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Abstract
Knots are commonly represented and manipulated via diagrams, which are decorated planar graphs.
When such a knot diagram has low treewidth, parameterized graph algorithms can be leveraged to
ensure the fast computation of many invariants and properties of the knot. It was recently proved
that there exist knots which do not admit any diagram of low treewidth, and the proof relied on
intricate low-dimensional topology techniques. In this work, we initiate a thorough investigation of
tree decompositions of knot diagrams (or more generally, diagrams of spatial graphs) using ideas
from structural graph theory. We define an obstruction on spatial embeddings that forbids low tree
width diagrams, and we prove that it is optimal with respect to a related width invariant. We then
show the existence of this obstruction for knots of high representativity, which include for example
torus knots, providing a new and self-contained proof that those do not admit diagrams of low
treewidth. This last step is inspired by a result of Pardon on knot distortion.
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1 Introduction

A (tame) knot is a polygonal embedding of the circle S1 into R3, and two knots are considered
equivalent if they are isotopic, i.e., if they can be continuously deformed one into the other
without introducing self-intersections. The trivial knot, or unknot, is, up to equivalence,
the embedding of S1 as a triangle. The investigation of knots and their mathematical
properties dates back to at least the nineteenth century [1] and has developed over the years
into a very rich and mature mathematical theory. From a computational perspective, a
fundamental question is to figure out the best algorithm testing whether a given knot is the
unknot. Note that it is neither obvious from the definitions that a non-trivial knot exists, nor
that the problem is decidable. This was famously posed as an open problem by Turing [50].
The current state of the art on this problem is that it lies in NP [21] and co-NP [29], a
quasipolynomial time algorithm has been announced [30] but no polynomial-time algorithm is
known. More generally, algorithmic questions surrounding knots typically display a wide gap
between the best known algorithms (which are almost never polynomial-time, and sometimes
the complexity is a tower of exponentials) and the best known complexity lower bounds. We
refer to the survey of Lackenby for a panorama of algorithms in knot theory [28].
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50:2 A Structural Approach to Tree Decompositions of Knots and Spatial Graphs

Figure 1 Diagrams of two trivial knots on the left, a bowline knot and a knotted spatial graph.

In recent years, many attempts have been made to attack such seemingly hard problems
via the route of parameterized algorithms. In particular, the treewidth of a graph is a
parameter quantifying how close a graph is to a tree, and thus algorithmic problems on
graphs of low treewidth can often be solved very efficiently using dynamic programming
techniques on the underlying tree structure of instance. The concept of branchwidth,
which we also use below, is somewhat equivalent and always within a constant factor of
treewidth [39]. One approach is to study a knot via one of its diagrams (see Figure 1), that
is, a decorated graph obtained by a planar projection where it is indicated on each vertex
which strand goes over or under. Then, if such a diagram has low treewidth, one can apply
these standard dynamic programming techniques to solve seemingly hard problems very
efficiently. While this approach has not yet been successful for unknot recognition beyond
treewidth 2 [5], it has proved effective for the computation of many knot invariants, including:
Jones and Kauffman polynomials [33] (which are known to be #P -hard to compute in
general [27]), HOMFLY-PT polynomials [6], and quantum invariants [34, 8]. Since any knot
admits infinitely many diagrams, these algorithms naturally lead to the following question
raised by Burton [7, p.2694], and Makowsky and Mariño [33, p.755]: do all knots admit
diagrams of constant treewidth, or conversely does there exist a family of knots for which all
the diagrams have treewidth going to infinity. This question was answered recently by de
Mesmay, Purcell, Schleimer and Sedgwick [9] who proved that, among other examples, torus
knots Tp,q are such a family. The proof relies at its core on an intricate result of Hayashi
and Shimokawa [23] on thin position of multiple Heegaard splittings.

Our results. The main purpose of this work is to provide new techniques to characterize
which knots, or more generally which spatial graphs (polygonal embeddings of graphs
into R3, considered up to isotopy, see for example Figure 1), do not admit diagrams of low
treewidth. Our starting point is similar to the one in [9]: we first observe that if a knot or
a spatial graph admits a diagram of low treewidth, then there is a way to sweep R3 using
spheres arranged in a tree-like fashion which intersect the knot a small number of times
(Proposition 5). This corresponds roughly to a map f : R3 → T where T is a trivalent tree,
where the preimage of each point interior to an edge is a sphere with a small number of
intersections with the knot (we refer to Section 2 for the precise technical definitions of all
the concepts discussed in this introduction). We call this a sphere decomposition1, and
the resulting measure (maximal number of intersections) the spherewidth of the knot.

1 Our sphere decompositions are different from the ones in [9] but functionally equivalent for knots.
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Thus, in order to lower bound the treewidth of all the diagrams of a knot, it suffices to
lower bound its spherewidth. We provide a systematic technique to do so using a perspective
taken from structural graph theory. In the proof of the celebrated Graph Minor Theorem of
Robertson and Seymour [41], handling families of graphs with bounded treewidth turns out
not to be too hard [38], and in contrast, a large part is devoted to analyzing the structure
shared by graphs of large treewidth. There, a fundamental contribution is the concept of
tangle2. We refer to Diestel [13] or Grohe [18] for nice introductions to tangles and their
applications. Informally, a tangle of order k in a graph G is a choice, for each separation of
size at most k, of a “big side” of that separation, where the highly-connected part of the
graph lies. In addition, there are some compatibility properties, in particular no three “small
sides” should cover the whole graph. Such a tangle turns out to be exactly the structure
dual to branchwidth, in the sense that, as is proved in [39], for any graph G, the maximal
possible order of a tangle is exactly equal to its branchwidth. We develop a similar concept
dual to sphere decompositions which we call a bubble tangle. Informally, a bubble tangle
of order k for a knot or spatial graph K is a map that, for each sphere intersecting K at
most k times, chooses a “big side” indicating where the complicated part of K lies. There
are again some compatibility conditions which add topological information to the collection
of “small sides”. Then our first result is the following.

▶ Theorem 1. For any knot or spatial graph K, the maximum order of a bubble tangle for
K is equal to the spherewidth of K.

This provides a convenient and systematic pathway to prove lower bounds on the
spherewidth, and thus on the treewidth of all possible diagrams: it suffices to prove the
existence of a bubble tangle of high order. However, making choices for the uncountable
family of spheres with a small number of intersections with K, and then verifying the needed
compatibility conditions is very unwieldy. Our second contribution is to provide a way to
define such a bubble tangle in the case of knots (or spatial graphs) which are embedded on
some surface Σ in R3. Given a surface Σ in R3, a compression disk is a disk properly
embedded in R3 ∖ Σ whose boundary is a non-contractible curve on Σ. The compression-
representativity of an embedding of a knot or spatial graph K on a surface Σ in R3 is
the smallest number of intersections between K and a cycle on Σ that bounds a compression
disk. The compression-representativity of a knot or spatial graph is the supremum of
that quantity over all embeddings on surfaces (this was originally defined by Ozawa [36]).
Our second theorem is the following.

▶ Theorem 2. For any knot or spatial graph K embedded on a surface Σ in R3, there
exists a bubble tangle of order 2/3 of the compression-representativity of the embedding.
Therefore, for any knot or spatial graph K, there exists a bubble tangle of order 2/3 of the
compression-representativity of K.

Combining together Theorems 1 and 2 with Proposition 5 provides a large class of knots
of high spherewidth, and our tools are versatile enough to apply to spatial graphs, while
previous ones did not. In particular, observing that torus knots Tp,q have high compression-
representativity, we obtain the following corollary, which improves the lower bound obtained
by [9], without relying on deep knot-theoretical tools.

2 It turns out that the word tangle holds a completely different meaning in knot theory, and, to avoid
confusion, in this article we will always use it with the graph theory meaning.
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50:4 A Structural Approach to Tree Decompositions of Knots and Spatial Graphs

▶ Corollary 3. A torus knot T (p, q) has spherewidth at least 2/3 min(p, q), and thus any
diagram of T (p, q) has treewidth at least 1/3 min(p, q).

Related work and proof techniques. The results in this article and many of their proof
techniques stem from two very distinct lineages in quite distant communities, the first one
being knot theory or more generally low-dimensional topology, and the second one being
structural graph theory. While there have been some recent works aiming at building
bridges between combinatorial width parameters and topological quantities (for example the
aforementioned [9], but also [25, 26, 35] for related problems in 3-manifold theory), the main
contribution in this article is that we dive deeper in the structural graph theory perspective
via the concept of a tangle. The latter has now proved to be a fundamental tool in graph
theory and beyond (see for example Diestel [10, Preface to the 5th edition]).

The duality theorem of Robertson and Seymour between branchwidth and tangles in [39]
has been generalized many times since its inception, for example in order to encompass
other notions of decompositions and their obstructions [2, 32], to apply more generally to
matroids [17] and to the wide-ranging setting of abstract separations systems [11, 12]. The key
difference in our work, and why it does not fit into these generalizations, is that our notions
of sphere decomposition and bubble tangles inherently feature the topological constraint of
working with 2-spheres. This is a crucial constraint, as it would be easy to sweep any knot
with width at most 2 if one were allowed to use arbitrary surfaces during the sweeping process.
Furthermore, in planar graphs, it was shown by Seymour and Thomas [48] that the separations
involved in an optimal branch decomposition can always be assumed to take the form of
1-spheres, i.e., Jordan curves. This property led to the ratcatcher algorithm to compute the
branchwidth of planar graphs in polynomial time [48], and to sphere-cut decompositions
and their algorithmic applications (see for example [14]). Our sphere decompositions are
the generalization one dimension higher of these sphere-cut decompositions, and Theorem 1
identifies bubble tangles as a correct notion of dual obstruction for those. We believe that
these notions could be of further interest beyond knots, in the study of graphs embedded in
R3 with some topological constraints, e.g., linkless graphs [42].

The representativity (also called facewidth) of a graph embedded on a surface S is
the smallest number of intersections of a non-contractible curve with that graph. Theorem 2
will not come as a surprise for readers accustomed to graph minor theory, as Robertson
and Seymour proved a very similar-looking theorem in Graph Minors XI [40, Theorem 4.1],
showing that that the branchwidth of a graph embedded on a surface is lower bounded
by its representativity, which they prove by exhibiting a tangle. The key difference is
that our notion of compression-representativity only takes into account the length of cycles
bounding compression disks, instead of all the non-contractible cycles. Here again, this
topological distinction is crucial to give a meaningful concept for knots, as for example the
graph-theoretical representativity of a torus knot is zero. Due to this difference, the proof
technique of Robertson and Seymour does not readily apply to prove Theorem 2; instead we
have to rely on more topological arguments.

From the knot theory side, there is a long history in the study of the “best” way to sweep
a knot while trying to minimize the number of intersections in this sweepout. One of the
oldest knot invariants, the bridge number, can be seen through this lens (see for example [47]).
A key concept in modern knot theory, introduced by Gabai in his proof of the Property
R conjecture [16], is the notion of thin position which more precisely quantifies the best
way to place a knot to minimize its width. It is at the core of many advances in modern
knot theory (see for example Scharlemann [43]). Recent developments in thin position have
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highlighted that in order to obtain the best topological properties, it can be helpful to
sweep the knot in a tree-like fashion compared to the classical linear one. This approach
leads to definitions bearing close similarities to our sphere decompositions (this is one of
the ideas behind generalized Heegaard splittings [45, 44], see also [23, 24, 49]). The concept
of compression-representativity of a knot or a spatial graph finds its roots in the works of
Ozawa [36], and Blair and Ozawa [4] who defined it under the simple name of representativity,
taking inspiration from graph theory. They proved that it provides a lower bound on the
bridge number and on more general linear width quantities. Our Theorem 2 strengthens
their results by showing that it also lower bounds the width of tree-like decompositions.
Furthermore, while specific tools have been developed to lower bound various notions of
width of knots or 3-manifolds, we are not aware of duality theorems like our Theorem 1.
It shows that our bubble tangles constitute an obstruction that is, in a precise sense, the
optimal tool for the purpose of lower bounding spherewidth.

Finally, an important inspiration for our proof of Theorem 2 comes from a seemingly
unrelated breakthrough of Pardon [37], who solved a famous open problem of Gromov [19]
by proving the existence of knots with arbitrarily high distortion. The distortion for two
points on an embedded curve in R3 is the ratio between the intrinsic and Euclidean distance
between the points. The distortion of the entire curve is the supremum over all pairs of
points. The distortion of a knot is the minimal distortion over all embeddings of the knot.
While this metric quantity seems to have nothing to do with tree decompositions, it turns
out that the technique developed by Pardon can be reinterpreted in our framework. With
our terminology, his proofs amounts to first lower bounding the distortion by a constant
factor of the spherewidth, and then defining a bubble tangle for knots of high representativity.
The lower bound is nicely explained by Gromov and Guth [20, Lemma 4.2], where the
simplicial map is similar to our sphere decompositions, up to a constant factor. Then our
proof of Theorem 2 is inspired by the second part of Pardon’s argument, with a quantitative
strengthening to obtain the 2/3 factor, whereas his argument would only yield 1/2.

Organization of this paper. After providing background and defining our key concepts
in Section 2, we prove Theorem 1 in Section 3, and Theorem 2 in Section 4. We provide
examples in Section 5. Due to the line limitations, some proofs are not included in this
extended abstract and are deferred to the full version [31].

2 Preliminaries

We include the most relevant definitions, but some familiarity with low-dimensional topology
will help, see for example in the textbook of Schultens [46]. We refer to Diestel [10] for a nice
introduction to graph theory and in particular its structural aspects. We denote by V (G),
E(G), and L(G) the vertices, edges and leaves (degree one vertices) of a graph G.

Low-dimensional topology. Following standard practice, instead of considering knots and
spatial graphs within R3, we compactify it and work within S3. We denote by C(A) the
connected components of a subset A of S3, and thus by |C(A)| its number of connected
components. As is standard in low-dimensional topology, we work in the Piecewise-Linear
(PL) category, which means that all the objects that we use in this article are assumed to
be piecewise-linear, i.e., made of a finite number of linear pieces with respect to a fixed
triangulation of S3. This allows us to avoid pathologies such as wild knots or the Alexander
horned sphere. An embedding of a compact topological space X into another one Y is a
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Figure 2 A double bubble: two spheres that intersect in a single disk.

continuous injective map, and it is proper if it maps the boundary ∂X within the boundary
∂Y . A 3-dimensional version of the Schoenflies theorem guarantees that for any PL 2-sphere
S embedded in S3, both components of S3 ∖S are balls (see for example [3, Theorem XIV.1]).
A knot is a PL embedding of S1 into S3, a link is a disjoint union of knots, and a spatial
graph is a PL embedding of a graph G into S3. All these objects are considered equivalent
when they are ambient isotopic, i.e., when there exists a continuous deformation preserving
the embeddedness. Knots and links are a special instance of spatial graphs, and henceforth we
will mostly focus on spatial graphs, generally denoted by the letter G. For technical reasons,
it is convenient to thicken our embedded graphs as follows. A thickened embedding φ of
a graph G is an embedding of G in S3 where each vertex is thickened to a small ball, two
balls are connected by a polygonal edge if and only if they are adjacent in the graph G, and
pairs of edges are disjoint. We emphasize that we do not thicken edges, which might be
considered nonstandard. We will also work with graphs embedded on surfaces which are
themselves embedded in S3: such embeddings will also always be thickened, that is, vertices
on the surface are thickened into small disks. From now on, all the graph embeddings will be
thickened, and thus to ease notations we will omit the word thickened.

As mentioned in the introduction, for Σ a surface embedded in S3, a compression disk
is a properly embedded disk D in S3 ∖ Σ such that the boundary ∂D is a non-contractible
curve on Σ. A compressible curve γ of Σ is the boundary of a compressing disk of Σ. For a
spatial graph G embedded on a surface Σ in S3, the compression representativity of G on
Σ, written c-rep(G, Σ) is min {|C(α ∩ G|) | α compressible curve of Σ} (we count connected
components to correctly handle thickened vertices). The compression representativity c-rep(G)
of G is the supremum of c-rep(G, Σ) over all nested embeddings G ↪→ Σ ↪→ S3.

In order to define spherewidth and bubble tangles, we require a precise control of the
event when two spheres merge together to yield a third one, which is mainly encapsulated in
the concept of double bubble. A double bubble is a triplet of closed disks (D1, D2, D3) in
S3, disjoint except on their boundaries, that they share: D1 ∩ D2 = D1 ∩ D3 = D2 ∩ D3 =
D1 ∩D2 ∩D3 = ∂D1 = ∂D2 = ∂D3, see Figure 2. Such a double bubble defines three spheres,
which, by the PL Schoenflies theorem, bound three balls.

Two surfaces (resp. a knot and a surface) embedded in S3 are transverse if they intersect
in a finite number of connected components, where the intersection is locally homeomorphic
to the intersection of two orthogonal planes (resp. to the intersection of a plane and an
orthogonal line). Likewise, we say that a surface is transverse to a ball if it is transverse
to its boundary. A surface is transverse to a graph if it is transverse to all the thickened
vertices and edges it intersects. A double bubble is transverse to a graph or a surface if each
of its three spheres is and if the vertices of the graph do not intersect the spheres on their
shared circle ∂Di. Intersections are tangent when they are not transverse, and a sphere S

is said finitely tangent to a graph G embedded in S3 if they do not intersect transversely
but the number of intersections |E(G) ∩ S| is still finite.

Spherewidth. In this paragraph, we introduce sphere decompositions, which are the main
way that we use to sweep knots and spatial graphs using spheres.
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▶ Definition 4 (Sphere decomposition). Let G be a graph embedded in S3. A sphere
decomposition of G is a continuous map f : S3 → T where T is a trivalent tree with at
least one edge:

For all x ∈ L(T ), f−1(x) is a point disjoint from G.
For all x ∈ V (T ) ∖ L(T ), f−1(x) is a PL double bubble transverse to G.
For all x interior to an edge, f−1(x) is a sphere transverse or finitely tangent to G.

The weight of a sphere S (with respect to G) is the number of connected components
in its intersection with G. The width of a sphere decomposition f is the supremum of the
weight of f−1(x) over all points x interior to edges of the tree T . The spherewidth of the
graph G, denoted by sw(G), is the infimum, over all sphere decompositions f , of the width
of f : sw(G) = inff :S3 7→T supx∈e̊∈E(T ) |C(f−1(x) ∩ G)|. Therefore, a sphere decomposition is
a way to continuously sweep S3 using spheres, which will occasionally merge or split in the
form of double bubbles, and the spherewidth is a measure of how well we can sweep a graph
G using sphere decompositions. This is similar to the level sets given by a Morse function,
but note that our double-bubble singularities are not of Morse type, and those are key to the
proof of Theorem 1.

Sphere
decomposition

Figure 3 A width-4 sphere decomposition of a pretzel knot.

The point of using thickened embeddings instead of usual ones is that this allows
disjoint spheres of a sphere decomposition to intersect a same vertex of a graph embedding.
This is motivated by the following proposition, which provides a bridge between sphere
decompositions and tree decompositions of diagrams of knots and spatial graphs.

▶ Proposition 5. Let G be a knot or a graph embedded in S3, and D be a diagram of G.
Then the spherewidth of G is at most twice the tree-width of D.

The proof is very similar to that of Lemma 3.4 in [9] and is included to the full version [31].

Bubble tangle. Bubble tangles are our second main concept in this article. They will
constitute an obstruction to spherewidth, by designating, for each sphere in S3 not intersecting
the graph too many times, the side of the sphere that is easy to sweep. We first observe
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50:8 A Structural Approach to Tree Decompositions of Knots and Spatial Graphs

that some balls have to be easy to sweep: intuitively this will be the case of any unknotted
segment or empty ball (see Figure 4). Let G be a graph embedded in S3. A closed ball B in
S3 is said to be G-trivial if its boundary is transverse to G and one of the following holds
(where B(0, 1) is the unit ball of R3):

B ∩ G = ∅.
B ∖ G is homeomorphic to B(0, 1) ∖ [−1, 1] × {(0, 0)} ⊂ R3.
B ∖ G is homeomorphic to B(0, 1) ∖ [−1, 0] × {(0, 0)} ⊂ R3.

/

Figure 4 Representation of a G-trivial ball and a non G-trivial ball.

We can now introduce bubble tangles.

▶ Definition 6. Let G be an embedding of a graph in S3 and n ∈ N. A bubble tangle T of
order n ≥ 2, is a collection of closed balls in S3 such that:
(T1) For every closed ball B in T , |C(∂B ∩ G)| < n.
(T2) For every sphere S in S3 transverse to G, if |C(S ∩ G)| < n then exactly one of the

two closed balls B̄1 is in T or B̄2 is in T , where S3 ∖ S = {B1, B2}.
(T3) For every triple of balls B1, B2 and B3 induced by a double bubble transverse to G,

{B1, B2, B3} ̸⊂ T .
(T4) For every closed ball B in S3, if B is G-trivial and |C(∂B ∩ G)| < n, then B ∈ T .

For every transverse sphere S such that |C(S ∩ G)| < n, a bubble tangle chooses one of
the two balls having S as the boundary. We think of the ball in T as being a “small side”,
since T4 stipulates that balls containing trivial parts of G are in T , while the other one is
the “big side”. Then the key property T3 enforces that no three small sides forming a double
bubble should cover the entire S3.

▶ Remark 7. Tangles in graph theory are often endowed with an additional axiom, specifying
that small sides should be stable under inclusion (see e.g., [17, Axiom (T3A)]). Our bubble
tangles are weaker in the sense that we do not enforce this axiom, but still strong enough
to guarantee duality (Theorem 1) and the connection to compression-representativity (The-
orem 2). Whether such an axiom can be additionally enforced in our definition of bubble
tangle while preserving these properties is left as an open problem.

3 Obstruction and duality

In this section, we prove Theorem 1: given a graph G embedded in S3, the highest possible
order of a bubble tangle is equal to the spherewidth of G. In the following, G is an embedding
of a graph in S3 and the order of all bubble tangles that we consider is at least 3, the
theorem being trivial otherwise. The proof is split into two inequalities: Proposition 8 and
Proposition 11 which together immediately imply Theorem 1.



C. Lunel and A. de Mesmay 50:9

Bubble tangles as obstruction. We first show that a bubble tangle of order k and a sphere
decomposition of width less than k cannot both exist at the same time.

▶ Proposition 8. Let G be an embedding of a graph in S3. If G admits a bubble tangle T of
order k then sw(G) ≥ k.

The proof of this proposition is similar to its graph-theoretical counterparts showing that
tangles are an obstruction to branchwidth (see, e.g., [39]). The main difference with these
proofs lies in the continuous aspects of our sphere decomposition, which we control using
Lemmas 9 and 10.

Let S and S′ be two disjoint spheres in S3. Then S3 ∖ (S ∪ S′) has three connected
components: two balls and a space I homeomorphic to S2 × [0, 1]. The spheres S and S′ are
said to be braid-equivalent if (I ∪ S ∪ S′) ∖ G is homeomorphic to Sk × [0, 1] where Sk

is the 2-sphere with k holes. The intuition behind this definition is that it means that G

forms a braid between S and S′. The following lemma explains how braid-equivalent spheres
interact with a bubble tangle.

Figure 5 The three innermost spheres are braid-equivalent, not the fourth one.

▶ Lemma 9. Let T be a bubble tangle and S, S′ be two braid-equivalent spheres. Let us write
S3 ∖ S = {B1, B2} and S3 ∖ S′ = {B′

1, B′
2} such that B1 ⊂ B′

1. If B1 ∈ T then B′
1 ∈ T .

In the following, we will assume that there exists a bubble tangle T of order k and a
sphere decomposition f : S3 → T of G of width less than k in order to reach a contradiction.
Let e = (u, v) ∈ E(T ) be an edge and x be a point of e so that f−1(x) is transverse to
G. Notice that x cuts T in two trees : Tu(x) and Tv(x) where Tu(x) is the tree containing
the endpoint u. By definition f−1(x) = S is a sphere in S3 such that |C(G ∩ S)| < k. It
follows by T2 that exactly one of f−1(Tu(x)) or f−1(Tv(x)) belongs to T . We define an
orientation o : T → V (T ) induced by T as follows: if f−1(x) is transverse to G, o(x) := v if
f−1(Tu(x)) ∈ T , or o(x) := u if f−1(Tv(x)) ∈ T . In other words, at a point x where f−1(x)
is transverse to G the orientation o orients x outwards, toward the “big side”. If f−1(x) has
a tangency with G, note that for any close enough neighbor y of x, f−1(y) is transverse to
G, and we define o(x) := o(y), making an arbitrary choice if needed. As we consider edges of
the tree T to be intervals, we will use interval notations: we write [u, v] for the edge (u, v),
and more generally [x, y] to describe all the points on the edge between x and y. We say
that an orientation o is consistent if for any x on some edge such that f−1(x) is transverse
to G, o is constant on [x, o(x)]. The following lemma shows that the orientation o can be
assumed to be consistent on all the edges of the tree T .

▶ Lemma 10. Let us assume that there exists a bubble tangle T of order k and a sphere
decomposition f : S3 → T of G of width less than k. Then there exists a sphere decomposition
to the same tree such that o is consistent on T .

SoCG 2023



50:10 A Structural Approach to Tree Decompositions of Knots and Spatial Graphs

Lemma 10 ensures that for any edge e = (u, v) of T , there exists a point xe so that all the
points in (xe, v) are oriented towards v, while all the points in (u, xe) are oriented towards u.
Hence, by subdividing each edge e of T at this xe, we can think of o as assigning a direction
to each edge. This directed tree is the main tool that we use in the proof of Proposition 8.

Proof of Proposition 8. Let us assume that there exists both a bubble tangle of order k

and a sphere decomposition f : S3 → T of width less than k. By Lemma 10, there exists
a sphere decomposition of width less than k so that the orientation o as defined above is
consistent. Denoting by T ′ the tree T where each edge has been subdivided once, this
orientation corresponds to a choice of direction for each edge of T ′. Every directed acyclic
graph, and thus in particular the tree T ′ contains at least one sink, see Figure 6.

This sink cannot be a leaf of the tree. Indeed, let e = [ℓ, u] be an edge of T incident to
a leaf ℓ. By definition, f−1(ℓ) is a point disjoint from G, and thus for any y in (ℓ, u) close
enough to ℓ, f−1(y) is a sphere disjoint from G. Hence f−1(Tℓ(y)) is a G-trivial ball and
belongs to T . It follows that all edges incident to leaves of T ′ are oriented inward. This sink
cannot be a degree-two vertex either, as the tree T ′ was defined in such a way that the two
edges adjacent to a degree-two vertex are always oriented outwards. Finally, this sink cannot
be a degree-three vertex as this would mean that the three balls induced by a double bubble
are in T , which would violate T3. We have thus reached a contradiction. ◀
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Figure 6 An example of T ′ from T leading to at least one sink.

Tightness of the obstruction. In this paragraph, we show that bubble tangles form a tight
obstruction to sphere decompositions, in the sense that a bubble tangle of order k exists
whenever a sphere decomposition of width less than k does not exist.

▶ Proposition 11. Let G be an embedding of a graph in S3 and k be an integer at least three.
If G does not admit a sphere decomposition of width less than k, then there exists a bubble
tangle of order k.

The idea of the proof is to show that, given a collection of closed balls satisfying the
axioms T1 and T4 of bubble tangles, then either we can extend this collection to a bubble
tangle, or there exists a partial sphere decomposition of width k which sweeps the space
“between” the balls of the collection. We first introduce the relevant definition.

Let G a graph embedded in S3. A partial sphere decomposition of G is a continuous
map f : S3 → T where T is a trivalent tree with at least one edge such that:

For all x ∈ L(T ), f−1(x) is a point disjoint from G or a closed ball B.
For all x ∈ V (T ) ∖ L(T ), f−1(x) is a double bubble transverse to G.
For all x interior to an edge, f−1(x) is a sphere transverse or finitely tangent to G.

The leaves of T having preimages by f which are not points are called non-trivial leaves.
Let G be a graph embedding in S3 and A be a collection of closed balls in S3. A partial
sphere decomposition f conforms to A if, for all x ∈ L(T ), f−1(x) is either a point disjoint
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from G, or a closed ball B such that there exists A ∈ A such that ∂B and ∂A are braid
equivalent and B ⊂ A. In the latter case we say that x conforms to A. The width of a partial
sphere decomposition is defined like the width of standard sphere decompositions: it is the
supremal weight of spheres that are pre-images of points in the interiors of edges of T .

Now, the proof of Proposition 11 hinges on the following key lemma. Its proof is similar
to branchwidth-tangle duality proofs [39] in that it builds a bubble tangle inductively, but
the continuous nature of our objects makes us rely on transfinite induction in the form of
Zorn’s lemma.

▶ Lemma 12. Let G be an embedding of a graph in S3, k be an integer at least 3 and A be a
collection of closed balls in S3 satisfying T1 and T4. Then one of the following is true :

A extends to a bubble tangle of order k.
there is a partial sphere decomposition of width less than k that conforms to A.

Proof of Proposition 11. We denote by A the collection of G-trivial balls. By definition, A
satisfies T4, and since G-trivial balls have weight at most two, it also satisfies T1 for k at
least three. Therefore, by Lemma 12, either A extends to a bubble tangle of order k, or there
exists a partial sphere decomposition of width less than k conforming to it. In the first case,
we are done. In the second case, we are also done, since, given a partial sphere decomposition
of width less than k conforming to G-trivial balls, it is straightforward to sweep within the
G-trivial balls so as to obtain a sphere decomposition of width less than k. ◀

4 From compression representativity to bubble tangles

The goal of this section is to show Theorem 2: when a graph G is embedded on a compact,
orientable, and non-zero genus surface Σ, there exists a bubble tangle naturally arising from
the compression representativity of G on Σ. In the following, we assume Σ is compact,
orientable, and not a sphere.

Under these hypotheses, the idea of the proof is to show that there exists a natural
choice of small side for every sphere with fewer intersections with G than the compression
representativity. Intuitively, such a sphere will only cut disks or “trivial parts” of Σ on one of
its sides, which we will designate as the small one. That is justified by the following lemma.

▶ Lemma 13. Let Σ be a surface embedded in S3 and S be a sphere in S3 that intersects Σ
transversely such that there is at least one non-contractible curve in the intersection. Then
one of the non-contractible curves is compressible.

Proof. As Σ and S are transverse, the intersection of S and Σ consists of a disjoint union of
simple closed curves. Each one of these curves bounds two disks on S. Let α be a curve of
S ∩ Σ that is innermost in S, i.e. it bounds a disk D in S that does not contain any other
curve of S ∩ Σ. If α is non-contractible, then the disk D is a compression disk for α, and
thus α is compressible. Otherwise, α bounds a disk DΣ in Σ (see for example Epstein [15,
Theorem 1.7]). We deform S continuously by “pushing” D through DΣ while keeping S

embedded (see Figure 7) until α disappears from Σ ∩ S.
Repeating this process on a new innermost curve of S will eventually yield a non-

contractible compressible curve. Indeed, the number of curves in the intersection is finite
(recall that both surfaces are piecewise linear), decreases at each step, and one of the curves
in Σ ∩ S is non-contractible. ◀

A direct consequence of this lemma is that if G is embedded on a surface Σ, a sphere
S intersects Σ, and the intersection has weight less than c-rep(G, Σ), then all the simple
closed curves in the intersection are contractible. Therefore, one of the two balls bounded
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α

Σ S Σ S

Figure 7 Removing a trivial curve from S ∩ Σ.

by S contains the meaningful topology of Σ, while the other one only contains spheres with
holes (see Figure 8). In order to formalize this, we will rely on fundamental groups (see for
example Hatcher [22] for an introduction to this concept). The inclusion of a subsurface X

on Σ induces a morphism i∗ : π1(X) → π1(Σ). If this morphism is trivial, we say that X is
π1-trivial with respect to Σ.

▶ Definition 14 (Compression bubble tangle on an embedded surface). Let G be a graph
embedded on Σ, a surface embedded in S3 such that c-rep(G, Σ) ≥ 3 and set k = 2

3 c-rep(G, Σ).
The compression bubble tangle c-T , is the collection of balls in S3 defined as follows: for
any sphere S in S3 transverse to G such that |C(S ∩ G)| < k, by Lemma 13, there is exactly
one connected component A of Σ ∖ S that is π1-trivial. Exactly one of the open balls B of
S3 ∖ S contains A, and we put the closed ball in c-T : B̄ ∈ c-T .

Σ ∖ A

A

B

Figure 8 Intersection between a torus knot T6,5 embedded on a torus and a sphere. Here the
ball B containing the disk on the right is in the compression bubble tangle.

The main step in the proof of Theorem 2 is to prove that a compression bubble tangle on
the torus is indeed a bubble tangle.

▶ Proposition 15. A compression bubble tangle is a bubble tangle.

Note that Propositions 15 and 8 directly imply Theorem 2 (the theorem is trivial if
c-rep(G, Σ) < 3). Therefore, the rest of this section is devoted to proving Proposition 15.

By definition, a compression bubble tangle satisfies T1 and T2. We then notice that T4
is verified whenever the compression representativity of G on Σ is greater than 2.

▶ Lemma 16. If c-rep(G, Σ) ≥ 3 then for all G-trivial balls B, B ∩ Σ is π1-trivial.
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The hard part of the proof is to show that T3 is satisfied. This is more delicate than it
seems at first glance, since any surface can be obtained by gluing three disks, and these three
disks can even come from a double bubble: we provide an example in the appendix of the
full version [31].

Henceforth, we will proceed by contradiction and assume that we can cover S3 by three
closed balls B1, B2, B3 of c-T that induce a double bubble DB transverse to Σ and G. Thus
Σ is covered by three surfaces with boundary: Σ ∩ B1, Σ ∩ B2 and Σ ∩ B3 which are π1-trivial
by definition of c-T . In the following, we write Si = ∂Bi. We first show that we can
furthermore assume that these surfaces are a disjoint union of closed disks on Σ.

▶ Lemma 17. Let G be a graph embedded on Σ, a surface embedded in S3. Let c-T be the
compression bubble tangle associated to G and Σ. If there is a double bubble DB transverse to
Σ, inducing three balls B1, B2, B3 ∈ c-T 3 such that B1 ∪ B2 ∪ B3 = S3, then we can isotope
the double bubble so that we additionally have that Bi ∩ Σ is a union of closed disks.

Then we define Γ induced by the double bubble DB to be the intersection of the
double bubble with Σ: where vertices are the intersection of the common boundary of the
three disks with Σ and edges are the intersections of Σ with the disks. By Lemma 17, we
can assume that this graph is trivalent and cellularly embedded. It is naturally weighted
by endowing each edge with its weight, i.e., the number of connected components in its
intersection with G. Let us now state the lemma we will use for the sake of contradiction.

▶ Lemma 18. The total weight of Γ is less than c-rep(G, Σ):∑
e∈E(Γ)

|C(e ∩ G)| < c-rep(G, Σ).

Proof. Since each edge of Γ bounds exactly two faces of Γ, i.e, disks of Σ; and Γ = DB ∩ Σ
we get the following equality:

|C(S1 ∩ G)| + |C(S3 ∩ G)| + |C(S3 ∩ G)| = 2
∑

e∈E(Γ)

|C(e ∩ G)| (1)

By definition of c-T , each ball Bi satisfies |C(Si ∩ G)| < 2
3 c-rep(G, Σ) so that:

|C(S1 ∩ G)| + |C(S3 ∩ G)| + |C(S3 ∩ G)| < 3 · 2
3c-rep(G, Σ) = 2c-rep(G, Σ). (2)

Combining (1) and (2) concludes the proof: 2
∑

e∈E(Γ)
|C(e ∩ G)| < 2c-rep(G, Σ). ◀

Hence, if Γ contained a simple closed curve that is compressible, we would obtain the
contradiction that we are looking for. The rest of the proof almost consists of finding such a
compressible curve, leading to the following proposition.

▶ Proposition 19. There exists a set of edges X on Γ such that:∑
e∈X

|C(e ∩ G)| ≥ c-rep(G, Σ).

The proof of Proposition 19 is the technical crux of Theorem 2. It consists in defining
a merging process, which gradually merges two balls of a double bubble, and proving that
at some point in this merging process, one ball will intersect Σ in a non-trivial way, and
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thus yield a compressible curve via Lemma 13. An additional difficulty is that this curve
might be non-simple in Γ; we circumvent this issue by finding a fractional version of such a
curve instead, which will be strong enough to prove Proposition 19. This proposition directly
implies Proposition 15, and thus Theorem 2:

Proof of Proposition 15. A compression bubble tangle immediately satisfies the bubble
tangle axioms T1 and T2 by definition, and T4 by Lemma 16. For the axiom T3, assume by
contradiction that there exist three closed balls B1, B2, B3 ∈ c-T covering S3 and inducing a
double bubble transverse to Σ. By Lemma 17, we can assume the graph Γ induced by the
intersection of the double bubble with Σ is cellularly embedded. Then by Proposition 19,
the total weight of Γ is at least c-rep(G, Σ). This is a contradiction with Lemma 18. ◀

5 Examples

A torus knot Tp,q is a knot embedded on an unknotted torus T in S3, for example a standard
torus of revolution. It winds p times around the revolution axis, and q times around the
core of the torus. We refer to Figure 8 for an illustration of T6,5. The proof of Corollary 3
(see [31, Corollary 1.3]) follows by combining Proposition 5 and Theorems 1 and 2.

More generally, the same argument can be applied to lower bound the treewidth of the
(p, q)-cabling [1, Section 5.2] of any nontrivial knot. We refer to Ozawa [36, Theorem 6] for
examples of spatial embeddings of any graph with high compression representativity, and
thus high spherewidth.

We conclude by observing that the proof of Theorem 2 offers more flexibility than
what the theorem states and can also be applied in some settings where the compression-
representativity is low. For example, a connected sum of two knots K1#K2 has compression-
representativity two (see [36, Corollary 9]), but if one these two knots, say K1, has high
compression-representativity separately, then we can still define a bubble-tangle of high order
by considering as big sides the balls containing the surface that K1 is embedded on.
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