal of the resulting tree to obtain a noncrossing path. (The
observation becomes even more obvious if one defines a string as any connected set in the
plane, as some authors did [28].) ◀

String Graph Construction III

1. Follow step 1 of Construction I.
2. Apply Lemma 3 to G′ to obtain the subsets V i. Let B be the boundary vertices, i.e.,

vertices that are in at least two subsets V i. Recursively construct a tk-hop spanner for
the subgraph induced by V i \ B for each V i. Add all their edges to Ĝ. Also, for each
vertex in B, create a star of size 1 (i.e., a singleton) and remove it from G′. The number
of stars is now O(n/∆ +

√
∆n/

√
r).

3. For each vertex u that is adjacent to a vertex of at least one star, add an edge between u

and an arbitrary such vertex in such a star to Ĝ; we say that u is assigned to this star.
At most O(n) edges are added this way.

4. For each star σ, define its extended star S(σ) to be the set of all vertices that are in σ or
assigned to σ, and define the new object U(σ) to be the union of all the strings in S(σ).
Recursively construct a tk−1-hop spanner Ĥ for these new objects, which can be viewed
as strings by Observation 5. For each edge U(σ)U(σ′) in the spanner Ĥ, add an edge
ww′ to Ĝ, where w ∈ S(σ) and w′ ∈ S(σ′) are intersecting strings chosen arbitrarily.

Hop stretch. For any edge uv, if both u and v belong to G′, then u and v are connected
by tk hops by induction. Otherwise, one of its vertices, say, v belongs to a star σ removed in
step 1 or 2. By step 3, the spanner Ĝ connects u to some vertex v′ in a possibly different
star σ′. Since u is in S(σ′) and v is in σ, the two objects U(σ) and U(σ′) intersect and, by
induction, are connected by tk−1 hops in the spanner Ĥ. Inside an extended star, 4 hops
suffice. Thus, u and v are connected by 5tk−1 + 3 hops in Ĝ (see Figure 3).

SoCG 2023

23:8 Constant-Hop Spanners for More Geometric Intersection Graphs

σ′σt−1σ

S(σ)

U(σ) U(σ1) U(σt−1) U(σ′)

v

u

σ1

S(σ1) S(σt−1) S(σ′)

Ĥ

Ĝ
v′

Figure 3 v ∈ S(σ) and v′ ∈ S(σ′). If Ĥ connects U(σ) and U(σ′) by t hops, then Ĝ connects v

and v′ by 5t + 3 hops. The smaller boxes represent stars in Ĝ; the larger boxes represent extended
stars. Blue dots at the center of the boxes represent centers of the stars.

Sparsity. The size of the tk-hop spanner follows the recurrence

Sk(n) ≤ max
n1,n2,...≤r:

∑
i

ni≤n

(∑
i

Sk(ni) + Sk−1(O(n/∆ +
√

∆n/
√

r)) + O(n)
)

.

For the base case, we have S1(n) = O(n log3 n) by Theorem 2. For k = 2, by choosing
∆ = log3 n and r = ∆3, the recurrence gives S2(n) = O(n log∗ n). For k > 2, we choose
∆ = c0αk−1(n) and r = ∆3 for a sufficiently large constant c0. It is straightforward to show
by induction that Sk(n) ≤ c0nαk(n).

▶ Theorem 6. Every string graph with n vertices admits a 3
4 (5k − 1)-hop spanner of size

O(nαk(n)) for any k ≥ 2.

Remarks. We have not attempted to optimize the hop stretch in the above theorem. Since
the constant factor in the above size bound does not depend on k, we can also choose k = α(n)
and obtain an O(5α(n))-hop spanner with O(n) size.

Although we have cited Lee’s string-graph separator theorem [34], the weaker separator
bound by Fox and Pach [28] is actually sufficient to prove Theorems 4–6 (although for
Theorem 2, the bound would have more logarithmic factors).

3 Fat Objects in Rd

In this section, we turn our attention to the case of fat objects. We will use the following
definition of fatness [16]. Here, the side length of an object refers to the side length of its
smallest enclosing hypercube.

▶ Definition 7. A collection of objects is c-fat if for every hypercube γ with side length ℓ,
there exist c points hitting all objects that intersect γ and have side length at least ℓ.

Our spanner construction will use quadtrees together with a known “shifting lemma” [16]
(based on an earlier work [14]).

▶ Definition 8. A quadtree cell is a hypercube of the form [i1/2k, (i1 + 1)/2k) × · · · ×
[id/2j , (id + 1)/2k) for integers i1, . . . , id, k.

An object u of side length ℓ is C-aligned if it is contained in a quadtree cell with side
length at most Cℓ.

T. M. Chan and Z. Huang 23:9

▶ Lemma 9 (Quadtree shifting [16]). Fix an odd number d∗ > d. Let τ (j) = (j/d∗, . . . , j/d∗) ∈
Rd. For any object u ⊂ [0, 1)d, the shifted object u + τ (j) is (2d∗)-aligned for all but at most
d indices j ∈ {0, . . . , d∗ − 1}.

Choose d∗ = 2d + 1. By rescaling, we may assume that all input objects are in [0, 1)d.
Then for any pair of objects u and v, there exists at least one index j ∈ {0, . . . , d∗ − 1} such
that u + τ (j) and v + τ (j) are both (2d∗)-aligned. For each j, it suffices to construct a hop
spanner for the subset of all objects u such that u + τ (j) is (2d∗)-aligned; we can then output
the union of these d∗ spanners.

Thus, from now on, we may assume that all given objects are (2d∗)-aligned.
We warm up by describing a 3-hop spanner with O(n log n) size, before describing a

larger-hop spanner with inverse Ackermann complexity.

3.1 3-Hop Spanner of O(n log n) Size
Our 3-hop spanner will use the following lemma, which follows directly by taking a tree
centroid in the quadtree:

▶ Lemma 10 (Quadtree centroid [8, 14]). For any set of n points in Rd, there exists a
quadtree cell such that the number of points inside and the number of points outside are both
at most 2d

2d+1 n.

Fat Object Construction I

1. Apply Lemma 10 to the leftmost points of the objects to obtain a quadtree cell γ.
Recursively construct a 3-hop spanner for the objects completely inside γ and for the
objects completely outside γ. Add all their edges to Ĝ.

2. Let Pγ be a set of points hitting all objects that intersect ∂γ and have side length at least
ℓγ/(2d∗), where ℓγ denotes the side length of γ. A hitting set of size |Pγ | = Od(c) exists
by definition of c-fatness (since ∂γ can be covered by (2d∗)d hypercubes of side length
ℓγ/(2d∗)). For each point p ∈ Pγ , build a star S(p) connecting all objects hit by p, with
the center chosen arbitrarily. Add the edges of these stars to Ĝ. At most Od(cn) edges
are added this way.

3. For each object u and for each star S(p) that contains an object intersecting u, add an
edge between u and an arbitrary such object in S(p) to Ĝ. At most O(n) edges are added
this way.

Hop stretch. For any edge uv, if the objects u and v are both inside γ or both outside γ,
then u and v are connected by 3 hops by induction. Otherwise, one of the objects, say, v,
intersects ∂γ (see Figure 4). Observe that v has side length at least ℓγ/(2d∗), since v is
(2d∗)-aligned. Thus, v belongs to a star S(p) from step 2. By step 3, the spanner Ĝ connects
u to some object v′ in the same star S(p). Since v′ and v are connected by 2 hops in Ĝ, u

and v are connected by 3 hops.

Sparsity. The size S(n) of the spanner follows the recurrence

S(n) ≤ max
n1,n2≤2dn/(2d+1): n1+n2≤n

(S(n1) + S(n2) + Od(cn)).

The recurrence solves to S(n) = Od(cn log n).

▶ Theorem 11. The intersection graph of n fat objects in Rd admits a 3-hop spanner of size
O(n log n).

SoCG 2023

23:10 Constant-Hop Spanners for More Geometric Intersection Graphs

u

v′
v

p

Figure 4 uv′ ∈ Ĝ, and v′ is connected to v via the center of star S(p) (the blue disk).

3.2 Ok(1)-Hop Spanner with Od,k(nαk(n)) Size
To obtain hop spanners of still smaller size, we need a generalized version of Lemma 10 that
partitions into multiple subsets:

▶ Definition 12. A generalized quadtree cell γ refers to either a quadtree cell or the difference
of an outer quadtree cell γ+ and an inner quadtree cell γ− (in the former case, we let γ+ = γ

and γ− = ∅).

▶ Lemma 13 (Quadtree partitioning). Given parameter r, for any set of n points in [0, 2)d,
there exists a partition of [0, 2)d into O(n/r) generalized quadtree cells, each containing at
most r points.

Proof. This follows directly by applying the tree partitioning scheme by Frederickson [30] to
the quadtree, or alternatively by applying Lemma 10 recursively (stopping when cells have
at most r points each, and with further splitting to ensure each generalized cell has at most
one inner quadtree cell – e.g., see [8]). ◀

▶ Observation 14. Given a collection of c-fat C-aligned objects in Rd, a union of a subset
of objects all hit by a common point can be viewed as a (4dc)-fat C-aligned object.

Proof. Consider a hypercube γ with side length ℓ. Expand γ into a hypercube γ̂ with side
length 2ℓ, keeping the same center. There exists a set P of 4dc points hitting all objects that
intersect γ̂ and have side length at least ℓ/2.

Now take a subset S of objects containing a common point p0. Let U be the union of the
objects in S. Suppose that U intersects γ and has side length at least ℓ.

Case 1: p0 ∈ γ̂. Some object u ∈ S has side length at least ℓ/2. Since u contains p0 and
thus intersects γ̂, we know that u is hit by P , and so U is hit by P .
Case 2: p0 ̸∈ γ̂. Some object u ∈ S intersects γ, and u must have side length at least ℓ/2.
Thus, u is hit by P , and so U is hit by P .

This proves (4dc)-fatness of U . The C-alignedness of U follows from the C-alignedness of
the individual objects in S. ◀

Let t1 = 3 and tk = 3tk−1 +3. This implies tk = 11
9 3k − 2

3 . We now describe a construction
of a tk-hop spanner.

Fat Object Construction II

1. Apply Lemma 13 to the leftmost points of the objects to obtain a set Γ of O(n/r)
generalized quadtree cells. For each γ ∈ Γ, construct a tk-hop spanner recursively for the
objects completely inside γ.

T. M. Chan and Z. Huang 23:11

Ĥ

Ĝ

U(p) U(q)

u

v

U(p1) U(pt−1)· · ·

S(p) S(p1) S(pt−1) S(q)

Figure 5 Assume that u ∈ S(p) and v ∈ S(q) for some p, q ∈ P . If Ĥ connects U(p) and U(q) by
t hops, then Ĝ connects u and v by 3t + 2 hops. Stars in Ĝ are shown as blue boxes. The blue dots
represent the centers of these stars.

2. For each γ ∈ Γ, let Pγ+ be a set of Od(c) points hitting all objects that intersect ∂γ+ and
have side length at least ℓγ+/(2d∗), where ℓγ+ denotes the side length of γ+. Similarly,
let Pγ− be a set of Od(c) points hitting all objects that intersect ∂γ− and have side length
at least ℓγ−/(2d∗), where ℓγ− denotes the side length of γ−. Let Pγ = Pγ+ ∪ Pγ− . For
each object u completely inside γ and each point p ∈ Pγ , add an edge between u and an
arbitrary object that is hit by p and intersects u (if exists) to Ĝ. At most Od(cn) edges
are added this way.

3. Let P =
⋃

γ∈Γ Pγ . Assign each object u that is hit by P to an arbitrary p ∈ P that hits u.
For each p ∈ P , build a star S(p) connecting all objects assigned to p, with the center
chosen arbitrarily. Add the edges of these stars to Ĝ. At most O(n) edges are added this
way.

4. For each p ∈ P , define the new object U(p) to be the union of the objects in S(p).
Recursively construct a tk−1-hop spanner Ĥ for these new objects, which are (4dc)-fat
and (2d∗)-aligned by Observation 14. For each edge U(p)U(p′) in the spanner Ĥ, add an
edge ww′ to Ĝ, where w ∈ S(p) and w′ ∈ S(p′) are intersecting objects chosen arbitrarily.

Hop stretch. For any edge uv, if both u and v are completely inside a generalized quadtree
cell in Γ, then u and v are connected by tk hops by induction.

Otherwise, consider the case where neither u nor v are completely inside a generalized
quadtree cell in Γ. Then u intersects ∂γ and v intersects ∂γ′ for some γ, γ′ ∈ Γ. Observe
that u has side length at least ℓγ+/(2d∗) (resp. ℓγ−/(2d∗)) if u intersects ∂γ+ (resp. ∂γ−),
because u is (2d∗)-aligned. So, u is hit by Pγ . Similarly, v is hit by Pγ′ . Thus, u and v

belong to two stars S(p) and S(q) from step 3 for some p, q ∈ P . The two objects U(p) and
U(q) intersect and, by induction, are connected by tk−1 hops in the spanner Ĥ. Inside a star,
2 hops suffice. Thus, u and v are connected by 3tk−1 + 2 hops in Ĝ (see Figure 5).

Lastly, consider the case when exactly one of the objects, say, u, is completely inside a
generalized quadtree cell γ in Γ, and the other object v intersects ∂γ. Then, v is hit by some
point q ∈ Pγ . By step 2, the spanner Ĝ connects u to some object v′ that is hit by the same
point q. Then v and v′ belong to two stars S(p) and S(p′) from step 3 for some p, p′ ∈ P .
The two objects U(p) and U(p′) intersect. By the same argument in the previous case, v and
v′ are connected by 3tk−1 + 2 hops in Ĝ, and so u and v are connected by 3tk−1 + 3 hops.

SoCG 2023

23:12 Constant-Hop Spanners for More Geometric Intersection Graphs

Sparsity. The size of the tk-hop spanner for c-fat (2d∗)-aligned objects follows the recurrence

Sk,c(n) ≤ max
n1,n2,...≤r:

∑
i

ni≤n

(∑
i

Sk,c(ni) + Sk−1,4dc(Od(cn/r)) + Od(cn)
)

.

For the base case, we have S1,c(n) = Od(cn log n) by Theorem 11. For k > 1, we choose
r = αk−1(n). It is straightforward to verify by induction that Sk,c(n) = Od,k,c(nαk(n)).

▶ Theorem 15. The intersection graph of n c-fat objects in Rd admits a (11
9 3k − 2

3)-hop
spanner of size Od,k,c(nαk(n)) for any k ≥ 1.

Remarks. Because the fatness parameter c grows as a function of k during recursion, the
constant factor in the above size bound depends on k.

Like in the previous section, it is also possible to obtain an intermediate result, namely, a
6-hop spanner with O(n log log n) size.

4 Objects with (Near) Linear Union Complexity in R2

In this section, we describe a different approach to construct hop spanners, using the shallow
cutting lemma introduced by Matoušek [35]. The variant below can be found in [23].

▶ Lemma 16 (Shallow cutting). Consider a family of well-behaved2 objects in R2, such
that the union of any n objects has complexity at most U(n), assuming that U(n)/n is
nondecreasing. Given a set of n objects in this family and parameters r and k, there exists a
collection of O((rk/n + 1)2U(n/k)) cells, such that (i) each cell intersects the boundaries of
at most n/r objects, and (ii) the cells cover all points of depth at most k. Here, the depth of
a point p is the number of objects that contain p.

Construction via Shallow Cuttings

1. For each i = 1, . . . , log n, apply Lemma 16 with k = 2i and r = n/2i−2 to obtain a
collection Ξi of O(U(n/2i)) cells. We may assume that each cell Ξi contains at least one
point of depth at most 2i (otherwise, the cell may be removed).

2. For each i and for each ξ ∈ Ξi such that there exists an object s(ξ) that contains ξ

completely, build a star centered at s(ξ) connecting all objects that intersect ξ. Add the
edges of these stars to Ĝ. Since there are at most 2i objects that contain ξ and 2i−2 objects
whose boundaries intersect ξ, the number of edges added is O(

∑log n
i=1 U(n/2i) · 2i) =

O(U(n) log n).

Hop stretch. For any edge uv, pick an arbitrary point p in the intersection of u and v, and
let k be the depth of p. Let i be the number such that 2i−1 ≤ k < 2i. Let ξ be the cell in Ξi

that contains p. At least 2i−1 objects contain p, but at most 2i−2 objects have boundaries
intersecting ξ. Thus, there must exist an object s(ξ) that completely contains ξ. Then, Ĝ

contains the edges s(ξ)u and s(ξ)v, and so u and v are connected by 2 hops (see Figure 6).

▶ Theorem 17. Consider a family of well-behaved objects in R2, such that the union of
any n objects has complexity at most U(n), assuming that U(n)/n is nondecreasing. The
intersection graph of n objects in this family admits a 2-hop spanner of size O(U(n) log n).

2 See [23] for a precise definition. Most families of objects in R2, such as disks, pseudodisks, etc. are
well-behaved.

T. M. Chan and Z. Huang 23:13

u

v

p

ξ

s(ξ)

Figure 6 Objects u and v intersect, p is an arbitrary point in u∩v, and ξ ∈ Ξi is the cell containing
p. Our counting argument shows that there must exist an object s(ξ) completely containing ξ, and
thus Ĝ must contain the path u → s(ξ) → v.

For example, it is known that U(n) = O(n) for disks and pseudodisks in the plane [32],
and U(n) = O(n log∗ n) for fat triangles in the plane [6]. So, we obtain 2-hop spanners of
size O(n log n) for disks and pseudodisks, and size O(n log n log∗ n) for fat triangles.

Remarks. It is possible to reduce the size bound to O(U(n) log log n) with 5 hops (by using
fewer shallow cuttings, with k = 2(1+δ)i , for i = 1, . . . , O(log log n)), but this approach does
not appear to yield further improvement for larger hop stretch.

5 Axis-Aligned Rectangles in R2

In this section, we describe a 3-hop spanner for the case where the input objects consist of
horizontal line segments H and vertical line segments V in the plane. Spanners for the more
general case of axis-aligned rectangles will then follow.

We first consider the special case where all vertical segments are lines. This problem is
1-dimensional in the sense that the y-coordinates of the segments are irrelevant. Borrowing
Conroy and Tóth’s technique [24] for 1D interval graphs, we divide the x-axis into disjoint
intervals I = {I1, . . . , Iℓ} as follows (see Figure 7):
1. I0 = {x0} is the interval containing only the x-coordinate of the leftmost endpoint among

all horizontal segments.
2. For integers k ≥ 1, Ik = (xk−1, xk], where xk−1 is the right boundary of Ik−1, and xk

is the largest number for which there exists a line segment hk = [x′
k, xk] ∈ H such that

x′
k ≤ xk−1. We say that hk is the covering segment of Ik.

▶ Lemma 18. The intersection graph G of n horizontal segments and vertical lines admits a
3-hop spanner Ĝ with O(n) edges.

Proof. For each interval I = (xL, xR], let hI be the covering segment. Keep all intersections
that involve hI in the slab I × R. Finally, for every segment h ∈ H, keep the intersections
with the leftmost and the rightmost vertical line that intersects h, denoted vL(h) and vR(h)
respectively. Let Ĝ be the subgraph that includes an edge for each intersection we keep.

Hop stretch. Consider h ∈ H and v ∈ V that intersect. Either vL(h) or vR(h) is in the
same interval I ∈ I as v; say it is vR(h). Both v and vR(h) intersect the covering segment
hI . Thus, Ĝ contains the 3-hop path h → vR(h) → hI → v.

SoCG 2023

23:14 Constant-Hop Spanners for More Geometric Intersection Graphs

hk−1

hk

Ik−1 Ik

hk−2

Figure 7 Illustration of the disjoint intervals Ik−1 and Ik, and the covering segments hk−2, hk−1, hk

(drawn in purple). The blue squares indicate which intersections are kept.

Sparsity. For each covering segment hI , we have only kept intersections in the interval I,
so we have kept O(n) intersections over all intervals I. For each h ∈ H that is not a covering
segment, we have kept only two intersections involving h. ◀

Using Lemma 18, the standard binary divide-and-conquer along the y-axis gives us a
3-hop spanner with O(n log n) edges for the case of horizontal and vertical line segments.
Given a horizontal slab σ, we construct the 3-hop spanner as follows:
1. Construct a 3-hop spanner according to Lemma 18 to handle the intersections between

horizontal segments and long vertical segments, i.e., vertical segments that cross the
entire slab σ. Then remove the long vertical segments.

2. Divide σ into two horizontal subslabs, each containing half the number of horizontal
segments. For each of the two subslabs, construct a 3-hop spanner recursively.

Each segment, whether horizontal or vertical, appears in O(log n) of the recursive calls.
Therefore, the total number of edges in the spanner is bounded by O(n log n). Thus, we have
proved the following:

▶ Lemma 19. The intersection graph of n horizontal/vertical segments admits a 3-hop
spanner of size O(n log n).

We can extend the results for axis-aligned line segments to axis-aligned rectangles by
replacing each rectangle with four line segments, each being one side of the rectangle. We
build a spanner for these line segments. If two rectangles intersect, then either their sides
intersect, or one rectangle contains the other. The first case reduces to segment intersection.
For the case of containment, Conroy and Tóth [24] have shown that using O(n log n) edges,
there is a 2-hop spanner for the subgraph that includes only “corner intersections”, i.e.,
intersections where one rectangle contains a corner of the other rectangle.

▶ Theorem 20. The intersection graph of n axis-aligned rectangles in R2 admits a 3-hop
spanner of size O(n log n).

6 Open Questions

Although we have obtained almost linear size bounds for hop spanners in string graphs and
fat-object intersection graphs, a remaining question is whether these upper bounds could
be further improved to linear, or whether an inverse-Ackermann-type lower bound could be
proved.

T. M. Chan and Z. Huang 23:15

Another question is whether near-linear bounds are possible for other intersection graphs
not addressed here, e.g., for simplices in R3. Here, one might want to start more modestly
with any upper bound better than for general graphs.

References
1 Peyman Afshani and Konstantinos Tsakalidis. Optimal deterministic shallow cuttings for 3-d

dominance ranges. Algorithmica, 80(11):3192–3206, 2018. doi:10.1007/s00453-017-0376-3.
2 Pankaj K. Agarwal, Noga Alon, Boris Aronov, and Subhash Suri. Can visibility graphs be

represented compactly? Discret. Comput. Geom., 12:347–365, 1994. doi:10.1007/BF02574385.
3 Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. In Advances

in Discrete and Computational Geometry, volume 223 of Contemporary Mathematics, pages
1–56. AMS Press, 1999. URL: http://jeffe.cs.illinois.edu/pubs/survey.html.

4 Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad
Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. Graph spanners: A tutorial
review. Comput. Sci. Rev., 37:100253, 2020. doi:10.1016/j.cosrev.2020.100253.

5 Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse span-
ners of weighted graphs. Discret. Comput. Geom., 9:81–100, 1993. doi:10.1007/BF02189308.

6 Boris Aronov, Mark de Berg, Esther Ezra, and Micha Sharir. Improved bounds for the
union of locally fat objects in the plane. SIAM J. Comput., 43(2):543–572, 2014. doi:
10.1137/120891241.

7 Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and Michiel H. M. Smid.
Euclidean spanners: Short, thin, and lanky. In Proc. 27th Annual ACM Symposium on Theory
of Computing (STOC), pages 489–498, 1995. doi:10.1145/225058.225191.

8 Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu.
An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM,
45(6):891–923, 1998. doi:10.1145/293347.293348.

9 Marshall W. Bern. Approximate closest-point queries in high dimensions. Inf. Process. Lett.,
45(2):95–99, 1993. doi:10.1016/0020-0190(93)90222-U.

10 Ahmad Biniaz. Plane hop spanners for unit disk graphs: Simpler and better. Comput. Geom.,
page 101622, 2020. doi:10.1016/j.comgeo.2020.101622.

11 Karl Bringmann, Sándor Kisfaludi-Bak, Marvin Künnemann, André Nusser, and Zahra
Parsaeian. Towards sub-quadratic diameter computation in geometric intersection graphs. In
Proc. 38th International Symposium on Computational Geometry (SoCG), pages 21:1–21:16,
2022. doi:10.4230/LIPIcs.SoCG.2022.21.

12 Sergio Cabello and Miha Jejčič. Shortest paths in intersection graphs of unit disks. Comput.
Geom., 48(4):360–367, 2015. doi:10.1016/j.comgeo.2014.12.003.

13 Nicolas Catusse, Victor Chepoi, and Yann Vaxès. Planar hop spanners for unit disk graphs.
In Proc. 6th International Workshop on Algorithms for Sensor Systems, Wireless Ad Hoc
Networks, and Autonomous Mobile Entities (ALGOSENSORS), pages 16–30, 2010. doi:
10.1007/978-3-642-16988-5_2.

14 Timothy M. Chan. Approximate nearest neighbor queries revisited. Discret. Comput. Geom.,
20(3):359–373, 1998. doi:10.1007/PL00009390.

15 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of
(≤ k)-levels in three dimensions. SIAM J. Comput., 30(2):561–575, 2000. doi:10.1137/
S0097539798349188.

16 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. Journal of Algorithms, 46(2):178–189, 2003.

17 Timothy M. Chan. Dynamic subgraph connectivity with geometric applications. SIAM J.
Comput., 36(3):681–694, 2006. doi:10.1137/S009753970343912X.

18 Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. Discret. Comput.
Geom., 64(4):1235–1252, 2020. doi:10.1007/s00454-020-00229-5.

SoCG 2023

https://doi.org/10.1007/s00453-017-0376-3
https://doi.org/10.1007/BF02574385
http://jeffe.cs.illinois.edu/pubs/survey.html
https://doi.org/10.1016/j.cosrev.2020.100253
https://doi.org/10.1007/BF02189308
https://doi.org/10.1137/120891241
https://doi.org/10.1137/120891241
https://doi.org/10.1145/225058.225191
https://doi.org/10.1145/293347.293348
https://doi.org/10.1016/0020-0190(93)90222-U
https://doi.org/10.1016/j.comgeo.2020.101622
https://doi.org/10.4230/LIPIcs.SoCG.2022.21
https://doi.org/10.1016/j.comgeo.2014.12.003
https://doi.org/10.1007/978-3-642-16988-5_2
https://doi.org/10.1007/978-3-642-16988-5_2
https://doi.org/10.1007/PL00009390
https://doi.org/10.1137/S0097539798349188
https://doi.org/10.1137/S0097539798349188
https://doi.org/10.1137/S009753970343912X
https://doi.org/10.1007/s00454-020-00229-5

23:16 Constant-Hop Spanners for More Geometric Intersection Graphs

19 Timothy M. Chan. Finding triangles and other small subgraphs in geometric intersection
graphs. In Proc. 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2023.
To appear. URL: https://arxiv.org/abs/2211.05345.

20 Timothy M. Chan and Sariel Har-Peled. On the number of incidences when avoiding an
induced biclique in geometric settings. In Proc. 34th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2023. To appear. URL: https://arxiv.org/abs/2112.14829.

21 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in geometric intersection
graphs. J. Comput. Geom., 10(1):27–41, 2019. doi:10.20382/jocg.v10i1a2.

22 Timothy M. Chan and Dimitrios Skrepetos. Approximate shortest paths and distance oracles in
weighted unit-disk graphs. J. Comput. Geom., 10(2):3–20, 2019. doi:10.20382/jocg.v10i2a2.

23 Chandra Chekuri, Kenneth L. Clarkson, and Sariel Har-Peled. On the set multicover problem
in geometric settings. ACM Trans. Algorithms, 9(1), December 2012. doi:10.1145/2390176.
2390185.

24 Jonathan B. Conroy and Csaba D. Tóth. Hop-spanners for geometric intersection graphs. In
38th International Symposium on Computational Geometry (SoCG), pages 30:1–30:17, 2022.
doi:10.4230/LIPIcs.SoCG.2022.30.

25 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008. URL: https://www.
worldcat.org/oclc/227584184.

26 Adrian Dumitrescu, Anirban Ghosh, and Csaba D. Tóth. Sparse hop spanners for unit disk
graphs. Comput. Geom., page 101808, 2022. doi:10.1016/j.comgeo.2021.101808.

27 Paul Erdős. Extremal problems in graph theory. In Proc. Symp. on Graph Theory, Smolenice,
Acad. C.S.S.R., pages 29–36, 1963.

28 Jacob Fox and János Pach. A separator theorem for string graphs and its applications.
Combinatorics, Probability and Computing, 19(3):371–390, 2010.

29 Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal on computing, 16(6):1004–1022, 1987.

30 Greg N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k

smallest spanning trees. SIAM Journal on Computing, 26(2):484–538, 1997.
31 Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and

its applications. SIAM J. Comput., 35(1):151–169, 2005. doi:10.1137/S0097539703436357.
32 Klara Kedem, Ron Livne, János Pach, and Micha Sharir. On the union of jordan regions

and collision-free translational motion amidst polygonal obstacles. Discret. Comput. Geom.,
1:59–70, 1986. doi:10.1007/BF02187683.

33 Hung Le, Lazar Milenkovic, and Shay Solomon. Sparse euclidean spanners with tiny diameter:
A tight lower bound. In Proc. 38th International Symposium on Computational Geometry
(SoCG), pages 54:1–54:15, 2022. doi:10.4230/LIPIcs.SoCG.2022.54.

34 James R. Lee. Separators in region intersection graphs. In Proc. 8th Innovations in Theoretical
Computer Science Conference (ITCS), pages 1:1–1:8, 2017. doi:10.4230/LIPIcs.ITCS.2017.
1.

35 Jirí Matoušek. Reporting points in halfspaces. Computational Geometry, 2(3):169–186, 1992.
36 Jirí Matoušek. Near-optimal separators in string graphs. Comb. Probab. Comput., 23(1):135–

139, 2014. doi:10.1017/S0963548313000400.
37 Giri Narasimhan and Michiel H. M. Smid. Geometric Spanner Networks. Cambridge University

Press, 2007.
38 Chenyu Yan, Yang Xiang, and Feodor F. Dragan. Compact and low delay routing labeling

scheme for unit disk graphs. In Proc. Algorithms and Data Structures, 11th International
Symposium (WADS), pages 566–577, 2009. doi:10.1007/978-3-642-03367-4_49.

https://arxiv.org/abs/2211.05345
https://arxiv.org/abs/2112.14829
https://doi.org/10.20382/jocg.v10i1a2
https://doi.org/10.20382/jocg.v10i2a2
https://doi.org/10.1145/2390176.2390185
https://doi.org/10.1145/2390176.2390185
https://doi.org/10.4230/LIPIcs.SoCG.2022.30
https://www.worldcat.org/oclc/227584184
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1016/j.comgeo.2021.101808
https://doi.org/10.1137/S0097539703436357
https://doi.org/10.1007/BF02187683
https://doi.org/10.4230/LIPIcs.SoCG.2022.54
https://doi.org/10.4230/LIPIcs.ITCS.2017.1
https://doi.org/10.4230/LIPIcs.ITCS.2017.1
https://doi.org/10.1017/S0963548313000400
https://doi.org/10.1007/978-3-642-03367-4_49

	1 Introduction
	2 String Graphs
	2.1 3-Hop Spanner with O(nlog^3n) Size
	2.2 7-Hop Spanner with O(nlog log n) Size
	2.3 O_k(1)-Hop Spanner with O(nalpha_k(n)) Size

	3 Fat Objects in R^d
	3.1 3-Hop Spanner of O(nlog n) Size
	3.2 O_k(1)-Hop Spanner with O_{d,k}(nalpha_k(n)) Size

	4 Objects with (Near) Linear Union Complexity in R^2
	5 Axis-Aligned Rectangles in R^2
	6 Open Questions

