
CAWET: Context-Aware Worst-Case Execution
Time Estimation Using Transformers
Abderaouf N Amalou # Ñ

Univ. Rennes, INRIA, CNRS, IRISA, France

Elisa Fromont # Ñ

Univ. Rennes, IUF, INRIA, CNRS, IRISA, France

Isabelle Puaut #Ñ

Univ. Rennes, INRIA, CNRS, IRISA, France

Abstract
This paper presents CAWET, a hybrid worst-case program timing estimation technique. CAWET
identifies the longest execution path using static techniques, whereas the worst-case execution
time (WCET) of basic blocks is predicted using an advanced language processing technique called
Transformer-XL. By employing Transformers-XL in CAWET, the execution context formed by
previously executed basic blocks is taken into account, allowing for consideration of the micro-
architecture of the processor pipeline without explicit modeling. Through a series of experiments on
the TacleBench benchmarks, using different target processors (Arm Cortex M4, M7, and A53), our
method is demonstrated to never underestimate WCETs and is shown to be less pessimistic than its
competitors.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture

Keywords and phrases Worst-case execution time, machine learning, transformers, hybrid technique

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.7

1 Introduction

The Worst-case execution time (WCET) of a task is its maximum execution time when
varying its input data and hardware state. Knowledge of the WCET of all tasks in a system
allows schedulability analysis techniques to demonstrate that all tasks will meet their timing
requirements in real-time systems. The challenge addressed in this paper is to estimate
WCETs for Commercial Off The Shelf (COTS) processors, for which the micro-architecture
details are not fully known.

WCET estimation techniques can be divided into three broad categories [36]: static,
measurement-based, and hybrid techniques.

Static techniques (ST, e.g., [16, 3]) operate on the Control Flow Graph (CFG) of the
task, extracted from its binary code. The nodes in the CFG are Basic Blocks1 (BB), and the
edges represent the control flow between the BB. Static techniques proceed in two phases:
in the first phase, the WCET of each BB is estimated using abstractions of the hardware
state; in the second phase, the whole program’s WCET is calculated by finding the worst
path inside the CFG (e.g., this is achieved by employing the commonly used implicit path
enumeration technique – IPET – [36]). Although the static techniques produce safe WCET
estimates, using hardware abstractions on complex micro-architectures will inevitably lead
to state explosion. Moreover, each new architecture demands the design of a new hardware
abstraction, which is time-consuming and error-prone (especially without the processor’s
micro-architectural details).

1 A basic block is defined as a sequence of instructions with a single entry point at the beginning and a
single exit point at the end, without any branching or jumping to other instructions within the block.

© Abderaouf N Amalou, Elisa Fromont, and Isabelle Puaut;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abderaouf.amalou@irisa.fr
https://sites.google.com/esi.dz/abderaoufamalou/accueil
https://orcid.org/0000-0001-7668-2560
mailto:elisa.fromont@irisa.fr
http://people.irisa.fr/Elisa.Fromont/
https://orcid.org/0000-0003-0133-3491
mailto:isabelle.puaut@irisa.fr
https://team.inria.fr/pacap/members/isabelle-puaut/
https://orcid.org/0000-0001-9310-9651
https://doi.org/10.4230/LIPIcs.ECRTS.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 CAWET: Context-Aware Worst-Case Execution Time Estimation

Measurement-based techniques (MBT) (e.g., [9]) are empirical techniques that run the
program end-to-end with varied input data and hardware states to gather measurements.
The WCET is then estimated from the measurements by either returning the largest observed
timing (with a configurable safety margin) or using statistical techniques such as extreme
value theory to infer a probabilistic WCET from the observed values [29, 30]. Unless the
worst input and hardware state are found, techniques in this category may produce unsafe
results.

Hybrid techniques (HT) [4, 32, 11, 20, 21] combine the benefits of ST and MBT: the
longest path is safely identified using techniques from ST, like IPET; measurements are
used at the BB level, avoiding the costly and error-prone design of hardware abstractions.
However, using measurements at the BB level in hybrid methods raises code coverage issues:
each BB has to be executed at least once, and each BB’s worst-case scenario must be covered.

In recent works, machine learning (ML) techniques are used in HT instead of measurements
to predict the WCET of BBs [5, 18, 17, 24, 25, 2]. These techniques, named HT-ML in the
following, train an ML model (e.g., neural network) on a large dataset of BB whose WCET is
known. The ML model is then used to predict the WCET of previously unseen BB. HT-ML
techniques have the following benefits:

(i) The time-consuming phase of HT-ML (training) is executed only once (per architecture)
and does not need any design of a hardware abstraction like in ST.

(ii) Although the training phase may be long, prediction is fast and does not require
thousands of measurements per BB.

(iii) HT-ML can process large amounts of execution scenarios for BB and identify patterns,
allowing more accurate predictions.

Nevertheless, the current HT-ML methods use oversimplified code characterization. The
features used for learning and prediction abstract too much information from the machine
code, causing information that impacts timing to be lost. For example, not considering the
ordering of machine instructions in a BB will make the technique unable to accurately learn
the impact of pipelines on timing.

In this paper, we propose a novel HT-ML WCET estimation technique called CAWET, for
Context-Aware Worst-case execution time Estimation using Transformers. This technique
uses the advanced machine learning algorithm Transformers-XL [8]. Unlike other HT-ML
methods, which only consider static features, CAWET considers the internal dependencies
within each BB and the context surrounding it when estimating its WCET. This is performed
by treating the sequence of instructions in a BB as a natural language, where the timing of a
BB depends not only on its own sequence of instructions but also on the sequence of BBs
executed before it.

CAWET consists of two main stages: training and deployment (or estimation). As in
all systems using Transformers, the Transformer model is first pre-trained in the learning
phase to comprehend the vocabulary (in our context, assembly language). Then, the model
is fine-tuned using extensive measurements on various basic blocks extracted from real codes.
In this fine-tuning stage, the model learns how to calculate the WCET of each basic block
by considering the context surrounding the block (previously executed BBs). During the
estimation stage, the WCET of each BB is determined for all bounded-length contexts leading
to the BB, extracted from the program’s CFG. The maximum timing estimate for these
contexts is then selected as the WCET of the basic block and used by IPET to calculate the
WCET of the overall program.

CAWET is easy to deploy, as the training has to be done only once. Consideration of
pipeline effects is performed automatically because of the consideration of the execution
context of all basic blocks.

A. N. Amalou, E. Fromont, and I. Puaut 7:3

CAWET is evaluated on processors of varied complexity, including the basic pipeline-
only cortex-M4, the more advanced cortex-M7 that features a cache, and the even more
sophisticated cortex-A53. The quality of WCET estimates produced by CAWET is compared
to those produced by WE-HML, the HT-ML technique closest to CAWET [2], on 13 programs
from the TACLeBench benchmark suite [13]. Our results show that CAWET produces better
estimates than its competitors on more diverse architectures.

Our contributions are:
A new hybrid timing ML-based WCET analysis technique that uses Transformers-XL to
estimate the WCET of basic blocks and considers dependencies between instructions.
We take into account the execution context that surrounds the BB under analysis by
automatically exploring all bounded-length paths that leads to it.
We provide an empirical study on different targets and techniques. Our results show that
this complex ML method is well-suited for timing estimation, with an average error of
23.8%, 102.2%, and 62.4%, on the Cortex M4, Cortex M7, and Cortex A53 processors,
respectively.

The rest of this paper is organized as follows. Section 2 presents the CAWET HT-ML
technique. The experimental methodology for evaluating it is detailed in Section 3, and
experimental results are given in Section 4. Section 5 compares our approach to related
techniques. We conclude in Section 6.

2 CAWET: Context-Aware WCET estimation using Transformers

CAWET is a hybrid context-aware WCET estimation technique that predicts an in-context
WCET of individual basic blocks and then uses the predictions to calculate the overall
program’s WCET. A high-level overview of CAWET is given in Section 2.1. The two main
phases of CAWET: training (using Transformers-XL) and prediction (i.e., deployment), are
then respectively presented in Sections 2.2 and 2.3.

2.1 Overview of CAWET
CAWET consists of two main stages: training and deployment (or estimation). Both stages
operate on individual basic blocks (BB) and account for the execution context of the BB
under study (i.e., the sequence of BBs executed before it). CAWET relies on Transformers-
XL, originally used in natural language processing, for their ability to learn long-term
dependencies between words. In CAWET, the language under study is a sequence of BBs,
each composed of a sequence of assembly instructions. The overall structure of CAWET is
depicted in Figure 1.

In the training phase (left block of Figure 1), the Transformer model is first pre-trained
on real programs to learn the vocabulary of the language it will process (in our context,
assembly language) as it is usually done for large language models [10]. Then, the model is
fine-tuned using extensive measurements on a large set of BBs extracted from real code. In
this fine-tuning stage, the model learns how to calculate the WCET of each BB by considering
the context surrounding it (i.e., previously executed BBs).

During the estimation stage (right block of Figure 1), the WCET of each BB is determined.
Since there might be different execution paths leading to the BB under study, prediction
operates on the set of contexts corresponding to these paths, with care taken to avoid
combinatorial explosion, as further explained in Section 2.3. The prediction phase first
computes the list of contexts of the BB under study (BB number 8 in the Figure). The result

ECRTS 2023

7:4 CAWET: Context-Aware Worst-Case Execution Time Estimation

Fine tuning

Pre-training

Transformer XL (TXL)

Pretrained TXL on
target ISA

1 2 3 4
Context BB max time

X cycles1 2 3 4
Context BB max time

X cycles1 2 3 4
Context BB max time

X cycles1 2 3 4
Context BB max time

X cycles1 2 3 4
Context BB max time

X cycles

Fine tuning dataset

TXL context-aware
timing model

Training Phase

Programs
Objdumps

Program
binary

Context
generation

Prediction Phase

8 21 cycles
8 19 cycles
8 20 cycles

8
Possible Context BB time predict

20 cycles1 4 5
1 2 3
3 4 5
3 6 7 BB WCET

8 21 cycles

8
8
8

8
Possible Context BB

1 4 5
1 2 3
3 4 5
3 6 7

Timing
prediction

Keep the
maximum

BB estimated WCET

Figure 1 Overview of CAWET.

in the example is a list of 4 contexts, made of the sequence of BBs executed before BB 8:
(1, 4, 5), (1, 2, 3), (3, 4, 5), and (3, 6, 7). The timing of BB 8 is estimated for each context. The
maximum timing estimate is then selected as the WCET of the BB and used by IPET to
calculate the WCET of the overall program.

2.2 Training phase using Transformers-XL
A transformer is a neural network architecture originally designed for natural language
processing, which can perform tasks such as language translation, text summarizing, and
text-to-speech. It was first proposed in [35], and one of its main advantages is using self-
attention mechanisms that enable the model to weigh different parts of the input data when
making predictions. However, as defined in [35], the original transformer architectures have
a fixed-length context window and may struggle to handle sequential data with long-term
dependencies. To address this limitation, Transformers-XL (TXL) [8] were introduced. A
TXL is a variation of the transformer architecture that uses a so-called memory-augmented
attention to better remember and utilize information from earlier in the sequence. We use a
TXL architecture in CAWET because it improves the ability of the transformer to handle
long-term dependencies, which is necessary for handling long sequences of code.

Estimating the WCET of a given BB given its context is performed by first processing
the context (formed by the BB executed before the analyzed BB as well as the analyzed
BB), followed by processing the BB under analysis. This results in two embedding matrix
representations (a global attention matrix for the context and a local attention matrix for the
BB under analysis) that are then concatenated. The resulting embedding representation is
given as input to a fully connected layer, producing a single scalar value (the timing estimate
for the analyzed BB). Figure 4 provided in the Appendix illustrates this process.

The training of a TXL consists of two stages (pre-training and fine-tuning). During the
pre-training stage, the TXL is trained to learn the structure of assembly instructions in text
format using self-supervised learning. This classical self-supervised learning phase [10] is
achieved by masking random operations or operands in the sequence and (pre)training the
model to reconstitute (i.e., predict) them as output. To perform this pre-training phase,

A. N. Amalou, E. Fromont, and I. Puaut 7:5

thousands of disassembled binary programs are used without needing labeled information.
Details about the hyper-parameters of the TXL architecture are provided in Table 10 in the
Appendix.

In the fine-tuning stage, a set of programs, the target processor, and a measurement
tool are required. BBs execution time is measured using the measurement tool. Then, the
instruction sequences are tokenized using sentence piece [23], a well-known tokenization
technique trained in our work on the target assembly instructions. The training dataset
for the fine-tuning stage is then built using the maximum observed timing of each BB, the
tokenized BB, and its context. Contexts have a maximum size; the context size, expressed as
a number of basic blocks, is a hyperparameter of the Tranformer-XL.

2.3 Prediction phase

CAWET predicts the WCET of BBs by considering their execution context. The results
from CAWET can then be used by a static WCET estimation tool. Section 2.3.1 presents the
concepts and notations CAWET relies on. Section 2.3.2 then details the context generation.
Section 2.3.3 describes how the WCET of a BB is obtained from the predictions and the
overall WCET of the program is finally calculated.

2.3.1 Concepts and notations

The concepts and notations used in CAWET are standard concepts used in compilers. They
are illustrated in Figure 3, which will be reused later to illustrate how CAWET works.

▶ Definition 1 (Control Flow Graph). A Control flow graph (CFG) is a directed graph where
each node represents a BB, and each edge represents the control flow from one BB to another.

▶ Definition 2 (SESE regions, SESE trees). A Single Entry Single Exit (SESE) region, as
defined in [19], is a sub-graph of a CFG that can only be entered by one edge and exited by
one edge. A property of SESE regions is that they can be arranged into a tree, constructed in
linear time.

An example of CFG (with 7 BBs numbered from 1 to 7), and its SESE regions is depicted
in Figure 2 (A). The dotted arrow in the figure represents the back edge of the loop composed
of BB 5 and 6. The SESE tree that corresponds to the CFG is depicted in Figure 2 (B). The
rationale behind using SESE regions is to have subsets of the CFG that are simple enough to
explore all paths exhaustively, with the overall objective of avoiding combinatorial explosion
when generating the possible contexts of a BB.

▶ Definition 3 (Cyclomatic complexity). Cyclomatic complexity is a software metric that
measures the number of independent paths through a program or a CFG [12]. It can be
thought of as the number of unique paths that can be taken through the code. It is calculated
using the following formula: Cyclomatic_complexity(CFG) = edges − nodes + 2

The cyclomatic complexity will be used during the prediction phase to decide which paths
leading to a BB are worth exploring. The cyclomatic complexity of the SESE regions in our
example is displayed in Figure 2 (B).

ECRTS 2023

7:6 CAWET: Context-Aware Worst-Case Execution Time Estimation

1

2

3

4

5

6 7

SESE 1
SESE 2

SESE 3

SESE 4

SESE 5

SESE 6

SESE 7

A- Control flow graph with it
different SESE regions

B- Single Entry Single Exit Tree,

Branch

Back edge

Legend

SESE 3
CC = 2

SESE 4
CC = 1

SESE 5
CC = 1

SESE 6
CC = 2

SESE 7
CC = 1

SESE 1
CC = 3

SESE 2
CC = 2

SESE

1

Single Entry Single Exit

Basic Block

Figure 2 A CFG example transformed into a SESE tree and annotated with cyclomatic complexity.

2.3.2 Context generation
The task of finding all the possible paths in a graph may be computationally expensive.
To address this issue, we use a divide-and-conquer strategy based on the SESE tree of the
program. In the example of Figure 2, the root SESE region (SESE 1) represents the entire
CFG. Each tree level represents a sub-SESE region (e.g., SESE 2 and SESE 3 are the children
of SESE 1), with smaller and thus simpler sub-graphs.

To limit the complexity, CAWET performs an exhaustive path exploration only for the
SESE regions that are simple enough (based on their Cyclomatic Complexity, CC) to allow
a full path exploration. SESE selection is performed using a top-bottom traversal of the
SESE tree, and the SESE regions with a value of CC strictly higher than a threshold are
filtered out. Path exploration for the selected regions uses Depth-First Search [34] (DFS) to
enumerate all possible paths2. We ensure, by construction, that the chosen SESE covers the
entire input code. i.e., in situations where a SESE node cannot be analyzed due to its high
CC value, we analyze all its children. Additionally, basic blocks that do not belong to any
region in the tree are included to ensure complete code coverage.

This process is illustrated in Figure 3 step 1 using the CFG and SESE in Figure 2 as an
example, with a CC threshold of 2. In this example, the SESE regions 2 and 3 are selected,
and their paths are fully explored (step 2 in Figure 3).

Management of loops

As explained above, the enumeration of paths in SESE regions ignores the back edges of
loops. Therefore, all paths in a given loop are explored only for one iteration. Obtaining the
execution context of any BB to be executed after a loop requires considering several loop

2 DFS traversal ignores loop back-edges. Loop management is described later in this Section.

A. N. Amalou, E. Fromont, and I. Puaut 7:7

 Single Entry Single Exit Tree, with the different
peeking edges and peeked on Basic Block

31

SESE 3
CC = 2

SESE 4
CC = 1

SESE 5
CC = 1

SESE 6
CC = 2

CC <= 2 ?

SESE 7
CC = 1

SESE 1
CC = 3

SESE 2
CC = 2

CC <= 2 ?

Peeked On edge

Legend

SESE

1

Single Entry Single Exit

Peeked On Basic Block

SESE 2 : 1 2 3 4 1 3 4

SESE 3 : 5 75 6

SESE 3 : 5 6 5 6 5 6 5 7

Step 4 : Iterate over all BBs to build context

Context size = Size of pipeline = 3

Step 5 : If BB without context => Peek on and update context
with respect to Context size

BB 1 :

BB 2 :

BB 3 :

BB 4 :

BB 5 :

BB 6 :

BB 7 :

1 2

1 2 3

5 6

1

1

1 3

5

5

5 6 5

5 6 5

6 5 6

BB 1 :

BB 2 :

BB 3 :

BB 4 :

BB 5 :

BB 6 :

BB 7 :

1 2

1 2 3

1

1

1 3

5 6 5

5 6 5

2 3 4 1 3 4 4 5 6

3 4 5

3 4 5

5 7

5 7

6 5 6

{ BB under analysis: Different possible contexts }

5 7

Step 1 : Build the SESE tree from CFG, and choose the SESEs to list
all the paths inside according to their Cyclomatic Complexity (CC)

Step 3 : Unroll loops using all available loop analysis results
(loop tree, max iteration, head node, back edge, loop body)

Step 2 : Enumerate all paths within
chosen SESE region

Figure 3 Example of the different steps for context generation, where the cyclomatic complexity
limit is set to 2 and the context size is set to 3 BBs.

iterations. This is achieved in CAWET using (virtual) unrolling: the context of a loop is
composed of several iterations of the loop body (from zero to the loop’s maximum number
of iterations).

As the path followed may differ across iterations, generating all possible contexts may
lead to a combinatorial explosion. This issue is addressed by restricting the number of BBs
added by the unrolling process for the loop body to a fixed value, the hyperparameter context
size of CAWET. In the presence of nested loops, the context of the inner loops is generated
first, to be further used to generate the context for outer loops. This is performed using a
bottom-up traversal of the loop nesting tree of every CFG3.

The result of the loop unrolling process on our example is given in Figure 3 step 3, for
SESE 3. Three contexts are generated, corresponding respectively to 1, 2, and 3 executions
of the loop. Note that, at this step, the size of the contexts of SESE regions may be longer
than the context size hyperparameter.

Per BB context generation

The execution traces for the different SESE regions, after loop unrolling, are used to generate
the context list of every basic block, as depicted in Figure 3 step 4. The size of each context
is limited to the context size hyperparameter of CAWET.

3 A loop nesting tree is a tree data structure used to represent nested loops. Each node in the tree
represents a loop, and the edges between the nodes represent the nesting relationship between the loops.

ECRTS 2023

7:8 CAWET: Context-Aware Worst-Case Execution Time Estimation

In some cases, the initial nodes of some SESE sub-regions are smaller than the context
size hyperparameter. To address this issue, we look for the preceding SESE region or BB to
access the end of its traces. The peeked-on edges are shown in Figure 3; they can easily be
found by looking at the end of the traces of all the BB that occur before this trace. The
obtained information can then be used as context for the start nodes of the current SESE
region, provided we can find a region before the current one.

As an example, Figure 3 step 5 shows that the context of BB 5 can be augmented by
peeking at the execution trace of SESE 2.

2.3.3 Basic Block WCET estimation and program WCET calculation
After generating all possible limited-size contexts for each BB, we move on to estimating
its WCET. This involves predicting the execution time of the BB under study for all its
contexts. In an architecture without a cache, the maximum estimated time is selected as
the worst-case scenario. If the target architecture includes a cache, we keep track of the two
highest estimated execution values to account for cache effects. The largest value represents
the first execution of the basic block within a loop, which is typically long, while the other
value represents subsequent executions of the same basic block, which may be shorter4. The
WCET of BBs is then fed into a static WCET estimation tool to calculate the WCET of the
overall program using standard techniques such as IPET [36].

3 Experimental setup

This Section provides a comprehensive description of the experimental setup used to evaluate
CAWET on multiple ARM Cortex targets, specifically M4, M7, and A53. The programs used
to train CAWET and evaluate the quality of predictions are first described in Section 3.1.
The context-agnostic baselines CAWET is compared to are presented in Section 3.2, followed
by an introduction to the software and hardware environments in Section 3.3. The setups
for the learning and prediction phases of CAWET are presented respectively in Section 3.4
and 3.5.

3.1 Dataset and benchmarks
CAWET training consists of two steps: (self-supervised) pre-training and fine-tuning. We
have pre-trained CAWET on a large number of BBs in order for the Transformer to learn
the assembly language under study, using CodeNet [28]. CodeNet is a collection of solutions
submitted by the public to competitive programming websites. It contains approximately
900,000 C programs, which we cross-compile to the target architecture and disassemble using
GNU binary utilities using objdump. The textual format produced by objdump, after some
basic parsing (e.g., extraction of addresses, separation of BBs) allows the creation of a large
pre-training set. This pre-training set is used to build a vocabulary model with sentence
piece [23]. Once the model (sentence piece model) has been trained, it is then used to tokenize
any binary programs written with the target instruction set. To fine-tune CAWET on basic
blocks with their context, we have used a diverse and publicly available set of programs:

4 Since the context size is limited, the predicted timing values may be too optimistic. We, therefore,
analyze in Section 4.2 and 4.4 a technique that applies static cache analysis, and we add the overhead
obtained by this analysis to the timing values produced by CAWET.

A. N. Amalou, E. Fromont, and I. Puaut 7:9

The Algorithms5, MiBench [15] and Polybench [37]. Table 1 gives a short description of
each benchmark suite, the number of programs it contains, and the total number of BBs
encountered when executing the programs.

Table 1 The benchmarks used for training CAWET.

Dataset name Description Nb. of programs Nb. of BB

The Algorithms Collection of open-source implementations
of a variety of algorithms implemented in C 200 12123

PolyBench A collection of benchmarks containing static control parts.
The purpose is to uniformize the execution and monitoring of kernels 30 11224

MiBench A free, commercially representative embedded benchmark suite 14 8324
Total 244 31671

Table 2 Selected TacleBench codes used to evaluate the quality of the predictions.

Name Description
bs Binary search in an array

bsort Bubble sort algorithm
countnegative Basic counting on arrays

crc Cyclic redundancy codes
expint Exponential integral function
fdct Fast discrete cosine transform.
fir Finite impulse response filter

h264 dec H.264 block decoding functions
insertsort Insertion sort
jfdctint Discrete-cosine transformation
matrix1 Generic matrix multiplication

ns Search in 4-dimension array
petrinet Petri net simulation

To validate the quality of the WCET predictions provided by CAWET, we use a subset
of the codes from the TacleBench benchmark suite [13] whose characteristics are given in
Table 2. We chose these codes because: (i) the programs are analyzable by static WCET
estimation tools, and in particular, they contain loop-bound annotations; (ii) they come
with input data known to trigger the worst-case execution paths; (iii) they are used in our
closest competitor WE-HML [2], allowing us to compare CAWET with this work. Note that
the selected TacleBench programs were not used during any of the two steps of the training
phase.

3.2 Context-agnostic baselines
CAWET is evaluated by comparing it to two context-agnostic WCET predictors. The first
one is a Multi-Layer Perceptron regressor (loosely called a neural network (NN)). Although
not a naive approach, the neural network is a feed-forward architecture that does not
incorporate sequential information and requires a fixed-size input. Our implementation of
the NN employs a total of 233 static features of the basic blocks as input, including the
proportion of different machine instruction types (e.g., MOV, ADD, LDR). We used a greedy
search algorithm to determine optimal hyperparameters for the NN, including the number of

5 Available here: https://github.com/TheAlgorithms/C

ECRTS 2023

https://github.com/TheAlgorithms/C

7:10 CAWET: Context-Aware Worst-Case Execution Time Estimation

hidden layers, optimizer, learning rate, and loss function. Based on the validation dataset,
the ideal parameters were determined to be hidden layer sizes=(512, 256, 128), learning
rate=’adaptive’, learning rate init=0.001, solver=’adam’. The other baseline CAWET is
compared with is WE-HML, a hybrid ML-based WCET estimation technique presented
in [2]. The best performing ML algorithm of [2] (Neural Network trained to account for
cache effects) is used. CAWET is compared to WE-HML for the Cortex A53 processor only,
a processor for which the results of WE-HML were available.

3.3 Hardware and software setups
Accurate timing values must be employed whenever possible when training and validating
CAWET, and the method used to obtain the timing values should not interfere with the
execution of the code, a phenomenon commonly known as the probe effect. CAWET either
uses a hardware-based approach or a software solution when the hardware-based solution
is not accessible. The hardware solution leverages the Joint Test Action Group (JTAG)
interface. The J-Trace Pro trace solution from Segger [31] is used to connect to the JTAG
interface of the target processor (in our case Cortex-M4 and Cortex-M7), in conjunction with
Ozone [14], a cross-platform debugger and performance analyzer. Ozone generates execution
traces that provide the value of the cycle counter, the instruction’s address, opcode, and
operands, as well as the corresponding assembly code for each instruction. The software
solution involves adding code instrumentation to measure the execution time of individual
basic blocks (BB) in a program. To provide context and assembly code for the timed BB,
we retrieve the execution trace using GDB (the GNU Debugger). The software solution is
only used when no JTAG interface is available since it is prone to probe effects and requires
significant human effort to implement.

Our experiments are performed on various Arm processors, whose characteristics are
summarized in Table 3. We initially focus on the Cortex-M4 processor, which has a simple
in-order pipeline with three stages and no cache. This processor allows us to validate our
method on a deterministic processor with precise timing measurements through the JTAG
interface. Then, we evaluate our approach to the more advanced Cortex-M7 processor. This
processor features a 6-stage in-order pipeline, data and instruction caches, and a branch
predictor. Finally, we use a more complex processor, Cortex-A53, which is hosted in a
Raspberry Pi 3. This superscalar processor has two data and instruction cache levels: an
8-stage in-order pipeline and a branch predictor. The Cortex-A53 has no JTAG interface;
the reading of the cycle counter is used for the timing measurements. Using this commercial
off-the-shelf (COTS) hardware is part of the experiments in the WE-HML approach [2].

Table 3 Summary of the processors used and their micro-architectural features.

Target Measurement solution OS? Pipeline/#stages Branch predictor Cache memory and proprieties
Cortex-M4 Hardware (JTAG) Baremetal In-order/3 No No

Cortex-M7 Hardware (JTAG) Baremetal In-order/6 Yes Yes data and instruction cache,
L1, random replacement policy

Cortex-A53
(also used in [2]) Software Linux In-order/8 Yes Yes data and instruction cache,

L2, random replacement policy

3.4 Setup for the learning phase
PyTorch was used to implement the learning models, which were then trained on a Tesla V100.
Each setting (processor) required two days for CAWET training: 1,5 days for pre-training and
0,5 days to fine-tune the model. To avoid underestimating execution times, we employed the

A. N. Amalou, E. Fromont, and I. Puaut 7:11

Root Mean Squared Logarithmic Error (RMSLE) loss function provided in Equation 1, which
tends to penalize underestimations more heavily than overestimations. We also incorporated
an additional penalty for predictions that underestimated the execution time, according to
Equation 2. We artificially modify the target value in the loss when the prediction is too low.
When computing the loss, this is done by increasing the target with the predicting error
(target − prediction).

RMSLE(target, predict) =
√

(log (target + 1) − log (predict + 1))2 (1)

UsedTarget =
{

target if target ≤ prediction

target + (target − prediction) if target > prediction
(2)

3.5 Setup for the prediction phase
The CFG, the SESE tree, and the loop tree is generated by the Heptane WCET estimation
tool [16]. These structures are used to construct the list of contexts for each BB. Then,
we predict the WCET for each BB using CAWET. Finally, we employ Heptane’s IPET to
determine the overall WCET of the program.

To create the contexts, we opted for a cyclomatic complexity of 5, as this value has
been shown empirically to generate paths within a reasonable amount of time (less than five
minutes to generate traces for each basic block in the 13 programs previously described).
Since the best context size varies across different architectures, we only considered a fixed
number N of consecutive basic blocks, where N corresponds to the number of pipeline
stages.

4 Results

The quality of WCET predictions for the Cortex M4 and Cortex M7 architectures is evaluated
in Sections 4.1 and 4.2. The effect of the different features of CAWET on the quality of
the predictions is studied in Section 4.3. Finally, CAWET is evaluated in Subsection 4.4 on
a more complex processor, the Cortex-A53, using a software measurement method and an
operating system, allowing us to compare the WCET predictions of CAWET with those of
WE-HML [2].

4.1 Quality of WCET predictions for the Cortex M4
Table 4 compares the WCET predictions of the selected TacleBench programs on the
deterministic cache-less architecture Cortex M4. WCET predictions of BBs are either
obtained by CAWET or by the context-agnostic Neural Network (NN) baseline described in
Section 3.2. The table gives for the two techniques both the WCET prediction in cycles and
the Relative Percentage Error RPE defined as RPE = (P redict−Actual)

Actual ∗ 100. A context size
of 3 BB is used.

The results show that CAWET is twice less pessimistic than the NN baseline on average,
using the Mean Absolute Error6 on the RPE (i.e., Error = RPE). This can be explained by
the fact that: (i) neural networks do not consider the ordering of instructions in BBs (ii)
neural networks are context-agnostic. We also observe that neither CAWET nor the NN
baseline underestimates the WCET since all RPE are positive.

6 Mean Absolute Error: MAE = 1
n ∗

∑n |Error|

ECRTS 2023

7:12 CAWET: Context-Aware Worst-Case Execution Time Estimation

Table 4 Comparison of WCET predictions for CAWET and a Neural Network (NN) baseline on
TacleBench programs for Cortex-M4.

Benchmark Maximum observed
execution time (Cycles)

NN
estimations

(Cycles)

NN
RPE
(%)

CAWET
estimations

(Cycles)

CAWET
RPE
(%)

bs 140 307 119.2 272 94.3
bsort 317279 414882 30.7 374712 18.1

countnegative 9638 14047 45.7 12858 33.4
crc 78496 102005 29.9 92872 18.3

expint 5683 7758 36.5 5727 0.7
fdct 7308 10557 44.4 8606 17.7
fir 6882 10844 57.5 7490 8.8

h264_dec 573752 661037 15.2 607918 5.9
insertsort 3125 3964 26.8 3898 24.7
jfdctint 7761 11454 47.5 9968 28.4
matrix1 440243 577831 31.2 564921 28.3

ns 28444 45026 58.2 34367 20.8
petrinet 3283 4159 26.7 3592 9.4

Avg. MAE – – 43.80 – 23.8

Impact of the context size. Table 5 shows the considered context size’s impact on the
prediction quality. Four values are considered: 0 (no context), 1 BB as context, 3 BBs as
context, and 20 BBs as context.

Table 5 Impact of the context size on the Mean Absolute Error (MAE) on TacleBench programs
for Cortex-M4.

Benchmark Context 0 Context 1 BB Context Pipeline size (3) Context 20 BB
bs 104,2% 97,6% 94,3% 117,9%

bsort 22,4% 27,6% 18,1% 34,2%
countnegative 47,3% 38,9% 33,4% 46,2%

crc 19,6% 11,1% 18,3% 19,3%
expint 21% 15,9% 0,7% 21,6%
fdct 39,2% 28,4% 17,7% 38,2%
fir 34,5% 31,6% 8,8% 39%

h264_dec 30,2% 22,1% 5,9% 30,9%
insertsort 15,5% 25,6% 24,7% 27,4%
jfdctint 34,6% 31,9% 28,4% 41,9%
matrix1 36,1% 33,3% 28,3% 53,4%

ns 45,7% 33,8% 20,8% 41,3%
petrinet 11% 17,2% 9,4% 16%

Avg. MAE 35,5% 31,9% 23,8% 40,6%

The results show that, on average, the error is minimal when the context size is 3 BBs.
Accounting for the execution context of BBs is beneficial to the quality of the predictions up
to a context size of 3. Taking into account larger context sizes results in much higher error
values. One possible explanation for these higher error values is that the context vector is
being disrupted by extensive information that cannot be processed efficiently with the current
TXL architecture. In future works, we plan to examine this phenomenon more closely, which
will require substantial computing resources.

A. N. Amalou, E. Fromont, and I. Puaut 7:13

4.2 Quality of WCET predictions for the Cortex M7
The Cortex M7 processor is more complex than the Cortex M4. It features a 6-stage in-order
pipeline, data, and instruction caches with random cache replacement and a branch predictor.
Table 6 evaluates WCET predictions produced by CAWET and the baseline NN for the
Cortex M7, using a context size of 6 for CAWET.

Table 6 Comparison of WCET predictions for CAWET (vanilla) and a Neural Network (NN)
baseline for Cortex-M7.

Benchmark Maximum observed
execution time (Cycles)

NN
estimations

(Cycles)

NN
RPE
(%)

CAWET
estimations

(Cycles)

CAWET
RPE
(%)

bs 140 307 119.3 280 100.0
bsort 191406 464616 142.7 376784 96.9

countnegative 6956 15874 128.2 13904 99.9
crc 47476 98473 107.4 88668 86.8

expint 3592 8260 130.0 7140 98.8
fdct 4957 12044 143.0 9341 88.4
fir 4625 10856 134.7 9132 97.4

h264_dec 362349 779905 115.2 706162 94.9
insertsort 1760 4188 138.0 3414 94.0
jfdctint 4011 11877 196.1 10215 154.7
matrix1 301866 660739 118.9 644668 113.6

ns 21253 46004 116.5 41167 93.7
petrinet 1595 3741 134.5 3342 109.5

Avg. MAE – – 132.7 – 102.2

The results show that even with no explicit support for caches, CAWET never underes-
timates compared to the Maximum observed execution time (the max of 1000 executions)
and is again more precise than the NN baseline. It should also be noted that the average
MAE, both for CAWET and NN, is, as one would expect, higher for the more complex
Cortex M7 than for the very simple Cortex M4, showing that the tight timing analysis of
complex processors is harder to achieve than the analysis of simpler ones.

Since the context size in CAWET is limited, the reuse of code/data (with instruction/data
caches) may not be fully taken into account by the model. We thus modified CAWET to
add a cache miss penalty to the WCET of a BB when the static cache analysis of Heptane
cannot guarantee a cache hit. The same procedure is applied to the NN baseline, and the
results are reported in Table 7.

The integration of cache analysis results into CAWET and NN leads to more pessimistic
WCETs for both techniques. Two factors explain this additional pessimism: (i) the static
cache analysis for random cache replacement is inherently pessimistic; (ii) CAWET already
captures parts of the cache behavior due to its use of the execution contexts for BBs. Thus
the impact of some cache misses may be counted twice.

4.3 Impact of CAWET features (Cortex M4 and M7)
In this section, we analyze the effect of different features of CAWET on the Relative
Percentage Error (RPE): context accounting, peek-on mechanism, loop management, and
using Heptane’s cache analysis. Our study involves a comparison of the impact of each
feature, starting with context accounting (A), followed by the peek-on mechanism (B), loop

ECRTS 2023

7:14 CAWET: Context-Aware Worst-Case Execution Time Estimation

Table 7 Comparison of WCET predictions for CAWET and a Neural Network (NN) baseline for
Cortex-M7 when accounting for the static cache analysis results.

Benchmark Maximum observed
execution time (Cycles)

NN
estimations

(Cycles)

NN
RPE
(%)

CAWET
estimations

(Cycles)

CAWET
RPE
(%)

bs 140 537 283.6 516 268.6
bsort 191406 840959 339.4 699961 265.7

countnegative 6956 33552 382.3 26997 288.1
crc 47476 184152 287.9 166025 249.7

expint 3592 14528 304.5 12764 255.3
fdct 4957 34861 603.3 20076 305.0
fir 4625 18088 291.1 16554 257.9

h264_dec 362349 1281479 253.7 1403042 287.2
insertsort 1760 6040 243.2 7105 303.7
jfdctint 4011 34044 748.8 19663 390.2
matrix1 301866 2021791 569.8 1249975 314.1

ns 21253 97870 360.5 76205 258.6
petrinet 1595 5813 264.5 6372 299.5

Avg. MAE – – 398.1 – 289.6

unrolling (C), and finally, applying cache analysis (D). The results in Table 8 show that
incorporating the context (A) provides the most significant improvement to CAWET, while
the effects of peeking (B) and loop enrolling (C) are less substantial. Additionally, we can see
that adding the cache analysis (D) in Cortex M7 has a considerable impact on the predictions,
with a significant increase in pessimism.

Table 8 RPE measures of CAWET predictions for Cortex-M4 and Cortex-M7 when adding
different features of CAWET: context accounting (A), peek-on mechanism (B), loop unrolling (C),
and cache analysis (D).

Feature(s) \Optimization Cortex-M4 RPE (%) Cortex-M7 RPE (%)
None 35.5 142.5

A 25.2 130.2
A+B 24.9 126.1

A+B+C 23.8 102.2
A+B+C+D NA 288.0

4.4 Quality of WCET predictions for the Cortex A53
The objectives of these experiments are twofold: (i) evaluate the WCET predictions produced
by CAWET for a more complex processor than the Cortex M7; (ii) be able to compare
CAWET to WE-HML [2], the related work closest to CAWET, that targets this architecture.
We re-use the very same experimental conditions as in WE-HML: software measurements
of execution times, and execution on top of an operating system. The maximum measured
BB execution time is used alongside its context to train CAWET. We have collected 1000
measurements for each studied benchmark and kept the maximum execution time observed
as a reference value to calculate the RPE. On the thousand measurements collected, we
have also applied the probabilistic WCET technique as described in [30], where we set the
probability to 10−3 to provide another reference point than the MOET.

A. N. Amalou, E. Fromont, and I. Puaut 7:15

Table 9 Comparison of WCET predictions on Cortex A53 for: CAWET, a probabilistic WCET
solution, WE-HML, CAWET (vanilla), and a modified CAWET to account for static cache analysis
results.

Benchmark MOET
(Cycles)

pWCET10−3

RPE (%)
WE-HML
RPE (%)

Vanilla CAWET
RPE (%)

CAWET
with cache analysis

RPE (%)
bs 2568 43.8 177.1 97.0 122.8

bsort 358380 60.4 838.3 18.6 21.3
countnegative 29720 6.3 168.5 70.2 169.6

crc 66867 64.2 315.2 53.8 86.5
expint 6122 1.0 352.5 29.0 80.3
fdct 8877 1.2 195.0 25.5 52.2
fir 7646 -13.6 391.4 31.1 114.9

h264_dec 426327 120.4 590.0 76.5 88.4
insertsort 3042 75.8 297.6 29.6 40.2
jfdctint 8070 51.1 296.1 44.4 57.5
matrixl 21380 5.8 207.1 223.9 236.6

ns 22018 -0.3 731.1 108.6 119.5
petrinet 3920 30.7 1865.3 2.3 30.8

Avg. MAE – 36.5 494.2 62.4 93

Table 9 shows the Maximum Observed Execution Times (MOET) and Relative Percentage
Error (RPE) for all considered techniques: probabilistic WCET estimation, WE-HML, Vanilla
CAWET, and CAWET modified with the results of static cache analysis. On all benchmarks
but one (matrix1), CAWET is much less pessimistic than WE-HML (even for the modified
CAWET). This is due to the significant pessimism introduced by WE-HML to account for
caches (WE-HML evaluates cache effects by generating the worst possible cache pollution in
loops regardless of the actual accesses performed in the loop).

Compared to the probabilistic technique, we observe that the pWCET is sometimes
unsafe. This may come from rare outliers (due, for example, to the presence of an operating
system) that are considered as WCET and that pWCET (smartly) ignores because they
are sufficiently rare. It may also happen when pWCET is less pessimistic than CAWET.
However, in general, pWCET techniques may miss the worst-case execution path in programs,
whereas CAWET, a hybrid technique, will not.

5 Related works

The challenge of accurately estimating the WCET of programs has led to the development
of various hybrid timing analysis techniques that are compared with CAWET below. These
techniques can be broadly categorized into two types: those that use measurements to
estimate the WCET of individual basic blocks and those that incorporate machine learning
to learn the BB’s timing patterns.
1. Hybrid WCET estimation techniques using measurements

AbsInt [11, 20, 21] and Rapita [4, 32] have developed hybrid WCET estimation solutions,
namely Timeweaver and Rapitime, which rely on hardware-assisted measurements (e.g.,
JTAG) and manual annotations (way/trace points and interest points, respectively) to
measure the WCET on code snippets, and then estimate the WCET of the program with

ECRTS 2023

7:16 CAWET: Context-Aware Worst-Case Execution Time Estimation

their static tool. Kirner et al. propose in [22] to perform measurements on code segments
larger than a basic block and propose techniques to enforce coverage of the measured
segments. In contrast to these research works, CAWET does not use measurements to
estimate the WCET of code snippets. Instead, it utilizes a timing model learned through
Machine Learning (ML) techniques.

2. Hybrid WCET estimation techniques using ML
Several methods for estimating Worst-Case Execution Time (WCET) using Machine
Learning (ML) have been proposed [5, 18, 17, 2, 24, 25]. Bonenfant et al. [5] use
worst-case event counts for training a neural network, that will be subsequently used to
calculate the WCET of a program at an early stage. Similarly, the approaches proposed
by Kumar [24, 25] estimate WCET using features extracted from the source code. These
approaches disregard valuable information about the code flow and hide the compilation
effects by operating at the source code or intermediate code level, which can bias the
timing prediction. The research works presented in [17, 2], similarly to CAWET, propose
to extract features from the binary code and to use ML techniques to predict the WCET
of individual basic blocks. However, contrary to [18, 17, 2], CAWET takes a more
fine-grained approach, considering the context surrounding each basic block, and the
dependencies between instructions within it to better consider hardware components such
as the pipeline. [2] accounts for data caches by simulating the worst possible data access
pattern for basic blocks within loops, whereas CAWET relies on static analysis through
the Heptane tool [16] to obtain less pessimistic estimations of data cache behavior. [26]
propose a technique similar to linear regression to estimate the WCET from a set of
end-to-end measurements. Unlike CAWET, this approach uses static features and is thus
not able to accurately predict pipeline effects.
All approaches described in this section oversimplify the code characterization, either by
using high-level abstractions of the source code or by relying on static features of basic
blocks at the binary code level. In contrast, CAWET operates on the flow of instructions
using state-of-the-art ML techniques (Transformers-XL).

3. Machine Learning for contention prediction and throughput prediction
Brando et al. [6] use neural networks to estimate the worst contention factor of programs
using hardware event counters. Similarly, Courtaud et al. [7] introduce a profiling tool
that produces high-resolution profiles of the memory behavior of applications. They train
a regressor using microbenchmarks to finally calculate contention. Even though these
two studies rely heavily on ML, they focus on contention prediction on multi-core targets
and not on WCET prediction for single-cores like CAWET.
Deep PM [33] and Ithemal [27] employ transformers and LSTMs, respectively, to predict
the throughput of isolated basic blocks. However, CAWET takes a different approach by
incorporating the execution context to predict WCETs. Similarly, CATREEN [1] uses
stacked LSTMs to forecast the average execution time of basic blocks in a contextualized
manner, but it differs from CAWET in its focus on average execution time rather than
worst-case execution time.

6 Conclusion

In this paper, we presented CAWET: a hybrid approach that estimates the worst-case
program timing for individual basic blocks in a program. Our approach uses static techniques
to identify the longest execution path and an advanced machine learning architecture called
transformer-XL to predict the worst-case execution time of each basic block. By considering

A. N. Amalou, E. Fromont, and I. Puaut 7:17

the execution context formed by previously executed basic blocks, CAWET is able to
account for the micro-architecture of the processor pipeline without explicit modeling. The
technique is demonstrated to be empirically reliable and less pessimistic than its competitors
in experiments on the TacleBench benchmarks for different target processors. While there are
still challenges to be addressed, such as the need for more accurate context for less pessimistic
predictions, CAWET offers a promising solution for predicting worst-case execution times for
Commercial off-the-shelf processors. In future work, the technique will be further explored
for processors with out-of-order pipelines, such as Cortex A9 or A72.

References
1 Abderaouf N. Amalou, Elisa Fromont, and Isabelle Puaut. Catreen: Context-aware code

timing estimation with stacked recurrent networks. In 34rd IEEE International Conference on
Tools with Artificial Intelligence, (ICTAI). IEEE, 2022.

2 Abderaouf N Amalou, Isabelle Puaut, and Gilles Muller. We-hml: hybrid wcet estimation using
machine learning for architectures with caches. In 2021 IEEE 27th International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 31–40.
IEEE, 2021.

3 Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. Otawa: An open
toolbox for adaptive wcet analysis. In Software Technologies for Embedded and Ubiquitous
Systems: 8th IFIP WG 10.2 International Workshop, SEUS 2010, Waidhofen/Ybbs, Austria,
October 13-15, 2010. Proceedings 8, pages 35–46. Springer, 2010.

4 Adam Betts, Nicholas Merriam, and Guillem Bernat. Hybrid measurement-based wcet analysis
at the source level using object-level traces. In 10th International Workshop on Worst-Case
Execution Time Analysis (WCET 2010). Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2010.

5 Armelle Bonenfant, Denis Claraz, Marianne De Michiel, and Pascal Sotin. Early wcet
prediction using machine learning. In 17th International Workshop on Worst-Case Execution
Time Analysis (WCET 2017), pages 5–1. OASICs, Dagstuhl Publishing, 2017.

6 Axel Brando, Isabel Serra, Enrico Mezzetti, Jaume Abella, and Francisco J Cazorla. Using
quantile regression in neural networks for contention prediction in multicore processors. In
34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022.

7 Cédric Courtaud, Julien Sopena, Gilles Muller, and Daniel Gracia Pérez. Improving prediction
accuracy of memory interferences for multicore platforms. In 2019 IEEE Real-Time Systems
Symposium (RTSS), pages 246–259. IEEE, 2019.

8 Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint,
2019. arXiv:1901.02860.

9 Jean-François Deverge and Isabelle Puaut. Safe measurement-based wcet estimation. In
5th International Workshop on Worst-Case Execution Time Analysis (WCET’05). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2007.

10 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT, pages 4171–4186. Association for Computational
Linguistics, 2019.

11 Boris Dreyer, Christian Hochberger, Alexander Lange, Simon Wegener, and Alexander Weiss.
Continuous non-intrusive hybrid wcet estimation using waypoint graphs. In 16th International
Workshop on Worst-Case Execution Time Analysis (WCET 2016). Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2016.

ECRTS 2023

https://arxiv.org/abs/1901.02860

7:18 CAWET: Context-Aware Worst-Case Execution Time Estimation

12 Christof Ebert, James Cain, Giuliano Antoniol, Steve Counsell, and Phillip Laplante. Cyclo-
matic complexity. IEEE software, 33(6):27–29, 2016.

13 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener.
Taclebench: A benchmark collection to support worst-case execution time research. In 16th
International Workshop on Worst-Case Execution Time Analysis, 2016.

14 SEGGER Microcontroller GmbH. Ozone User Guide & Reference Manual. URL: https:
//www.segger.com/.

15 Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and
Richard B Brown. Mibench: A free, commercially representative embedded benchmark suite.
In 4th IEEE international workshop on workload characterization, 2001.

16 Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. The heptane static worst-case execution
time estimation tool. In 17th International Workshop on Worst-Case Execution Time Analysis
(WCET 2017). Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2017.

17 Thomas Huybrechts, Thomas Cassimon, Siegfried Mercelis, and Peter Hellinckx. Introduction
of deep neural network in hybrid wcet analysis. In Advances on P2P, Parallel, Grid, Cloud
and Internet Computing: Proceedings of the 13th International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC-2018), pages 415–425. Springer, 2019.

18 Thomas Huybrechts, Siegfried Mercelis, and Peter Hellinckx. A new hybrid approach on wcet
analysis for real-time systems using machine learning. In 18th International Workshop on
Worst-Case Execution Time Analysis (WCET 2018). Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2018.

19 Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree: Computing
control regions in linear time. In Vivek Sarkar, Barbara G. Ryder, and Mary Lou Soffa,
editors, Proceedings of the ACM SIGPLAN’94 Conference on Programming Language Design
and Implementation (PLDI), Orlando, Florida, USA, June 20-24, 1994, pages 171–185. ACM,
1994. doi:10.1145/178243.178258.

20 Daniel Kästner, Markus Pister, Simon Wegener, and Christian Ferdinand. Obtaining worst-
case execution time bounds on modern microprocessors. In Embedded World Conference,
2018.

21 Daniel Kästner, Markus Pister, Simon Wegener, and Christian Ferdinand. Timeweaver: A tool
for hybrid worst-case execution time analysis. In 19th International Workshop on Worst-Case
Execution Time Analysis (WCET 2019). Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2019.

22 Raimund Kirner, Ingomar Wenzel, Bernhard Rieder, and Peter Puschner. Using measurements
as a complement to static worst-case execution time analysis. Intelligent Systems at the Service
of Mankind, 2(8):20, 2005.

23 Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint, 2018. arXiv:1808.06226.

24 Vikash Kumar. Deep neural network approach to estimate early worst-case execution time. In
2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), pages 1–8. IEEE, 2021.

25 Vikash Kumar. Estimation of an early wcet using different machine learning approaches. In
Advances on P2P, Parallel, Grid, Cloud and Internet Computing: Proceedings of the 17th
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-
2022), pages 297–307. Springer, 2022.

26 Björn Lisper and Marcelo Santos. Model identification for wcet analysis. In 2009 15th IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 55–64. IEEE, 2009.

27 Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. Ithemal: Accur-
ate, portable and fast basic block throughput estimation using deep neural networks. In
International Conference on machine learning, pages 4505–4515. PMLR, 2019.

https://www.segger.com/
https://www.segger.com/
https://doi.org/10.1145/178243.178258
https://arxiv.org/abs/1808.06226

A. N. Amalou, E. Fromont, and I. Puaut 7:19

28 Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Codenet: A large-scale ai for
code dataset for learning a diversity of coding tasks. arXiv preprint, 2021. arXiv:2105.12655.

29 Federico Reghenzani, Giuseppe Massari, William Fornaciari, and Andrea Galimberti.
Probabilistic-wcet reliability: On the experimental validation of evt hypotheses. In Pro-
ceedings of the International Conference on Omni-Layer Intelligent Systems, pages 229–234,
2019.

30 Federico Reghenzani, Luca Santinelli, and William Fornaciari. Dealing with uncertainty in
pwcet estimations. ACM Transactions on Embedded Computing Systems (TECS), 19(5):1–23,
2020.

31 Segger. J-Trace PRO – The Leading Trace Solution. URL: https://www.segger.com/
products/debug-probes/j-trace/.

32 Hardik Shah, Andrew Coombes, Andreas Raabe, Kai Huang, and Alois Knoll. Measurement
based wcet analysis for multi-core architectures. In Proceedings of the 22Nd International
Conference on Real-Time Networks and Systems, pages 257–266, 2014.

33 Jun S Shim, Bogyeong Han, Yeseong Kim, and Jihong Kim. Deeppm: transformer-based
power and performance prediction for energy-aware software. In 2022 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 1491–1496. IEEE, 2022.

34 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146–160, 1972.

35 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

36 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, et al.
The worst-case execution-time problem—overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems (TECS), 7(3):1–53, 2008.

37 Tomofumi Yuki. Understanding polybench/c 3.2 kernels. In International workshop on
polyhedral compilation techniques (IMPACT), pages 1–5, 2014.

A Appendix

Table 10 Hyperparameters used during transformer XL pretraining and finetuning.

Hyperparameters Pretraining phase Finetuning phase
Number of layer 4 4
Number of attention heads 3 3
Dimension of head 22 22
Dimension of inner head 128 128
Dimension of hidden layers 512 512
Optimizer “adam” “adam”
Target length 512 512
Memory length 1024 1024
Linear layer (fine tuning) – {512, 256, 128, 1}
Learning rate 0.00025 0.0001

ECRTS 2023

https://arxiv.org/abs/2105.12655
https://www.segger.com/products/debug-probes/j-trace/
https://www.segger.com/products/debug-probes/j-trace/

7:20 CAWET: Context-Aware Worst-Case Execution Time Estimation

Worst execution time estimation
of BBUA executed after the context input

TXL
context

TXL
 BBUA

Feed forward

BB1 BB2 BB6 BB7

Sentence piece tokenizer

Context

BB7
Tokens

Local attention matrix
(BBUA)

Global attention matrix
(context)

BB under analysis

BB1
Tokens

BB2
Tokens

BB6
Tokens

BB7
Tokens

Figure 4 CAWET Transformer XL system architecture.

	1 Introduction
	2 CAWET: Context-Aware WCET estimation using Transformers
	2.1 Overview of CAWET
	2.2 Training phase using Transformers-XL
	2.3 Prediction phase
	2.3.1 Concepts and notations
	2.3.2 Context generation
	2.3.3 Basic Block WCET estimation and program WCET calculation

	3 Experimental setup
	3.1 Dataset and benchmarks
	3.2 Context-agnostic baselines
	3.3 Hardware and software setups
	3.4 Setup for the learning phase
	3.5 Setup for the prediction phase

	4 Results
	4.1 Quality of WCET predictions for the Cortex M4
	4.2 Quality of WCET predictions for the Cortex M7
	4.3 Impact of CAWET features (Cortex M4 and M7)
	4.4 Quality of WCET predictions for the Cortex A53

	5 Related works
	6 Conclusion
	A Appendix

