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Abstract
The circular coordinates algorithm of de Silva, Morozov, and Vejdemo-Johansson takes as input a
dataset together with a cohomology class representing a 1-dimensional hole in the data; the output
is a map from the data into the circle that captures this hole, and that is of minimum energy in a
suitable sense. However, when applied to several cohomology classes, the output circle-valued maps
can be “geometrically correlated” even if the chosen cohomology classes are linearly independent. It
is shown in the original work that less correlated maps can be obtained with suitable integer linear
combinations of the cohomology classes, with the linear combinations being chosen by inspection. In
this paper, we identify a formal notion of geometric correlation between circle-valued maps which, in
the Riemannian manifold case, corresponds to the Dirichlet form, a bilinear form derived from the
Dirichlet energy. We describe a systematic procedure for constructing low energy torus-valued maps
on data, starting from a set of linearly independent cohomology classes. We showcase our procedure
with computational examples. Our main algorithm is based on the Lenstra–Lenstra–Lovász algorithm
from computational number theory.
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1 Introduction

Motivation and problem statement. Given a point cloud X ⊆ Rn concentrated around a
k-dimensional linear subspace, linear dimensionality reduction algorithms such as Principal
Component Analysis are effective at finding a low-dimensional representation X −→ Rk

of the data that preserves the linear structure. The problem of finding low-dimensional
representations of non-linear data is more involved; one reason being that it is often hard
to make principled assumptions about which particular non-linear shape the data may
have. Topological Data Analysis provides tools allowing for the extraction of qualitative
and quantitative topological information from discrete data. These tools include persistent
cohomology, which can be used, in particular, to identify circular features.

Given a dataset X and a class α in the first integral persistent cohomology group of
X, the circular coordinates algorithm of [4, 3] constructs a circle-valued representation
ccα : X −→ S1, which preserves the cohomology class α in a precise sense [21, Theorem 3.2].
The circular coordinates algorithm is thus a principled non-linear dimensionality reduction
algorithm, and has found various applications [16, 28], particularly in neuroscience [11, 7, 23].

As observed in [3, Section 3.9], and reproduced in Figure 2, when several cohomology
classes α1, . . . , αk are used to produce a single torus-valued representation (ccα1 , . . . , ccαk

) :
X −→ S1 ×· · ·×S1 = Tk, this representation is often not the most natural. Indeed, even when
the cohomology classes αi are linearly independent (l.i.), the maps ccαi can be “geometrically
correlated.” Certain integer linear combinations of the cohomology classes, however, can yield
decorrelated representations. The problems of defining an appropriate notion of geometric
correlation between circle-valued maps, and of using this notion to systematically decorrelate
sets of circle-valued maps are left open in [3]. In this paper, we address these two problems.

Contributions. Given a Riemannian manifold M, we propose to measure the geometric
correlation between smooth maps f, g : M −→ S1 using the Dirichlet form D(f, g) ∈ R. We
show that, given smooth maps f, g : M −→ S1 obtained by integrating cocycles θ and η

defined on the nerve N(U) of an open cover U of M, there exists an inner product ⟨- , -⟩D at
the level of cocycles inducing an isometry ⟨θ, η⟩D = D(f, g) (Theorem 15). This motivates
our Toroidal Coordinates Algorithm (Algorithm 2), which works at the level of cocycles
on a simplicial complex and produces low energy torus-valued representations of data. We
prove that the energy minimization subroutine of the Toroidal Coordinates Algorithm is
correct (Theorem 3) and give a geometric interpretation (Proposition 12). We introduce the
Sparse Toroidal Coordinates Algorithm (Algorithm 8) – a more scalable version of our main
algorithm – implemented in [24], and showcase it on four datasets (Section 6).

Structure of the paper. Section 2 contains background and can be referred to as needed.
The next two sections, 3 and 4, can be read in any order: Section 3 contains a computational
description of the Toroidal Coordinates Algorithm, while Section 4 describes an analogous
procedure for Riemannian manifolds and serves as motivation. Section 5 describes the Sparse
Toroidal Coordinates Algorithm, then demonstrated in the examples of Section 6.
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Figure 1 An illustration of how we use colors to display circular coordinates on data. We first
color the circle S1 with a smooth transition between yellow and violet, repeated four times; then,
given a function into the circle, we color its domain by pulling back the coloring. Depicted are the
colorings induced on a genus two surface by the map that “goes around a longitude” (Left) and by
the map that “goes around a meridian” (Right).

Circular coordinates Toroidal coordinates( 1 0 0 0
−1 1 0 0
0 1 −1 1
0 1 0 1

)

Figure 2 We represent circular coordinates as explained in Figure 1. Left: Four circle-valued
maps obtained by running the (Sparse) Circular Coordinates Algorithm on four generators of the
first cohomology of a genus two surface. The generators were obtained using persistent cohomology.
Although the cohomology classes are linearly independent, they do not give a particularly efficient
representation of the 1-dimensional holes in the data: for instance, the first two maps both vary as
one goes around the bottom outer hole. Right: Four circle-valued maps obtained by running the
(Sparse) Toroidal Coordinates Algorithm, with input the same four cohomology classes used on the
left. Middle: The change of basis matrix applied to the cohomology classes in order to geometrically
decorrelate them. See Section 6.1 for details about this example.

Figure 3 The lattice generated by the two left-most circle-valued maps in Figure 2, using our
notion of discrete geometric correlation (Definition 4). These two circle-valued maps are represented
as the horizontal vector and the dashed vector. Note that, although these two vectors form a basis
of the lattice, there exists a basis of smaller total squared length: the one formed by the two solid
vectors. The two solid vectors correspond to two circle-valued returned by the (Sparse) Toroidal
Coordinates Algorithm, as shown in Figure 2.

SoCG 2023
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Discussion. In the examples in Section 6, running the Sparse Toroidal Coordinates Algorithm
on a set of cohomology classes gives results that are qualitatively and quantitatively better
than the results obtained by running the Sparse Circular Coordinates Algorithm separately
on each class. This suggests that the Dirichlet form is indeed a useful notion of geometric
correlation that can be leveraged for producing geometrically efficient and topologically
faithful low-dimensional representations of data. We believe our methods can be extended to
representations valued in non-trivial spaces other than tori, such as other Lie groups.

Various interesting problems remain open: Is our lattice reduction problem (Problem 6)
provably a hard computational problem? Why is it that the de Silva–Morozov–Vejdemo-
Johansson inner product and the inner product estimated in Construction 16 give such
similar results (Remark 17)? Are our heuristics for estimating the Dirichlet form from finite
samples (Construction 16 and [25, Construction 20]) consistent? Here, consistency refers to
convergence in probability to the Dirichlet form as the number of samples goes to infinity.

2 Background

For details about the basics of algebraic topology and Riemannian geometry, we refer the
reader to [18] and [10], respectively.

Cohomology. Let K be a finite abstract simplicial complex and let A be either of the
rings Z or R. Let K0 denote the set of vertices of K and let K1 = {(i, j) ∈ K0 × K0 :
{i, j} is a 1-simplex of K}. For a function θ : K1 −→ A, we denote the evaluation of θ on
a pair (i, j) by θij . The group of 0-cochains C0(K; A) is the Abelian group of functions
K0 −→ A, and the group of 1-cocycles is the Abelian group

Z1(K; A) =
{

θ : K1 −→ A

∣∣∣∣ θij = −θji for all (i, j) ∈ K1,

θij + θjk = θik for every 2-simplex {i, j, k} of K

}
,

The first cohomology group of K with coefficients in A is H1(K; A) := Z1(K; A)/Im(δ), where
δ denotes the group morphism C0(K; A) −→ Z1(K; A) defined by δ(τ)ij = τ(j) − τ(i). Given
θ ∈ Z1(K; A) we denote its image in H1(K; A) as [θ] ∈ H1(K; A).

For any topological space B, we let ι denote the homomorphism ι : H1(B;Z) −→ H1(B;R)
induced by the inclusion of coefficients Z ↪→ R.

The Frobenius inner product. Let W and Z be real, finite dimensional inner product
spaces. For a linear map A : Z −→ W , let A∗ : Z −→ W denotes the adjoint of A with
respect to the inner products on W and Z. The Frobenius inner product between two linear
maps A, B : W −→ Z is defined as ⟨A, B⟩F := Tr(A∗B). In particular, the space of linear
maps W −→ Z can be endowed with the Frobenius norm, given by ∥A∥F :=

√
Tr(A∗A).

Circle and tori. We define the circle as the quotient of topological Abelian groups S1 = R/Z,
with the induced quotient map R q−→ S1 given by mapping r to r mod Z. We endow S1 with
the unique Riemannian metric that makes q a local Riemannian isometry. Given k ∈ N, let
Tk =

(
S1)k denote the k-dimensional torus with the product Riemannian metric.

Circle-valued maps. Let B be a topological space. Given f, g : B −→ S1, define f + g :
B −→ S1 by (f + g)(p) = f(p) + g(p) for all p ∈ B. This endows the set of maps B −→ S1

with the structure of an Abelian group. We say f : B −→ S1 and g : B −→ S1 are rotationally
equivalent if f −g is constant on each connected component of B. Analogously, for a simplicial
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complex K, we say that maps on vertices f : K0 −→ S1 and g : K0 −→ S1 are rotationally
equivalent if f − g : K0 −→ S1 is constant on each connected component of K.

Differential of circle-valued maps. There is a canonical isomorphism TS1 ∼= S1 × R of
Riemannian vector bundles over S1. Here, S1 × R −→ S1 is the trivial Riemannian vector
bundle over S1 and the isomorphism is given by the linear isometries d(· − q)q : TqS1 −→
T0S1 ∼= R, where · − q : S1 −→ S1 denotes subtracting q, and the isomorphism T0S1 ∼= R is
chosen once and for all. Using the isomorphism TS1 ∼= S1 × R, we can unambiguously treat
the differential of a map f : M −→ S1 at a point p ∈ M as a linear function dfp : TpM −→ R.
In particular, any smooth map f : M −→ S1 induces a 1-form df ∈ Ω1(M) on M.

Dirichlet energy and Dirichlet form. Given a closed Riemannian manifold M, we let µ

denote its Riemannian measure. The Dirichlet energy of a smooth map f : M −→ N between
Riemannian manifolds is

E[f ] := 1
2

∫
p∈M

∥dfp∥2
F dµ(p),

where dfp : TpM −→ Tf(p)N is the differential of f , a map between inner product spaces.
Recall that the inner product on the space of 1-forms Ω1(M) is given, for θ, η ∈ Ω1(M),

by ⟨θ, η⟩Ω1 :=
∫

p∈M⟨θp, ηp⟩F dµ(p). One can thus extend the Dirichlet energy of circle-valued
maps to a bilinear form, as follows. Given f, g : M −→ S1, define their Dirichlet form as

D(f, g) := 1
2 ⟨df, dg⟩Ω1 = 1

2

∫
p∈M

⟨dfp, dgp⟩F dµ(p).

We remark that, as defined, the Dirichlet form makes sense only for circle-valued maps.
We conclude by noticing that the Dirichlet form and the Dirichlet energy determine each
other. On one hand, we have E[f ] = D(f, f). On the other hand, we have D(f, g) =
1
4 (E(f + g) − E(f − g)), by the polarization identity for the inner product space Ω1(M).

3 The Toroidal Coordinates Algorithm

3.1 From circular coordinates to toroidal coordinates
We recall the circular coordinates algorithm of [4, 3] and use its main minimization subroutine
to motivate the Toroidal Coordinates Algorithm. The most relevant portion of the full
pipeline1 is given as Algorithm 1, which we refer to as the Circular Coordinates Algorithm.

As can be easily checked, the minimization subroutine (Algorithm 3) of the Circular
Coordinates Algorithm returns a solution to the following problem:

▶ Problem 1. Given 0 ̸= α ∈ H1(K;Z) and an inner product ⟨- , -⟩ on Z1(K;R), find
θ ∈ Z1(K;R) of minimum norm such that [θ] = ι(α) ∈ H1(K;R).

We propose the following extension of Problem 1 to the case in which more than one
cohomology class is selected.

▶ Problem 2. Given linearly independent α1, . . . , αk ∈ H1(K;Z) and inner product ⟨- , -⟩
on Z1(K;R), find θ1, . . . , θk ∈ Z1(K;R) minimizing

∑k
j=1 ∥θj∥2, with the property that the

sets {[θj ]}1≤j≤k and {ι(αj)}1≤j≤k generate the same Abelian subgroup of H1(K;R).

1 We refer the reader to [3, Sections 2.2–2.4] for details about the rest of the pipeline.

SoCG 2023
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Simple examples, such as the one depicted in Figure 3, show that Problem 2 does not
reduce to solving Problem 1 for each individual cohomology class. Indeed, as explained
in Section 3.3, we believe that Problem 2 is significantly harder to solve exactly than
Problem 1. Nevertheless, we also show that one can use the Lenstra–Lenstra–Lovász lattice
basis reduction algorithm to find an approximate solution to Problem 2. This approximation
is the content of the following result, which is proven in [25, Appendix A.1].

▶ Theorem 3. The output of Algorithm 4 consists of cocycles θ1, . . . , θk such that
∑k

j=1 ∥θj∥2

is at most 2k−1 times the optimal solution of Problem 2.

Algorithm 4 constitutes the main minimization subroutine of the Toroidal Coordinates
Algorithm, which is given as Algorithm 2.

3.2 On the choice of inner product
Algorithms 1 and 2 depend on a user-given choice of inner product on Z1(K;R). In [4, 3],
the inner product used is given by

⟨θ, η⟩dSMV :=
∑

{i,j}∈K1

θijηij . (1)

The motivation for this choice is given in [3, Proposition 2], which implies that the map
K0 −→ S1 returned by Algorithm 1 has the property that it can be extended to a continuous
function |K| −→ S1 which maps each edge {i, j} of K to a curve of length |θij |. Thus, with
this choice of inner product, the circle-valued representation returned by Algorithm 1 is one
that stretches the edges of the simplicial complex as little as possible.

There are other natural choices of inner product. In particular, we show in Theorem 15 that
there exists an inner product between cocycles that recovers the Dirichlet form between circle-
valued maps obtained by integrating these cocycles. Since, as explained in the contributions
section, we propose to measure the geometric correlation between maps f, g : M −→ S1 on a
Riemannian manifold using their Dirichlet form, this motivates the following definition.

▶ Definition 4. Let K be a simplicial complex and let ⟨- , -⟩ be an inner product on Z1(K;R).
Given cocycles θ, η ∈ Z1(K;R) with [θ], [η] ∈ Im(ι : H1(K;Z) −→ H1(K;R)), define the
discrete geometric correlation between integrateθ, integrateη : K0 −→ S1 as ⟨θ, η⟩. Here
integrate is as defined in Algorithm 5.

In Section 4, we give a geometric interpretation of the Toroidal Coordinates Algorithm
and provide more details as to why the above notion of discrete geometric correlation is a
discrete analogue of the Dirichlet form (Remark 13).

We conclude this section with a remark explaining why an exact or approximate solution
to Problem 2 promotes low discrete geometric correlation.
▶ Remark 5. Let θ1, . . . , θk ∈ Z1(K;R). For any linear map A : W −→ Z between finite
dimensional inner product spaces, we have ∥A∗A∥F ≤ ∥A∥2

F . Thus, if A : Rk −→ Z1(K;R)
is given by mapping the jth standard basis vector to θj , we get

∑
1≤i,j≤k

⟨θi, θj⟩2 = ∥A∗A∥F ≤ ∥A∥2
F =

k∑
j=1

∥θj∥2.

This implies that a set of cocycles solving Problem 2 exactly or approximately (right-hand
side) induces, by integration (Algorithm 5), a set of cicle-valued maps with low pairwise
squared discrete geometric correlation (left-hand side).
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Algorithm 1 The Circular Coordinates Algorithm.

Input: a non-trivial cohomology class α ∈ H1(K;Z) and an inner product ⟨- , -⟩ on Z1(K;R)
Output: a function ccα : K0 −→ S1

1: Let θ := harmonicRepresentative(α, ⟨- , -⟩)
2: Let ccα := integrateθ

Algorithm 2 The Toroidal Coordinates Algorithm.

Input: l.i. cohomology classes α1, . . . , αk ∈ H1(K;Z) and inner product ⟨- , -⟩ on Z1(K;R)
Output: a function tcα : K0 −→ Tk

1: Let θ1, . . . , θk := lowEnergyRepresentatives(α1, . . . , αk, ⟨- , -⟩)
2: Let tcα := (integrateθ1

, . . . , integrateθk
)

Algorithm 3 Harmonic representative.

Input: a non-trivial cohomology class α ∈ H1(K;Z) and an inner product ⟨- , -⟩ on Z1(K;R)
Output: a cocycle harmonicRepresentative(α, ⟨- , -⟩) ∈ Z1(K;R)

1: Let η ∈ Z1(K;Z) be such that [η] = α ∈ H1(K;Z)
2: Use least squares, w.r.t. ⟨- , -⟩, to solve τ = argmin{ ∥ι(η) − δ(τ)∥ | τ : K0 −→ R }
3: Let harmonicRepresentative(α, ⟨- , -⟩) := ι(η) − δ(τ)

Algorithm 4 Low energy representatives.

Input: l.i. cohomology classes α1, . . . , αk ∈ H1(K;Z) and inner product ⟨- , -⟩ on Z1(K;R)
Output: list of k cocycles lowEnergyRepresentatives(α1, . . . , αk, ⟨- , -⟩) ⊆ Z1(K;R)

1: Let ηj := harmonicRepresentative(αj , ⟨- , -⟩) for 1 ≤ j ≤ k

2: Compute the Cholesky decomposition G = CC∗ of G ∈ Rk×k with Gij = ⟨ηi, ηj⟩
3: Let b1, . . . , bk := LLL(C1, . . . , Ck), with Cj the jth row of C and LLL as in Section 3.3
4: Let M ∈ Zk×k be the change of basis matrix such that MC = (b1, . . . , bk)T

5: Let lowEnergyRepresentatives(α1, . . . , αk, ⟨- , -⟩) := M (η1, . . . , ηk)T

Algorithm 5 Cocycle integration.

Input: a cocycle θ ∈ Z1(K;R) such that [θ] ∈ Im(ι : H1(K;Z) −→ H1(K;R))
Output: a function integrateθ : K0 −→ S1

1: Assume K is connected, otherwise do the following in each connected component
2: Choose x ∈ K0 arbitrarily
3: for y ∈ K0 do
4: Choose a path x = y0, y1, . . . , yℓ−1, yℓ = y from x to y, arbitrarily
5: Let integrateθ(y) := (θy0y1 + θy1y2 + · · · + θyℓ−2yℓ−1 + θyℓ−1yℓ) mod Z

SoCG 2023
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3.3 Minimizing the objective function with lattice reduction
We start by describing the specific lattice reduction problem we are interested in. Fix k ∈ N
and a k-dimensional real vector space R with an inner product. A full-dimensional lattice L

in R is a discrete subgroup L ⊆ R which generates R as a real vector space. An ordered basis
of a lattice L ⊆ R consists of an ordered list B = {b1, . . . , bk} ⊆ L of linearly independent
vectors that generate L as an Abelian group. We are interested in the following problem.

▶ Problem 6. Let L ⊆ R be a lattice. Find a basis B of L minimizing ∥B∥2
F =

∑k
i=1 ∥bi∥2.

We suspect that Problem 6 is in general hard to solve exactly or approximately up to
a small multiplicative constant. Formally establishing that this problem is hard is beyond
the scope of this work since hardness results for these kinds of problems – like [1] for the
shortest vector problem – are usually quite involved; we refer the reader to [12, 22] for surveys.
We note that minimizations like the one in Problem 6 have already been considered in the
computational number theory literature, see, e.g., [2, Equation 38].

We content ourselves with the following result, which shows the Lenstra–Lenstra–Lovász
lattice basis reduction algorithm (LLL-algorithm), a polynomial-time algorithm introduced
in [15], provides an approximate solution to Problem 6. For our purposes, the LLL-algorithm
takes as input linearly independent vectors {b1, . . . , bk} in Rk and returns a reduced basis,
which we denote by LLL(b1, . . . , bk). We shall not recall the definition of reduced basis here,
since all we need to know about them is the following.

▶ Lemma 7. Let L ⊆ Rn and let V be a solution to Problem 6 for L ⊆ Rn. If B is an
reduced basis, then ∥B∥2

F ≤ 2k−1 ∥V ∥2
F .

We prove Lemma 7 in [25, Appendix A.1], where we use it to prove Theorem 3. We
conclude this section with a practical remark about the LLL-algorithm.
▶ Remark 8. Although the LLL-algorithm can be run with any input {b1, . . . , bn} ⊆ L ⊆ Rn,
it is guaranteed to terminate only if one uses infinite precision arithmetic. In [15], this is
dealt with by assuming that the given lattice has rational coordinates, i.e., L ⊆ Qn ⊆ Rn;
see [15, Remark 1.38]. This is a reasonable assumption in our case, since we expect to be
given the input cocycles and inner product with some finite precision.

In our implementation of the LLL-algorithm, we use floating-point arithmetic, for simpli-
city, and this did not present any problems to us. We note that floating-point algorithms
with polynomial guarantees do exist in the case L ⊆ Zn ⊆ Rn, see, e.g., [19].

4 Geometric Interpretation of the Toroidal Coordinates Algorithm

Let M be a closed Riemannian manifold. We propose the following problem as a suitable
objective for finding an efficient representation of M which captures any chosen set of
1-dimensional holes of M.

▶ Problem 9. Given linearly independent cohomology classes α1, . . . , αk ∈ H1(M;Z), find a
smooth map f : M −→ Tk of minimum Dirichlet energy, with the property that the induced
morphism f∗ : H1(Tk;Z) −→ H1(M;Z) restricts to an isomorphism between H1(Tk;Z) ∼= Zk

and the subgroup of H1(M;Z) generated by α1, . . . , αk.

In this section, we show that the above problem can be solved by an analogue of our
Toroidal Coordinates Algorithm, thus providing a geometric interpretation of our algorithm.
In Remark 13, at the end of this section, we explain how this interpretation motivates the
notion of discrete geometric correlation of Definition 4.

First, we give the analogue of cocycle integration (Algorithm 5) for 1-forms.
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▶ Construction 10. Given a closed 1-form θ ∈ Ω1(M) such that [θ] ∈ Im(H1(M;Z) −→
H1(M;R)), consider the following procedure, which returns a function f : M −→ S1.

1. Assume M is connected, otherwise do the following in each connected component.

2. Choose x ∈ M arbitrarily.

3. For each y ∈ M, let p : [0, 1] −→ M be any smooth path from x to y.

4. For each y ∈ M, define f(y) =
(∫ 1

0 θp(t)(p′(t))dt
)

mod Z.

It is worth remarking that, although Construction 10 depends on arbitrary choices, all
choices yield rotationally equivalent outputs.

The following procedure is the analogue of the Toroidal Coordinates Algorithm.

▶ Construction 11. Given linearly independent cohomology classes α1, . . . , αk ∈ H1(M;Z),
consider the following procedure, which returns a function f : M −→ Tk.

1. Find closed θ1, . . . , θk ∈ Ω1(M) minimizing
∑k

j=1 ∥θj∥2, with the property that the sets
{[θj ]}1≤j≤k and {ι(αj)}1≤j≤k generate the same Abelian subgroup of H1(M;R).

2. Return (f1, . . . , fk) : M −→ Tk, where fj is obtained by integrating θj (Construction 10).

▶ Proposition 12. Construction 11 returns a solution to Problem 9.

A proof of Proposition 12 is in [25, Appendix A.2]. We conclude with a remark relating
the Dirichlet form to our notion of discrete geometric correlation.

▶ Remark 13. Recall from the contributions section that we propose to measure geometric
correlation between maps f, g : M −→ S1 using the Dirichlet form D(f, g). On one hand, if
f and g are obtained using Construction 10 with input 1-forms θ and η, respectively, then
D(f, g) = 1

2 ⟨θ, η⟩Ω1 , by [25, Lemma 19]. On the other hand, given a simplicial complex K

with inner product ⟨- , -⟩ on Z1(K;R), and maps f ′, g′ : K0 −→ S1 obtained using Algorithm 5
with inputs cocycles θ′ and η′, respectively, we defined the discrete geometric correlation
between f ′ and g′ as ⟨θ′, η′⟩. In this sense, our notion of discrete geometric correlation is a
discrete analogue of the Dirichlet form. Theorem 15 makes this analogy precise: when using
Algorithm 6, there exists an inner product that exactly recovers the Dirichlet form.

5 The Sparse Toroidal Coordinates Algorithm

Although effective, the Circular Coordinates Algorithm has two practical drawbacks. First, the
simplicial complex K is usually taken to be a Vietoris–Rips complex, and thus the cohomology
computations scale with the number of data points. Second, the circle-valued representation
returned by the algorithm is defined only on the input data and no representation is provided
for out-of-sample data points. The sparse circular coordinates algorithm of [21] addresses
these shortcomings. We now describe a version of the sparse circular coordinates algorithm2

and recall the steps not included here when describing Pipeline 18 in the examples.

2 We refer the reader to [21] for the full pipeline.
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Algorithm 6 Sparse cocycle integration.

Input: a finite open cover U = {Ux}x∈I of a topological space B, a partition of unity Φ =
{φx}x∈I subordinate to U , a simplicial complex K ⊇ N(U), and a cocycle θ ∈ Z1(K;R)
such that [θ] ∈ Im(ι : H1(K;Z) −→ H1(K;R))

Output: a function sparseIntegrateΦ
θ : B −→ S1

1: Assume K is connected, otherwise do the following in each connected component
2: Choose x ∈ K0 arbitrarily
3: for y ∈ K0 do
4: Choose a path x = y0, y1, . . . , yℓ−1, yℓ = y from x to y, arbitrarily
5: Let τy := θy0y1 + θy1y2 + · · · + θyℓ−2yℓ−1 + θyℓ−1yℓ

6: Let sparseIntegrateΦ
θ (b) :=

(
τy +

∑
z∈I φz(b) θyz

)
mod Z, where b ∈ Uy

Algorithm 7 The Sparse Circular Coordinates Algorithm.

Input: a finite open cover U = {Ux}x∈I of a topological space B, a partition of unity
Φ = {φx}x∈I subordinate to U , a simplicial complex K ⊇ N(U), a non-trivial cohomology
class α ∈ H1(K;Z), and an inner product ⟨- , -⟩ on Z1(K;R)

Output: a function sccα : B −→ S1

1: Let θ := harmonicRepresentative(α, ⟨- , -⟩)
2: Let ccα := sparseIntegrateΦ

θ

Algorithm 8 The Sparse Toroidal Coordinates Algorithm.

Input: a finite open cover U = {Ux}x∈I of a topological space B, a partition of unity
Φ = {φx}x∈I subordinate to U , a simplicial complex K ⊇ N(U), l.i. cohomology classes
α1, . . . , αk ∈ H1(K;Z), and inner product ⟨- , -⟩ on Z1(K;R)

Output: a function stcα : B −→ Tk

1: Let θ1, . . . , θk := lowEnergyRepresentatives(α1, . . . , αk, ⟨- , -⟩)
2: Let stcα := (sparseIntegrateΦ

θ1
, . . . , sparseIntegrateΦ

θk
)

As in previous cases, we remark that, although the sparse cocycle integration subroutine
(Algorithm 6) depends on arbitrary choices, all choices yield rotationally equivalent outputs.

We now show that, when B is a closed Riemannian manifold, there is a choice of inner
product on cocycles that coincides with the Dirichlet form between the corresponding
circle-valued maps, making the analogy in Remark 13 formal.

▶ Definition 14. Let U = {Ux}x∈I be a finite open cover of a closed Riemannian manifold
M and let Φ = {φx}x∈I be a smooth partition of unity subordinate to U . Define the inner
product ⟨- , -⟩D on Z1(N(U);R) by

⟨θ, η⟩D := 1
2

∑
w,y,z∈I

Dwyz θwy ηwz, where Dwyz :=
∫

b∈M
⟨d(φy)b, d(φz)b⟩F φw(b) dµ(b).

Note that the quantities Dwyz do not depend on the cocycles.
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▶ Theorem 15. Let U = {Ux}x∈I be a finite open cover of a closed Riemannian manifold
M, let K ⊇ N(U), and let Φ = {φx}x∈I be a smooth partition of unity subordinate to U .
Assume θ, η ∈ Z1(K;R) are such that [θ], [η] ∈ H1(K;R) are in the image of ι : H1(K;Z) −→
H1(K;R). Let f = sparseIntegrateΦ

θ : M −→ S1 and g = sparseIntegrateΦ
η . Then, f

and g are smooth and D(f, g) = ⟨θ, η⟩D.

We prove Theorem 15 in [25, Appendix A.3]. We conclude by giving a heuristic for computing
an estimate ⟨- , -⟩

D̂
of ⟨- , -⟩D. Addressing the consistency of this heuristic is left for future

work.

▶ Construction 16. Let X ⊆ M ⊆ Rn be a finite sample of a smoothly embedded closed
manifold. Assume given a subsample I ⊆ X as well as ε > 0 such that M ⊆

⋃
x∈I B(x, ε).

For w, y, z ∈ I, we seek to estimate Dwyz, where the open cover is taken to be U =
{B(x, ε) ∩ M}x∈I and Φ = {φx}x∈I is a smooth partition of unity subordinate to U .
1. Form a neighborhood graph G on Xw := X ∩ B(w, ε). For instance, this can be done by

selecting k ∈ N and using an undirected k-nearest neighbor graph.
2. Compute weights h(a, b) ≥ 0 for the edges (a, b) ∈ G. For instance, this can be done by

selecting a radius δ > 0 and letting h(a, b) = exp(−∥a − b∥2/δ2).
3. For a ∈ Xw, let N(a) = {b ∈ G | (a, b) ∈ G}, and define

D̂wyz =
∑
a∈G

 1
N(a)

∑
b∈N(a)

h(a, b) (φy(b) − φy(a)) (φz(b) − φz(a))

φw(a).

▶ Remark 17. We have implemented the estimated inner product ⟨- , -⟩
D̂

in [24]. In all
examples we have considered, running the algorithms in this paper with inner product
⟨- , -⟩

D̂
on one hand, and with the de Silva, Morozov, and Vejdemo-Johansson inner product

⟨- , -⟩dSMV (Equation (1)) on the other, gives results that are essentially indistinguishable.
For this reason, and for concreteness, in Section 6 we use ⟨- , -⟩dSMV. We leave the question
of when and why the two inner products give such similar results for future work.

6 Examples

We compare the output of the Sparse Circular Coordinates Algorithm [21] run independently
on several cohomology classes with that of the Sparse Toroidal Coordinates Algorithm. We
use the DREiMac [27] implementation of the Sparse Circular Coordinates Algorithm and
our extension implementing the Sparse Toroidal Coordinates Algorithm. The code together
with Jupyter notebooks replicating the examples here can be found at [24].

The examples include a synthetic genus two surface (Sec. 6.1), a dataset from [14] of two
figurines rotating at different speeds (Sec. 6.2), a solution set of the Kuramoto–Sivashinsky
equation obtained with Mathematica [29] (Sec. 6.3), and a synthetic dataset modeling neurons
tuned to head movement of bats (Sec. 6.4). We use the following pipeline.

▶ Pipeline 18. Assume we are given a point cloud X ⊆ Rn.
1. Compute a subsample I ⊆ X using maxmin sampling (see [5, 8, 21]).
2. Fix a large prime p; we take p = 41.
3. Compute Vietoris–Rips persistent cohomology of I in degree 1 with coefficients in Z/pZ.
4. Looking at the persistence diagram, identify a filtration step ε > 0 at which cohomology

classes β1, . . . , βk ∈ H1(VRε(I),Z/pZ) of interest to the user are alive. Do this in such a
way that X ⊆ ∪x∈IB(x, ε/2).

5. Note that U = {B(x, ε/2)}x∈I covers X and define K := VRε(I) ⊇ N(U).
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6. Lift β1, . . . , βk ∈ H1(K,Z/pZ) to classes α1, . . . , αk ∈ H1(K,Z) (see [3, Section 2.4]).
7. Choose a partition of unity subordinate to U (see [21, Section 4]). We use the inner

product ⟨- , -⟩dSMV on cocycles (as explained in Remark 17).
8. On one hand, run the Sparse Circular Coordinates Algorithm (Algorithm 7) on each class

αj separately, and get k circle-valued maps X −→ S1.
9. On the other hand, run the Sparse Toroidal Coordinates Algorithm (Algorithm 8) on all

classes α1, . . . , αk simultaneously, to again get k circle-valued maps X −→ S1.

In order to show that the Sparse Toroidal Coordinates Algorithm returns coordinates with
lower correlation and energy, we quantify the performance of the two algorithms using the
estimated Dirichlet correlation matrix (see [25, Appendix B]) of the circle-valued functions
obtained from them. When the functions are obtained from the Sparse Circular Coordinates
Algorithm (resp. Sparse Toroidal Coordinates Algorithm), we denote the correlation matrix by
DSCC (resp. DST C). Note that diagonal correlation matrices reflect complete independence
of coordinates. Hence, we interpret correlations matrices that are close to being diagonal as
indicating low correlation and high independence of recovered coordinates.

The correlation computations depend on two parameters (a k for a k-nearest neighbor
graph and a choice of edge weights). We use k = 15 and weights related to the scale of the
data, but note that the results are robust with the respect to these choices.

We also display the change of basis matrix M (as in Algorithm 4) that relates the
torus-valued maps output by the two algorithms.

6.1 Genus two surface

We apply Pipeline 18 on a densely sampled surface of genus two (Figure 1), as in [3,
Section 3.9]. As expected, persistent cohomology returns four high persistence features.
The resulting circular coordinates obtained by applying the Sparse Toroidal Coordinates
Algorithm are shown in Figure 2 (Right). For comparison, we show the circular coordinates
obtained by applying the Sparse Circular Coordinates Algorithm to each cohomology class
separately Figure 2 (Left). The Dirichlet correlation matrices are as follows:

DSCC =


3 2.4 0 −2.4

2.4 4.8 0 −4.8
0 0 22.6 11.2

−2.4 −4.8 11.2 19.5

 , DST C =


3 −0.6 0 0

−0.6 3 0 0
0 0 14.9 3.5
0 0 3.5 14.8

 .

6.2 Lederman–Talmon dataset

We run Pipeline 18 on a dataset collected and studied by Lederman and Talmon in [14]. In
this example, two figurines Yoda (the green figure on the left) and Dog (the bulldog figure
on the right) are situated on rotating platforms; see Figure 4.

Since each image is characterized by a rotation (φ1, φ2) of the two figurines, we interpret
the time series of images as an observation of a dynamical system on a two-torus. Because
the frequencies of rotation of both figurines have a large least-common-multiple, we expect
the set of toroidal angles (φ1, φ2) to comprise a dense sample of the torus, and verify this
by treating the temporal sequence of images as a vector-valued time series and compute
its sliding window persistence with window length d = 4 and time delay τ = 1 (see [25,
Appendix C.1]).
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Figure 4 Left: A sample of different images in the dataset. Right: The sliding window persistence
diagram of the data, showing two prominent 1-dimensional cohomology classes. Yoda’s platform
rotates clockwise completing about 310 cycles during the experiment, while in the same time Dog’s
platform completes about 450 cycles rotating counterclockwise. The data we consider are a collection
of images of these rotating platforms captured from a fixed viewpoint.

In Figures 5 and 6, we display the result of applying the Sparse Circular Coordinates
Algorithm and the Sparse Toroidal Coordinates Algorithm to the sliding window point cloud
of the dataset, respectively. Here, we show a sample of images as parameterized by the
toroidal coordinates obtained from both algorithms. The Dirichlet correlation matrices and
change of basis matrix are as follows:

DSCC =
(

3.07 −3.08
−3.08 10.48

)
, DST C =

(
3.07 0

0 7.39

)
, M =

(
1 0
1 1

)
.

Figure 5 The vertical coordinate parameterizes Dog’s rotation, while the horizontal coordinate
parameterizes the rotation of both figurines.
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Figure 6 Vertical coordinate parameterizes Dog’s rotation; horizontal parameterizes Yoda’s.

6.3 Kuramoto–Sivashinsky Dynamical Systems

An example of a one-dimensional Kuramoto–Sivashinsky (KS) equation is the following
fourth order partial differential equation:

∂u(x, t)
∂t

+ 4 ∂4u(x, t)
∂x4 + 53.3 ∂2u(x, t)

∂x2 + 53.3 u(x, t) ∂u(x, t)
∂x

= 0

with periodic boundary conditions u(x, 0) = sin(x) and u(0, t) = u(2π, t). The general family
of KS equations [9] have gained popularity from their simple appearance and their ability
to produce chaotic spatiotemporal dynamics. They have been shown to model pattern
formations in several physical contexts; for instance [13, 17, 26].

The underlying dynamical system is toroidal. Indeed, it is controlled by two frequencies:
one comes from oscillation in time, the other is dictated by the speed of the traveling wave
along the periodic domain. However, the dynamic is not periodic and the trajectory of any
initial state eventually densely fills out the torus. We represent the solution u(x, t) to this
equation as a heatmap in Figure 7 (Left). The horizontal axis refers to time t, the vertical
axis refers to the spatial variable x. At each time, u(x, t) is periodic and a slice of it can be
seen in Figure 7 (Middle). We treat u(x, t) as a vector valued time series f(t) := u(−, t) and
compute the sliding window persistence ([25, Appendix C.1]) of f with parameters d = 5
and τ = 4; see Figure 7 (Right) for the resulting persistence diagram.
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Figure 7 (Left) The solution to the KS equation as a heatmap; (Middle) A slice of u(x, t) at a
fixed t0; (Right) The sliding window persistence digaram.

In Figures 8 and 9, we display the result of applying the Sparse Circular Coordinates
Algorithm and the Sparse Toroidal Coordinates Algorithm to the sliding window embedding
of the dataset, respectively. As in Example 6.2, we show sample data points (in this case
waves) as parameterized by the toroidal coordinates obtained from both algorithms.

To verify that the vertical and horizontal components of Figure 9 are indeed parameterizing
oscillation and traveling, respectively, we partition the dataset in 50 bins, according to the
vertical coordinate, and in each bin we compute all pairwise rotationally invariant L2

distances between the waves. We show the histogram of distances in Figure 10. The Dirichlet
correlation matrices and change of basis are as follows:

DSCC =
(

1.1 6.1
6.1 112.3

)
, DST C =

(
1.1 1
1 76.6

)
, M =

(
1 0

−5 1

)
.

Figure 8 Oscillatory behavior vertically and combination of traveling and oscillatory horizontally.
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Figure 9 Traveling waves parameterized horizontally and oscillations parameterized vertically.

Figure 10 Density of pairwise distances using the parameterization of the Toroidal Coordinates
Algorithm is in blue, while density of pairwise distances using the parameterization given by the
Circular Coordinates Algorithm is in red. This suggests that, indeed, the horizontal coordinate of
Figure 9 parameterizes rotation only while the one of Figure 8 does not.
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6.4 Synthetic Neuroscience Example

We show that our methods are a viable way of constructing informative circle-valued
representations of neuroscientific data. Place cells in the mammalian hippocampus have
spatially localized receptive fields that encode position by firing rapidly at specific locations
as one navigates an environment [20]. It is shown in [6] that head direction of bats is encoded
in a similar way: certain neurons are tuned to pitch, others to azimuth, and others to roll,
each using a circular coordinate system to do so.

We consider a synthetic dataset inspired by these types of neuronal responses to stimuli.
Suppose three populations of neurons P1, P2, and P3 are tuned to elevation, azimuth, and
roll, respectively. This means, for instance, that if neuron n ∈ P1 is tuned to a head elevation
of 45 degrees, then n fires most rapidly when the head is at an elevation of 45 degrees, fires
less rapidly if the head is at an elevation of, say 35 or 55 degrees, and maintains low activity
near an elevation of 0 or 90 degrees. Now, suppose we record the firing rates of neurons in
populations P1, P2, and P3 for a duration of T time steps while an animal moves its head
freely. Letting N denote the total number of recorded neurons, we can record this data as
an N × T matrix M , where Mi,j corresponds to the firing rate of neuron i at time step j.

We interpret M as a collection of T points in Rn and consider the problem of recovering
three circular coordinates M −→ S1 (one each for elevation, azimuth, and roll) that map
a point of M , thought of as a time step, to the correct head orientation at that time. We
construct a synthetic dataset simulating the situation above (see [25, Appendix C.2]) and
run it through Pipeline 18. Figure 11 shows the resulting persistence barcode, which contains
three prominent 1-dimensional cohomology classes.

We then use the Sparse Circular Coordinates Algorithm to recover a circle-valued map from
each of the three most prominent 1-dimensional cohomology classes. To determine whether
we successfully recover all three orientations, we use a scatter plot as in [3, Section 3.2], and
display the three recovered maps M −→ S1 against the ground truth. The Sparse Circular
Coordinates Algorithm run independently on each cohomology class fails to recover the
three head orientations (Figure 12, left) in many of our runs, while the Toroidal Coordinates
Algorithm always recovers the three coordinates (Figure 12, right). The Dirichlet correlation
matrices and the change of basis are as follows:

DSCC =

51.6 −0.9 2.7
−0.9 50.2 −99.7
2.7 −99.7 249.8

 , DST C =

51.6 −0.9 0.8
−0.9 50.2 0.5
0.8 0.5 51.1

 , M =

1 0 0
0 1 0
0 2 1

 .

Figure 11 Persistence barcode of exhibiting three prominent 1-dimensional cohomology classes.
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Sparse Circular Coordinates Sparse Toroidal Coordinates

Figure 12 Recovered versus known circular coordinates using the Sparse Circular Coordinates
Algorithm and the Toroidal Coordinates Algorithm.
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