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Abstract
We prove that any compact semi-algebraic set is homeomorphic to the solution space of some art
gallery problem. Previous works have established similar universality theorems, but holding only up
to homotopy equivalence, rather than homeomorphism, and prior to this work, the existence of art
galleries even for simple spaces such as the Möbius strip or the three-holed torus were unknown.
Our construction relies on an elegant and versatile gadget to copy guard positions with minimal
overhead. It is simpler than previous constructions, consisting of a single rectangular room with
convex slits cut out from the edges. We show that both the orientable and non-orientable surfaces
of genus n admit galleries with only O(n) vertices.
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1 Introduction

An instance of the art gallery problem consists of a polygon P (which we refer to as the art
gallery), and the objective is to find a finite set of points G ⊆ P (the guards) of minimal
cardinality such that every point in P is visible to some guard, meaning that the line segment
between the point and the guard is contained within P . This problem was first introduced by
Viktor Klee in 1973 and has a long history. In 1986, Lee and Lin [8] showed that the decision
problem of determining whether there exists a configuration with at most k guards is NP-hard,
but the problem is not known to be in NP since there is no obvious succinct way to represent
the guards’ coordinates in a solution (they might have to be irrational, even if all polygon
vertex coordinates are rational [10]). In 2018, Abrahamsen, Adamaszek, and Miltzow [1]
showed that the problem is ∃R-complete, mostly settling the question of complexity (modulo
the longstanding conjectures that NP ⊊ ∃R ⊊ PSPACE). Approximation algorithms and
lower bounds have also been studied; see Bonnet and Miltzow [4] for a recent overview.

Aside from complexity aspects, a parallel line of inquiry concerns the topology of the
space of solutions. Supposing that gallery P requires exactly k guards at minimum, we let

V (P ) := {G ⊆ P | |G| = k and every p ∈ P is visible to some g ∈ G}.

The set V (P ) consists of unordered sets of points of cardinality k, which can be turned into
a metric space using the Hausdorff distance

dH(G0, G1) := max
i∈{0,1}

max
g∈Gi

min
g′∈G1−i

d(g, g′),
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58:2 Topological Universality of the Art Gallery Problem

where d denotes the Euclidean distance on R2. Thus, for any art gallery P , V (P ) is a
topological space, so a natural question is, what kinds of topological spaces can occur?

More than a mere mathematical curiosity, this question is relevant to complexity theory
due to the connections between ∃R-hardness and topological universality. The most famous
example is Mnëv’s theorem [11, 12] that any semi-algebraic set is stably-equivalent to the
space of point configurations of some order type, inspiring an eventual proof that order type
realizability is ∃R-complete [13]. A semi-algebraic set is a finite union

⋃m
i=1 Si, where each Si

is defined to be the set of points (x1,x2, . . . ,xn) ∈ Rn satisfying a finite number of constraints
of the form P (x1,x2, . . . ,xn) ≥ 0 or P (x1,x2, . . . ,xn) > 0, where P is a polynomial. The
canonical complete problem for ∃R is called ETR (Existential Theory of the Reals), which
asks whether a given semi-algebraic set is nonempty. As a consequence of their reduction
from ETR to the art gallery problem, Abrahamsen et al. [1] show, for any compact semi-
algebraic set S, how to construct an art gallery P such that V (P ) surjects continuously
onto S. However, they do not show that the mapping is injective, so this fails to establish
universality.

In a recent paper, Bertschinger, El Maalouly, Miltzow, Schnider, and Weber [2] show
that any compact semi-algebraic set S is homotopy-equivalent to V (P ) for some polygon
P . They leave as an open question whether P can be constructed so that V (P ) is not just
homotopy-equivalent, but homeomorphic to S. Only the following list of spaces are shown to
be captured up to homeomorphism:

k-clover (obtained by joining k circles at a single point)
k-chain (obtained by connecting k circles in a path with k − 1 disjoint line segments)
4k-necklace (obtained by connecting 4k circles in a cycle with 4k disjoint line segments)
k-sphere
The torus
The 2-holed torus

The constructions for these spaces are all based on simple galleries with solution spaces
homeomorphic to a circle or an interval, which are combined to give Cartesian products
and then given simple additional constraints. However, using these methods it is difficult to
obtain more general spaces because the geometry significantly limits the types of constraints
that can be used. Thus, prior to this work, homeomorphism universality was unknown even
for closed surfaces. Galleries for the real projective plane, Klein bottle, and Möbius strip
were explicitly left as open questions.

In this work, we settle the question of homeomorphism universality in the affirmative:

▶ Theorem 1. For every compact semi-algebraic set S ̸= ∅, there exists a polygon P such
that S is homeomorphic to V (P ).

In addition to yielding a strictly stronger result than that of Bertschinger et al. [2], our
construction is structurally simpler: the art gallery always consists of a single rectangular
room with two types of convex slits repeatedly cut out of the edges. As an example, we
explicitly draw an art gallery for the Möbius strip (to the best resolution that can reasonably
fit on a page) in Figure 6.

The key ingredient in our approach is a novel form of copying gadget which enforces a
constraint of the form xi = xj , thereby requiring multiple guards to represent the same
underlying variable. Gadgets with similar functions can also be found in Abrahamsen et
al. [1]. Our gadget takes a geometrically different form, and is an improvement for the
following reasons:
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It is more versatile. In particular the polygon P does not need to intersect the convex
hull of the segments being copied. This makes it possible for the gallery to only have a
single “room.”
It works in more general contexts. The previous gadget uses constraints created by the
need for guards to see every point on the interior of the polygon P . Our gadget works in
the variant of the problem where guards only need to see the boundary of the polygon.
Stade [14] uses this gadget in a forthcoming paper proving that this variant is also
∃R-hard.

Our general construction, which we present in Section 2, does not yield an obvious bound
on the size of P (number of vertices) as a function of the complexity of the space S. In
Section 3, we refine our construction to show that both the orientable and non-orientable
surfaces of genus n can be captured by art galleries with only O(n) vertices.

2 General construction

As in Bertschinger et al. [2], the starting point for our reduction is a theorem by Hironaka
[6] that any compact semi-algebraic set can be triangulated as a cubical complex. We begin
by reviewing this result. Next, we introduce our variable/copying gadgets and establish its
key properties. Finally, we show how to combine the gadgets to construct the art gallery.
We illustrate our construction using the Möbius strip as a running example.

2.1 Hironaka’s theorem

An abstract cubical complex is a subset K of the set

In =
{

{x ∈ [0, 1]n | xi1 = c1, . . . xik
= ck} | 1 ≤ i1 < · · · < ik ≤ n, (c1, . . . , ck) ∈ {0, 1}k

}
of faces of an n dimensional hypercube [0, 1]n such that if a ∈ K and b ⊆ a, then b ∈ K. We
write |K| :=

⋃
K ⊆ [0, 1]n for the union of faces, called the geometric realization of K.

▶ Theorem 2 (Bertschinger et al. [2], Lemma 3). Any compact semi-algebraic set is homeomorphic
to the geometric realization of an abstract cubical complex.

Proof sketch. This fact is well-known so we do not give a complete proof here. Using
Hironaka’s theorem [6], it is possible to show that any compact semi-algebraic set is
homeomorphic to the geometric realization of an abstract simplicial complex (see Hoffman
[7]). Additionally, it can be shown that any abstract simplicial complex has an abstract
cubic complex with a homeomorphic geometric realization (see Blass and Wlodzimierz [3,
Theorem 1.1]). ◀

For example, the circle S1 can be represented as the abstract cubical complex

{{x ∈ [0, 1]2 | x1 = 0}, {x ∈ [0, 1]2 | x1 = 1}, {x ∈ [0, 1]2 | x2 = 0}, {x ∈ [0, 1]2 | x2 = 1}},

in which case its geometric realization is the boundary of the unit square in R2. The Möbius
strip can be realized as a subset of the 4-dimensional hypercube as in Figure 1.

SoCG 2023



58:4 Topological Universality of the Art Gallery Problem

Figure 1 A 4-dimensional geometric realization of a cubical complex homeomorphic to a Möbius
strip.

2.2 Variable gadgets
The art gallery we construct will be an axis-aligned rectangle with several slits removed
from around the border. We refer to certain slits and combinations of slits as gadgets. Our
construction involves three kinds of gadgets: variable gadgets, copying gadgets, and clause
gadgets.

We begin by establishing the key properties of the variable gadgets, which also appear in
Bertschinger et al. [2]. A variable gadget consists of one slit in the left wall and two in the
right wall, as depicted in Figure 2.

Figure 2 A variable gadget enforcing that a guard must be placed on the dashed gold line segment
GH. The boundary of this section of the art gallery consists of the entire outer profile (continuing
above and below the dashed lines at the top and bottom), involving line segments of all colors. No
other gadgets may intersect the shaded rectangular region Wi.

▶ Lemma 3. If slits are drawn as in Figure 2, with no other slits in the region Wi, then at
least one guard must be placed within Wi. If there is only one guard in that region, it must
be placed on line segment GH. Furthermore, the slits can be drawn so that the height of Wi

is arbitrarily small.

Proof. To see point F , we must have at least one guard placed within the triangle FIK

(which also requires there to be some guard in Wi). To see point I, we must have at least
one guard placed within the triangle EIF , so if there only one guard in Wi, it must be on
the line segment FI. Since it must also see the point J , this further restricts the guard to
the segment GH. The entire figure can be scaled in the y direction to give Wi arbitrarily
small height without changing the dimensions of the segment GH. ◀
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We refer to the line segments GH from Lemma 3 as guard segments, which we will number
1, 2, . . . , n, and we refer to Wi as the guard region of guard segment i. Since guard regions
can be made arbitrarily small, we may arrange these guard segments any way we wish within
the rectangular gallery so long as no two guard segments share the same y-coordinate.

2.3 Copying gadgets
We next introduce our copying gadgets, which are based on the following geometric observation.

▶ Lemma 4. Let L1 and L2 be two distinct parallel lines in the plane, and let Z be a point
strictly between L1 and L2. Let f : L1 → L2 be the map defined via inversion through Z, i.e.,
for p ∈ L1, f(p) is the intersection of the line pZ with L2. Then f is linear (meaning it
preserves ratios of distances between points on L1 and the corresponding points on L2).

Figure 3 Illustration of the geometry underlying the copying gadget.

Proof. Assume L1 and L2 are drawn aligned with the x-axis as in Figure 3. Let A, B,
and C be three arbitrary distinct points on L1, and let F , E, and D be their respective
images under f . It is easy to see that (AZB, FZE) and (AZC, FZD) are pairs of similar
triangles. This means that the ratios of lengths of AB to FE and AC to FD are equal, that
is Bx−Ax

Fx−Ex
= Cx−Ax

Fx−Dx
. Rearranging, we have Bx−Ax

Cx−Ax
= Fx−Ex

Fx−Dx
. ◀

We now discuss the key properties of the copying gadgets, which are depicted in Figure 4.

▶ Lemma 5. Suppose guard segments GH and NO are horizontally aligned and parallel as
in Figure 4, with disjoint slits CBAD and SUV T lying outside of the guard regions such
that AB, UV , GH and NO are all parallel. Furthermore, suppose CBAD is chosen so
the triples (A, C, H), (B, C, G), (A, D, O) and (B, D, N) are each colinear, and SUV T is
chosen similarly, as in the figure. Then any valid configuration of guards with one guard in
each guard region must have two guards sharing an x-coordinate, one on GH and one on
NO. Furthermore, if the left wall is moved sufficiently far to the left, CBAD can be placed
anywhere above Wi not in a guard region, SUV T can be placed anywhere below Wj not in a
guard region, and both of these slits can be made arbitrarily small.

Proof. Let α be the location of the guard on GH, and let β be the location of guard on NO;
our objective is to show that, in any valid configuration, αx = βx. We define the following
four additional points:

SoCG 2023



58:6 Topological Universality of the Art Gallery Problem

α := the intersection of line segment AB with line αC

α := the intersection of line segment UV with line αS

β := the intersection of line segment AB with line βD

β := the intersection of line segment UV with line βT

Figure 4 A copying gadget (and two variable gadgets). As in Figure 2, the boundary consists of
the entire outer profile. The copying gadgets force the pair of guards on segments GH and NO to
have the same x-coordinate. Additional variable and copying gadgets may be placed between Wi

and Wj , which would be easier to draw if Wi and Wj were made narrower; they are drawn very
large in this figure for the purpose of illustration.

Due to the obstructions by points C and D, the guard at α can only see AB to the left
of α, and the guard at β can only see AB to the right of β. If αx < βx, the line segment αβ

will therefore not be seen by any guard, so we must have that αx ≥ βx. Similarly, the guard
at α can only see UV to the right of α, and the guard at β can only see UV to the left of β,
so we must have that αx ≤ β

x
. Thus, in any valid configuration of the two guards,

αx − Gx

Hx − Gx
= Bx − αx

Bx − Ax
(by Lemma 4 with Z := C)

≤ Bx − βx

Bx − Ax

= βx − Nx

Ox − Nx
(by Lemma 4 with Z := D)

=
Vx − β

x

Vx − Ux
(by Lemma 4 with Z := T )

≤ Vx − αx

Vx − Ux

= αx − Gx

Hx − Gx
(by Lemma 4 with Z := S).

Multiplying through by (Hx − Gx) and using the fact that Nx = Gx and Ox = Hx, we have

αx − Gx ≤ βx − Gx ≤ αx − Gx.
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Thus, αx = βx in any valid configuration (and it is obvious that such a configuration is
indeed valid).

For the final claim, observe that we can fully define the position of the top slit CBAD as
follows. Place AB anywhere outside the art gallery, not in any guard region. Then move
the left wall (including all slits) sufficiently to the left so that the y-coordinates of points C

and D are sufficiently close to A and B so that they do not lie in any guard region either.
Existing slits will have to get stretched in this process, which is fine because this only makes
them smaller. Thus, it is possible to make the top slit CBAD arbitrarily small and place
it anywhere, so long as it is above Wi and not in any other guard region. We can apply a
symmetric procedure for SUV T . ◀

2.4 Constructing the art gallery

We are now ready to prove homeomorphism universality. Throughout the proof, as an
example, we implement the various steps the construction for the Möbius strip.

Proof of Theorem 1. By Theorem 2, we may assume without loss of generality that S is the
geometric realization of a nonempty cubical complex. This means that S can be described
as a subset of [0, 1]n whose coordinates x1,x2, . . . ,xn satisfy some disjunctive normal form
(DNF) formula

ϕS ≡
m′∨

j=1
C ′

j ,

where each C ′
i is a conjunction of constraints that certain xi variables take values 0 and 1.

The formula will always be in DNF: each C ′
i corresponds to a face of the cubical complex, so

ϕS describes the set of points lying in at least one such face. For example, the formula for the
Möbius strip M depicted in Figure 1 has six clauses, one for each of the six 2-dimensional faces.
To write an explicit formula ϕM , we choose a coordinate system where x4 = 0 corresponds
to the points on the outer shell and enumerate the faces as clauses by traversing the strip
starting from the left-most depicted face and proceeding next toward the back face:

ϕM ≡(x2 = 0 ∧ x4 = 0) ∨ (x1 = 0 ∧ x4 = 0) ∨ (x1 = 0 ∧ x3 = 1)
∨(x3 = 1 ∧ x4 = 1) ∨ (x2 = 0 ∧ x4 = 1) ∨ (x2 = 0 ∧ x3 = 0)

We next rewrite ϕS in conjunctive normal form (CNF),

ϕS ≡
m∧

j=1
Ci,

where each Ci is a disjunction of constraints, i.e.,

Ci ≡ (xij,1 = cj,1) ∨ (xij,2 = cj,2) ∨ · · · ∨ (xij,ℓ
= cj,ℓ),

with each ij,k ∈ {1, 2, . . . n} and cj,k ∈ {0, 1}. The transformation from DNF to CNF is
standard, and can be accomplished by enumerating all tuples of constraints that take one
constraint from each clause. For example, since ϕM has 6 clauses in DNF, each of size 2,
the translation to CNF produces 26 = 64 clauses, each of size 6. However, after eliminating

SoCG 2023



58:8 Topological Universality of the Art Gallery Problem

redundancies, we can simplify ϕM to

ϕM ≡(x1 = 0 ∨ x2 = 0 ∨ x3 = 1)
∧(x2 = 0 ∨ x3 = 1 ∨ x4 = 0)
∧(x1 = 0 ∨ x2 = 0 ∨ x4 = 1) (1)
∧(x3 = 0 ∨ x3 = 1 ∨ x4 = 0 ∨ x4 = 1)
∧(x1 = 0 ∨ x3 = 0 ∨ x4 = 0 ∨ x4 = 1).

Figure 5 Illustration of the first step of the general construction (making clause gadgets), starting
from a CNF formula with n variables and m clauses. The full art gallery is shown in more detail for
the Möbius strip in Figure 6.

Starting from a rectangular art gallery, we make a narrow diagonal slit for each clause
j in the top-right corner such that the regions Rj of the gallery that can see to the end of
each slit extend downward to the left and do not overlap, as shown in Figure 5. For each
i ∈ {1, 2, 3, . . . , n} we define Xi to be a tall, skinny, axis-aligned rectangular region such that
the convex hulls of the sets Xi ∩ (R1 ∪ R2 ∪ · · · ∪ Rm) do not overlap in y-coordinates (in
terms of Figure 5, the pink dashed lines must not overlap in y-coordinates). It is always
possible to guarantee this non-overlapping property by making the gallery sufficiently tall
and/or making the clauses sufficiently close together.

In every clause j, for every constraint xij,k
= cj,k, we add a variable gadget in the left

and right sides of the rectangle enforcing the constraint that there is a guard on a guard
segment spanning the width of Xij,k

whose endpoint lies within Rj . If cj,k = 0, this will
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be the left endpoint, and if cj,k = 1, this will be the right endpoint. We then add copying
gadgets to enforce that all guard segments placed in Xi for the same i must have the same
x-coordinate. By Lemmas 3 and 5, this is possible by shrinking the variable and copying
gadgets and moving the left wall sufficiently far away.

Figure 6 An art gallery whose solution space is homeomorphic to a Möbius strip, using the
formula ϕM from (1). The horizontal gold dashes above each variable are the line segments on which
guards must walk, as in Figure 4. The pink diagonal lines depict the regions Rj that can see to the
end of each clause gadget slit; each of these regions must contain at least one guard. The left wall
must be placed sufficiently far to the left to ensure that none of the variable/copy gadgets interfere
with each other. As drawn, this particular art gallery has 183 vertices.

Letting P0 be the polygon P without the clause gadget slits, we have that V (P0) consists
of all solutions with one guard on each guard segment, with guards within the same Xi placed
at the same x-coordinate. There is thus a natural homeomorphism h : V (P0) → [0, 1]n, and
from the way the clause gadgets were constructed, it clearly follows that V (P ) consists of all
solutions in which ϕS is satisfied under h. Thus, V (P ) is homeomorphic to S. ◀

3 Efficient construction for closed surfaces

We have argued that our universality construction is qualitatively simpler than its predecessors.
In this section, we show how our technique can be used to produce quantitatively simple
galleries, in terms of the number of vertices of the polygon. This is not apparent a priori: even
if a space can be triangulated as a cubical complex with relatively few faces, the conversion

SoCG 2023
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from DNF to CNF can exponentially blow up the number of clauses, and thus the size of the
art gallery. Here we prove that an important class of topological spaces, namely the closed
surfaces, can occur as solutions to art galleries with linearly many vertices.

▶ Theorem 6. There are polygons Pg, Qg with O(g) vertices such that V (Pg) is homeomorphic
to the closed orientable surface of genus g and V (Qg) is homeomorphic to the closed non-
orientable surface of genus g.

Proof. We know by Theorem 1 that such polygons exist for the finite number of cases where
g ∈ {0, 1}, so it is sufficient to construct these polygons only for g ≥ 2.

It is well known that, for g ≥ 2, the orientable surface of genus g can be obtained as
the connected sum of g copies of a torus, T 2#T 2# . . . #T 2, while the non-orientable surface
of genus g can be obtained as the connected sum of g copies of the real projective plane
RP2#RP2# . . . #RP2 (see, e.g., the textbook by Massey [9]). The connected sum R#R is
ordinarily defined as removing an open disk from two copies of R and gluing their boundaries
together. For 2-dimensional surfaces, this is equivalent to gluing the disk boundaries to
opposite ends of a cylindrical tube, which is the formulation we use in this construction.
Thus, let R be either T 2 or RP2. By Theorem 2, we know there is some j such that R is
homeomorphic to |C|, the geometric realization of a cubical complex C with j variables. Let
x1,x2, . . . ,xj be these variables and write x = (x1,x2, . . . ,xj).

Clearly C has at least two 2-dimensional faces. Let C1 be a cubical complex obtained by
removing a face f1 of dimension 2 from C, and C2 obtained by removing a different face f2.
For i ∈ {1, 2}, define Bi to be the cubical complex in x consisting of fi and its boundary, so
that |Ci| ∩ |Bi| is the boundary of the removed disc (see Figure 7).

Figure 7 Visualisation of |C1|, |C2|, |B1| and |B2|. In reality, C should be a complex for T 2 or
RP2, rather than S1 as shown. The figure is just meant to convey the construction at a schematic
level.

Define a new variable x0 and fix constants k0 = 0 < k1 < · · · < kg−2 < 1 = kg−1. Then
the following formulas express the property that a point x is contained in R#R# . . . #R

(see Figure 8 for a visualization). For g even we have

(x ∈ |C2| ∨ x0 = 0) ∧ (x ∈ |C1| ∨ x0 = 1)∧
(x ∈ |B1| ∨ 0 ≤ x0 ≤ k1 ∨ k2 ≤ x0 ≤ k3 ∨ · · · ∨ kg−3 ≤ x0 ≤ kg−2 ∨ x0 = 1)∧
(x ∈ |B2| ∨ k1 ≤ x0 ≤ k2 ∨ k3 ≤ x0 ≤ k4 ∨ · · · ∨ kg−2 ≤ x0 ≤ 1),
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and for g odd we have

(x ∈ |C2| ∨ x0 = 0 ∨ x0 = 1) ∧ x ∈ |C1|∧
(x ∈ |B1| ∨ 0 ≤ x0 ≤ k1 ∨ k2 ≤ x0 ≤ k3 ∨ · · · ∨ kg−2 ≤ x0 ≤ 1)∧
(x ∈ |B2| ∨ k1 ≤ x0 ≤ k2 ∨ k3 ≤ x0 ≤ k4 ∨ · · · ∨ kg−3 ≤ x0 ≤ kg−2 ∨ x0 = 1).

Note that such a space is typically not the geometric realization of a cubical complex in
x0, x1,x2, . . . ,xj because of the constraints on x0; nevertheless, we will construct an art
gallery for it.

Figure 8 A schematic visualization for our constructions of R#R# . . . #R for even g (left) and
odd g (right). For all values of x0, we require x ∈ |C1| and x ∈ |C2|, except for x0 = 0 or x0 = 1
where one of these constraints is dropped to cap the hole at the end. For ki < x0 < ki+1, x must be
in either |B1| ∩ |C1| or |B2| ∩ |C2| depending on the parity of i. This creates tubes connecting the
copies of R.

We can write these expressions in CNF with terms of form xi = 0, xi = 1, or ki ≤ x0 ≤
ki+1. We write the constraint x ∈ |B1| in CNF as

ϕB1 :=
p∧

ℓ=1

qℓ∨
m=1

tℓ,m,

where each tℓ,m is an atomic constraint of the form e.g. xi = c. We may thus rewrite

x ∈ |B1| ∨ 0 ≤ x0 ≤ k1 ∨ k2 ≤ x0 ≤ k3 ∨ · · · ∨ kg−2 ≤ x0 ≤ 1

≡
p∧

ℓ=1

((
qℓ∨

m=1
tℓ,m

)
∨ 0 ≤ x0 ≤ k1 ∨ k2 ≤ x0 ≤ k3 ∨ · · · ∨ kg−2 ≤ x0 ≤ 1

)
.

To add the constraints on x0 to each clause involving x0, we must make a small modification
to the construction from Section 2. Instead of having the clause gadgets along the top wall,
we extend the top wall upward and put these gadgets along the right wall. It is easy to
see that this does not affect our ability to create the constraints on x. We then add the
constraints on x0 to each clause as in Figure 9; if all clause gadgets are vertically translated
copies of each other, then all guard segments for x0 across the different clauses can be placed
at the same x-coordinates.

SoCG 2023



58:12 Topological Universality of the Art Gallery Problem

Figure 9 Guard segments for x0. We place the first guard segment so that the lower line in the
wedge intersects it a 0, and the upper line intersects it at some point k1. We can then place another
segment which intersects the lower line at k1, and the intersection of this segment with the upper
line gives the value of k2. We can repeat until we have g − 1 segments. Each clause depending on x0

will have a copy of this setup but with some of the segments removed depending on which terms
ki ≤ x0 ≤ ki+1 it contains.

Using a similar expansion for the other terms, we obtain a CNF expression that cuts out
the space we want. Since p and each qℓ are constants, the total number of clauses does not
depend on g, and each clause has at most O(g) terms. Thus, when we add the constraints
involving x0 to the constant-sized formula ϕB1 , the number of vertices increases linearly in g.

We may similarly add x0 constraints to the formula for B2 with linear blowup. The result
is a gallery with O(g) vertices whose solution space is homeomorphic to R#R# . . . #R. ◀

We have shown that such Pg, Qg exist having O(g) vertices. In case it is of interest, we
leave it to the reader to verify that the positions of the vertices can additionally be chosen
to be rational numbers that require only O(g) bits to describe.1

4 Conclusion

In this work we have settled the open question of Bertschinger et al. [2] by showing that
solution spaces to the art gallery problem can capture the topology of any semi-algebraic
set up to homeomorphism. In doing so, we have introduced a new form of copying gadget
that enables simpler arguments about the structure of valid solutions to art gallery problem
instances.

Beyond the art gallery problem, our main result raises intriguing possibilities for the
broader theory of ∃R-hardness. To the best of our knowledge, this is the first paper showing
that the topological structure of semi-algebraic sets can be carried into a different problem

1 In general, if we fix the length of the guard segments for x0 then the wedge parameters that would give
kg−1 = 1 are not rational numbers. Instead, we fix a sufficiently thin slit and choose the length of the
guard segments for x0 appropriately.
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domain even up to the fine-grain notion of homeomorphism.2 Perhaps this holds for other
∃R-hard problems as well.
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