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Abstract
The essence of compiling with continuations is that conversion to continuation-passing style (CPS)
is equivalent to a source language transformation converting to administrative normal form (ANF).
Taking as source language Moggi’s computational lambda-calculus (λC), we define an alternative
to the CPS-translation with target in the sequent calculus LJQ, named value-filling style (VFS)
translation, and making use of the ability of the sequent calculus to represent contexts formally.
The VFS-translation requires no type translation: indeed, double negations are introduced only
when encoding the VFS target language in the CPS target language. This optional encoding,
when composed with the VFS-translation reconstructs the original CPS-translation. Going back
to direct style, the “essence” of the VFS-translation is that it reveals a new sublanguage of ANF,
the value-enclosed style (VES), next to another one, the continuation-enclosing style (CES): such
an alternative is due to a dilemma in the syntax of λC, concerning how to expand the application
constructor. In the typed scenario, VES and CES correspond to an alternative between two proof
systems for call-by-value, LJQ and natural deduction with generalized applications, confirming proof
theory as a foundation for intermediate representations.
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1 Introduction

The conversion of a program in a source call-by-value language to continuation-passing style
(CPS) by an optimizing translation that reduces on the fly the so-called administrative
redexes produces programs which can be translated back to direct style, so that the final
result, obtained by composing the two stages of translation, is a new program in the source
language which can be obtained from the original one by reduction to administrative normal
form (ANF) – a program transformation in the source language [10, 24]. This fact has
been dubbed the “essence” of compiling with continuations and has had a big impact and
generated an on-going debate in the theory and practice of compiler design [11, 16, 18].

Our starting point is the refinement of that “essence”, obtained in [25], in the form
of a reflection of the CPS target in the computational λ-calculus [20], the latter playing
the role of source language and here denoted λC – see Fig. 1. Then we ask: What is the
proof-theoretical meaning of this reflection? What is the logical reading of this reflection
in the typed setting? Of course, the CPS-translation has a well-known logical reading as a
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Figure 1 The essence of compiling with continuations.

negative translation, based on the introduction of double negations, capable of translating
a classical source calculus with control operators [19, 12, 26]. But it is not clear how this
reading is articulated with the reflection in Fig.1, which provides a decomposition of the
CPS-translation as the reduction to ANF followed by a “kernel” translation that relates the
“kernel” ANF with CPS.

It is also well-known that the CPS-translation can be decomposed in several ways:
indeed in the reference [25] alone we may find two of them, one through the monadic meta-
language [21], the other through the linear λ-calculus [17]. Here we will propose another
intermediate language, the sequent calculus LJQ [3, 4]. The calculus LJQ has a long history
and several applications in proof theory [3] and can be turned into a typed call-by-value
λ-calculus in equational correspondence with λC [4]. Here we want to show it has a privileged
role as a tool to analyze the CPS-translation.

Languages of proof terms for the sequent calculus handle contexts (i.e. λ-terms with a
hole) formally [13, 1, 8, 5]. This seems most convenient, since a continuation may be seen
as a certain kind of context, and suggests that we can write an alternative translation into
the sequent calculus, as if we were CPS-translating, but without the need to pass around
a reification of the current continuation as a λ-abstraction, nor the concomitant need to
translate types by the insertion of double negations, to make room for a type A∼ of values, a
type ¬A∼ of continuations and a type ¬¬A∼ of programs, out of a source type A.

We develop this in detail, which requires: to rework entirely the term calculus for LJQ

and obtain a system, named λQ, more manageable for our purposes; and to identify the kernel
and the sub-kernel of λQ, the latter being the target system, named V FS after value-filling
style, of the new translation. In the end, we are rewarded with an isomorphism between
V FS and the target of the CPS-translation, which, when composed with the alternative
translation, reconstructs the CPS-translation. The isomorphism is a negative translation,
reduced to the role of optional and late stage of translation.

Going back to direct style, the “essence” of the VFS-translation is that it reveals a new
sublanguage of ANF, the value-enclosed style (VES), next to another sublanguage of ANF,
the continuation-enclosing style (CES): such alternative between VES and CES is due to a
dilemma in the syntax of λC, concerning how to expand the application constructor. Hence,
these two sub-kernels of λC are under a layer of expansion – and the same was already true
for the passage from the kernel to the sub-kernel of λQ.
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Figure 2 The logical essence of compiling with continuations.

While VES corresponds to the sub-kernel VFS of λQ, CES corresponds to a fragment
of λJv [6], a call-by-value λ-calculus with generalized applications; the fragment is that of
commutative normal forms (CNF), that is, normal forms w. r. t. the commutative conversions,
naturally arising when application is generalized, which reduce both the head term and the
argument in an application to the form of values. So the alternative between VES and CES
is also a reflection, in the source language, of the alternative between two proof systems for
call-by-value: the sequent calculus LJQ and the natural deduction system behind λJv.

A summary is contained in Fig. 2: it shows a proof-theoretical background hidden in
Fig. 1, which this paper wants to reveal. In the process, we want to confirm proof theory as a
foundation for intermediate representations useful in the compilation of functional languages.

Plan of the paper. Section 2 recalls λC and the CPS-translation. Section 3 contains
our reworking of LJQ. Section 4 introduces the alternative translation into LJQ and the
decomposition of the CPS-translation. Section 5 goes back to direct style and studies the
sub-kernels of λC. Section 6 summarizes our contribution and discusses related and future
work. All proofs can be found in the long version of this paper [7].

2 Background

Preliminaries. Simple types (=formulas) are given by A, B, C ::= a|A ⊃ B. In typing
systems, a context Γ will always be a consistent set of declarations x : A; consistency here
means that no variable can be declared with two different types in Γ.

We recall the concepts of equational correspondence, pre-Galois connection and reflection
[4, 24, 25] characterizing different forms of relationship between two calculi.

▶ Definition 1. Let (Λ1,→1) and (Λ2,→2) be two calculi and, for each i = 1, 2, let ↠i

(resp. ↔i) be the reflexive-transitive (resp. reflexive-transitive-symmetric) closure of →i.
Consider the mappings f : Λ1 → Λ2 and g : Λ2 → Λ1.

FSCD 2023



19:4 The Logical Essence of Compiling with Continuations

f and g form an equational correspondence between Λ1 and Λ2 if the following
conditions hold: (1) If M →1 N then f(M) ↔2 f(N); (2) If M →2 N then g(M) ↔1
g(N); (3) M ↔1 g(f(M)); (4) f(g(M))↔2 M .
f and g form a pre-Galois connection from Λ1 to Λ2 if the following conditions
hold: (1) If M →1 N then f(M) ↠2 f(N); (2) If M →2 N then g(M) ↠1 g(N); (3)
M ↠1 g(f(M)).
f and g form a reflection in Λ1 of Λ2 if the following conditions hold: (1) If M →1 N

then f(M) ↠2 f(N); (2) If M →2 N then g(M) ↠1 g(N); (3) M ↠1 g(f(M)); (4)
f(g(M)) = M .

Note that if f and g form a pre-Galois connection from Λ1 to Λ2 and →2 is confluent, then
→1 is also confluent. Besides, it is also important to observe that if f and g form a reflection
from Λ1 to Λ2, then g and f form a pre-Galois connection from Λ2 to Λ1.

Computational lambda-calculus. The computational λ-calculus [20] is defined in Fig. 3. In
addition to ordinary λ-terms, one also has let-expressions let x := M in N : these are explicit
substitutions which trigger only after the actual parameter M is reduced to a value (that is,
a variable or λ-abstraction). So, in addition to the rule letv that triggers substitution, there
are reduction rules – let1, let2 and assoc – dedicated to that preliminary reduction of actual
parameters in let-expressions.

For the reduction of β-redexes, we adopt the rule B from [4], which triggers even if the
argument N is not a value, and just generates a let-expression. Most presentations of λC
[20, 25] have rule βv instead, which reads (λx.M)V → [V/x]M . The two versions of the
system are equivalent. In our presentation, the effect of βv is achieved with B followed by
letv. Conversely, when N is not a value, we can perform the reduction

(λx.M)N → let y := N in (λx.M)y → let y := N in [y/x]M =α let x := N in M .

The first step is by let2, the second by βv. The last term is the contractum of B.
In this paper, we leave the η-rule for λ-abstraction out of the definition of λC, and

similarly for other systems – since it plays no rule in what we want to say. But we include
the η-rule for let-expressions, and other incarnations of it in other systems.

In [4, 25] the λC-calculus is studied in its untyped version. Here we will also consider its
simply-typed version, which handles sequents Γ ⊢C M : A, where Γ is a set of declarations
x : A. The typing rules are obvious, Fig. 3 only contains the rule for typing let-expressions.

The kernel of the computational λ-calculus [25] is defined in Fig. 4. It is named here
ANF , after “administrative normal form”, because its terms are the normal forms w. r. t. the
administrative rules of λC: let1, let2 and assoc [25].

In the kernel, only a specific form of applications and two forms of let-expressions are
primitive. The general form of a let-expression, written LET y := M in P , is a derived form
defined by recursion on M as follows:

LET y := V in P = let y := V in P

LET y := V W in P = let y := V W in P

LET y := (let x := V in M) in P = let x := V in LET y := M in P

LET y := (let x := V W in M) in P = let x := V W in LET y := M in P

Obviously, given M and P in the kernel, let y := M in P ↠assoc LET y := M in P in λC.
Hence, a Bv-step in the kernel can be simulated in λC as a B-step followed by a series of
assoc-steps. On the other hand B′

v is a restriction of rule B to the sub-syntax, and the same
is true of the remaining rules of the kernel.
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(terms) M, N, P, Q ::= V |MN | let x := M in N

(values) V, W ::= x |λx.M

(B) (λx.M)N → let x := N in M

(letv) let x := V in M → [V/x]M
(ηlet) let x := M in x → M

(assoc) let y := (let x := M in N) in P → let x := M in let y := N in P

(let1) MN → let x := M in xN (a)
(let2) V N → let x := N in V x (b)

Γ ⊢C M : A Γ, x : A ⊢C N : B

Γ ⊢C let x := M in N : B

Figure 3 The computational λ-calculus, here also named λC-calculus. Provisos: (a) M is not a
value. (b) N is not a value. Typing rules for x, λx.M and MN as usual.

(terms) M, N, P, Q ::= V |V W | let x := V in M | let x := V W in M

(values) V, W ::= x |λx.M

(Bv) let y := (λx.M)V in P → let x := V in LET y := M in P

(B′
v) (λx.M)V → let x := V in M

(letv) let x := V in M → [V/x]M
(ηlet) let x := V W in x → V W

Figure 4 The kernel of the computational λ-calculus, here named ANF .

Notice that in the form let x := V W in M the immediate sub-expressions are V , W and
M – but not V W . For this reason, there is no overlap between the redexes of rules Bv and
B′

v, nor between the redexes of rules B′
v and ηlet.

Our presentation of the kernel is very close to the original one in [25], as detailed in
Appendix B.

CPS-translation. We present in this subsection the call-by-value CPS-translation of λC.
It is a “refined ” translation [4], in the sense that it reduces “administrative redexes” at
translation time, as already done in [23].

The target of the translation is the system CPS, presented in Fig. 5. This target is
a subsystem of the λ-calculus (or of Plotkin’s call-by-value λv-calculus – the “indifference
property” [23]), whose expressions are the union of four different classes of λ-terms (commands,
continuations, values and terms), and whose reduction rules are either particular cases of
rules β and η (the cases of σv or ηk, respectively), or are derivable as two β-steps (the case
of βv). Each command or continuation has a unique free occurrence of k, which is a fixed (in
the calculus) continuation variable. A term is obtained by abstracting this variable over a
command. A command is always composed of a continuation K, to which a value may be
passed (the form KV ), or which is going to instantiate k in the command resulting from an
application V W (the form V WK).

There is a simply-typed version of this target, not found in [23, 4, 25], defined as follows.
Simple types are augmented with a new type ⊥, and we adopt the usual abbreviation

FSCD 2023



19:6 The Logical Essence of Compiling with Continuations

¬A := A ⊃⊥. Then, as defined in Fig. 5, one has: two subclasses of such types, one ranged
by A, A′ and the other ranged over by B, B′; four kinds of sequents, one per each syntactic
class; and one typing rule for each syntactic constructor.

(Commands) M, N ::= KV |V WK

(Continuations) K ::= λx.M | k
(Values) V, W ::= λx.P |x
(Terms) P ::= λk.M

(σv) (λx.M)V → [V/x]M
(βv) (λxk.M)WK → [K/k][W/x]M
(ηk) λx.Kx → K if x /∈ FV (K)

Types: A ::= a |A ⊃ B B ::= ¬¬A

Contexts Γ: sets of declarations (x : A)

Sequents: k : ¬A, Γ ⊢CPS M :⊥ k : ¬A, Γ ⊢CPS K : ¬A′ Γ ⊢CPS V : A Γ ⊢CPS P : B

k : ¬A, Γ ⊢CPS K : ¬A′ Γ ⊢CPS V : A′

k : ¬A, Γ ⊢CPS KV :⊥

Γ ⊢CPS V : A ⊃ ¬¬A′ Γ ⊢CPS W : A k : ¬A′′, Γ ⊢CPS K : ¬A′

k : ¬A′′, Γ ⊢CPS V WK :⊥

k : ¬A, Γ, x : A′ ⊢CPS M :⊥
k : ¬A, Γ ⊢CPS λx.M : ¬A′ k : ¬A, Γ ⊢CPS k : ¬A

Γ, x : A ⊢CPS P : B
Γ ⊢CPS λx.P : A ⊃ B Γ, x : A ⊢CPS x : A

k : ¬A, Γ ⊢CPS M :⊥
Γ ⊢CPS λk.M : ¬¬A

Figure 5 The system CP S.

The CPS-translation is defined in Fig. 6. It comprises: For each V ∈ λC, a value V †; for
each term M ∈ λC and continuation K ∈ CPS, a command (M : K); for each term M ∈ λC,
a command M⋆ and a term M .

In the typed setting, each simple type A of λC determines an A-type A† and a B-type
A, as in Fig. 6. The translation preserves typing, according to the admissible typing rules
displayed in the last row of the same figure.

3 Sequent calculus LJQ and its simplification λQ

In this section we start by recapitulating the term calculus for LJQ designed by Dyckhoff-
Lengrand [4]. Next we do some preliminary work, by proposing a simplified variant, named
λQ, more appropriate for our purposes in this paper. Finally, we also single out the kernel of
λQ, which is the sub-calculus of “administrative” normal forms. This further simplification
will be necessary for the later analysis of CPS.
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x† = x (V : K) = KV †

(λx.M)† = λx.M (PQ : K) = (P : λm.(mQ : K)) (a)
M = λk.M⋆ (V Q : K) = (Q : λn.(V n : K)) (b)

M⋆ = (M : k) (V W : K) = V †W †K

(let y := M in P : K) = (M : λy.(P : K))

A = ¬¬A† a† = a (A ⊃ B)† = A† ⊃ B

Γ ⊢C V : A

Γ† ⊢CPS V † : A

Γ ⊢C M : A k : ¬B†, Γ ⊢CPS K : ¬A†

k : ¬B†, Γ† ⊢CPS (M : K) :⊥

Γ ⊢C M : A

k : ¬A†, Γ† ⊢CPS M⋆ :⊥
Γ ⊢C M : A

Γ† ⊢CPS M : A

Figure 6 The CPS-translation, from λC to CP S, with admissible typing rules. Provisos: (a) P

is not a value. (b) Q is not a value.

The original term calculus. An abridged presentation of the original term calculus for
LJQ by Dyckhoff-Lengrand is found in Fig. 7 1. The separation between terms and values
corresponds to the separation between the two kinds of sequents handled by LJQ: the
ordinary sequents Γ⇒M : A and the focused sequents Γ→ V : A. There are three forms
of cut and the reduction rules correspond to cut-elimination rules. We may think of the
forms C1(V, x.W ) and C2(V, x.N) as explicit substitutions: in this abridged presentation we
omitted the rules for their stepwise execution.

We now introduce a slight modification of λLJQ, named λLjQ, determined by two
changes in the reduction rules: in rule (6) we omit the proviso; and rule (5) is dropped. A
former redex of (5) is reduced by (6) – now possible because there is no proviso – followed
by (4), achieving the same effect as previous rule (5).

In fact, very soon we will define a big modification and simplification of the original λLJQ,
which is more appropriate to our goals here. But we need to justify that big modification,
by a comparison with the original system. For the purpose of this comparison, we will use,
not λLJQ, but λLjQ instead. So, the first thing we do is to check that λLjQ has the same
properties as the original.

The maps between λC and λLJQ defined by Dyckhoff-Lengrand can be seen as maps to
and from λLjQ instead. Next, it is easy to see that such maps still establish an equational
correspondence, now between λC and λLjQ. It turns out that the correspondence is also a
pre-Galois connection from λLjQ to λC. Because of this, λLjQ inherits confluence of λC, as
λLJQ did.

A simplified calculus. We now define the announced simplified calculus, named λQ. It is
presented in Fig. 8. The idea is to drop the cut forms C1(V, x.W ) and C2(V, x.N), which
correspond to explicit substitutions. Since only one form of cut remain, C3(M, x.N), we
write it as C(M, x.N). The typing rules of the surviving constructors remain the same. The
omitted reduction rules for the stepwise execution of substitution are now dropped, since
they concerned the omitted forms of cut. Rules (1) and (3) are renamed as Bv and ηcut,
respectively. Rules (4) and (6) are renamed π1 and π2, respectively, and we let π := π1 ∪ π2.
Rules (2) and (7) are combined into a single rule named σv.

1 See Appendix A for the full system.
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(terms) M, N ::= ↑V |x(V, y.N) |C2(V, x.N) |C3(M, x.N)
(values) V, W ::= x |λx.M |C1(V, x.W )

(1) C3(↑(λx.M), y.y(V, z.N)) → C3(C3(↑V, x.M), z.N) (a)
(2) C3(↑x, y.N) → [x/y]N
(3) C3(M, x. ↑x) → M

(4) C3(z(V, y.P ), x.N) → z(V, y.C3(P, x.N))
(5) C3(C3(↑W, y.y(V, z.P )), x.N) → C3(↑W, y.y(V, z.C3(P, x.N))) (b)
(6) C3(C3(M, y.P ), x.N) → C3(M, y.C3(P, x.N)) (c)
(7) C3(↑(λx.M), y.N) → C2(λx.M, y.N) (d)

Γ, x : A→ x : A
Ax

Γ→ V : A
Γ⇒↑V : A

Der

Γ, x : A⇒M : B

Γ→ λx.M : A ⊃ B
R⊃

Γ⇒M : A Γ, x : A⇒ N : B

Γ⇒ C3(M, x.N) : B
Cut3

Γ, x : A ⊃ B → V : A Γ, x : A ⊃ B, y : B ⇒ N : C

Γ, x : A ⊃ B ⇒ x(V, y.N) : C
L⊃

Figure 7 The original calculus by Dyckhoff-Lengrand, here named λLJQ-calculus (abridged).
Provisos: (a) y /∈ F V (V ) ∪ F V (N). (b) y /∈ F V (V ) ∪ F V (P )). (c) If rule (5) does not apply. (d) If
rule (1) does not apply.

The design of rule σv is interesting. Rule (2) fired a variable substitution operation
[x/y]−, already present in the original calculus. The contractum of rule (7), being an explicit
substitution, has to be replaced by the call to an appropriate, implicit, substitution operator
[λx.M/y]−, whose stepwise execution should be coherent with the omitted reduction rules
for C1(V, x.W ) and C2(V, x.N). Hopefully, the sought operation and the already present
variable substitution operation are subsumed by a value substitution operation [V/y]−.

The critical clause is the definition of [V/y](y(W, z.P )). We adopt [V/y](y(W, z.P )) =
C(↑V, y.y([V/y]W, z.[V/y]P )) in the case V = λx.M , but not in the case of V = x, because
σv would immediately generate a cycle in the case y /∈ FV (V ) ∪ FV (N). We adopt instead
[x/y](y(W, z.P )) = x([x/y]W, z.[x/y]P ) which moreover is what the original calculus dictates.
Notice that another cycle would arise, if a Bv-redex was contracted by σv. But this is blocked
by the proviso of the latter rule.

There is a map (_)
√

: λLjQ→ λQ, based on the idea of translating the omitted cuts by
calls to substitution: C1(V, x.W ) is mapped to [V/x]W and C2(V, y.N) is mapped to [V/x]N .
This map, together with the inclusion λQ ⊂ λLjQ (seeing C(M, x.N) as C3(M, x.N)) gives
a reflection of λQ in λLjQ. This reflection allows to conclude easily that reduction in λLjQ

is conservative over reduction in λQ. Moreover, this reflection can be composed with the
equational correspondence between λC and λLjQ to produce an equational correspondence
between λC and λQ. Finally, this reflection is also a pre-Galois connection from λQ to λLjQ.
Thus, confluence of λQ can be pulled back from the confluence of λLjQ.

To sum up, we obtained a more manageable calculus, conservatively extended by the
original one, which, as the latter, is confluent and is in equational correspondence with λC.
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(terms) M, N ::= ↑V |x(V, y.N) |C(M, x.N)
(values) V, W ::= x |λx.M

(Bv) C(↑(λx.M), y.y(V, z.N)) → C(C(↑V, x.M), z.N) if y /∈ FV (V ) ∪ FV (N)
(σv) C(↑V, y.N) → [V/y]N if Bv does not apply

(ηcut) C(M, x. ↑x) → M

(π1) C(z(V, y.P ), x.N) → z(V, y.C(P, x.N))
(π2) C(C(M, y.P ), x.N) → C(M, y.C(P, x.N))

Figure 8 The simpified λLJQ-calculus, named λQ-calculus.

The kernel of the simplified calculus. For a moment, we do an analogy between λC
and λQ. As was recalled in Section 2, the former system admits a kernel, a subsystem of
“administrative” normal forms, which are the normal forms with respect to a subset of the
set of reduction rules [25]. For λQ, the “administrative” normal forms are very easy to
characterize: in a cut C(M, x.N), M has to be of the form ↑V . Logically, this means that
the left premiss of the cut comes from a sequent Γ→ V : A; given that such sequents are
obtained either with Ax or R⊃, the cut formula A in that premiss is not a passive formula
of the previous inference; hence the cut is fully permuted to the left – so we call such forms
left normal forms. The reduction rules of λQ which perform left permutation are rules π1
and π2 (even though textually the outer cut in the redex of those rules seems to move to the
right after the reduction), so these rules are declared “administrative”.

The kernel of λQ is named LNF . The specific form of cut allowed, namely C(↑V, x.N), is
written Cv(V, x.N). No other change is made to the grammar of terms. Given M, N ∈ LNF ,
the general form of cut becomes in LNF a derived constructor written Cv(M : z.N) and
defined by recursion on M as follows:

Cv(↑V : z.N) = Cv(V, z.N)
Cv(x(V, y.M) : z.N) = x(V, y.Cv(M : z.N))

Cv(Cv(V, y.M) : z.N) = Cv(V, y.Cv(M : z.N))

As to reduction rules, rule Bv in LNF reads

Cv(λx.M, y.y(V, z.N))→ Cv(V, x.Cv(M : z.N)) .

Notice that the contractum is the same as Cv(Cv(↑V : x.M) : z.N). The proviso remains the
same: y /∈ FV (V ) ∪ FV (N). As to the other reduction rules: there is no change to rule σv;
the specific form of rule ηcut that survives becomes a particular case of σv, hence is omitted;
and the system has no π-rules.

There is a map (_)▽ : λQ → LNF based on the idea of replacing C(M, x.N) by
Cv(M : x.N). This map, together with the inclusion LNF ⊂ λQ (seeing Cv(V, x.N) as
C(↑V, x.N)), gives a reflection in λQ of LNF . Quite obviously, M ↠π M▽; in fact M▽ is a
π-normal form, as are all the expressions of LNF .

LNF is a stepping stone in the way to the definition, in the next section, of the value-filling
style fragment, which will be a central player in this paper.
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4 The value-filling style

In this section we define the target language V FS (a fragment of LNF ) of a new compilation
of λC, the value-filling style translation. Next we slightly modify the target CPS, and
introduce the negative translation, mapping V FS to the modified CPS. Then we show that
the CPS-translation is decomposed in terms of the alternative compilation and the negative
translation; and that the negative translation is in fact an isomorphism.

The sub-kernel of LJQ. We now define the sub-kernel of λQ, a language named V FS that
will serve as a target language for compilation alternative to CPS. Despite the simplicity
of λQ, there is still room for a simplification: to forbid the left-introduction constructor
y(W, x.M) to stand as a term on its own. However, we regret that, by that omission, that
term cannot be used in a very particular situation: as the term N in Cv(V, y.N), when
y /∈ FV (W ) ∪ FV (M). So, we keep that particular combination of cut and left-introduction
as a separate form of cut. The result is presented in Fig. 9.

(terms) M, N ::= ↑V |Cv(V, c)
(values) V, W ::= x |λx.M

(formal contexts) c ::= x.M | (W, x.M)

(Bv) Cv(λx.M, (V, y.N)) → Cv(V, x.Cv(M : y.N))
(σv) Cv(V, y.N) → [V/y]N

Γ→ V : A Γ|A⇒ c : B

Γ⇒ Cv(V, c) : B

Γ, x : A⇒M : B

Γ|A⇒ x.M : B

Γ→W : A Γ, x : B ⇒M : C

Γ|A ⊃ B ⇒ (W, x.M) : C

Figure 9 The sub-kernel of the λQ, named V F S. Typing rules for ↑V , x and λx.M as before.

In fact, we introduce a third syntactic class, that of formal contexts – this terminology
will be justified later. Think of (W, x.M) as y.y(W, x.M) with y /∈ FV (W ) ∪ FV (M). The
new class allows us to account uniformly for the two possible forms of cut: Cv(V, c). The
reduction rules of V FS are those of the kernel LNF , restricted to the sub-kernel: pleasantly,
the side conditions have vanished! Moreover, the operation [V/y]N is now plain substitution.

There is, again, an auxiliary operation used in the contractum of Bv. Cut Cv(M : c′) and
formal context (c : c′) are defined by simultaneous recursion on M and c as follows:

Cv(↑V : c′) = Cv(V, c′) ((x.M) : c′) = x.Cv(M : c′)
Cv(Cv(V, c) : c′) = Cv(V, (c : c′)) ((W, x.M) : c′) = (W, x.Cv(M : c′))

In the type system, a third form of sequents is added for the typing of formal contexts.
We know the formula A in Γ→ V : A is a focus [4], but the formula A in Γ|A⇒ c : B is not,
since it can simply be selected from the context Γ in the typing rule for x.M .

We already know how to map V FS back to LNF . How about the inverse direction? How
do we compensate the omission of y(W, x.M)? The answer is: by the following expansion

y(W, x.M)←σv Cv(y, z.z(W, x.M)) = Cv(y, (W, x.M)) (1)

The VFS-translation. The system V FS is the target of a translation of λC alternative to
the CPS-translation, to be introduced now. The idea is to represent a term of λC, not as a
command of CPS (in terms of a continuation that is called of passed), but rather as a cut of
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the sequent calculus V FS, making use of “formal contexts”. Later, we will give a detailed
comparison with the CPS-translation, which will make sense of the terminology “formal
context” and “value-filling”; more importantly, the comparison will show that V FS and the
translation into it is a style equivalent to CPS, but much simpler, in particular due to this
very objective fact: there is no translation of types involved.

The VFS-translation is given in Fig. 10. It comprises: For each V ∈ λC, a value V ◦ in
V FS; for each M ∈ λC and formal context c ∈ V FS, a cut (M ; c) in V FS; for each M ∈ λC,
a cut M• in V FS. Again: there is no translation of types.

x◦ = x (V ; x.N) = Cv(V ◦, x.N)
(λx.M)◦ = λx.M• (PQ; x.N) = (P ; m.(mQ; x.N)) (∗)

(V Q; x.N) = (Q; n.(V n; x.N)) (∗∗)
M• = (M ; x. ↑x) (V W ; x.N) = Cv(V ◦, (W ◦, x.N))

(let y := M in P ; x.N) = (M ; y.(P ; x.N))

Γ ⊢C V : A

Γ→ V ◦ : A

Γ ⊢C M : A Γ|A⇒ c : B

Γ⇒ (M ; c) : B

Γ ⊢C M : A

Γ⇒M• : A

Figure 10 The VFS-translation, from λC to V F S. Provisos: (∗) P is not a value. (∗∗) Q is not
a value.

▶ Theorem 1 (Simulation).
1. Let R ∈ {B, letv, ηlet}. If M →R N in λC then M• ↠ N• in V FS.
2. Let R ∈ {let1, let2, assoc}. If M →R N in λC then M• = N• in V FS.

The language CP S. Recall the CPS-translation of λC, given in Fig. 6, with target system
CPS, given in Fig. 5, our own reworking of Reynold’s translation and respective target [4].
We now introduce a tiny modification in the CPS-translation, an η-expansion of k in the
definition of M⋆: M⋆ = (M : λx.kx). This requires a slight modification of the target system.
First, the grammar of commands and continuations becomes:

(Commands) M, N ::= kV |KV |V WK (Continuations) K ::= λx.M

The continuation variable k is no longer by itself a continuation – but nothing is lost with
respect to CPS, since k may be expanded thus:

k ←ηk
λx.kx (2)

Since K is now necessarily a λ-abstraction, the ηk-reduction λx.Kx→ K of CPS becomes
a σv-reduction in the modified target, and so the latter system has no rule ηk.

We do a further modification to the reduction rules: instead of following [25] and
having rule βv, we prefer that the modified target system has the rule (λxk.M)WK →
(λx.[K/k]M)W , named Bv. That is, we substitute K, but not W .2 The new contractum is
a σv-redex, that can be immediately reduced to produce the effect of CPS’s rule βv.

2 We could have made this modification in Fig. 5, without any change to our results. The only thing
to observe is that, if we want CP S (or its modification) to consists of syntax that is derivable from
the ordinary λ-calculus or Plotkin’s call-by-value λ-calculus, then we have to consider these systems
equipped with the well-known permutation (λx.M)V V ′ → (λx.MV ′)V .
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In the typed case, the typing rule for k is replaced by this one:

Γ ⊢CPS V : A
k : ¬A, Γ ⊢CPS kV :⊥

No other modification is introduced w. r. t. Fig. 5. The obtained system is named CPS.
For the modified CPS-translation, we reuse the notation M , M⋆, V † and (M : K). From

now on, “CPS-translation” refers to the modified one, while the original one will be called
CPS-translation.

In CPS, k is a fixed continuation variable. In CPS, k is a fixed covariable, again
occurring exactly once in each command and continuation. The word “covariable” intends to
be reminiscent of the covariables, or “names”, of the λµ-calculus [22]. Accordingly, kV is
intended to be reminiscent of the naming constructor of that calculus, and some “structural
substitution” should be definable in CPS.

Indeed, consider the following notion of context for CPS: C ::= K[_] | [_]WK. Filling
the hole [_] of C with V results in the command C[V ]. Then, we can define the structural
substitution operation [C/k]− whose critical clause is [C/k](kV ) = C[V ]. There is no need
to recursively apply the operation to V , since k /∈ FV (V ).

Now in the case C = K[_], the structural substitution [C/k]− is the same operation
as the ordinary substitution [K/k]−, and it turns out that we will only need this case of
substitution. That is why we will not see the structural substitution anymore in this paper.

However, contexts C will be crucial for understanding the relationship between V FS and
CPS. In preparation for that, we derive typing rules for contexts of CPS. The corresponding
sequents are of the form Γ|A ⊢CPS C :⊥, where A is the type of the hole of C. Hence, the
command C[V ] is typed as follows:

Γ ⊢CPS V : A Γ|A ⊢CPS C :⊥
Γ ⊢CPS C[V ] :⊥ C1

The rules for typing C are obtained from the rules for typing KV and V WK in Fig. 5,
erasing the premise relative to V and declaring V ’s type as the type of the hole of C:

k : ¬A, Γ ⊢CPS K : ¬A′

k : ¬A, Γ|A′ ⊢CPS K[_] :⊥ C2
Γ ⊢CPS W : A k : ¬A′′, Γ ⊢CPS K : ¬A′

k : ¬A′′, Γ|A ⊃ ¬¬A′ ⊢CPS [_]WK :⊥ C3

We also observe that KC := λz.C[z] is a continuation, and that KCV →σv C[V ] in CPS.

VFS vs CPS: the negative translation. We now see that the CPS-translation can be
decomposed as the VFS-translation followed by a negative translation of system V FS. This
latter translation is a CPS-translation, hence involving, at the level of types, the introduction
of double negations (hence the name “negative”). It turns out that this negative translation
is an isomorphism between V FS and CPS, at the levels of proofs and proof reduction. This
renders the last stage of translation (the negative stage) and its style of representation (the
CPS style) an optional addition to what is already achieved with VFS.

The negative translation is found in Fig. 11. It comprises: For each V ∈ V FS, a value
V ∼ in CPS; for each M ∈ V FS, a command M ≀ and a term M− in CPS.

The translation has a typed version, mapping between the typed version of source and
target calculi. This requires a translation of types: for each simple type A of V FS, there
is an A-type A∼ and a B-type A−, as defined in Fig. 11. The translation preserves typing,
according to the admissible rules displayed in the last row of the same table.
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x∼ = x (↑V )≀ = kV ∼

(λx.M)∼ = λx.M− Cv(V, x.M)≀ = (λx.M ≀)V ∼

M− = λk.M ≀ Cv(V, (W, x.M))≀ = V ∼W ∼(λx.M ≀)

A− = ¬¬A∼ a∼ = a (A ⊃ B)∼ = A∼ ⊃ B−

Γ→ V : A
Γ∼ ⊢CPS V ∼ : A∼

Γ⇒M : A

k : ¬A∼, Γ∼ ⊢CPS M ≀ :⊥
Γ⇒M : A

Γ∼ ⊢CPS M− : A−

Figure 11 The negative translation, from V F S to CP S, with admissible typing rules.

The negative translation is defined at the level of terms and values. How about formal
contexts? A formal context c is translated as a context c≀ of CPS, defined as follows:

(x.M)≀ = (λx.M ≀)[_] (W, x.M)≀ = [_]W ∼(λx.M ≀)

Then the definition of Cv(V, c)≀ can be made uniform in c as c≀[V ∼]. The translation of non-
values Cv(V, c)≀ is thus defined as filling the (translation) of V in the hole of the actual context
c≀ that translates the formal context c. Hence the name “value-filling” of the translation.

We have two admissible typing rules:

Γ|A⇒ c : B

k : ¬B∼, Γ∼|A∼ ⊢CPS c≀ :⊥
(a) Γ|A⇒ c : B

k : ¬B∼, Γ∼ ⊢CPS Kc≀ : ¬A∼ (b)

Rule (a) follows from typing rules C2 and C3; rule (b) is obtained from (a) and rule C1.
It is no exaggeration to say that typing rule (b) is the heart of the negative translation.

In the sequent calculus V FS we can single out a formula A in the l. h. s. of the sequent to
act as the type of the hole of a (formal) context c. In CPS, we have the related concept
of a continuation K, a function of type A ⊃⊥. The type B of c has to be stored as the
negated type ¬B of a special variable k. Cutting with c in the sequent calculus corresponds
to applying K, to obtain a command, of type ⊥. But the cut produces a term of type B,
while the best we can do in CPS is to abstract k, to obtain ¬¬B. In the sequent calculus, a
type A may have uses in both sides of the sequent. To approximate this flexibility in CPS,
a type A requires types A, ¬A, and ¬¬A = B, presupposing ⊥.

▶ Theorem 2 (Decomposition of the CPS-translation).
1. For all V ∈ λC, V ◦∼ = V †.
2. For all M ∈ λC, N ∈ V FS, (M ; x.N)≀ = (M : λx.N ≀).
3. For all M ∈ λC, M•≀ = M⋆.
4. For all M ∈ λC, M•− = M .

Nothing is lost, if we wish to replace CPS with V FS, because the negative translation
is an isomorphism. Its inverse translation comprises: For each term P ∈ CPS, a term
P + ∈ V FS; for each command M ∈ CPS, a term M× ∈ V FS; for each value V ∈ CPS, a
value V ×× ∈ V FS. The definition is as follows:

(λk.M)+ = M×

(kV )× = ↑(V ××)
((λx.M)V )× = Cv(V ××, x.M×)

(V W (λx.M))× = Cv(V ××, (W ××, x.M×))
x×× = x

(λx.P )×× = λx.P +
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▶ Theorem 3 (V FS ∼= CPS).
1. For all M, V ∈ V FS, M−+ = M and M ≀× = M and V ∼×× = V .
2. For all P, M, V ∈ CPS, P +− = P and M×≀ = M and V ××∼ = V .
3. If M1 →M2 in V FS then M ≀

1 →M ≀
2 in CPS (hence M−

1 →M−
2 in CPS).

4. If M1 → M2 in CPS then M×
1 → M×

2 in V FS. Hence If P1 → P2 in CPS then
P +

1 → P +
2 in V FS.

5 Back to direct style

We now do to the VFS-translation what [10, 25] did to the CPS-translation, that is, try to
find a program transformation in the source language λC that corresponds to the effect of
the translation. We have seen in Section 4 that the VFS-translation identifies reduction steps
generated by let1, let2 and assoc. So we start from the normal forms w. r. t. these rules,
that is, from the kernel ANF (recall Fig. 4). We first identify two sub-syntaxes relevant in
this analysis. Next, we point out the proof-theoretical meaning of such alternative.

Two sub-kernels of ANF . It turns out that the syntax of ANF , despite its simplicity,
still contains several dilemmas: (1) Do we need a let-expression whose actual parameter is a
value V ? Or should we normalize with respect to letv? (2) Do we need V W to stand alone
as a term and also as the actual parameter of a let-expression? (3) Is ηlet a reduction or an
expansion? Some of these dilemmas give rise to the following diagram:

V W let x := V in xW
letvoo

let y := V W in y

ηlet

OO

let x := V in let y := xW in y︸ ︷︷ ︸
cx

letv

oo

ηlet

OO (3)

We take this diagram as giving, in its lower row, two different ways of expanding V W .
These two alternatives signal two sub-syntaxes of ANF without V W . In the alternative
corresponding to the expansion let y := V W in y, we are free to, additionally, normalize
w. r. t. letv and get rid of the form let x := V in M . In the alternative let x := V in let y :=
xW in y, we are not free to normalize w. r. t. letv, as otherwise we might reverse the intended
expansions. In both cases, values are V, W ::= x |λx.M . Moreover, we do not want to
consider ηlet as a reduction rule; and rule B′

v disappears, since there are no applications V W .
In the first sub-kernel, named CES, terms M are given by the grammar

M ::= V | let x := V W in M .

We call this representation continuation enclosing style, since the “serious” (=non-value)
terms have the form of an application V W enclosed in a let-expression. The unique reduction
rule of CES is

(βv) let y := (λx.M)V in P → LET y := [V/x]M in P

In ANF , it corresponds to a Bv-step followed by letv-step. The operation LET y := M in P

of ANF is reused, except that the base case of its definition integrates a further letv-step:
LET y := V in P = [V/y]P .
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In the second sub-kernel, named V ES, terms are given by the grammar

M, N ::= V | let x := V in cx

cx ::= M | let y := xW in N, where x /∈ FV (W ) ∪ FV (N)

We call this representation value enclosed style, since the serious terms have the form of a
value enclosed in a let-expression. There are two reduction rules:

(Bv) let y := (λx.M) in let z := yV in P → let x := V in LET z := M in P

(letv) let y := V in N → [V/y]N

In V ES, we define LET y := M in P and LET y := cz in P , which are a term and an
element of the class cz, respectively, the latter satisfying z /∈ FV (P ). The definition is by
simultaneous recursion on M and cz as follows:

LET y := V in P = let y := V in P

LET y := (let z := V in cz) in P = let z := V in LET y := cz in P

LET y := (let x := zW in N) in P = let x := zW in LET y := N in P

In the second equation, since in the l. h. s. P is not in the scope of the (inner) let-expression,
we may assume z /∈ FV (P ). So, the proviso for the call LET y := cz in P in the r. h. s. is
satisfied. In the third equation, cz in the l. h. s. is let x := zW in N . By definition of cz,
z /∈ FV (W ) ∪ FV (N); moreover, we may assume z /∈ FV (P ): hence the r. h. s. is in cz.

Despite the trouble with variable conditions, this definition corresponds to the operator
LET y := M in P of ANF restricted to the syntax of V ES. Therefore, rule Bv of V ES

corresponds, in ANF , to a letv-step followed by a Bv-step.

Proof-theoretical alternative. We now see that V ES is related to the sequent calculus
V FS, while CES is related to a fragment CNF of the call-by-value λ-calculus with generalized
applications λJv introduced in [6]. In both cases, the relation is an isomorphism, in the sense
of a type-preserving bijection with a 1-1 simulation of reduction steps.

▶ Theorem 4. V ES ∼= V FS and CES ∼= CNF .

Therefore the alternative between the two sub-kernels corresponds to the alternative
between two proof-systems for call-by-value, the sequent calculus LJQ and the natural
deduction system with general elimination rules behind λJv.

A λJv-term is either a value or a generalized applications M(N, x.P ), with typing rule

Γ ⊢J M : A ⊃ B Γ ⊢J N : A Γ, x : B ⊢J P : C

Γ ⊢J M(N, x.P ) : C

If the head term M is itself an application M1(M2, y.M3), then M3 has type A ⊃ B and the
term can be rearranged as M1(M2, y.M3(N, x.P )), to bring M3 and N together. This is a
known commutative conversion [15], here named π1, which aims to convert the head term M

to a value V . On the other hand, if the argument N is itself an application N1(N2, y.N3),
then N3 has type A and the term can be rearranged as N1(N2, y.M(N3, x.P )), to bring M

and N3 together. This is a conversion π2 which has not been studied, and which aims to
convert the argument N to a value W .

The combined effect of π := π1 ∪ π2 is to reduce generalized applications to the form
V (W, x.P ), called commutative normal form. On these forms, the βv-rule of λJv reads

(βv) (λy.M)(W, x.P )→ [[W/y]M\x]P
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The left substitution operation [N\x]P is defined by

[V \x]P = [V/x]P [V (W, y.N3)\x]P = V (W, y.[N3\x]P )

The commutative normal forms, equipped with βv, constitute the system CNF .

Ψ(V ) = ↑Ψv(V )
Ψ(let x := V in cx) = Cv(ΨvV, Ψx(cx))

Ψv(x) = x

Ψv(λx.M) = λx.ΨM

Ψx(M) = x.ΨM

Ψx(let y := xW in N) = (ΨW, y.ΨN)

Θ(↑V ) = Θv(V )
Θ(Cv(V, c)) = let x := ΘvV in Θx(c)

Θv(x) = x

Θv(λx.M) = λx.ΘM

Θx(y.M) = [x/y](ΘM)
Θx(W, y.N) = let y := x(ΘvW ) in ΘN

Figure 12 Translation from V ES to V F S and vice-versa.

Υ(x) = x

Υ(λx.M) = λx.ΥM

Υ(let x := V W in M) = ΥV (ΥW, x.ΥM)

Φ(x) = x

Φ(λx.M) = λx.ΦM

Φ(V (W, x.M)) = let x := ΦV ΦW in ΦM

Figure 13 Translation from CES to CNF and vice-versa.

The announced isomorphisms are given in Figs. 12 and 13. The map Ψ : V ES → V FS

requires the key auxiliary map Ψx, whose design is guided by types: if Γ, x : A ⊢C cx : B

then Γ|A ⇒ Ψx(cx) : B. The isomorphism Υ : CES → CNF should be obvious. It can
be proved that the operation LET y := M in P in CES is translated as left substitution:
Υ(LET y := M in P ) = [ΥM\y]ΥP .

A final point. The sub-kernel V ES is isomorphic to the CPS-target, after composition
with the negative translation: V ES ∼= V FS ∼= CPS. A variant of the negative translation
delivers:

▶ Theorem 5. CNF ∼= CP S.

So we also have CES ∼= CNF ∼= CP S. Here CP S is the sub-calculus of CPS where
commands KV are omitted and σv normalization is enforced. Its unique reduction rule,
named βv, becomes

(βv) (λy.λk.M)W (λx.N)→ [λx.N/k][W/y]M
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The definition of substitution [λx.N/k]M has the following critical clause:

[λx.N/k](kV ) = [V/x]N

This clause does the reduction of the σv-redex (λx.N)V on the fly; and it echoes the
critical clause of a structural substitution. Moreover, CP S is the target of a version of the
CPS-translation, obtained by changing just one clause: (V : λx.M) = [V †/x]M .

The variant of the negative translation yielding CNF ∼= CP S is defined by

(V (W, x.M))≀ = V ∼W ∼(λx.M ≀)

All the other needed clauses as before. For the isomorphism, we have to prove:

([N\x]M)≀ = [λx.M ≀/k]N ≀

This is a last minute bonus: a CP S explanation of left substitution.

6 Conclusions

Contributions. We list our main contribution: the VFS-translation; the negative translation
as an isomorphism between the VFS and CPS targets; the decomposition of the CPS-
translation in terms of the VFS-translation and the negative translation; the two sub-kernels
of λC and their perfect relationship with appropriate fragments of the sequent calculus LJQ

and natural deduction with general eliminations; the reworking of the term calculus for LJQ.
In all, we took the polished account of the essence of CPS, obtained in [25] and illustrated

in Fig. 1, and revealed a rich proof-theoretical background, as in Fig. 2, with a double layer
of sub-kernels, under a layer of expansions (see the dotted lines in Fig. 2 and recall (1),
(2), and (3)), intersecting an intermediate zone, between the source language and the CPS
targets, of calculi corresponding to proof systems.

Related work. In [4], LJQ is studied as a source language, while the CPS translation of
LJQ is a tool to establish indirectly a connection with λC, through their respective kernels,
in order to confirm that cut-elimination in LJQ is connected with call-by-value computation.
There is nothing wrong with using the sequent calculus as source language and translating
it with CPS: this has been done abundantly, even by the first author [1, 27, 4, 9]. But the
point made here is that the sequent calculus should also be used as a tool to analyze the
CPS-translation, and is able to play a special role as an intermediate language.

The sequent calculus was put forward as an intermediate representation for compilation
of functional programs in [2]. This study addresses compilation of programs for a real-world
language; designs an intermediate language Sequent Core (SC) inspired in the sequent calculus
for such source language; and compares SC with CPS heuristically w. r. t. several desirable
properties in the context of optimized compilation. In the present paper, we address the
foundations of compilation, employing theoretical languages; pick the sequent calculus LJQ,
which is a standard systems with decades of history in proof-theory [3]; and compare LJQ

and CPS, not through a benchmarking of competing languages, but through mathematical
results showing their intimate connection.

Future work. We know an appropriate CPS target will be capable of interpreting a classical
extension of our chosen source language. The problem in moving in this direction is that there
is no standard extension of λC with control operators readily available. Source languages
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with let-expressions and control operators can be found in [14, 5], but adopting them means
to redo all that we have done here – that is another project. On the other hand, maybe a
system with generalized applications will make a good source language. The system λJv

performed well in this paper, since its sub-kernel of administrative normal forms (CNF) is
reachable without consideration of expansions – a sign of a well calibrated syntax.
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A The original LJQ system

The original calculus by Dyckhoff-Lengrand is recalled in Fig. 14.

B Kernel of λC

Our presentation of the kernel of λC given in Fig. 4 is very close to the original one in [25],
as we now see. In [25], the terms M of the kernel are generated by the grammar:

M, N, P ::= K[V ]|K[V W ]
V, W ::= x|λx.M

K ::= [_]|let x := [_] in P

We take for granted the sets of terms and values of λC, together with the set of contexts of
λC, which are λC-terms with a single hole, and the concept of hole filling in such contexts.
This grammar defines simultaneously a subset of the terms of λC, a subset of the values of
λC, and a subset of the contexts of λC.
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The second production in the grammar of terms, K[V W ], should be understood thus:
given in the kernel values V , W and a context K, the λC-term K[V W ], obtained by filling the
hole of K with the λC-term V W , is in the kernel. In λC, V W is a subterm of K[V W ]; but,
as we observed in Section 2, in the kernel, the term V W is not an immediate subterm of
K[V W ] – the immediate subexpressions are just V , W , and K. Notice the λC-term M = V W

is a term in the kernel, generated by the second production of the grammar with K = [_].
But that second production should not be interpreted as K[M ] with M = V W .

There is no primitive K[M ] in the kernel. Instead, there is the operation (M : K), defined
by recursion on M as follows:

(V : K) = K[V ]
(V W : K) = K[V W ]

(let x := V in M : K) = let x := V in (M : K)
(let x := V W in M : K) = let x := V W in (M : K)

It is easy to see that (M : let x := [_] in P ) = LET x := M in P and that (M : [_]) = M .
In [25], the kernel has the following reduction rule

(β.v) K[(λx.M)V ]→ ([V/x]M : K) .

There is no need for the requirement of maximal K in this rule, as done in [25], once the
above clarification about K[V W ] is obtained. We now see the relationship between β.v and
our Bv and B′

v.
Let K = let y := [_] in P . Then rule Bv can re written as

K[(λx.M)V ]→ let x := V in (M : K) .

The contractum is a letv-redex, which could be immediately reduced, to achieve the effect
of β.v. Here we prefer to delay this letv-step, and the same applies to our rule B′

v, which
corresponds to the case K = [_]. This issue of delaying letv is also seen in Section 5.

Finally, rule ηlet in [25] reads let x := [_] in K[x]→ K. We argue that in our presentation
we can derive

(M : let x := [_] in K[x])→ (M : K) .

If K = [_], then we have to prove LET x := M in x → M . This is proved by an easy
induction on M : the case M = V (resp. M = V W ) gives rise to a σv-step (resp. ηlet-step);
the remaining two cases follow by induction hypothesis.

If K = let y := [_] in P , then we have to prove LET x := M in let y := x in P → LET y :=
M in P . Now let y := x in P →letv

[y/x]P . Since Q → Q′ implies LET x := M in Q →
LET x := M in Q′, we obtain LET x := M in let y := x in P → LET x := M in [y/x]P =α

LET y := M in P .
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(terms) M, N ::= ↑V |x(V, y.N) |C2(V, x.N) |C3(M, x.N)
(values) V, W ::= x |λx.M |C1(V, x.W )

(1) C3(↑(λx.M), y.y(V, z.N)) → C3(C3(↑V, x.M), z.N) (a)
(2) C3(↑x, y.N) → [x/y]N
(3) C3(M, x. ↑x) → M

(4) C3(z(V, y.P ), x.N) → z(V, y.C3(P, x.N))
(5) C3(C3(↑W, y.y(V, z.P )), x.N) → C3(↑W, y.y(V, z.C3(P, x.N))) (b)
(6) C3(C3(M, y.P ), x.N) → C3(M, y.C3(P, x.N)) (c)
(7) C3(↑(λx.M), y.N) → C2(λx.M, y.N) (d)
(8) C1(V, x.x) → V

(9) C1(V, x.y) → y (e)
(10) C1(V, x.(λy.M)) → λy.C2(V, x.M)
(11) C2(V, x. ↑W ) → ↑(C1(V, x.W ))
(12) C2(V, x.x(W, z.N)) → C2(↑V, x.x(C1(V, x.W ), z.C2(V, x.N)))
(13) C2(V, x.y(W, z.N)) → y(C1(V, x.W ), z.C2(V, x.N)) (e)
(14) C2(V, x.C3(M, y.N)) → C3(C2(V, x.M), y.C2(V, x.N))

Provisos: (a) y /∈ FV (V ) ∪ FV (N). (b) y /∈ FV (V ) ∪ FV (P )). (c) If rule (5) does not
apply. (d) If rule (1) does not apply. (e) x ̸= y.

Γ, x : A→ x : A
Ax

Γ→ V : A
Γ⇒↑V : A

Der

Γ, x : A⇒M : B

Γ→ λx.M : A ⊃ B
R⊃

Γ⇒M : A Γ, x : A⇒ N : B

Γ⇒ C3(M, x.N) : B
Cut3

Γ→ V : A Γ, x : A→W : B

Γ→ C1(V, x.W ) : B
Cut1

Γ→ V : A Γ, x : A⇒ N : B

Γ⇒ C2(V, x.N) : B
Cut2

Γ, x : A ⊃ B → V : A Γ, x : A ⊃ B, y : B ⇒ N : C

Γ, x : A ⊃ B ⇒ x(V, y.N) : C
L⊃

Figure 14 The original calculus by Dyckhoff-Lengrand.
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